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Abstract. Block ciphers such as the Advanced Encryption Standard
(Rijndael) are used extensively in practice, yet our understanding of
their security continues to be highly incomplete. This paper promotes
and continues a research program aimed at proving the security of block
ciphers against important and well-studied classes of attacks. In partic-
ular, we initiate the study of (almost) t-wise independence of concrete
block-cipher construction paradigms such as substitution-permutation
networks and key-alternating ciphers. Sufficiently strong (almost) pair-
wise independence already suffices to resist (truncated) differential at-
tacks and linear cryptanalysis, and hence this is a relevant and meaning-
ful target. Our results are two-fold.

Our first result concerns substitution-permutation networks (SPNs) that
model ciphers such as AES. We prove the almost pairwise-independence
of an SPN instantiated with concrete S-boxes together with an appropri-
ate linear mixing layer, given sufficiently many rounds and independent
sub-keys. Our proof relies on a characterization of S-box computation
on input differences in terms of sampling output differences from certain
subspaces, and a new randomness extraction lemma (which we prove with
Fourier-analytic techniques) that establishes when such sampling yields
uniformity. We use our techniques in particular to prove almost pairwise-
independence for sufficiently many rounds of both the AES block cipher
(which uses a variant of the patched inverse function x 7→ x−1 as the S-
box) and the MiMC block cipher (which uses the cubing function x 7→ x3

as the S-box), assuming independent sub-keys.

Secondly, we show that instantiating a key-alternating cipher (which can
be thought of as a degenerate case of SPNs) with most permutations
gives us (almost) t-wise independence in t+ o(t) rounds. In order to do
this, we use the probabilistic method to develop two new lemmas, an
independence-amplification lemma and a distance amplification lemma,
that allow us to reason about the evolution of key-alternating ciphers.

1 Introduction

Block ciphers are among the most fundamental building blocks in cryptography,
and applications demand strong pseudorandomness properties from them. How-
ever, the simplicity of widely adopted designs, such as Substitution-Permutation
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Networks (SPNs), which underlie AES, is inherently at odds with the reduction-
ist approach of provable security, as there are no clear underlying hard mathe-
matical problems upon which security can be based. Instead, the security valida-
tion of block ciphers has gone through cryptanalysis, and considered a number
of different techniques, including linear [41] and differential [5] cryptanalysis,
higher-order [36] and truncated [34] differential attacks, impossible differential
attacks [33], algebraic attacks [25], integral cryptanalysis [35], biclique attacks [7],
and so on.

Lacking full proofs of security, the next best thing is to prove that certain
relevant classes of attacks cannot possibly succeed. The more “concrete” and
less “asymptotic” such a proof is, the better, and the class of attacks should
be as large as possible. The most successful such effort has developed provable
bounds for linear and differential cryptanalysis, starting with the seminal work
of Nyberg and Knudsen [46], and culminating with fairly precise estimates for
concrete block ciphers like AES (see e.g. [29–32,48,49]).

t-wise independence. In this paper, we move one step forward and study the
(almost) t-wise independence of concrete block ciphers – namely, for a block
cipher E : {0, 1}s × {0, 1}n → {0, 1}n, we demand that for any distinct t inputs
x1, . . . , xt and a random key S, the distribution of

E(S, x1), . . . , E(S, xk)

is statistically close to that of t uniform, but distinct, n-bit strings.
This property is attractive for two reasons. First and foremost, it is poten-

tially achievable unconditionally by a concrete design, as long as s ≥ t · n. For
example, a variant of AES-128 with 11 independent round keys3 can (potentially)
be 11-wise independent. Second, t-wise independence already implies resilience
against a large class of attacks that have been previously studied. Indeed, the
case t = 2 (i.e., almost pairwise independence) already implies resilience to lin-
ear and differential cryptanalysis but also to truncated differential attacks and
any other attack that exploits statistical deviations of pairs of outputs. Simi-
larly, t-wise independence implies resilience to order log2(t) differential attacks.
One caveat with this view point is that actual cipher instances typically have
fixed-length keys which do not grow with t – however, similar to prior works
on analyzing simpler properties of block ciphers, and in particular expected dif-
ferential probabilities, we promote the heuristic angle that properties which are
true for independent keys (possibly, unconditionally) remain true (computation-
ally) when these keys are derived via a suitable key-scheduling algorithms from
a short, single key.4

We note that existing bounds on differential probabilities for ciphers such as
AES could imply pairwise independence, if good enough, but unfortunately, the

3 Such an “independence assumption” is common across block cipher analyses. For
more, see Section 1.2.

4 We note that the impact of key-schedules on cryptographic attacks is mostly not
well understood.
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current state of the art (cf. e.g. [49]) proves upper bounds of the order 2−111 for
128-bit outputs which does not imply anything about (almost) pairwise inde-
pendence. Without a finer grained understanding of the difference distribution,
this could well imply a large distance of pairs of outputs from the uniform dis-
tribution.

Scope: Substitution-Permutation Networks. Our focus in this paper is on
concrete block cipher designs (which likely benefit from other security prop-
erties, such as resilience to algebraic attacks), and in particular Substitution-
Permutation Networks (SPNs), a class for which AES is a special instance, and
a generalization thereof called Key-Alternating Ciphers (KACs). SPNs alternate
computationally simple rounds as follows, starting from the state being equal to
the block cipher input:

1. A key-mixing step which consists of XORing the keys bit-wise with the
current state;

2. A local non-linear step where each bit of the output depends only on a few
bits of the input; Concretely, this proceeds by partitioning the n-bit state into
k b-bit blocks, and applying a non-linear permutation S : {0, 1}b → {0, 1}b
(a so-called “S-box”) to each block in parallel;

3. A linear mixing step is then applied to the state.

We will refer to k as the width and to the important special case where b = n (i.e.,
k = 1) as a Key-Alternating Cipher (or KAC, for short). (For this case, we can
omit the mixing step without loss of generality.) Most modern ciphers are SPNs
(or KACs). For example, AES uses an S-box obtained from the patched inverse
x 7→ x2

b−2 and a mixing layer alternating two simple operations (ShiftRows and
MixColumns). The MiMC cipher [1] is a KAC applying the permutation x 7→ x3

to its state.

A similar viewpoint to ours was already taken by Vaudenay’s decorrelation
theory [51], but we are unaware of any application of decorrelation to SPNs
with concrete S-boxes. (In fact, this was left as an open problem.) Similarly,
Hoory et al. [24] also suggested the use and analysis of t-wise independence, but
the resulting constructions, while very elegant and simple, are far from existing
practical designs, and better fit in the general theoretical pursuit of building
t-wise independent permutations [2, 9, 28].
Our Program. This raises the following questions: If we take t-wise indepen-
dence as our security goal, what are good choices for the non-linear (resp. linear)
step? Which choices provably work and which do not? Again, we stress that our
goal is to find concrete, fixed choices of these layers, without modeling the S-box
as a random permutation oracle.

Our results come in two forms:

1. Results about concrete SPN instantiations of SPNs with S-boxes such as the
patched inversion function, and where we prove pairwise independence of the
resulting construction. In particular, one of our results applies to the round
structure of AES, without any simplifications or idealized assumptions.
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2. Existential results, which hold for most choices of P , where we prove almost
t-wise independence for KACs with a number of rounds that grows with t.

Next, we provide a detailed overview of our results, and the underlying tech-
niques. Then, we give an overview of the most relevant related work.

1.1 Our Results and Techniques

This section gives an overview of our results, and the underlying techniques.

Pairwise independence of SPNs. Our first result deals with SPNs of width k
with a concrete S-box S : F2b → F2b (thus, n = b · k is the block size here). In
particular we focus on the case where the S-box is S(x) = x−1 (patched so that
0−1 = 0), though the results extend to other S-boxes. Our main theorem here
can be cast as follows.

Theorem (Informal). For a suitably instantiated mixing layer,5 and as
long as 2k+8

2b
+
√
k/2b < 1

2 , the r-round SPN with S-box S(x) = x−1 of
width k is δ-close to pairwise independent for sufficiently large r = r(δ).
In particular, if 2k+8

2b
+
√
k/2b = C/2, then r = O( log(1/δ)

log(1/C) ).

We briefly highlight the main ideas behind the proof and note that we will
focus in particular on showing that a three round SPN is O(

√
k/2b)-close to

pairwise independent – this result will rely on a new extraction lemma, which
we explain below. We then resort to an amplification result by Maurer, Pietrzak,
and Renner [42] to conclude that the (r/3)-fold sequential composition of the
SPN is δ-close to pairwise independent, as desired.

Our analysis of the output distribution of a three-round SPN for any two
distinct inputs x 6= x′ will take the standard (and essentially equivalent) ap-
proach of studying the distribution of the difference of the outputs of the two
evaluation. To this end, we start with a (fixed) input difference ∆ = x⊕x′ 6= 0n.
Then, our first step is to show, using (mostly) algebraic properties of the field
F2b , that after ignoring some corner cases that happen with probability no more
than O(k/2b), the input differences to the third round – denoted by V1, . . . , Vk
– satisfy jointly a very strong distributional property, namely:

any subset of them of size k′ ≤ k has (jointly) min-entropy at least k′(b− 1).

For this to true, we only need mild assumptions on the linear mixing layer. We
merely require it to be described by a full-rank k × k matrix whose entries are
all non-zero.

To understand the effect of the third round, at last, we resort to our extraction
lemma – we want to show in particular that the distribution of the differences
Z1, . . . , Zk, which we obtain after applying the final round of S-boxes with input

5 Our requirement is very mild, and is in particular implied by having maximum
branch number, as it is in the case in many SPN analysis.
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differences V1, . . . , Vk, is very close to uniform.6 Imagine first that the differences
Zi are not sampled via the S-box, but rather each Zi is sampled independently
from the (n−1)-dimensional sub-space orthogonal to {0b, Vi}. (We interpret the
latter as a linear subspace of Fb2, and Vi as a vector in this space.) Our extraction
lemma shows that in this case, the Zi’s are very close to uniform – the proof
uses Fourier-analytic techniques.

Of course, the Zi’s are not sampled this way – by applying the S-boxes to
inputs with differences Vi – yet, the key insight is that this is almost equivalent
to our sub-space representation, in that by applying a lemma of Nyberg [45] we
can show that there exist permutations π, π′ such that π′(Zi) is O(k/2b) close
to a random vector sampled orthogonal to {0b, π(Vi)}.

We also give a proof of a weaker bound for a two-round SPN of order
√
2k−b.

This bound could be interesting in some parameter regimes.

The AES case. Unfortunately, we cannot apply the above theorem directly to the
AES round structure or the AES parameters. First off, the AES S-box combines
the inverse with a F2-affine function – it turns out this is not particularly difficult
to handle (the affine function can be cast as part of the mixing). But we encounter
other problems, in that the mixing layers does not satisfy the assumptions needed
for the theorem to work, and the theorem does not apply when k = 16 and b = 8.
Still, we can adapt our techniques to obtain a refined analysis which tells us that
six AES rounds (with independent sub-keys) are ε-close to pairwise independent,
for some ε < 1/2. Then, using the MPR result in the iteration, we obtain the
following result:

Theorem. 6r-round AES is 2r−1(0.472)r-close to pairwise independence.

The bound is likely far from tight, as we expect much better, but non-trivial
further work seems required to obtain a substantial improvement. However, we
do stress that barring the use of independent keys (which again, are common in
analyses of expected differential probabilities for AES), this theorem applies to
the actual AES structure.

Existential Results. All of the above results are about pairwise independence. It
is interesting to extend them to t-wise independence for t ≥ 3. While we leave
this important question open for SPNs and concrete S-boxes, we investigate the
general question whether (almost) t-wise independent constructions exist in the
first place.

To this end, we employ the probabilistic method to show that there exist
permutations to instantiate a (t + 1)-round key-alternating cipher so that it is
(almost) t-wise independent. We stress that while our probabilistic argument
picks such permutations at random to show their existence, these permutations
can then be fixed.

6 The last mixing stage does not affect the argument – it will merely preserve unifor-
mity by virtue of being a permutation.
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Our probabilistic argument is quite involved and requires the study of mar-
tingale sequences and their concentration. Our result follows by showing two
new lemmas, and employing a careful alternation between them. The first is an
independence amplification lemma that shows how to take a KAC that is very
close to t-wise independent and by adding an additional round, obtain a KAC
that is somewhat close to a t + 1-wise independent distribution. The second is
a distance amplification lemma that shows how to get from a somewhat close to
t-wise independent KAC to a very close to t-wise independent KAC, again by
adding one round.

1.2 Perspectives and Open Problems

On Independent Keys and Other Such “Ideal” Assumptions. We remark that, to
date, all analyses of block ciphers make ideal assumptions such as the indepen-
dence of round keys and/or ideal components. For example, analyses of (iterated)
Even-Mansour ciphers assume that both the construction and the adversary have
oracle access to a random permutation P , and that P remains unqueried on an
exponential number of points. This is a highly idealized model: a random permu-
tation would take exponentially many bits to write down, and indeed, in the real
world, P is instantiated with a concrete permutation. The proofs say nothing
about what happens to the pseudorandomness of such a cipher when P is instan-
tiated with any concrete permutation. And moreover, analyses of multi-round
constructions all assume independent keys.

In contrast, our work continues a research program that aims to avoid such
“oracle access” assumptions. This line of work, which has its roots in the work of
Nyberg in the 1990s, treats the component permutations and mixing functions as
concrete functions (indeed, ones that are used in block ciphers such as AES and
MiMC). While proving computational pseudorandomness is way out of reach,
this line of research aims to understand the security of these constructions against
concrete practical attacks.

The “independent round keys” assumption is very common and rooted in
the model of Markov Ciphers of Lai, Massey, and Murphy [37], and adopted
by Nyberg [45] and follow-up works. The expectation is that t-wise indepen-
dence becomes t-wise pseudorandomness with an appropriate instantiation of
the key schedule; nevertheless, understanding the precise role of key schedules is
an important open problem.

On Algebraic and Other Attacks. The research program we undertake is to study
several classes of concrete, powerful, attacks against block ciphers. In particu-
lar, t-wise independence rules out an important attack vector, but the program
does not stop at just t-wise independence. In particular, the two outstanding
open problems that come of this work are (a) to prove t-wise independence of
multi-round AES with independent round keys, for t > 2; and (b) to formalize
and prove security against algebraic attacks. We view solving these problems as
an important quest that will likely require importing analytic techniques from
mathematics and TCS, as well as inventing new ones.
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On Differential Attacks vs. Almost Pairwise Independence. We note that mean-
ingful differential probabilities need to be very close to 2−n, or else, they do not
rule out distinguishers. For example, in the case of AES-128, a 2−127 bound on
the expected differential probability (see Section 2 for the definition) does not
rule out the first bit of the output being always the same as the first bit of the
input. In this case, there is a distinguisher that always works!

We note that our analysis can make the statistical distance as small as we
want with sufficiently many rounds, and in particular, make the differential prob-
abilities arbitrarily close to the ideal 2−128. We note that ours is the first such
result; in particular, our result for AES is the first such optimal bound for the
AES design. Showing a tighter tradeoff between the number of rounds and the
statistical distance is an interesting open question. Showing a direct bound on
the differential probability without going through statistical distance would be
interesting as well.

1.3 Related Work

Coppersmith and Grossman [15] and Kaliski, Rivest and Sherman [26] analyzed
the groups generated by transition functions of the DES block cipher. [10] show
that the group generated by the round functions of a cipher similar to AES is
the alternating group. On the other hand, [44] provide a cautionary tale where
guarantees on the group generated by the round functions does not guarantee
security.

Bounds on Linear and Differential Probabilities. There is an extensive body of
literature on provable bounds for linear [41] and differential cryptanalysis [5] of
block ciphers. We note that while sufficiently strong bounds on the differential
probability – say (1 + ε)2−n for block size n and ε = o(1) - would imply almost
pairwise independence, these works fall short of proving such strong guarantees.

Adopting the formal framework of Lai, Massey, and Murphy [37], Nyberg
and Knudsen [46] prove bounds on the differential probability for Feistel ciphers
as a function of the underlying non-linear function. Several works have been
devoted to studying the differential properties of fixed functions to instantiate
these results – relevant to this work, [45] is the first work to show properties of
differentials of the inverse permutation x 7→ x−1 in a finite field (these were later
revisited by Daemen and Rijmen [17]). We also refer to [6] for a comprehensive
survey on the progress in designing non-linear functions suitable for cryptogra-
phy.

Much effort has also been devoted to provable bounds on linear and differen-
tial probabilities for AES and (more abstractly) SPNs. Hong et al. [23] gave the
first analysis of two-round SPNs where the mixing layer has optimal branch num-
ber. This result was further generalized to arbitrary branch number by Kang et
al. [27]. Very concrete bounds for the specific case of AES were then given via re-
fined methods in several works [29–32,48,49]. The best known result here shows
that the maximum expected differential probability is at most 1.144 × 2−111

for four rounds of AES. Miles and Viola [43] also provide generic bounds (i.e.,
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these bounds only depend on the S-box and the number of rounds) for linear
and differential attacks against multi-round SPNs – however, the quality of their
bounds decreases with a higher number of rounds.

Baignères and Vaudenay [4] proved optimal resilience to differential crypt-
analysis whenever the S-boxes are chosen uniformly at random and secret (i.e.,
their description is part of the key). Later, Miles and Viola [43] improves this
result (implicitly) by showing that SPNs with random S-boxes are effectively a
pseudorandom function when the number of queries is smaller than the input
size of the S-box.

Stronger Differentials. Strong notions of differential attacks have been proposed.
For example, Lai [36] introduced the notion of higher order differentials, which
consider the k-th derivative (as opposed to the simple derivative of a function),
whereas Knudsen [34] introduced truncated differentials, which only consider a
subset of the bits of the output. We note that security against k-th order dif-
ferential cryptanalysis is implied by the k-wise independence, whereas pairwise
independence implies resistance to truncated differential cryptanalysis. Another
attack technique introduced by Knudsen is that of “impossible differential at-
tacks” [33], which leverage differences which occur with probability 0 – once
again, sufficiently strong pairwise independence implicitly guarantees that dif-
ferences occur with sufficiently large probability.

Decorrelation theory. Vaudenay [51] takes a similar position to ours, proving
properties of block cipher constructions on a bounded number of inputs, and
inferring a number of properties from these statements. The work also naturally
exploits a natural connection with t-wise independence, like ours. Interestingly,
Vaudenay considers a number of different distance measures for the resulting
distributions, and use their properties to derive a number of results. However,
we are not aware of any use of decorrelation theory about the security of SPNs
or KACs with concrete permutations. Still, it would be interesting to consider-
ing distance measures from decorrelation theory in the context of our paper to
improve tightness.

Analyses with Public Ideal Permutations. A substantial body of works considers
analyses in models where the rounds of a KAC are (public) random permutation
P : {0, 1}n → {0, 1}n given to the adversary. In particular, since the adversary is
query-bounded, she cannot obtain the entire truth table of P and therefore, this
is an idealized model. (This model is effectively capturing generic attacks that
treat these components as a black box.) Increasingly tighter bounds for security
as a pseudorandom permutation have been developed by several works [8, 12,
22, 38, 50] which assume the permutations and the keys are independent. Other
works consider identical permutations and/or identical keys [11, 52]. The model
was also considered to prove the stronger version of indifferentiability for key-
alternating ciphers (cf. ]e.g. [3, 20,21]).

The model was then adapted to SPNs by assuming that the individual S-
boxes are public random permutations {0, 1}b → {0, 1}b [13,14,18,19]. Crucially,
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these results assume that the number of queries to the S-box is smaller than 2b,
which is rather unrealistic for small values of b (e.g., b = 8 as in AES).

2 Preliminaries

Notational Conventions. When n is a positive integer, let [n] denote the set
{1, 2, . . . , n}. When p is a prime or prime power, let Fp denote the finite field of
size p. The logarithm function log uses base 2 by default. Probability distribu-
tions are typically denoted by calligraphic letters, e.g., D. Sampling an element
from D is denoted by d← D. For any finite set S, sampling x uniformly from S
is denoted by x← S.

Definition 1 (Entropy). For a distribution over domain Ω whose probability
mass function is p.

– Its Shannon entropy is H(p) = −
∑
x∈Ω p(x) log(p(x)).

– Its Min-entropy is H∞(p) = − log
(
maxx∈Ω p(x)

)
.

– Its Rényi entropy of order 2, also known as the collision entropy, is H2(p) =
− log

(∑
x∈Ω p

2(x)
)
.

2.1 Almost t-wise Independent Permutations and Cryptanalysis

We review notions of almost t-wise independence, and state some connections
with standard notions from the cryptanalytic literature.

Definition 2. The statistical distance (or total variation distance) between two
probability distributions p and q with domain Ω is dTV(p, q) := 1

2 ·
∑
x∈Ω |p(x)−

q(x)|. Moreover, dTV(p, q) :=
∑
x∈Ω:p(x)>q(x) p(x)− q(x).

For a two argument function F : {0, 1}m × {0, 1}n → {0, 1}` we often write
FK(x) = F (K,x), and refer to F as a function family. (Alternatively, we use
the set notation F = {FK}K∈{0,1}m whenever more convenient.) We will be
considering mostly permutation families, where ` = n, and FK is one-to-one for
each K.

Definition 3 (close to t-wise independence). We say that a permutation
family F : {0, 1}m × {0, 1}n → {0, 1}n is ε-close to t-wise independent if for
all distinct x1, . . . , xt ∈ {0, 1}n, and a uniformly random m-bit string K, the
distribution of (FK(x1), . . . , FK(xt)) has statistical distance at most ε from that
of t uniformly sampled distinct n-bit values (i.e., sampled without repetition).

We will use the following amplification lemma, which is due to Maurer,
Pietrzak, and Renner [42].

Lemma 1 (MPR Amplification Lemma). Let F and G be ε- and δ-close
to t-wise independent permutation families. Then, the permutation family F ◦G
such that (F ◦G)K1||K2

(x) = FK1(GK2(x)) is 2εδ-close to t-wise independent.
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In particular, this implies that the permutation family F r obtained by se-
quential r-fold composition of an ε-close to t-wise independent permutation fam-
ily F is 2r−1εr-close to t-wise independent. We point out that for a meaningful
application of this lemma, we require that ε < 1/2.

Differential and linear cryptanalysis. For a permutation family F : {0, 1}m ×
{0, 1}n → {0, 1}n, we define the expected differential probability (EDP) for a
given pair ∆ and ∆′ of non-zero input- and output-differences, as

EDPF (∆,∆
′) = Pr

K,X
[FK(X ⊕∆)⊕ FK(X) = ∆′] ,

where K and X are independent and uniformly distributed over the m-bit and
n-bit strings, respectively. We also define MEDPF = max∆,∆′ 6=0 EDPF (∆,∆

′).
It is easy to see that if F is ε-close to pairwise independent, then MEDPF ≤
ε+ 1

2n−1 . We note that a similar result extends to any subset of n output bits,
and hence to so-called truncated differential probabilities.

We note that higher-order differential cryptanalysis [34, 36] generalizes dif-
ferential cryptanalysis to look at higher order derivatives. It is not hard to see
that almost t-wise independence will imply resistance to order-log2 t differential
cryptanalysis, as the property relies on the evaluation of the cipher on at most
t inputs. We note that while (almost) t-wise independence refers to attacks that
look at an arbitrary set of t inputs, an order-log2 t differential attack looks at all
inputs that lie in some log2 t-dimensional hypercube, so a total of t inputs but
they are not arbitrary.

The connection between pairwise independence and linear cryptanalysis is
slightly less obvious. For more details, see the final version of our paper [40].

2.2 Key-Alternating Ciphers and Substitution Permutation
Networks

A Key Alternating Cipher (KAC) (cf. Figure 1) is parameterized by a block
size n, number of rounds r, and a fixed permutation P : F2n → F2n . A KAC
is a family of functions indexed by r + 1 sub-keys K0,K1, . . . ,Kr, and defined
recursively as follows:

F
(0)
P (x) = x⊕K0

F
(i)
P,K0,...,Ki

(x) = P (F
(i−1)
P,K0,...,Ki−1

(x))⊕Ki .

The family of functions is FP :=
{
F

(r)
P,K0,...,Kr

(x) : Ki ∈ Fn2
}
. One can also

naturally extend this to have different permutations in each round.
A Substitution-Permutation Network (SPN) (cf. Figure 2) can be seen as a

special case of a KAC, where n = k · b (we refer to k as the width), and the
permutation P is obtained from an S-box S : F2b → F2b and a linear mixing
layer, described by a matrix M ∈ Fk×k

2b
. In particular, P splits its input x into

k b-bit blocks x1, . . . , xk, and computes first yi = S(xi) for each i, and finally
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Fig. 1. Illustration of Key Alternating Cipher
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Fig. 2. Illustration of Substitution Permutation Network

outputs M · (y1, . . . , yk). One can of course instead think of a KAC as a special
of an SPN with width k = 1.

A fact that we will use repeatedly is that in order to bound how close to
pairwise independent an SPN or KAC is, it is enough to analyze the distribution
of the non-zero difference of outputs of the SPN/KAC, and its distance from the
uniform distribution over non-zero strings.

Analyzing Pairwise Independence of KACs and SPNs. We will use the following
lemma to reduce the analysis of pairwise independence to analyzing the distri-
bution of differences.

Lemma 2. Assume that the KAC (resp. SPN) FP (resp. FP,M ) has the property
that for any input difference ∆ 6= 0, the distribution of

∆′ := FK(x)⊕ FK(x⊕∆)

is ε-close to uniform (where the randomness of the distribution is taken over x
and K). Then, the KAC (resp. SPN) is ε-close to pairwise independent.

The proof is deferred to the full version [40].

Advanced Encryption Standard. The mostly widely used block cipher is the world
is Advanced Encryption Standard (AES), which is based on the SPN framework.



12 Tianren Liu, Stefano Tessaro, and Vinod Vaikuntanathan

The block size is 128 bits, width is 16, i.e. n = 128, k = 16, b = 8. AES is a family
of ciphers which have 10, 12 or 14 rounds.

The S-box is instantiated by S(x) = A(x2
8−2), where x 7→ x2

8−2 is the
patched inverse function over F28 , A is an invertible affine function over F8

2. The
exact form of A is irrelevant for this paper (as shown by Lemma 14).

The linear mixing function is instantiated by the composition of ShiftRows
and MixColumns. Their descriptions are deferred to the full version [40].

2.3 Trace in Fields of Characteristic Two

We describe a number of facts related to the finite field F2n of characteristic 2
and the trace function over it. For proofs of the claims below, we refer the reader
to any standard text on the subject, e.g. [39].

Definition 4. The trace function Tr : F2n → F2 is defined as Tr(x) =
∑n−1
i=0 x

2i .

Lemma 3. For every x ∈ F2n , Tr(x2) = Tr(x).

Lemma 4. For every x, y ∈ F2n , Tr(x + y) = Tr(x) + Tr(y). In particular, the
set of elements x ∈ F2n with Tr(x) = 0 form an F2-subspace of dimension n− 1.

Lemma 5. Let α ∈ F2n . The equation y(y ⊕ 1) = α over F2n has two solutions
if Tr(α) = 0 and no solutions otherwise.

Corollary 1. Let a, b, c ∈ F2n and a, b are non-zero. The equation ax2+bx+c =
0 has two solutions over F2n if Tr(ac/b2) = 0 and no solutions otherwise.

Lemma 6. For every x 6= y ∈ F2n , let Sx := {z : Tr(xz) = 0} and Sy :=
{z : Tr(yz) = 0}. Then, Sx 6= Sy. Indeed, since these are (n − 1)-dimensional
subspaces, they intersect at exactly 2n−2 elements.

We also need the following Lemma from Nyberg’s work [45], which we reprove
for completeness.

Lemma 7 ( [45]). Let P : F2n → F2n be the patched inversion function P (x) =
x2

n−2. For every δ, γ 6= 0, let pδ,γ := Prx←F2n
[P (x)⊕ P (x⊕ δ) = γ]. Then,

pδ,γ =

{
2/2n, if δγ = 1

0, if δγ 6= 1
+

{
2/2n, if Tr((δγ)−1) = 0

0, if Tr((δγ)−1) = 1

The following corollary is an immediate consequence.

Corollary 2. For any non-zero δ ∈ F2n , let

p(γ) := Pr
x←F2n

[P (x)⊕ P (x⊕ δ) = γ] .

Let Dδ denote the distribution with probability mass function p and let D′δ denote
the distribution with probability mass function p′(γ) = p(γ−1), we have:

– D′δ is (2/2b)-close to the uniform distribution on a subspace of dimension
b− 1.

– H2(Dδ) ≥ − log2
(

2
2b

+ 8
22b

)
.
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2.4 Basics of Discrete Fourier Analysis

The characters of the group Fn2 are functions {χx : Fn2 → R}x∈Fn
2
defined by

χx(y) = (−1)〈x,y〉

The functions {χx}x∈Fn
2
are orthonormal under the inner product7

〈χx, χx′〉 :=
1

2n

∑
y∈Fn

2

χx(y)χx′(y) .

Let f : Fn2 → R be a real-valued function on Fn2 . Writing f =
∑

x∈Fn
2
f̂(x)χx, we

have the Fourier (inversion) formulas

f(y) =
∑
x∈Fn

2

f̂(x)χx(y) and f̂(x) = 〈f, χx〉 =
1

2n

∑
y∈Fn

2

f(y)χx(y)

We need the following two facts. For proofs, we refer the reader to [47].

Lemma 8 (Parseval’s Theorem). 1
2n

∑
y∈Fn

2
f(y)2 =

∑
x∈Fn

2
f̂(x)2.

If S is a subspace of Fn2 , let S⊥ = {y : 〈x,y〉 = 0 for all x ∈ S} denote its dual
subspace. If S is k-dimensional, S⊥ is (n− k)-dimensional.

Lemma 9. Let S ⊆ Fn2 be a subspace and fS denote the uniform probability
distribution on S. That is, fS(y) = 1

|S| if y ∈ S and 0 otherwise. Then, f̂S(x) =
1
2n if x ∈ S⊥ and 0 otherwise.

In particular, let S ⊆ Fn2 be an (n− 1)-dimensional subspace which can equiva-
lently be denoted as (the dual subspace) S = {0, v}⊥ for some v ∈ Fn2 . Then,

f̂S(y) =

{
1
2n , if y ∈ {0, v}
0, otherwise

Let f : Fn2 → R, g : Fn′2 → R be two real-valued functions on Fn2 and Fn′2
respectively. Their tensor product f ⊗ g : Fn+n

′

2 → R is a real-valued function
on Fn+n

′

2 such that

(f ⊗ g)(x, y) := f(x) · g(y) for all x ∈ Fn2 , y ∈ Fn
′

2 .

Assume X,Y are two independent random variables on Fn2 and Fn′2 respectively,
and f, g are the probability mass functions of X,Y . Then f⊗g is the probability
mass function of (X,Y ), as

Pr[(X,Y ) = (x, y)] = Pr[X = x] · Pr[Y = y] = f(x) · g(y) = (f ⊗ g)(x, y).

The Fourier transform of the tensor equals the tensor of the Fourier transforms.

Lemma 10 (Fourier transform of a Tensor). For any f : Fn2 → R, g : Fn′2 →
R, f̂ ⊗ g = f̂ ⊗ ĝ.
7 Note that there are two inner products at play here, one over Fn

2 and the other over
R2n , and we are abusing notation by denoting them both as 〈·, ·〉.
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3 Pairwise Independence of SPNs

The main result of this section is a proof of pairwise independence of the 3-round
substitution-permutation network (see Figure 2) where the non-linear S-box is
the patched inverse function over F2n , used in the AES block cipher. We will show
that the 3-round SPN is ε-close to pairwise independent for a constant ε < 1/2,
and note that an application of the MPR amplification lemma (Lemma 1) gives
us 2−Ω(r)-closeness to pairwise independence in 3r rounds.

In Section 3.1, we start with our main technical result, an S-box extraction
lemma, which says that when the input difference of a single round of SPN has
sufficient Rényi entropy, the output difference is close to uniformly random. We
follow this up by describing mixing functions and their properties in Section 3.2.
In Section 3.3, we then use the S-box extraction lemma and properties of mixing
functions to show our main result, namely the pairwise independence of 3-round
SPN. The reader is encouraged to refer back to Section 2.4 for relevant facts
about discrete Fourier analysis as and when necessary.

3.1 The S-box Extraction Lemma

Before we state the S-box extraction lemma, we describe how it will be used to
show the pairwise independence of SPNs. As noted in Lemma 2, it is sufficient
to show that the distribution of output differences on any two inputs is close to
uniformly random.

Consider the scenario in the last round of a substitution-permutation net-
work, as illustrated in Figure 3. Before the last round, we will show that the input
difference already has high (Rényi) entropy. Indeed, we will show that if there
is one round of S-boxes and mixing before the last round, ∆i has large entropy
for any i ∈ [k]; and if there are two rounds of S-boxes and mixing before the
last round, the joint distribution of (∆1, . . . ,∆k) has (proportionally) high en-
tropy. The question we ask then is, is the output (difference) vector (∆′1, . . . ,∆′k)
close to uniform? The extraction lemma provides an affirmative answer to this
question.

Lemma 11 (The S-Box Extraction Lemma). Let k, b be positive integers
and n = bk. Let D be a distribution over (Fb2)k and consider the following prob-
abilistic process called SampD.

1. Sample (v1, . . . , vk) ← D. Let S1, . . . , Sk be (b − 1)-dimensional subspaces
where each Si = {0, vi}⊥ is the subspace orthogonal to vi.

2. For each i ∈ [k], sample xi ← Si independently at random, and output
(x1, . . . , xk).

For any T ⊆ [k], let vT denote the concatenation of (vi)i∈T , let DT denote the
distribution of vT , let H2[DT ] denote its Rényi entropy. Then, the statistical dis-
tance between the joint distribution of (x1, . . . , xk) and the uniform distribution
over Fbk2 is at most

1

2

√ ∑
T⊆[k],T 6=∅

2−H2[DT ] .
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∆1 + S-box ∆′1

∆2 + S-box ∆′2

∆k + S-box ∆′k

high Rényi entropy input ?
=⇒ almost uniform output

Fig. 3. Application Scenario of the Extraction Lemma

In particular, we have:

– Weak Extraction: Assume that for all i ∈ [k], H2[vi] ≥ h for a fixed
real h ≤ b.Then the statistical distance between the joint distribution of

(x1, . . . , xk) and the uniform distribution over Fbk2 is at most 1
2 ·
√

2k−1
2h

.
– Strong Extraction: Assume that for any T ⊆ [k], H2[vT ] ≥ h·|T | where vT

denotes the concatenation of (vi)i∈T . Then the statistical distance between
the joint distribution of (x1, . . . , xk) and the uniform distribution over Fbk2
is at most

1

2
·
√(

1 +
1

2h

)k
− 1

which, in turn, is at most
√

k
2h+1 assuming k ≤ 2h.

Proof. Let f denote the probability mass function of SampD. That is, f(x1, . . . , xk)
is the probability that SampD outputs (x1, . . . , xk). Let p(v1, . . . , vk) denote the
probability assigned by the distribution D to (v1, . . . , vk) and let φS denote the
probability mass function of the uniform distribution over the subspace S ⊆ Fb2.
Then,

f(x1, . . . , xk) =
∑

v1,...,vk∈Fb
2

p(v1, . . . , vk) · φS1(x1) · φS2(x2) · . . . · φSk
(xk)

where Si = {0, vi}⊥ is an implicit function of vi, as before. We will write this as

f =
∑

v1,...,vk∈Fb
2

p(v1, . . . , vk) ·
(
φS1 ⊗ φS2 ⊗ . . .⊗ φSk

)
We are interested in the statistical distance dTV(f, u) =

1
2‖f − u‖1, where u is

the uniform distribution over Fbk2 . It suffices to bound ‖f̂ − û‖22 since

‖f − u‖21 ≤ 2kb‖f − u‖22 = 22kb‖f̂ − û‖22. (1)
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where the inequality comes from Cauchy-Schwartz and the equality comes from
Parseval’s theorem (Lemma 8).

The Fourier transform of f equals

f̂(y1, . . . , yk) =
∑

v1,...,vk∈Fb
2

p(v1,...,vk) ·
∏
i∈[k]

φ̂Si
(yi)

Observe that by Lemma 9, φ̂Si
is 0 everywhere except for φ̂Si

(vi) = φ̂Si
(0) =

1/2b. Thus the only inputs (y1, . . . , yk) on which f̂(y1, . . . , yk) 6= 0 are those in
the set {0, v1} × {0, v2} × . . .× {0, vk}. Thus,

f̂(y1, . . . , yk) =
1

2bk
· Pr[vi = yi for all i s.t. yi 6= 0]. (2)

The `2-norm of the Fourier transform of f − u can then be computed as∥∥∥f̂ − û∥∥∥2
2
=

∑
y1,...,yk∈Fb

2

(y1,...,yk)6=~0

f̂2(y1, . . . , yk)

=
∑
T⊆[k]
T 6=∅

∑
y1,...,yk∈Fb

2
yi 6=0 iff i∈T

f̂2(y1, . . . , yk)

=
∑
T⊆[k]
T 6=∅

∑
y1,...,yk∈Fb

2
yi 6=0 iff i∈T

1

22bk
· Pr[vi = yi for all i ∈ T ]2. (3)

Let vT := (vi)i∈T denote the vector v restricted to indices in T , let DT denote
the distribution of vT , and let fT denote the probability mass function of DT .
Then,8 ∥∥∥f̂ − û∥∥∥2

2
≤ 1

22bk

∑
T⊆[k]
T 6=∅

||fT ||22 =
1

22kb

∑
T⊆[k]
T 6=∅

2−H2[DT ]. (4)

Combining with equation (1) concludes the proof of the general case.

dTV(f, u) ≤
1

2
· 2kb · ‖f̂ − û‖2 ≤

1

2

√√√√∑
T⊆[k]
T 6=∅

2−H2[DT ]. (5)

Setting 1: Weak Extraction. Assume for any i ∈ [k], H2[D{i}] ≥ h. Then, for
any non-empty set T ⊆ [k], we have H2[DT ] ≥ h. Therefore, combining with
equation (5),

dTV(f, u) ≤
1

2

√√√√∑
T⊆[k]
T 6=∅

2−H2[DT ] ≤ 1

2
·
√

2k − 1

2h
.

8 The first inequality symbol in the equation is tight, if V1, . . . , Vk are always non-zero.
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Setting 2: Strong Extraction. Assume for any T ⊆ [k], H2[DT ] ≥ h · |T |. Then∑
T⊆[k]
T 6=∅

2−H2[DT ] ≤
∑
T⊆[k]
T 6=∅

( 1

2h

)|T |
=
(
1 +

1

2h

)k
− 1

using the binomial expansion. Combining with equation (5), we have

dTV(f, u) ≤
1

2

√√√√∑
T⊆[k]
T 6=∅

2−H2[DT ] ≤ 1

2
·
√(

1 +
1

2h

)k
− 1.

If we additionally assume that k ≤ 2h, then

dTV(f, u) ≤
1

2
·
√(

1 +
1

2h

)k
− 1 ≤ 1

2

√
e

k

2h − 1 ≤ 1

2

√
2k

2h
.

The last inequality symbol holds only if k
2h
≤ 1.256 . . ., which follows from the

condition k ≤ 2h. ut

We remark that Fourier analysis can be bypassed here. The above proof
uses Fourier analysis to bound the collision probability. There is an alternative
proof of the extraction lemma in the full version [40] that bounds the collision
probability using “elementary” non-Fourier methods.

Comparing Figure 3 with the statement of the extraction lemma. The out-
standing contrast is that the extraction lemma assumes a very specific linear
algebra structure. That is, consider the domain as vector space Fb2, the output
(difference) vector is sampled as a random vector orthogonal to the input (dif-
ference) vector. While in each round of SPN, the input is subtracted by the
random key and then feed into the S-box. The output difference is not sampled
uniformly from a subspace.

However, we hope the two can be bridged by change of variables. Say we start
with two inputs differing ∆, let ∆′ denote the difference after key-subtraction
and S-box. We hope there exist 1-to-1 mappings πin, πout : F2b → Fb2 such that
πout(∆

′) is a random vector orthogonal to πin(∆).

F2b 3 ∆ + S-box ∆′ ∈ F2b

Fb
2 3 v x ∈ Fb

2Sample random x s.t. 〈x, v〉 = 0

πin π−1
in πout π−1

out

Fig. 4. Subtracting Key followed by S-box ≈ Subspace Sampling,
modulo Change of Variables
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Figure 4 illustrates the property we are looking for. Although it cannot be
exactly satisfied by any S-box — we know πout(∆

′) doesn’t equal x by distribu-
tion, because ∆ = 0 ⇐⇒ ∆′ = 0 — we show that pragmatic S-boxes almost
satisfy the property.

Assuming the S-box is the patched inverse function, the following lemma
shows that πout(∆′) is statistically close to a random vector orthogonal to πin(∆),
as long as ∆ 6= 0.

Lemma 12. Assume S-box is the patched inverse P (x) = x2
b−2. There exist

1-to-1 mappings πin, πout : F2b → Fb2 such that for any non-zero ∆ ∈ F2b , letting
∆′ denotes a random variable defined by

∆′ := P (r)− P (r +∆)

for a uniformly random r ∈ F2b , the statistical distance between πout(∆
′) and

the uniform distribution over {0, πin(∆)}⊥ is no more than 2
2b
.

Proof. As shown in Lemma 7 (from [45]),

Pr[∆′ = δ] =

{
2
2b
, if δ = 1

∆

0, o.w.
+

{
2
2b
, if Tr( 1

δ∆ ) = 0

0, o.w.

Define πout(x) = x2
b−2 to be the patched inverse as well. Then

Pr[πout(∆
′) = x] =

{
2
2b
, if x = ∆

0, o.w.
+

{
2
2b
, if x 6= 0 and Tr( x∆ ) = 0

0, o.w.

As show in Lemma 4, x 7→ Tr( x∆ ) is linear function over F2. Define πin(∆) as
the coefficient vector of x 7→ Tr( x∆ ). Then

Pr[πout(∆
′) = x] =

{
2
2b
, if x = ∆

0, o.w.
+

{
2
2b
, if x 6= 0 and 〈πin(∆), x〉 = 0

0, o.w.

Apparently, the statistical distance between πout(∆′) and the uniform distance
over {0, πin(∆)}⊥ is 2

2b
. ut

The following lemma shows the analogous statement for the cube function.
The proof is deferred to the full version [40].

Lemma 13. Assume S-box is the cube function P (x) = x3 over F2b where b
is even9. There exist 1-to-1 mappings πin, πout : F2b → Fb2 such that for any
non-zero ∆ ∈ F2b , letting ∆′ denote a random variable defined by

∆′ := P (r)− P (r +∆)

for a uniformly random r ∈ F2b , πout(∆′) is the uniform distribution over
{0, πin(∆)}⊥.
9 The condition on b being even is necessary to ensure that P is a permutation.
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In Section 3.4 we are going to analyze AES. The S-box in AES is called
Rijndael S-box, which is not exactly the patched inverse function. Rijndael S-box
is the composition of the patched inverse function and an affine transformation.
The following lemma shows that the additional affine transformation makes little
difference.

Lemma 14. Assume S-box is P (x) = A(x2
b−2), where A is an affine permuta-

tion over Fb2. There exist 1-to-1 mappings πin, πout : F2b → Fb2. For any non-zero
∆ ∈ F2b , let ∆′ denote a random variable defined by

∆′ := P (r)− P (r +∆)

for a uniformly random r ∈ F2b . The statistical distance between πout(∆
′) and

the uniform distribution over {0, πin(∆)}⊥ is no more than 2
2b
.

Proof. As we are analyzing the differences, any additive constant in the affine
function A has no effect. Thus we can safely assume A is a linear permutation.

When input difference is ∆, the output difference is

∆′ = P (r)− P (r +∆) = A(r2
b−2)−A((r +∆)2

b−2) = A(r2
b−2 − (r +∆)2

b−2).

Define ∆∗ = r2
b−2 − (r +∆)2

b−2, then ∆′ = A(∆∗).
Lemma 12 shows that there exists πin, πout such that πout(∆∗) is close to

uniform distribution over {0, πin(∆)}. Define π′out(x) := πout(A
−1(x)). Then

π′out(∆
′) = πout(A

−1(∆′)) = πout(∆
∗), which is close to uniform distribution

over {0, πin(∆)}. Thus πin, π′out are what we need. ut

3.2 Properties of Mixing Functions

Before proceeding to show the almost-pairwise independence of SPN construc-
tions using the extraction lemma, we describe properties that we need the mixing
functions to satisfy. We define two such properties below and prove some ele-
mentary statements about them.

The first property that we call diffusion requires that if one of the input blocks
of the (typically linear) function M : (F2b)

k → (F2b)
k has sufficient entropy and

the distribution of the k input blocks are independent, then each output block
has large entropy. It is not hard to see that both the sufficient entropy condition
and the independence condition on the input are necessary for such a statement
to be true. Looking ahead, this property will turn out to be useful in the first
layer (or the first few layers) of the SPN where we wish to propagate differences
in one input block to differences in all of them.

Property 1 (Diffusion). Let M : (F2b)
k → (F2b)

k be a function. Let Hα ∈
{H2,H∞} be an entropy function. Let X1, . . . , Xk be independent random vari-
ables over F such that there exists an i for which Hα(Xi) ≥ h for a real h, and
let (Y1, . . . , Yk) :=M(X1, . . . , Xk). M is diffusing if

for all i ∈ [k], Hα(Yi) ≥ h.
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We now show a sufficient condition for a function to be diffusing. The proof is
deferred to the full version [40].

Lemma 15. IfM ∈ (F2b)
k×k is a matrix with no zero entry, the linear mapping

x 7→Mx is diffusing (i.e. satisfies Property 1).

The second property that we call entropy-preservation requires that if all
of the input blocks of the (typically linear) function M : (F2b)

k → (F2b)
k have

sufficient entropy and the distribution of the k blocks are independent, then each
collection of output blocks have large joint entropy. Looking ahead, this property
will turn out to be useful in the subsequent layers of the SPN to ensure that
the mixing layers do not reduce the entropy. As one might expect, this property
comes for free if M is an invertible linear map. The proof is deferred to the full
version [40].

Property 2 (Entropy Preservation). A function M : (F2b)
k → (F2b)

k is entropy
preserving if for any entropy function Hα ∈ {H2,H∞}, for any real h, for any
independent random variables X1, . . . , Xk over F2b such that Hα(Xi) ≥ h for all
i ∈ [k], letting (Y1, . . . , Yk) :=M(X1, . . . , Xk), we have

Hα(Yi1 , . . . , Yis) ≥ s · h

for any {i1, . . . , is} ⊆ [k].

Lemma 16. If M ∈ (F2b)
k×k is an invertible matrix, the mapping x 7→ Mx is

entropy-preserving (i.e. satisfies Property 2).

Connection to Branch Number. The branch number of a matrix M ∈ (F2b)
k×k

is defined to be
br(M) = maxα∈(F

2b
)k(wt(α) + wt(Mα))

where wt denotes the Hamming weight. Having an optimal branch number is
considered a desirable feature for mixing functions [16, 27]. An observation by
Miles and Viola [43] says that any matrix with the maximal branching number of
k+1 also satisfies properties 1 and 2, although the converse does not necessarily
hold.

3.3 Proofs of Pairwise Independence

In this section, we show several proofs of pairwise independence of SPNs using
the patched inverse function P (x) = x2

b−2 over the finite field F2b . The first
result (Theorem 1) applies in a regime where k ≤ b is relatively small; here, the
result says that a 2-round SPN is close to pairwise independent. The second result
(Theorem 2) is much more general and applies to large k as long as k ≤ 2b−4;
here, the result says that a 3-round SPN is close to pairwise independent.
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∆1,1 + Inv ∆′1,1 ∆2,1 + Inv ∆′2,1 ∆3,1 + Inv ∆′3,1

∆1,2 + Inv ∆′1,2 ∆2,2 + Inv ∆′2,2 ∆3,2 + Inv ∆′3,2

∆1,k + Inv ∆′1,k ∆2,k + Inv ∆′2,k ∆3,k + Inv ∆′3,k

lin
ea
r
m
ix
in
g

lin
ea
r
m
ix
in
g

∃block
non-zero =⇒ ∃block

high H∞
=⇒ ∀block

non-zero =⇒ ∀block
high H∞

=⇒ jointly
high H∞

=⇒ almost
uniform

Fig. 5. Illustration of the proof of Theorem 2 and Lemma 17

Theorem 1. Assume the S-box is P (x) = x2
b−2 over F2b assume the mixing

function is diffusing, that is, it satisfies Property 1. Then a 2-round SPN with k
blocks each of which has b bits is ε-close to 2-wise independent where

ε ≤ 2 + 4k

2b
+

√
2k − 1

2b+1
.

Theorem 2. Assume the S-box is patched inverse P (x) = x2
b−2, assume the

mixing function satisfies Property 1 and Property 2. Then 3-round SPN is ε-
close to 2-wise independent where

ε ≤ 2 + 8k

2b
+

√
k

2b
.

Proof. Name the variables as in Figure 5, fix any input differences ∆1,1, . . . ,∆1,k

which are not all zero. We wish to show that the distribution of (∆′3,1, . . . ,∆′3,k)
is ε-close to uniform. By Lemma 2, this implies ε-closeness to pairwise indepen-
dence. We proceed via a hybrid argument.

Hybrid 0. Hybrid 0 is the real world hybrid that is illustrated in Figure 5.

Hybrid 1. Pick some j where ∆1,j 6= 0. W.l.o.g., assume ∆1,1 6= 0. Note that the
distribution of ∆′1,1 is (2/2b)-close to uniformly random over a subset of size 2b−1
(Corollary 2). Call this uniform distribution D′1,1. We have H∞(D′1,1) = b− 1.

Hybrid 1 is the same as hybrid 0 except that we replace ∆′1,1 by a random
sample from the distribution D′1,1. The statistical distance from Hybrid 0 is at
most 2

2b
.

Claim Assume that the mixing function satisfies Property 1. In Hybrid 1,
H∞[∆2,j ] ≥ b− 1 for all j ∈ [k].
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Hybrid 2. In this hybrid, we ensure ∆2,j 6= 0 for all j ∈ [k]. Formally, hybrid 2
is the same as hybrid 1 except that we replace ∆2,j by 1 if ∆2,j = 0 in hybrid 1.
The statistical distance from Hybrid 1 is at most 2k

2b
.

Lemma 17 shows that the joint distribution of (∆′3,1, . . . ,∆′3,k) is
(

6k
2b
+
√

k
2b

)
close to uniform in hybrid 2.

Putting everything together, the statistical distance between (∆′3,1, . . . ,∆
′
3,k)

and the uniform distribution is at most 2+8k
2b

+
√

k
2b
. ut

Lemma 17. Assume the S-box is patched inverse P (x) = x2
b−2, assume the

mixing function satisfies Property 2. Starting with a pair of inputs, whose differ-
ence is entry-wise-nonzero, after a 2-round SPN, the statistical distance between
the output difference and the uniform distribution is no more than 6k

2b
+
√

k
2b
.

Proof. Name the variables as the last two rounds in Figure 5, fix any set of
input differences ∆2,1, . . . ,∆2,k which are all non-zero. We wish to show that the
distribution of (∆′3,1, . . . ,∆′3,k) is ε-close to uniform. We proceed via a hybrid
argument.

Hybrid 0. Hybrid 0 is the real world hybrid.

Hybrid 1. Since ∆2,j 6= 0 for all j ∈ [k], the distribution of ∆′2,j is (2/2b)-close
to uniformly random over a subset of size 2b−1 (Corollary 2). Call this uniform
distribution D′2,j . We have H∞(D′2,j) = b− 1.

Hybrid 1 is the same as hybrid 0 except that we replace ∆′2,j by a vector
drawn from the distribution D′2,j for each j ∈ [k]. The statistical distance from
Hybrid 0 is at most 2k

2b
.

Claim Assume that the mixing function satisfies Property 2. In Hybrid 1,
H∞[∆3,j ] ≥ b− 1 for all j ∈ [k].

Hybrid 2. In this hybrid, we change the way ∆′3,j is sampled based on ∆3,j . In
particular:

– When ∆3,j = δ 6= 0, the distribution of πout(∆′3,j) conditioning on ∆3,j = δ

is 2
2b
-close to uniform distribution over {0, πin(δ)}⊥. Let πout(∆′3,j) sampled

uniformly from {0, πin(δ)}⊥ in hybrid 2.
– When ∆3,j = 0, ∆′3,j is chosen to be uniformly random in hybrid 2.

Let us calculate the statistical distance between hybrids 1 and 2. The first
bullet introduces a statistical distance of at most 2k/2b. The probability that a
fixed coordinate ∆3,j is 0 is at most 2/2b, and therefore, the probability that
some coordinate is 0 is at most 2k/2b. In total, the statistical distance is at most
4k
2b
.
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By applying our extraction lemma10 (Lemma 11), we know that, in hybrid

2, the joint distribution of ∆′3,1, . . . ,∆′3,k is at most
√

k
2b
-away from uniform.

Counting them together, the statistical distance between (∆′3,1, . . . ,∆
′
3,k) and

the uniform distribution is at most 6k
2b

+
√

k
2b
. ut

3.4 AES is Almost Pairwise-Independent

Good asymptotic bounds have been shown in Theorem 1 and 2, but the analysis
there is way too loose on AES parameter (k = 16, b = 8). This section emphasizes
on better concrete bound. Comparing with Section 3.3, the concrete bound is
improved by the following tricks.

– Lemma 11 shows that the statistical distance is less than 1
2 ·
√(

1 + 1
2h

)k
− 1,

which is less than
√

k
2h+1 . The former is tighter. In particular, when k = 16,

b = 8, h = − log2
(

2
2b

+ 8
22b

)
, the former shows dTV ≤ 0.18357. . . ≤ 47

256 , and
the latter shows dTV ≤ 0.25.

– Lemma 18 is the strengthening of Lemma 17. Besides using the tighter bound
from Lemma 11, it also considers Rényi entropy instead of min-entropy.

– Theorem 3 is the strengthening of Theorem 2. The proof of Theorem 3 (resp.
Theorem 2) shows that after two rounds of AES (resp. one round of SPN),
all block differences are non-zero with high probability. Then ignoring the
rare event, Lemma 18 (resp. Lemma 17) will conclude the proof.
The proof of Theorem 3 also carefully analyzes the rare event that some block
difference is zero after 2 rounds of AES. It observes that, given the rare event
happens, after two more rounds, all block differences will be non-zero with
high probability.

Lemma 18 (Strengthening of Lemma 17). Assume the S-box is patched
inverse P (x) = x2

b−2, assume the mixing function satisfies Property 2. Starting
with a pair of inputs, whose difference is entry-wise-nonzero, after a 2-round
SPN, the statistical distance between the output difference and the uniform dis-
tribution is no more than 4k

2b
+ 1

2

√
(1 + 2−h)k − 1, where h = − log2

(
2
2b

+ 8
22b

)
.

In particular, when k = 16, b = 8, we have dTV ≤ 64+47
256 .

The proof is mostly the same of Lemma 17 and is deferred to the full version [40].

Lemma 19. Starting with a pair of distinct inputs, after 2-round of AES, in-
cluding a tailing linear mixing, the output difference has zero entry with proba-
bility no more than 25

27 .

Theorem 3. 6-round of AES is 0.472-close to pairwise independence.

The proof is similar to that of Theorem 2 and is deferred to the full version [40].
10 Our extraction lemma also requires k ≤ 2b−1. In the case k > 2b−1, Lemma 17 can

be trivially proved as dTV ≤ 1 ≤ 6k
2b

+
√

k
2b
.
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3.5 Multi-round SPNs and AES

We now combine the bounds from Theorems 1, 2, and 3 with the MPR amplifi-
cation lemma (Lemma 1) to obtain the following theorems.

Theorem 4. Assume the S-box is P (x) = x2
b−2 over F2b assume the mixing

function is diffusing, that is, it satisfies Property 1. Then a (2r)-round SPN
with k blocks each of which has b bits is ε-close to 2-wise independent where

ε ≤ 2r−1

(
2 + 4k

2b
+

√
2k − 1

2b+1

)r
.

Further, if the mixing function additionally satisfies Property 2, then (3r)-round
SPN is ε-close to 2-wise independent where

ε ≤ 2r−1

(
2 + 8k

2b
+

√
k

2b

)r
.

Theorem 5. 6r-round AES is 2r−1(0.472)r-close to pairwise independence.

4 t-wise Independence of KAC

In this section, we consider a key-alternating cipher whose ith round consists of
applying a public, fixed permutation pi to the current state followed by adding
a (private) round-key si. The main result of this section is that for every r,
there exist public permutations p1, . . . , pr such that r rounds of KAC using
these permutations gets us close to (r − o(r))-wise independence. We achieve a
strong notion of pointwise closeness (see definition 6) much stronger than the
statistical distance measures considered in previous sections. Furthermore, it is
easy to see that a t-round KAC can at best be (close to) t-wise independence,
due to a simple entropy argument, meaning that our result is nearly optimal and
entropy-preserving.

We remark that this is an existential result: namely, we do not explicitly
construct the fixed permutations used by the KAC, but merely show that they
exist. Indeed, we show that most permutations work, as is typical of probabilistic
arguments. We also remark that the permutations p1, . . . , pr are fixed and known
to the adversary, thus the only secret randomness in the construction comes from
the round keys si.

We start with some new notations. We encourage the reader to consult the
full version [40] for tail bounds that are extensively used in our analysis.

4.1 Definitions and Notations

Let D denote the domain and let 2n = N := |D|. Throughout this report, we
will consider many distribution of permutations over D. Permutation distribu-
tions will be denoted by calligraphic letters (e.g. F ,G,H). A random choice of
a permutation from such a distribution will act as a key for the KAC. Here is a
simple example of permutation distributions:
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Example 1 (Shift permutations). Denoted by S, the uniform distribution over

{σs : x 7→ x+ s | s ∈ D},

which consists of all shift permutations σs that additively shifts the input by s.
The definition assumes D to be a group. The support of S is of size N .

We now define a notation for composition of permutations, the cornerstone
of the KAC construction.

Definition 5 (Composition). Let F ,G be distributions over permutations,
and let p be a permutation over D. Their compositions are defined as

F ◦ p is the distribution of f ◦ p where f ← F ,
p ◦ G is the distribution of p ◦ g where g ← G,
F ◦ G is the distribution of f ◦ g where f ← F , g ← G independently.

Key Alternating Cipher. Given the language of permutation distributions from
above, we can give an alternative definition of key-alternating ciphers (KACs).
A t-round KAC is parametered by fixed permutations p1, . . . , pt−1, and is the
composition

S ◦ p1 ◦ S ◦ p2 ◦ S ◦ p3 ◦ · · · ◦ pt−1 ◦ S.

In words, this means picking t round-keys s1, . . . , st ← D and letting

fs1,...,st(x) = st + pt−1(st−1 + pt−2(st−2 + . . .))︸ ︷︷ ︸
repeated t− 1 times

as illustrated in Figure 1.

Pointwise Closeness to t-wise Independence. Finally, we define the notion of
being pointwise close to t-wise independent which we achieve. It is a stronger
notion than being close to t-wise independent (Definition 3), a notion that we
worked with in Section 4. This only makes the results of this section stronger.

Definition 6 (pointwise close to t-wise independence). Let F be a dis-
tribution over permutations. F is pointwise ε-close to t-wise independence if for
any distinct x1, . . . , xt ∈ D and any distinct y1, . . . , yt ∈ D,

Pr
f←F

[
f(x1) = y1 ∧ f(x2) = y2 ∧ · · · ∧ f(xt) = yt

]
∈
(1− ε
N t

,
1 + ε

N t

)
.

4.2 Existential Results for Key Alternating Ciphers

In this section, we will prove our main existential result, that is, for some r =
t+ o(t) + s, there exist permutations p1, . . . , pr such that a r-round KAC using
these permutations is exp(−s)-close to t-wise independent.

The result is proved by a careful induction that combines two steps.
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– Independence Amplification: Lemma 20 shows that if F is pointwise ε-close to
t-wise independent, then S◦p◦F is pointwise (c(1+ε)t2 logN)-close to (t+1)-
wise independent, for most permutations p and for some constant c > 1. In
other words, one more KAC round takes you from very t-wise independent to
somewhat (t+1)-wise independent. It is important to note that even though
the distance of the resulting permutation is c(1+ ε)t2 logN � 1, this is still
a non-trivial pointwise guarantee.
In fact, one can inductively apply Lemma 20 and conclude that t-round
KAC is pointwise ((t!)2(c logN)t−1)-close to t-wise independence, starting
from just 1-wise independence. As mentioned before, although the distance
is much larger than 1, this is a non-trivial statement, because it is about
pointwise closeness.

– Distance Amplification: Lemma 21 will reduce the distance to t-wise inde-
pendence by adding more rounds. Say F is pointwise ε-close to t-wise inde-
pendent and is pointwise ε′-close to (t+1)-wise independent, where ε′ � ε.
I.e., F is very close to t-wise independent and somewhat close to (t + 1)-
wise independent. Lemma 21 shows that adding one more round makes it
much closer to (t+1)-wise independent. More formally, S ◦p◦F is pointwise(
ε+ Õ( ε

′t
3√
N
)
)
-close to (t+ 1)-wise independent, for most permutations p.

Iterated applications of Lemmas 20 and 21 takes us very close to t-wise inde-
pendence in 2t rounds. Indeed, it is not hard to see that one can do even better:
between any two successive applications of distance amplification, one can afford
to do a large number (≈ logN/ log logN many) of iterations of independence
amplification. Therefore, to get to t-wise independence, it suffices to work with
a (t+ o(t))-round KAC.

For example, 1-round KAC is 1-wise independent. Then, 2-round KAC is
O(logN)-close to 2-wise independent, due to Lemma 20. By adding one more
round, Lemma 21 shows that 3-round KAC is O( logNN )-close to 2-wise indepen-
dent. Figure 6 illustrates the progression of the inductive argument.

More generally, we show:

Theorem 6 (Main KAC Theorem). For every t, let r = t + o(t). There
exist fixed permutations p1, . . . , pr such that the r-round key-alternating cipher
is 1/NΩ(1)-close to t-wise independent.

The theorem follows from Lemma 20 and Lemma 21 below whose proofs are
deferred to the full version [40]. Finally, we remark that the proof of the theorem
shows more: that an overwhelming fraction of choices of permutations p1, . . . , pr
gives us a t-wise independent KAC.

Lemma 20. Let F be a distribution which is pointwise ε-close to `-wise inde-
pendence. At least 1− 1/N t+1 of the possible permutations p satisfy the property
that S ◦ p ◦ F is pointwise O((1 + ε)(t+1)2 logN)-close to (t+1)-wise indepen-
dence.
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number of rounds 1-round 2-round 3-round 4-round

Closeness to
1-wise independence 0 0 0 0

Closeness to
2-wise independence O(logN) Õ(N−1/3) Õ(N−2/3)

Closeness to
3-wise independence O(log2N) Õ(N−1/3)

Closeness to
4-wise independence O(log3N)

Lemma 20 Lemma 21

Fig. 6. Illustration of the Inductive Proof using Lemmas 20, 21.

Lemma 21. Let F be a permutation distribution that is pointwise ε-close to
t-wise independence and is pointwise ε′-close to (t + 1)-wise independence. At
least 1−1/N t+1 of the possible permutations p satisfy the property that S ◦p◦F
is pointwise

(
ε+ 4ε′(t+ 1) 3

√
lnN/N

)
-close to (t+ 1)-wise independence.
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