
MPC-Friendly Symmetric Cryptography from
Alternating Moduli:

Candidates, Protocols, and Applications

Itai Dinur1, Steven Goldfeder2, Tzipora Halevi3, Yuval Ishai4, Mahimna
Kelkar2,5, Vivek Sharma6, and Greg Zaverucha7

1 Ben-Gurion University
2 Cornell Tech

3 Brooklyn College, CUNY
4 Technion

5 Cornell University
6 Graduate Center, CUNY

7 Microsoft Research

Abstract. We study new candidates for symmetric cryptographic prim-
itives that leverage alternation between linear functions over Z2 and Z3

to support fast protocols for secure multiparty computation (MPC). This
continues the study of weak pseudorandom functions of this kind initi-
ated by Boneh et al. (TCC 2018) and Cheon et al. (PKC 2021).
We make the following contributions.
• Candidates. We propose new designs of symmetric primitives based

on alternating moduli. These include candidate one-way functions,
pseudorandom generators, and weak pseudorandom functions. We
propose concrete parameters based on cryptanalysis.

• Protocols. We provide a unified approach for securely evaluating
modulus-alternating primitives in different MPC models. For the
original candidate of Boneh et al., our protocols obtain at least
2x improvement in all performance measures. We report efficiency
benchmarks of an optimized implementation.

• Applications. We showcase the usefulness of our candidates for a
variety of applications. This includes short “Picnic-style” signature
schemes, as well as protocols for oblivious pseudorandom functions,
hierarchical key derivation, and distributed key generation for func-
tion secret sharing.

1 Introduction

Symmetric-key cryptographic primitives, such one-way functions (OWFs) [53],
pseudorandom generators (PRGs) [13,65] and pseudorandom functions (PRFs) [39],
are deployed in innumerable settings, and serve as fundamental building blocks of
modern cryptography. While traditional use cases primarily considered settings
where the function evaluation was done by a single party, many applications
(recently also arising in the context of cryptocurrencies) require evaluation in a

2 Dinur et al.

distributed fashion to avoid single points of failure. This motivates the study of
secure multiparty computation (MPC) protocols for evaluating such symmetric-
key primitives in a setting where inputs, outputs, and keys are secret-shared or
distributed between two or more parties.

Towards this goal, a long line of work [32,56,62] has made substantial progress
on concretely efficient MPC protocols for distributing the computation of sym-
metric primitives, such as AES or SHA-256, which are widely used in practice.
Unfortunately, the constructions themselves were not designed with distributed
evaluation in mind, and are thus optimized for performance metrics relevant
to the single-party setting. More recent work (see [4,41,15,3,5] and references
therein) has therefore proposed to start from scratch by designing MPC-friendly
primitives from the ground up. In this work, we continue this line of research by
proposing a new suite of simple MPC-friendly candidate designs for a number
of symmetric primitives.

Our MPC setting. We focus on the semi-honest setting of security for simplic-
ity. This is considered adequate in many cases. In particular, it suffices for the
construction of signature schemes via an “MPC-in-the-head” technique [45,25].
While recent general techniques from the literature [14,24] can be used to extend
some of our protocols to the malicious security model with a low amortized cost,
we leave such an extension to future work. We consider protocols for both two
parties (2PC) and multiple parties, both with and without an honest majority
assumption, and both with and without preprocessing. In the following, we con-
sider by default the setting of (semi-honest) 2PC with preprocessing. However,
our contributions apply to the other settings as well.

Efficiency metrics for MPC. Concretely efficient MPC protocols can be di-
vided into two broad categories: protocols based on garbled circuits [66] and
protocols based on linear secret sharing [40,10,26]. Protocols based on garbled
circuits have low round complexity but their communication cost will be pro-
hibitively high for our purposes. We will therefore focus on protocols based on
secret sharing. Roughly speaking, the complexity of evaluating a given function
f using such protocols is determined by the size and the depth of a circuit C that
evaluates f . Here we assume that C is comprised of atomic gates of two kinds:
linear gates (computing modular addition or multiplication by a public value)
and MPC-friendly nonlinear gates that are supported by efficient subprotocols.
A typical example for a nonlinear gate is modular multiplication of two secret
values. Given such a representation for f , the communication cost of an MPC
protocol for f scales linearly with the size of C, namely the number of gates
weighted by the “MPC cost” of each gate, whereas the round complexity scales
linearly with the depth of C, namely the number of gates on a longest input-
output path. Since linear gates do not require any interaction, they do not count
towards the size or the depth. We use the term “nonlinear size” and “nonlinear
depth” to refer to the size and the depth when excluding linear gates.

Our design criteria. The above efficiency metrics for MPC are quite crude,
since not all kinds of nonlinear gates are the same. However, they still serve

MPC-Friendly Symmetric Cryptography from Alternating Moduli 3

as a good intuitive guideline for the design of MPC-friendly primitives. More
concretely, we would like to design primitives with the following goals in mind.

• Low nonlinear depth. Minimizing round complexity calls for minimizing non-
linear depth. Unfortunately, constructions like AES or even MPC-friendly
ones such as LowMC [4] have quite a high nonlinear depth, which leads to
high-latency protocols when using the secret-sharing approach.

• Small nonlinear size. For keeping the communication complexity low, we
would like to minimize the number of nonlinear gates and make them as
“small” and “MPC-friendly” as possible.

• High algebraic degree. Security of block ciphers and (weak) PRFs provably
requires high algebraic degree. While there are low-degree implementations
of weaker primitives such as OWFs and PRGs [54,38,6], these typically come
at the price of bigger input size and higher nonlinear size [30,63].

• Simplicity. A simple design is almost always easier to implement and prone
to fewer errors and attacks. This is particularly valuable since a substantial
amount of work has previously gone into implementations that resist timing
and cache side-channels. Simple constructions are also easier to reason about
and cryptanalyze, which builds confidence in their security, and may serve
as interesting objects of study from a theory perspective [38,55,2].

The alternating moduli paradigm. The above design goals may seem inher-
ently at odds with each other. How can “high algebraic degree” co-exist with
“small gates” and “low nonlinear depth”? Towards settling this apparent con-
flict, a new design paradigm was recently proposed by Boneh et al. [15] and
further explored by Cheon et al. [29]. The idea is to break the computation into
two or more parts, where each part includes a linear function over a different
modulus. The simplest choice of moduli, which also seems to lead to the best
efficiency, is 2 and 3.

Boneh et al. [15] proposed a weak PRF8 (wPRF) candidate with the following
simple description: the input x is a vector over Z2 and the secret key specifies a
matrix K over Z2. The PRF first computes the matrix-vector product Kx over
Z2, then interprets the result as a vector over Z3 in the natural way, and finally
applies a public, compressive linear map over Z3 to obtain an output vector y
over Z3. (When the output is a single Z3 element, the final compressive map is
just a sum over Z3.)

The above mapping from x and K to y has two nonlinear steps: The first is
the matrix-vector product over Z2, whose cost can be reduced when the matrix
K has a special form. The second is a conversion of a mod-2 vector to a mod-3
vector, which consists of small (finite-size) parallel nonlinear gates. Overall, the
nonlinear depth is 2. Why is this a high-degree function? Viewing both the input
and the (binary representation of) the output as vectors over Z2, high degree over

8 A weak PRF is one whose security only holds when evaluated on random inputs. In
many applications of strong PRF, a weak PRF can be used instead by first applying
a hash function (modeled as a random oracle) to the input.

4 Dinur et al.

Z2 comes from the final linear map over Z3. Viewing the input as a vector over
Z3, high degree comes from the linear map over Z2 defined by the key. Despite
its simplicity, the design can be conjectured to have a good level of security with
small input and key size (say, 256 bits for 128-bit security). It mostly resisted
the initial cryptanalysis, where attacks found in [29] require a very big number
of samples and are quite easy to circumvent by slightly modifying the design (as
suggested in [29]).

A primary motivation for the alternating moduli paradigm was its MPC-
friendliness. Indeed, several MPC protocols were proposed in [15]. These pro-
tocols demonstrated significant efficiency advantages over earlier MPC-friendly
designs, mainly in the setting of 2PC with preprocessing or 3-party computation
with an honest majority.

Another, very different, motivation is the goal of identifying simple function
classes that are “hard to learn.” Indeed, the conjectures from [15] imply hardness
of learning results for low complexity classes such as (depth-2) ACC0 circuits,
sparse Z3 polynomials, or width-3 branching programs. These conjectures are
also of interest outside the field of cryptography [27,36,28,49], which further
motivates cryptanalysis efforts.

Remaining challenges. The initial works of [15,29] have only scratched the
surface of the kind of questions one may ask.

• What about simpler symmetric primitives such as OWFs and PRGs? MPC
protocols for these primitives are motivated by many applications, includ-
ing Picnic-style post-quantum digital signatures [25,50] and lightweight dis-
tributed key generation for function secret sharing [22].
• Are there similar candidates where the input, output, and key are all over
Z2? This too is motivated by natural applications.
• Can the MPC protocols given in [15] be further improved? Can the prepro-

cessing be realized at a low amortized cost? This motivates an additional
design criterion: “PCG-friendliness,” leveraging recent advances in pseudo-
random correlation generators [18,19,64].

1.1 Our Contributions

1.1.1 New candidate constructions

We introduce several candidate constructions for OWF, PRG, and (weak) PRF,
all based on alternation between linear maps over Z2 and Z3.

• Candidate OWF. We expand on the general structure of the (2, 3)-wPRF
candidate from [15] to construct a candidate OWF. Recall that the wPRF
candidate computes B(Kx) where K is the secret key (over Z2) and B is
a compressive Z3 linear map. For our (2, 3)-OWF candidate, we replace the
secret key matrix with another randomly sampled (expanding) public matrix
A. Specifically, given A ∈ Zm×n2 and B ∈ Zt×m3 where m ≥ n, t, our OWF
candidate is defined as F(x) = B(Ax) where Ax is first reinterpreted as a
0/1 vector over Z3.

MPC-Friendly Symmetric Cryptography from Alternating Moduli 5

• Candidate wPRF. The wPRF candidate from [15] has inputs over Z2 but
outputs over Z3. This is not suitable for applications in which the output
should be further processed using secret sharing over Z2. To this end, we
propose an “LPN-style” wPRF candidate where both the input and output
are over Z2. Specifically, given a secret key matrix K ∈ Zm×n2 and a public
compressive map B ∈ Zt×m2 , for an input x ∈ Zn2 , our LPN-wPRF candidate
first computes an intermediate vector

w = [(Kx mod 2) + (Kx mod 3) mod 2] mod 2

where for Kx mod 3, both K and x are first reinterpreted over Z3. Then, the
candidate is defined as FK(x) = Bw. Intuitively, each intermediate vector
bit can be thought of as a deterministic Learning-Parity-with-Noise (LPN)
instance with a noise rate of 1/3. The noise is deterministically generated
and is dependent on the input x and a specific column of K. A similar
candidate was considered in [15] (as their alternate candidate) but it only
outputs a single bit (it uses K ∈ Z1×n

2 and outputs the intermediate vector
directly). Our candidate generalizes this to multiple output bits. But more
importantly, it also does not output the intermediate vector directly and
instead applies an additional compressive linear map (using B). We show
how this allows our candidate to resist standard attacks on LPN.

• Candidate PRG. We also propose a candidate length-doubling PRG that
is similar to our LPN-wPRF. Specifically, we use a public matrix A ∈ Zm×n2

instead of the key for the first linear map. It follows the same structure as
the LPN-wPRF, by first expanding the input to the intermediate vector w
and then applying a compressive Z2 linear map B. Choosing the length m
of the intermediate vector to be large enough, we can ensure that the final
compressive map still results in an output of size t = 2n.

1.1.2 Cryptanalysis and implications on parameter choices

Algebraic attacks. Given that the constructions heavily mix linear operations
over Z2 and Z3, we will rely on the arguments of Boneh et al. [15], and conjecture
that algebraic attacks do not threaten their security. Instead, we will focus on
combinatorial attacks and statistical tests.

OWF. Our most interesting attack on the candidate OWF reduces the inversion
problem to a particular type of subset-sum problem, where addition simultane-
ously involves operations over Z2 and Z3. Thus, we can invert the OWF by
applying a variant of recent subset-sum algorithms based on the representation
technique [42,9,16]. Compared to a standard meet-in-the-middle approach, this
attack forced us to increase the parameters by about 30%.

wPRF and PRG constructions. Our candidate constructions are related
to the ones proposed in [15] and recently analyzed in [29]. The latter work
describes distinguishing attacks on the constructions of [15] with asymptotically
exponential (yet, concretely significant) complexity. Specifically, the attack on
the (2, 3)-wPRF candidate of [15] exploits an interaction between the structure

6 Dinur et al.

of the circulant matrix K and the choice of B (which is fixed to the vector 1). On
the other hand, our construction uses a random choice of B which, as we show,
is unlikely to result in such an interaction. The weakness in the “LPN-style”
wPRF candidate of [15] was due to conditional correlation between the key and
the output. We fix it by applying an additional compressive linear map.

It is important to emphasize that [29] analyzed constructions where the out-
put length is t = 1, while our constructions use t � 1. Although longer out-
put gives better performance, it may also degrade security. For example, at the
extreme end, if t = m the scheme is trivially broken in polynomial time by
linear algebra, forcing t � m. Our security analysis shows that our candidate
constructions resist such simple linear algebra attacks. Yet, the main part of
security analysis is focused on statistical distinguishers that exploit a bias in the
output. The strength of such a bias depends on the minimal distance of the code
generated by the rows of the t × m matrix B (the second linear operation of
the construction). As this code is generated at random, we use the probabilistic
method (in a similar way it is used to obtain the Gilbert–Varshamov bound for
linear codes) to argue that its minimal distance is sufficiently large, except with
negligible probability. Note that larger t results in a smaller minimal distance.

We place a concrete limit of 240 on the number of samples generated by our
wPRF candidates with any particular key. This reduces the probability of bad
events such as collisions (where the same input to the wPRF is selected twice)
and undesired interactions between the input and the structured circulant matrix
K. More details about such inputs are given in the security analysis.

Concrete parameters. In Table 1, we summarize the recommended concrete
parameters for our constructions with the goal of obtaining s-bit security. For
the (2, 3)-OWF and (2, 3)-wPRF constructions we give both aggressive and more
conservative parameter sets. Note that the OWF and PRG use the minimal secret
input (and output) sizes, while for wPRFs we use a larger secret. This is a result
of different tradeoffs between security and performance. For example, we could
have set n = s for the (2, 3)-wPRF, but cryptanalysis would force setting m to
be much larger than 2s and result in less efficient protocols. A lower bound on
m in case n = s is deduced by a subset-sum attack which resembles the one on
the (2, 3)-OWF construction. Yet, optimizations that exploit the additional data
available may be possible. While we do not expect security to degrade sharply
in this case, we leave the concrete analysis for this parameter setting to future
work. On the other hand, setting n = 2s for the (2, 3)-OWF would also require
doubling the size of the output,9 once again, degrading efficiency.

Our constructions are new and it is not unlikely that some will be broken and
require updating the parameter sets (even the “conservative” ones). Conversely,
if for some of our constructions the more aggressive parameter sets turn out to
resist future analysis, we would gain further confidence in their security.

One of the main questions we leave open is how to better exploit the struc-
tured matrices used in our constructions in cryptanalysis. This question is partic-

9 Otherwise, each output would have 2s preimages and there would be no security
advantage.

MPC-Friendly Symmetric Cryptography from Alternating Moduli 7

Construction
Parameters

Comment
(n,m, t)

(2, 3)-OWF (s, 3.13s, s/ log 3) aggressive
(s, 3.53s, s/ log 3) conservative

(2, 3)-wPRF (2s, 2s, s/ log 3) aggressive
(2.5s, 2.5s, s/ log 3) conservative

LPN-PRG (s, 3s, 2s)

LPN-wPRF (2s, 2s, s)

Table 1: Concrete parameters for s-bit security.

ularly interesting for the wPRF constructions where the attacker obtains several
samples, and can perhaps utilize the structured matrices to combine their infor-
mation in more efficient attacks.

1.1.3 Distributed protocols and optimized implementations

As discussed above, our design criteria are guided by the goal of supporting ef-
ficient MPC protocols for distributed evaluation. We consider semi-honest pro-
tocols in several standard MPC models, either with or without preprocessing.

Efficient protocols. For our wPRF candidates, we present protocols in several
different settings: (1) 2PC with preprocessing, where the input, key, and output
are all secret-shared between the parties; (2) 3PC with one passive corruption,
and (3) an OPRF-style 2PC with preprocessing, where one party holds the key
and the other holds the input. For the (2, 3)-wPRF candidate, our 2PC protocols
perform 1.5-5x better than the protocols from [15] for the same functionality,
in both online communication and preprocessing size. For instance, in the 2PC
setting, our protocol requires 2 rounds, 1536 bits of online communication, and
662 bits of preprocessing (i.e., correlated randomness). In contrast, the protocol
from [15] for the same setting requires 4 rounds, roughly 2600 bits of online
communication and roughly 3500 bits of preprocessing. Similarly, our OPRF
protocol requires 2 rounds and 641 bits of online communication while the one
from [15] requires 4 rounds and roughly 1800 bits of online communication.

A key ingredient for the efficiency improvement is a subprotocol for modulus
conversion gates that switch between shares in Z2 and Z3 using circuit-dependent
correlations. While [15] used OT in their protocols, we use these modulus conver-
sion gates for better efficiency. We note that the same blueprint can also be used
to construct efficient distributed protocols for other variants of our constructions.

Distributing the dealer at a low amortized cost. The 2PC protocols pre-
sented in [15] rely on trusted preprocessing to generate two kinds of correlated
randomness. The first kind, used to securely multiply the input and the key ma-
trix, can be thought of as a standard multiplication triple [8] over a ring. (Using
a circulant matrix for the key, this involves a single multiplication in a ring of
polynomials over Z2.) It was also pointed out that using efficient pseudorandom
correlation generators (PCGs) for vector oblivious-linear evaluation (VOLE) cor-

8 Dinur et al.

relations [18,19,59], this kind of correlation can be generated at a low amortized
cost when the same key is reused with multiple inputs. (In fact, using more re-
cent PCGs for independent OLE correlations [21] the latter restriction can be
removed, albeit at a considerably higher cost.) The second kind of correlated
randomness used in [15] is a standard oblivious transfer (OT) correlation, which
can also be efficiently generated using either classical [43] or “silent” [19,64] OT
extension. The latter techniques use a PCG for OT to enable fast local gener-
ation of many random instances of OT from a pair of short, correlated seeds.
However, the main source of improvement over the protocols from [15] is our
use of the modulus conversion correlations described above. We show how to
generate both kinds of correlations from a standard OT correlation using only
a single message, where in the Z2 → Z3 case the (amortized) communication is
< 1.38 bits per instance, and in the (less commonly used) Z3 → Z2 case it is 6
bits per instance. This means that the amortized cost of distributing the dealer
in our protocols is typically much lower than the cost of the online protocol that
consumes the correlated randomness.

1.1.4 Applications

MPC protocols for the symmetric primitives we consider in this work are use-
ful for a variety of cryptographic applications. Here we discuss some of these
motivating applications.

Digital signatures. Using the MPC-friendliness of candidates, we can effi-
ciently prove knowledge of an input (e.g., of an OWF input, wPRF key, or
PRG seed), using proof protocols based on the MPC-in-the-head paradigm [45].
This is the approach taken by many recently designed post-quantum signature
schemes [25,51,11,12,58,7], as it only requires a secure OWF and hash function,
and has opened up the range of hardness assumptions possible for public-key
signatures. We present the first optimized public-key signature scheme based on
alternating moduli cryptography.

We provide a detailed description of a signature scheme using our OWF can-
didate, as a modification to the Picnic algorithm [25,51,50,61], a third round
candidate in the NIST Post-Quantum Cryptography Standardization Process.10

We replace the OWF used in Picnic (an instance of the LowMC block cipher [4],
which is assumed to be a OWF), update the MPC protocol accordingly, and
quantify the resulting signature sizes. Using our conservative (2, 3)-OWF pa-
rameters, we find that signatures sizes are slightly shorter, with signatures at
the 128-bit security level (64-bit quantum) having size ranging from 10.3–13.3KB
(depending on MPC parameter choices). This shows that OWFs based on alter-
nating moduli are competitive with block-cipher based designs, with potential
for future improvements, and we can choose a OWF with an (arguably) simpler
mathematical description, without sacrificing performance.

Oblivious pseudorandom functions. We construct an OPRF protocol that
computes our (2, 3)-wPRF candidate in an oblivious setting. In the multi-input
setting (where the key is used for multiple evaluations), our protocol requires

10 See https://csrc.nist.gov/projects/post-quantum-cryptography/.

https://csrc.nist.gov/projects/post-quantum-cryptography/

MPC-Friendly Symmetric Cryptography from Alternating Moduli 9

only 2 rounds and 641 bits of online communication. Compared to a standard
DDH-based OPRF [46,47], which require 512 bits of communication for 128-bit
security, our protocol requires slightly higher communication but has a much
faster online computation, which typically forms the efficiency bottleneck. In
particular, our implementation shows that our OPRF protocol is faster than a
single scalar multiplication over the Curve25519 elliptic curve. Consequently, we
expect our protocol to be faster than a number of OPRF protocols [37,48] that
are based on number theoretic PRFs. Note that, unlike OPRFs based on number
theoretic assumptions, ours provide plausible post-quantum security. Motivated
by the latter goal, recent works [41,60] construct an OPRF protocol from the
Legendre PRF [31]. For 128-bit security and only a single output bit, the recent
protocol from [60] has online communication cost of 13KB, substantially higher
than ours (with 128 output bits), and with a higher computational cost.

Fully distributed wPRF. Unlike the OPRF setting, in which one party holds
the PRF key and another holds the input, there are settings in which both the
input and the key need to be distributed between two or more parties. In this
setting, most of the techniques for efficient OPRF protocols (including the DDH-
based protocols discussed above) do not apply. One motivating application for
fully distributed wPRF, already considered in [44,15], is a distributed implemen-
tation of searchable symmetric encryption (SSE) service. In distributed SSE, a
client can obtain a decryption key of database entries matching a chosen keyword
w by interacting with two or more servers, while keeping the keyword w secret.
To this end, the client secret-shares w between the servers, who also hold shares
of a wPRF key. Following interaction between the servers, the servers reveal the
wPRF output to the client. This output can be used by the client to decrypt
database entries associated with keyword w.

Secret-output wPRF. Our (2, 3)-wPRF candidate is well suited for applica-
tions that have privately held secret-shared inputs but require a public output
that is delivered in the clear to one or more parties. However, it is insufficient
for applications in which the output of the function needs to itself be kept secret
and reused as the input to a subsequent PRF invocation.

One such common application arises in the context of deterministic signa-
tures, which consists of generating a nonce by applying a PRF to the private key.
In Schnorr and ECDSA, the nonce and a corresponding signature are sufficient
to recover the private key. Thus, the nonce must also be distributed using the
same secret-shared structure as the key. Distributed generation of determinis-
tic signatures is once application that has both private input (the private key)
and output (the nonce). Another example arises in the context of key derivation
functions (KDFs), especially in a hierarchical structure, where the output of the
PRF may need to be used as an input (or even a key) for another evaluation of
the PRF. A related application arises in the context of Bitcoin’s BIP-32 deriva-
tion [57]. Motivated by such applications, we propose our LPN-wPRF candidate
which has both its input and output over Z2.

Distributed FSS key generation. Function secret sharing (FSS) [22] is a
useful tool for a variety of cryptographic applications; see [17,21] for recent ex-

10 Dinur et al.

amples. In many of these applications, two or more parties need to securely gen-
erate FSS keys, which in turn reduces to secure evaluation of a length-doubling
PRG. Our LPN-style PRG candidate serves as a good basis for such protocols.
In contrast to the black-box FSS key generation protocol of Doerner and she-
lat [35], its computational cost only scales logarithmically with the domain size.
The optimal conjectured seed length of our PRG candidate ensures that FSS
the key size is optimal as well.

1.1.5 Future directions

Our work leaves several interesting avenues for further work. One direction is
designing MPC protocols with malicious security while minimizing the extra
cost. Recent techniques from [14,24] can be helpful towards this goal. Another
direction is designing and analyzing other symmetric primitives based on the
alternating moduli paradigm. Relevant examples include hash functions, strong
PRFs, and block ciphers. In fact, a strong PRF candidate was already suggested
in [15], but analyzing its concrete security is left for future work.

2 Preliminaries

Notation. We start with some basic notation. For a positive integer k, [k]
denotes the set {1, . . . , k}. Zp denotes the ring of integers modulo p. We use
bold uppercase letters (e.g., A,K) to denote matrices. We use 0l and 1l to
denote the all zeros and the all ones vector respectively (of length l), and drop l
when sufficiently clear. For a vector x, by x mod p, we mean that each element

in x is taken modulo p. We use x
$←− X to denote sampling uniformly at random

a set X . Funcs[X ,Y] denotes the set of all functions from X to Y. a ‖ b denotes
concatenating the strings a and b.

For distributed protocols with N parties, we use P = {P1, . . . ,PN} to denote
the set of parties. For a value x in group G, we use JxK to denote an additive

sharing of x (in G) among the protocol parties, and JxK(i) to denote the share
of the ith party. When clear from context (e.g., a local protocol for Pi), we will
often drop the superscript. When G′ = Gl is a product group (e.g., Zlp), for
x ∈ G′, we may also say that JxK is a sharing over G, similar to the standard
practice of calling x a vector over G.

For a v ∈ G, we use ṽ to denote a random mask sampled from the same group,
and v̂ = v + ṽ (where + is the group operation for G) to denote v masked by ṽ.
We use the + operator quite liberally and unless specified, it denotes the group
operation (e.g., component-wise addition mod p for Zlp) for the summands.

We now briefly recall standard symmetric primitives.

Definition 1 (Weak Pseudorandom Function (wPRF)). Let K = {Kλ}λ∈N,
X = {Xλ}λ∈N, and Y = {Yλ}λ∈N be ensembles of finite sets indexed by a security
parameter λ. Consider an efficiently computable function family {Fλ}λ∈N where
each function is given by Fλ : Kλ×Xλ → Yλ. We say that {Fλ}λ∈N is an (l, t, ε)-
weak pseudorandom function if for infinitely many λ ∈ N and all adversaries A

MPC-Friendly Symmetric Cryptography from Alternating Moduli 11

running in time at most t(λ), the following holds: taking fλ
$←− Funcs[Xλ,Yλ],

k
$←− Kλ, and x1, . . . , xl

$←− Xλ, we have that,∣∣∣Pr
[
A
(

1λ, {xi,Fλ(k, xi)}i∈[l]
)]
− Pr

[
A
(

1λ, {xi, fλ(xi)}i∈[l]
)]∣∣∣ ≤ ε(λ).

Definition 2 (One-way Function (OWF)). Let X = {Xλ}λ∈N, and Y =
{Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ. Consider
an efficiently computable function family {Fλ}λ∈N where each function is given by
Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is a (t, ε)-one-way function if for infinitely
many λ ∈ N and all adversaries A running in time at most t(λ), we have that,

Pr
[
x

$←− X ; y ← Fλ(x) : Fλ(A(1|x|, y)) = y
]
≤ ε(λ)

Definition 3 (Pseudorandom Generator (PRG)). Let X = {Xλ}λ∈N, and
Y = {Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ.
Consider an efficiently computable function family {Fλ}λ∈N where each function
is given by Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is an (l, t, ε)-pseudorandom
generator if F is length-expanding (i.e., ∀λ, ∀x ∈ Xλ, |x| < |Fλ(x)|) and for
infinitely many λ ∈ N and all adversaries A running in time at most t(λ), the

following holds: taking x1, . . . , xl
$←− Xλ y1, . . . , yl

$←− Yλ, we have that,∣∣∣Pr
[
A
(

1λ, {Fλ(xi)}i∈[l]
)]
− Pr

[
A
(

1λ, {yi}i∈[l]
)]∣∣∣ ≤ ε(λ).

3 Candidate Constructions

In this section, we introduce our suite of candidate constructions for a number
of cryptographic primitives: weak pseudorandom function families (wPRF), one-
way functions (OWF), and pseudorandom generators (PRG). Our constructions
are all based on alternating mod-2 and mod-3 linear maps. Given the wide
range of candidates we propose, we find it useful to have a clean and unified way
to describe the candidate constructions in a way that will later (in Section 5)
support a unified design of matching MPC protocols.

Circuit gates. We make use of five types of basic operations, or “gates,” which
we detail below. All our constructions can be succinctly represented using just
these gates. We denote by Gates the set comprising of these gates.

• Mod-p Public Linear Gate. For a prime p, given a public matrix A ∈
Zs×lp , the gate LinAp (·) takes as input x ∈ Zlp and outputs y = Ax ∈ Zsp.

• Mod-p Addition Gate. For a prime p, the gate Addp(·, ·) takes input
x, x′ ∈ Zlp and outputs y = x+ x′ mod p.

• Mod-p Bilinear Gate. For a prime p, and positive integers s and l, the
gate BLs,lp (·, ·) takes as input a matrix K ∈ Zs×lp and a vector x ∈ Zlp and
outputs y = Kx ∈ Zsp. When clear from context, we will drop the superscript
and simply write BLp(K, x).

12 Dinur et al.

A

Non-compressive LinAp gate

x y

A

Compressive LinAp gate

x y

K

x

Non-compressive BLp gate

y

K

x

Compressive BLp gate

y

Convert(2,3) gate

Convert(3,2) gate

x

x′
y

Addp gate
p = 2 p = 3

Fig. 1: Pictorial representations of the circuit gates. For the linear and bilinear
gates, non-compressive means that the length of the output vector is greater
than or equal to the length of the input vector, while compressive means that
the output vector is smaller than the input vector. Additionally, for p = 2, the
gates are shaded in violet, and for p = 3, the gates contain diagonal orange lines.

• Z2 → Z3 conversion. For a positive integer l, the gate Convertl(2,3)(·) takes

as input a vector x ∈ Zl2 and returns its equivalent representation x∗ in
Zl3. When clear from context, we will drop the superscript and simply write
Convert(2,3)(x).

• Z3 → Z2 conversion. For a positive integer l, the gate Convertl(3,2)(·) takes

as input a vector x ∈ Zl3 and computes its map x∗ in Zl2. For this, each Z3

element in x is computed modulo 2 to get the corresponding Z2 element in
the output x∗. Specifically, each 0 and 2 are mapped to 0 while each 1 is
mapped to 1. When clear from context, we will drop the superscript and
simply write Convert(3,2)(x).

The Lin and the BL gates will behave very differently in the context of distributed
protocols. For Lin, the matrix A will be publicly available to all parties, while
the input x will be secret shared. On the other hand, for BL, both the key K
and the input x will be secret shared. We call this gate bilinear because its
output is linear in both of its (secret-shared) inputs. Also note that although
the Convert(2,3) gate is effectively a no-op in a centralized evaluation, in the
distributed setting, the gate will be used to convert an additive sharing over Z2

to an additive sharing over Z3. Fig. 1 pictorially represents each circuit gate.

Construction styles. The candidate constructions we introduce follow one of
two broad styles which we detail below. A wPRF construction for the first style

MPC-Friendly Symmetric Cryptography from Alternating Moduli 13

(2, 3)-constructions

Parameters. Let λ be the security parameter and define parameters n,m, t as
functions of λ such that m ≥ n,m ≥ t.
Public values. Let A ∈ Zm×n

2 and B ∈ Zt×m3 be fixed public matrices chosen
uniformly at random. The matrices can also be chosen to be full-rank circulant
matrices.

Construction 1 (Mod-2/Mod-3 wPRF Candidate [15]) The (2, 3)-wPRF
candidate is a family of functions Fλ : Zm×n

2 ×Zn2 → Zt3 with key-space Kλ = Zm×n
2 ,

input space Xλ = Zn2 and output space Yλ = Zt3. For a key K ∈ Kλ, we define
FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Zn2 , first compute w = BL2(K, x) = Kx.
2. Output y = LinB3

(
Convert(2,3)(w)

)
. That is, view w as a vector over Z3 and

then output y = Bw.

Construction 2 (Mod-2/Mod-3 OWF Candidate) The (2, 3)-OWF candi-
date is a function Fλ : Zn2 → Zt3 with input space Xλ = Zn2 and output space
Yλ = Zt3. We define F(x) = Fλ(x) as follows:

1. On input x ∈ Zn2 , first compute w = LinA2 (x) = Ax.
2. Output y = LinB3

(
Convert(2,3)(w)

)
. That is, view w as a vector over Z3 and

then output y = Bw.

K

x

B y

(2, 3)-wPRF

Ax B y

(2, 3)-OWF

Fig. 2: (2, 3)-constructions

was first proposed by [15]. Here, we also propose a suite of symmetric primitives
(e.g., OWFs, PRGs) with the same basic structure.

• (p, q)-constructions. For distinct primes p, q, the (p, q)-constructions have
the following structure: On an input x over Zp, first a linear mod p map is
applied, followed by a linear mod q map. Note that after the mod p map,
the input is first reinterpreted as a vector over Zq. For unkeyed primitives
(e.g., OWF), both maps are public, while for keyed primitives (e.g., wPRF),
the key is used for the first linear map. The construction is parameterized by
positive integers n,m, t (functions of the security parameter λ) denoting the
length of the input vector (over Zp), the length of the intermediate vector,
and the length of the output vector (over Zq) respectively. The two linear
maps can be represented by matrices A ∈ Zm×np and B ∈ Zt×mq . For keyed
primitives, the key K ∈ Zm×np will be used instead of A.

Concretely, given an input x ∈ Znp , the construction output is of the
form y = Bw ∈ Ztq where w = Ax is first viewed over Zq. In this paper,
we will analyze this style of construction for (p, q) = (2, 3) and (3, 2) since
these are arguably the simplest constructions that employ linear maps over
alternate moduli. We find that the (2, 3)-constructions outperform the (3, 2)-

14 Dinur et al.

LPN-style-constructions

Parameters. n,m, t are functions of the security parameter λ.
Public values. Let A ∈ Zm×n

2 and B ∈ Zt×m2 be fixed public matrices chosen
uniformly at random. Alternatively, the matrices can also be chosen to be full-rank
circulant matrices.

Construction 3 (LPN-wPRF Candidate) The LPN-wPRF candidate is a
family of functions Fλ : Zm×n

2 × Zn2 → Zt2 with key-space Kλ = Zm×n
2 , in-

put space Xλ = Zn2 and output space Yλ = Zt2. For a key K ∈ Kλ, we define
FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Zn2 , first compute u = BL2(K, x) = Kx.
2. Let K∗ = Convert(2,3)(K) and x∗ = Convert(2,3)(x). Compute v =

Convert(3,2)(BL3(K∗, x∗)) = K∗x∗ mod 2. That is, compute v = (Kx mod
3) mod 2 where both K and x are first reinterpreted over Z3.

3. Compute w = u⊕ v and output y = LinB2 (w).

Construction 4 (LPN-PRG Candidate) The LPN-PRG is a length-doubling
PRG candidate defined as the function Fλ : Zn2 → Z2n

2 with input space Xλ = Zn2
and output space Yλ = Z2n

2 . For this construction, we consider the parameters
n,m, t with m ≥ n, t and t = 2n. We define F(x) = Fλ as follows:

1. On input x ∈ Zn2 , first compute u = Lin2(A, x) = Ax.
2. Let x∗ = Convert(2,3)(x). Compute v = Convert(3,2)(Lin

A
3 (x∗)) = (Ax∗) mod 2.

That is, compute (Ax mod 3) mod 2 where both A and x are first reinterpreted
over Z3.

3. Compute w = u⊕ v and output y = LinB2 (w).

K

x

K

x

LPN-wPRF

B y

Ax

x A

B y

LPN-PRG

Fig. 3: LPN-style-constructions

constructions and we will primarily use the former style for our constructions.
We will use (3, 2)-conversion gates in primitives where both the input and
the output are shared over Z2.

• LPN-style-constructions. These constructions have the following general
structure: On input x over Z2, first a linear mod 2 map given by the matrix
A is applied to obtain u. Concurrently, the same linear map is also applied
over Z3 (where both x and A are now reinterpreted over Z3) and then
reduced modulo 2 to obtain v. The sum w = u ⊕ v is then multiplied by a
second linear map (given by B) over Z2. The map B is always public, while
for keyed primitives, the key K is used instead of A.

The construction is parameterized by positive integers n,m, t (as func-
tions of the security parameter λ) denoting the size of the input vector, the

MPC-Friendly Symmetric Cryptography from Alternating Moduli 15

intermediate vector(s), and the output vector (all over Zp). Concretely, given
A ∈ Zm×n2 and a public B ∈ Zt×m2 , for an input x ∈ Zn2 , the construction
first computes the intermediate vector:

w = [(Ax mod 2) + (Ax mod 3) mod 2] mod 2.

The output y is then computed as y = Bw mod 2. The upshot of this style is
that the input and the output are both over Z2. Intuitively, each intermediate
vector bit can be thought of as a deterministic Learning-Parity-with-Noise
(LPN) instance with a noise rate of 1/3. The noise is deterministically gen-
erated and is dependent on the input x and a specific column of A. The
noise for the ith instance will be 1 if and only if 〈Ai, x〉 = 1.

A similar construction was considered in [15] but only for a single-bit
output. Specifically, they considered A ∈ Z1×n

2 and output the single bit w.
In our construction, we additionally apply a compressive linear map (using
B) to get the final output. This is done to resist standard attacks on LPN
(see Section 4 for details).

Winning candidates. Through cryptanalysis and considering the cost for each
candidate (See Sections 4 and 5 for details), we find that some of our candidates
are more suited (i.e., “win”) for a particular setting. Specifically, out of the
candidates we consider, we find the following: (2, 3)-wPRF and (2, 3)-OWF are
the best wPRF / OWF candidates with no restriction on the input/output space.
LPN-wPRF is the best wPRF candidate when the input and output space are
over Z2. LPN-PRG is the best PRG candidate. We provide formal and pictorial
descriptions of our winning candidates in Figures 2 and 3.

Structured keys. The constructions we described previously use general matri-
ces in, e.g., Zm×np . For keyed primitives, this results in a key size of mn elements
of Zp which is expensive to communicate within distributed protocols. There-
fore, we will instead take advantage of structured matrices whose representation
is only linear in n and m. Since both n and m are O(λ) in our constructions,
this reduces the communication complexity from quadratic to linear in λ. Fur-
thermore, some structured matrices also benefit from asymptotically faster algo-
rithms (e.g., FFT-based) for matrix multiplications and matrix-vector products.
We briefly describe the types of structured matrices we utilize below. For this,
consider a matrix M ∈ Zm×np .

• (Toeplitz matrices). A Toeplitz matrix, or a diagonal-constant matrix, is a
matrix where each diagonal from left to right is constant. Specifically, M is
Toeplitz if for all i ∈ [m] and j ∈ [n], it holds that Mi,j = Mi+1,j+1 where
Mi,j denotes the element in row i and column j of M. This means that a
Toeplitz matrix can be represented by a single column and a single row, i.e.,
with n+m− 1 field elements.

• (Generalized circulant matrices). A generalized circulant matrix is a matrix
where each row after the first, is a cyclic rotation of the first row. Specifically,
if the first row of generalized circulant matrix M is the vector (a1, . . . , an),

16 Dinur et al.

then the mth row of M will be given by the same vector cyclically rotated
m − 1 times. In general, m 6= n, but the special case of m = n is called a
(square) circulant matrix. Unless specified, for brevity, we will often use the
term circulant to denote either generalized circulant matrices or the more
specific (square) circulant matrices. This will not matter for our setting,
since both can be efficiently represented using just n field elements (given
the dimension of the matrix).

We will usually instantiate our constructions using generalized circulant ma-
trices to take advantage of their efficient representations. However, care must
be taken while adding structure since this could potentially damage the secu-
rity of a construction. Our cryptanalysis in Section 4 will therefore consider our
constructions with structured matrices.

4 Cryptanalysis

We give a summary of cryptanalysis of our constructions, focusing on the main
attacks that influence our parameters and defer details to the full version [34].

4.1 Summary of Security Evaluation of the (2, 3)-OWF

The attacker is given ŷ ∈ Zt3 and tries to invert it. Our most interesting attack
on the (2, 3)-OWF is based on a reduction to subset-sum.

Reduction to subset-sum. For a vector w ∈ Zm2 , there is an (m − n) × m
(parity check) matrix P such that there exists x ∈ Zn2 for which Ax = w if and
only if Pw = 0. Assume that ŷ is the output of the (2, 3)-OWF on x ∈ Zn2 , and
let w = Ax. Then, w satisfies the conditions Pw = 0 (over Z2) and Bw = ŷ
(over Z3). We attempt to find such w by a reduction to subset-sum, as detailed
below. Suppose we find a set J ⊆ [m] such that∑

j∈J
Pej mod 2,

∑
j∈J

Bej mod 3

 = (0, ŷ)

where ei ∈ {0, 1}m is the i’th unit vector. Then, the preimage x can be computed
by solving the linear equation system Ax =

∑
j∈J ej mod 2.

Thus, we have reduced the problem to subset-sum with m binary variables
(ε1, . . . , εm) ∈ {0, 1}m, where we associate εi = 1 with (Pei,Bei) ∈ Zm−n2 × Zt3,
and define the target as (0, ŷ) ∈ Zm−n2 ×Zt3. We further note that the parity check
matrix P defines the linear code spanned by the columns of A. Therefore, the
reduction is bi-directional, implying that inverting the (2, 3)-OWF is equivalent
to solving this special type of subset-sum problem.

Solving the subset-sum problem. We can now apply the advanced subset-
sum algorithm by Howgrave-Graham and Joux [42] and the more recent ones [9,16],
which are based on the representation technique. These algorithms were mostly

MPC-Friendly Symmetric Cryptography from Alternating Moduli 17

designed to solve subset-sum problems over the integers. Below, we describe the
main ideas of these algorithms and explain how to apply them to the special
subset-sum problem we consider.

In the subset-sum problem over the integers, we are given m positive integers
(a1, a2, . . . , am) and a positive integer S such that S =

∑m
i=1 εiai for εi ∈ {0, 1}.

The goal is to recover the unknown coefficients εi. A standard meet-in-the-middle
approach for solving the problem has time complexity of about 2m/2. The rep-
resentation technique gives an improved algorithm as briefly summarized below.

Assume that a solution to the subset-sum problem is chosen uniformly from
{0, 1}m and the parameters are set such that the instance has about one so-
lution on average. Effectively, this means that the density of the problem d =

n
logmax({ai}mi=1)

is set to 1. The main idea of the basic algorithm of Howgrave-

Graham and Joux [42] is to split the problem into two parts by writing S = σ1 +
σ2, where σ1 =

∑m
i=1 αiai, σ2 =

∑m
i=1 βiai and (αi, βi) ∈ {(0, 0), (0, 1), (1, 0)}.

Thus, εi = αi + βi for each i is a solution to the problem. Note that each
coefficient εi with value 1 can be split into (0, 1), or (1, 0). Thus, assuming
that the solution has Hamming weight11 of m/2 (which occurs with probability
Ω(1/

√
m)), it has 2m/2 different representations. Consequently, we may focus on

finding only one of these representations by solving two subset-sum problems of
Hamming weight m/4. Focusing on a single representation of the solution beats
the standard meet-in-the-middle approach which requires time 2m/2.

Adaptation of previous subset-sum algorithms. The algorithm of [42]
can be easily adapted to our specialized subset-sum problem (although it is
not defined over the integers). Moreover the improved algorithm of [9] con-
siders additional representations of the solution by allowing αi and βi to also
take the value -1 (implying that εi = 0 can be decomposed into (αi, βi) ∈
{(0, 0), (−1, 1), (1,−1)}). In our case, we associate αi = −1 with (P(−ei),B(−ei)) =
(Pei, 2 ·Bei) ∈ Zm−n2 × Zt3. Finally, the recent improved algorithm of [16] con-
siders representations over {−1, 0, 1, 2} and we can adapt this to our setting in a
similar way. In terms of complexity, ignoring polynomial factors in m, the attack
of [42] runs in time 20.337m and uses 20.256m memory, while the complexity of
attack of [16] requires 20.283m time and memory. Thus, conservatively ignoring
polynomial factors, for s-bit security we require 0.283m ≥ s, or m ≥ 3.53s.

4.2 Summary of Security Evaluation of the (2, 3)-wPRF

For the (2, 3)-wPRF, the attacker obtains several samples (x1,B, y1), . . . , (x2r ,B, y2r)
and tries to mount a key recovery and/or a distinguishing attack. We restrict
the number of samples produced with a single secret to 240. We set the param-
eters such that n− log 3 · t ≥ s, and thus there are 2s keys on average that are
consistent with a single sample. Therefore, any key recovery attack faster than
2s will use at least two samples. Particularly, the subset-sum attack can also be

11 In general, one may guess the Hamming weight of the solution and repeat the algo-
rithm accordingly a polynomial number of times.

18 Dinur et al.

applied to the (2, 3)-wPRF, but it is not clear how to use it efficiently on more
than one sample (without strong relations between them).

The most important distinguishing attack looks for a bias in a linear com-
bination of the output over Z3. Given a single sample (x,B, y), assume there
exist v ∈ Zm3 and u ∈ Zt3 such that uB = v and the Hamming weight of v is `.
As y = Bw mod 3, the attacker computes uy mod 3 = vw mod 3 and thus ob-
tains the value of a linear combination mod 3 of ` entries of w ∈ {0, 1}m. Since
w ∈ Zm2 , this linear combination is biased, and the strength of the bias depends
on how small ` is. The bias can be amplified using several samples. Consequently,
we require that the rows of B do not span a vector of low Hamming weight. This
analysis is probabilistic and leads to a lower bound on m.

Another important attack we consider exploits the fact that K is circulant
and preserves symmetric properties of the input x (e.g., the two halves of x are
equal). This attack imposes a lower bound on n so that such a symmetric vector
is not found in the data, except with negligible probability. We leave it as an
open problem to extend this basic attack.

Overall, we set n = m = 2s and t = s/ log 3. These are somewhat aggressive
parameters as the security margin against the above attacks in rather narrow.
A choice of n = m = 2.5s is more conservative.

4.3 Summary of Security Evaluation of the LPN-PRG

The attacker is given a single sample A,B, y and tries to mount a key recovery
and/or a distinguishing attack. The construction differs from the alternative
wPRF construction from [15] in two ways. The first transformation generates
t = 2n samples using a public matrix. Similarly to [15], each sample can be
viewed as an LPN sample, i.e., a noisy linear equation over Z2 in the bits of
the seed (although the noise is generated deterministically). However, in [15]
A is a random matrix, whereas we use a (structured) Toeplitz matrix which
may weaken the construction. On the other hand, the second transformation B
“compresses” the samples and generally strengthens the construction.

A significant consideration in selecting the parameters is that the rows of B do
not span a low Hamming weight vector, imposing a lower bound on m. Thus, only
dense linear combinations of samples are available at the output, accumulating
the noise. This should defeat standard attacks against LPN. Overall, setting
n = s,m = 3s, t = 2s seems to provide sufficient resistance against the considered
attacks.

4.4 Summary of Security Evaluation of the LPN-wPRF

The attacks we consider against this primitive include a union of some of the
attacks considered for the LPN-PRG and for the (2, 3)-wPRF constructions with
some adjustments. Overall, we propose to set n = m = 2s and t = s.

MPC-Friendly Symmetric Cryptography from Alternating Moduli 19

5 Distributed Protocols

We now describe efficient MPC protocols to compute our candidate construc-
tions in several useful distributed settings. First, in Section 5.1, we provide a
technical overview for our overall protocol design. Section 5.2 quantifies this
approach by providing concrete costs for distributed evaluations for our (2, 3)-
wPRF construction. We also provide two novel OPRF protocols based on this
PRF in Section 5.3. In Section 5.4 we describe efficient protocols for distributing
the generation of correlated randomness for modulus conversion gates. We defer
the details of our constructions and proofs as well as protocols for other settings
(3PC without preprocessing and public-input evaluation) to the full version [34].

5.1 Technical Overview

Recall that all our constructions can be succinctly represented using a set Gates
of five basic gates. We will view each construction as a circuit over the basis
Gates and follow the approach of [33,23] to securely evaluate such circuits using
circuit-dependent correlated randomness.

We begin with distributed protocols to evaluate each of the five gates. Ab-
stractly, the goal of a gate protocol is to convert shares of the inputs to shares of
the outputs (or shares of a masked output). To make our formalism cleaner, the
gate protocols, by themselves, will involve no communication. Instead, they can
additionally take in masked versions of the inputs, and possibly some additional
correlated randomness. When composing gate protocols, whenever a masked in-
put is needed, the parties will exchange their local shares to publicly reveal the
masked value. This choice also prevents redoing the same communication when
the masked value is already available from earlier gate evaluations.

5.1.1 Distributed Computation of Circuit Gates

We provide local protocols to compute the circuit gates we use. The description
of inputs (including shared correlated randomness) and outputs for each gate
protocol is also summarized in Table 2. Note that the protocols work for any
number of parties. Protocols for the Lin and Add gates directly follow from the
homomorphic properties of additive secret sharing, while the protocol for the
BL gate is a generalization of Beaver’s multiplication triples [8] (see, e.g., [23]).
Here, we briefly provide protocols for the new modulus conversion gates.

Z2 → Z3 conversion protocol π
(2,3)
Convert.

• Functionality: Abstractly, the goal of the Z2 → Z3 conversion protocol
is to convert a sharing of x over Z2 to a sharing of the same x∗ = x, but
now over Z3. For our purpose, the parties will be provided the masked input
x̂ = x⊕x̃ (i.e., masking is over Z2) directly along with correlated randomness
that shares x̃ over Z3.

• Preprocessing: Each party is also provided with shares of the mask r = x̃
over Z3 as correlated randomness.

20 Dinur et al.

Protocol
Public
Inputs

Shared
Inputs

Shared
Correlated Randomness

Output Shares
(over base group G)

πA,p
Lin A x - y = Ax (over Zp)

πpAdd x, x′ - y = x+ x′ (over Zp)

πpBL K̂, x̂ - K̃, x̃, K̃x̃ y = Kx (over Zp)

π
(2,3)
Convert x̂ (over Z2) - r = x̃ (over Z3) x∗ = x (over Z3)

π
(3,2)
Convert x̂ (over Z3) -

u = x̃ mod 2 (over Z2)
v = (x̃+ 1 mod 3) mod 2 (over Z2)

x∗ = x mod 2 (over Z2)

Table 2: Summary of input, output, and randomness for circuit gate protocols.

• Protocol details: For the protocol π
(2,3)
Convert(x̂ | r), each party proceeds as

follows:
Jx∗K(i) = Jx̂K(i) + JrK(i) + (x̂� JrK(i)) mod 3

where � denotes the Hadamard (component-wise) product modulo 3.

Z3 → Z2 conversion protocol π
(3,2)
Convert.

• Functionality: Abstractly, the goal of the protocol is to convert a sharing
of x over Z3 to a sharing of x∗ = x mod 2 over Z2. For our purpose, the
parties will be provided with the masked input x̂ = x + x̃ mod 3 directly,
along with correlated randomness over Z3 (see below).

• Preprocessing: Each party is also given shares (over Z2) of two vectors:
u = x̃ mod 2 and v = (x̃+ 1 mod 3) mod 2 as correlated randomness.

• Protocol details: For the protocol π
(3,2)
Convert(x̂ | u, v), each party computes

its share of x∗ as follows: For each position j ∈ [l], Jx∗K(i)j = 1 − JuK(i)j −
JvK(i)j ,JvK(i)j , JuK(i)j when x̂j = 0, 1, 2 respectively.

In the full version, we show a generic technique to evaluate any construction
built using the previous five gates in a distributed fashion. We also analyze the
communication and preprocessing costs. Abstractly, communication will only be
needed before BL,Convert(2,3), and Convert(3,2) gates to reconstruct the masked
input. In terms of preprocessing, if PRG seeds are used for compression, then
the computation for the BLk,lp ,Convertl(2,3), and Convertl(3,2) gates will require a
preprocessing of log2 p · k bits, log2 3 · l bits, and 2l bits respectively.

Concrete costs. In Table 3, we provide the concrete costs for our protocols
in different settings for our specific parameter choices. Preprocessing costs are
based on the usage of a trusted dealer. Later, in Section 5.4, we will show how to
distribute the dealer, through efficient protocols for generating the preprocessed
correlations we require from standard OT-correlations. This combined with fast
silent OT [20,64] makes the gap between the online cost mentioned in Table 3
and the total cost (including distributing the dealer) quite small. As a concrete
example, the (amortized) total cost for the (2,3)-wPRF in the distributed 2PC
setting is only 23% higher than the online cost when a trusted dealer is used.

MPC-Friendly Symmetric Cryptography from Alternating Moduli 21

Primitive Construction
Param.
(n,m, t)

Distributed 2PC
(with preprocessing)

Distributed
3PC

Public-Input 2PC
(with preprocessing)

Online
Comm.

Prepr.
Online
Comm.

Online
Comm.

Prepr.

wPRF
(2, 3)-wPRF (256, 256, 81) (1536, 4, 2) (2348, 662) (1430, 4, 1) (512, 2, 1) (1324, 406)
LPN-wPRF (256, 256, 128) (2860, 6, 3) (4995, 1730) (1324, 4, 2) (3160, 918)

OWF (2, 3)-OWF (128, 452, 81) (904, 2, 1) (2337, 717) (2525, 4, 1) - -
PRG LPN-PRG (128, 512, 256) (1880, 4, 2) (4334, 1227) - -

Table 3: Concrete MPC costs for our winning candidate constructions in three
settings (Distributed 2PC (with preprocessing), 3PC, and Public-input 2PC)
using our proposed parameters. For the distributed 2PC and the public-input
2PC settings, we provide the total online communication (bits, messages, rounds)
and the preprocessing required in bits (without compression, with compression).
For the compressed size of the preprocessing, we do not include values that can
be reused (e.g., PRG seeds). For the distributed 3PC setting, we provide the total
online communication cost (bits, messages, rounds) for our (2, 3)-constructions.
The cost of the reusable PRG seeds is not included.

5.2 Distributed Evaluation in the Preprocessing Model

We briefly sketch a 2-party protocol for (2, 3)-wPRF in the preprocessing model
and defer details to the full version. In this setting, two parties, denoted by P1

and P2 hold shares of both the key K and the input x. The goal is to compute
shares of the output y.

For this, we provide the parties with preprocessed tuples for the BL gate,
and the Convert2,3 gate. To evaluate an input, the two parties first mask their

shares of K and x, and exchange them to reveal K̂ and x̂. Both parties use πBL

to compute shares of the intermediate vector w. Then, they mask their shares

and exchange them to reveal ŵ. The parties can now use the π
(2,3)
Convert protocol

followed by a local multiplication by B to obtain shares of the output y. Note
that this protocol can easily be extrapolated for distributed N -party evaluation.

5.3 Oblivious Evaluation

While our distributed protocols can be used directly for semi-honest oblivious
PRF, or OPRF, evaluation in the preprocessing model, here we provide two pro-
tocols in this setting whose efficiency rivals that of DDH-based OPRF protocols.
Recall that in the OPRF setting, one party P1 (called the “server”) holds the
key K and the other party P2 (called the “client”) holds the input x. The goal
of the protocol is to have the client learn the output of the PRF for key K and
input x, while the server learns nothing. We provide only a brief description of
our protocols next, and defer the details to the full version.

OPRF Protocol πoprf
1 . Our first OPRF protocol is in spirit similar to the

distributed evaluation for the (2, 3)-wPRF construction. Since K is known to
the server, and x is known to the client, both parties do not need to exchange

22 Dinur et al.

their shares to reconstruct the masked values K̂ and x̂; the party that holds
a value can mask it locally and send it to the other party. This allows us to
decouple the server’s message that masks its PRF key from the rest of the
evaluation. To update the key, the server can simply send K̂ = K + K̃ to the
client. Many PRF evaluations can now be done using the same K̂. The upshot
of this is that when the client already knows the key mask, the protocol has an
optimal 2-round structure (one message from the client followed by one message

from the server). For our parameters (n = m = 256, t = 81), πoprf
1 has 897 bits of

online communication for input evaluation. To update the key, the server sends
a 256-bit message to the client.

OPRF Protocol πoprf
2 . For the second protocol, the server masks the PRF in

a different way; a multiplicative mask is used instead of an additive one. This
saves 256 bits in the online phase at the expense of a slower key update phase.

5.4 Distributing the Trusted Dealer

In this section we show how to generate the preprocessing we require efficiently
and without a trusted dealer. We will focus on the 2-party setting specifically.

5.4.1 (2, 3)-correlations from OT correlations

We provide a new technique to generate the correlations needed for the π
(2,3)
Convert

protocol. The key technique we use is to convert OT correlations to the types of
correlations our protocols require. Since prior work [20,19,64] has shown how to
efficiently create OT-correlations, this implies that the correlations required for
our protocols can also be efficiently generated. For a 1-out-of-2 OT correlation

over Z3, P1 holds (z0, z1) and P2 holds (c, zc) where z0, z1
$←− Z3, c ∈ Z2 and

zc = z0 if c = 0 and zc = z1 if c = 1. We refer to ((z0, z1), (c, zc)) as an OT
correlation pair.

Conversion technique. Recall that for the Z2 → Z3 conversion protocol

π
(2,3)
Convert, as preprocessing, a dealer provides the parties with shares of a bit-vector

both over Z2 and Z3. For simplicity, we first consider the correlated randomness
for a single element. To convert the sharing for a single bit, the dealer provides
the following correlated randomness to the parties: P1 is given (w1, r1) and P2

is given (w2, r2) such that w1, w2 ∈ Z2; r1, r2 ∈ Z3 and (w1 + w2) mod 2 =
(r1 + r2) mod 3. We refer to ((w1, r1), (w2, r2)) as a (2, 3)-correlation pair.

We now show, in Protocol 5, how to convert an OT-correlation into a (2, 3)-
correlation. Suppose for now that we have the ability to “throw” away OT-
correlations where z0 = z1. We will get rid of this assumption later by commu-
nicating a single message from P1 to P2 which will intuitively detail which OT
correlations to discard.

Protocol 5 Given a (1-out-of-2) OT correlation ((z0, z1), (c, zc)) over Z3 where
z0 6= z1, to generate a (2, 3)-correlation, the parties proceed as follows:

MPC-Friendly Symmetric Cryptography from Alternating Moduli 23

• P1 computes

(w1, r1) =

{
(0, z0) if z1 = z0 − 1 mod 3

(1, z1) if z0 = z1 − 1 mod 3

• P2 computes (w2, r2) = (c,−zc mod 3).

This means that an OT correlation can locally be converted to a (2, 3)-
correlation when z0 6= z1. Since P1 knows these values, it still needs to com-
municate to P2 whether to use a given correlation or not. The communication
can be compressed using the binary entropy function Hb(p) which computes the
entropy of a Bernoulli process with probability p. This leads to a communica-
tion cost of 1.5l · Hb(1/3) ≈ 1.377l for an l-length (2, 3)-correlation. As another
upshot, this means that the required (2, 3) correlations can be generated even
during the first round of the online protocol.

5.4.2 (3, 2)-correlations from OT correlations

We now show, in Protocol 6, how to convert OT-correlations to the correlations

we require for the π
(3,2)
Convert protocol. For this, we will need 1-out-of-3 OT corre-

lations for 2-bit strings. Formally, in such a correlation, P1 receives (z0, z1, z2)
where each zj is a 2-bit string, while P2 receives (c, zc) where c ∈ Z3 and zc is
the corresponding zj indexed by j = c. As before, these OT correlations can also
be efficiently generated and compressed using existing work [20,64].

Now, to convert a single Z2 element to Z3, our protocol requires the following
correlated randomness: Pi is given (x̃i, ui, vi) where x̃i ∈ Z3, ui, vi ∈ Z2 such
that the following holds. Define x̃ = x̃1 + x̃ mod 3, u = u1 + u2 mod 2, and
v = v1 + v2 mod 2. Then, u = x̃ mod 2 and v = (x̃ + 1 mod 3) mod 2. We call
this sharing between the two protocol parties a (3, 2)-correlation pair.

Protocol 6 Given a (1-out-of-3) OT-correlation ((z0, z1, z2), (c, zc)) for 2-bit
strings, to generate a (3, 2)-correlation from this, the parties proceed as follows:

• First, P1 samples its shares randomly as x̃1
$←− Z3, u1, v1

$←− Z2.
• Now, for each j ∈ Z3, P1 sets the 2-bit string sj as follows. Let w = x̃i +
j mod 3. Then, sj = (u1 ‖ ¬v1) if w = 0; sj = (¬u1 ‖ v1) if w = 1;
sj = (u1 ‖ v1) if w = 2. Intuitively, P1 sets the OT tuple to be what P2’s
share would be if it chose that particular index in an OT protocol.

• P1 masks the sj and sends them to P2. Specifically, P1 sends rj ← sj + zj
(where each bit is added modulo 2) for each j ∈ Z3.

• P2 sets x̃2 ← c, and u2 ‖ v2 ← rc (i.e., the corresponding 2-bit string rc sent
by P1 is parsed into u2 and v2)

• Finally, for the (3, 2)-correlation, Pi takes its share as (x̃i, ui, vi)

This is less efficient than generating (2, 3)-correlations and takes 6 bits of commu-
nication per instance. Note that the communication is still unidirectional as only
P1 sends a message. Consequently, the (3, 2)-correlations can also be generated
on the fly given OT correlations as part of the first protocol round.

24 Dinur et al.

6 Application: Signatures with the (2, 3)-OWF

Here we describe a signature scheme using the (2, 3)-OWF. Our presentation is
tailored to the (2, 3)-OWF, but we note that this approach is general. All of the
candidate primitives in this paper would be a suitable choice of F (note that
they are all OWFs when the input is chosen at random) and we evaluated them
all before settling on (2, 3)-OWF, which gives the shortest signatures.

Abstractly, a signature scheme can be built from any OWF F and an MPC
protocol to evaluate it, by setting the public key to y = F(x) for a random
secret x, and then proving knowledge of x, using a proof system based on the
MPC-in-the-head paradigm [45]. To make the proof non-interactive, typically
the Fiat-Shamir transform is used, and the message to be signed is bound to the
proof by including it in the hash when computing the challenge. In addition to
assuming the OWF is secure, the only other assumption required is a secure hash
function. As no additional number-theoretic assumptions are required, these
types of signatures are often proposed as secure post-quantum schemes.

Concretely, our design follows the Picnic signature scheme [25], specifically
the variant instantiated with the KKW proof system [51] (named Picnic2 and
Picnic3). We chose to use the KKW, rather than ZKB++ proof system since our
MPC protocol to evaluate the (2, 3)-OWF is most efficient with a pre-processing
phase, and KKW generally produces shorter signatures. We replace the LowMC
block cipher [4] in Picnic with the (2, 3)-OWF, and make the corresponding
changes to the MPC protocol.

This is the first signature scheme based on the hardness of inverting the (2, 3)-
OWF (or similar function), a function with a simple mathematical description,
making it an accessible target for cryptanalysis, especially when compared to
block ciphers. Arguably, the simplicity of the OWF can lead to simpler imple-
mentations: the MPC protocol is simpler, and no large precomputed constants
are required.

Our presentation is somewhat brief here as many parts are identical to Picnic.
More details can be found in the full version.

Parameters. Let κ be a security parameter. The (2, 3)-OWF parameters are
denoted (n,m, t). The KKW parameters (N,M, τ) denote the number of parties
N , the total number of MPC instances M , and the number τ of MPC instances
where the verifier checks the online phase of simulation. The scheme also requires
a cryptographic hash function.

Key generation. The signer chooses a random x ∈ Zn2 as secret key, and
a random seed s ∈ {0, 1}κ such that s expands to matrices A ∈ Zm×n2 and
B ∈ Zm×t3 that are full rank (using a suitable cryptographic function, such as
the SHAKE extendable output function [52]). Compute y = F(x) and set (y, s)
as the public key. Recall that the (2, 3)-OWF is defined as y = F(x) where x ∈ Zn2
and y ∈ Zt3, and is computed as y = B(Ax) where Ax is first cast to Z3.

MPC protocol. By combining the protocols for the gates π3
Add, π

A,2
Lin , πB,3

Lin ,

and π
(2,3)
Convert described in Section 5, we have an N -party protocol for the (2, 3)-

MPC-Friendly Symmetric Cryptography from Alternating Moduli 25

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, τ)

(128, 453, 81) (16, 150, 51) 13.30
(16, 168, 45) 12.48
(16, 250, 36) 11.54

Picnic3-L1 (16, 250, 36) 12.60
(128, 453, 81) (64, 151, 45) 13.59

(64, 209, 34) 11.70
(64, 343, 27) 10.66

Picnic2-L1 (64, 343, 27) 12.36

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, τ)

(256, 906, 162) (16, 324, 92) 50.19
(16, 400, 79) 47.08
(16, 604, 68) 45.82

Picnic3-L5 (16, 604, 68) 48.72
(256, 906, 162) (64, 322, 82) 51.23

(64, 518, 60) 44.04
(64, 604, 57) 43.45

Picnic2-L5 (64, 604, 58) 46.18

Table 4: Signature size estimates for Picnic using (2, 3)-OWF, compared to Picnic
using LowMC. The left table shows security level L1 (128 bits) with N = 16 and
N = 64 parties, and the right table shows level L5 (256 bits).

OWF. The most challenging and costly step (in terms of communication) is the
conversion gate, all other operations are done locally by the parties.

Sign and verify. The prover simulates the preprocessing and online phase for
all M MPC instances, and commits to the preprocessing values, and MPC inputs
and outputs. Then she is challenged to open τ of the M MPC instances. The
verifier will check the simulation of the online phase for these instances, by re-
computing all values as the prover did for N−1 of the parties, and for remaining
unopened party, the prover will provide the missing broadcast messages and
commitments so that the verifier may complete the simulation and recompute
all commitments. For the M−τ instances not chosen by the challenge, the verifier
will check the preprocessing phase only, by recomputing the preprocessing phase
as the prover did.

Parameter selection and signature size. The impact of OWF choice is
limited to one term, which is the sum of the sizes of the MPC inputs, broadcast
messages, and auxiliary values produced by preprocessing. Selecting the KKW
parameters (M,N, τ) once the MPC costs are known follows the approach in
Picnic: a range of options are possible, and we try to select parameters that
balance speed (mostly dependent on the number of MPC executions and number
of parties) and size. Since the MPC costs of the (2, 3)-OWF are very close to
those of LowMC, the options follow a similar curve.

Table 4 gives some options with N = 16, 64 parties, providing 128 and 256
bits of security. For each category, we highlight the row of (2, 3)-OWF parameters
that are a direct comparison to Picnic. Signatures using the (2, 3)-OWF are
slightly shorter (five to fifteen percent) than Picnic using LowMC.

7 Implementation and Evaluation

We implemented our 2-party protocols to compute the (2, 3)-wPRF candidate
(Construction 1) both in the distributed and oblivious evaluation settings. Our
implementations are in C++. For the (2, 3)-wPRF construction, we used the

26 Dinur et al.

Optimization
Runtime (µs) Evaluations / sec

Packing Bit Slicing Lookup Table

Baseline implementation 156.41 6K
X 26.84 37K
X X 18.5 65K
X X X 6.08 165K

Table 5: Centralized 23-wPRF benchmarks for a baseline implementation and
for different optimization techniques. Packing was done into 64-bit sized words
(for both Z2 and Z3 vectors). For the lookup table optimization, a table with
81×220 Z3 elements, or roughly of size 135MB, was preprocessed. Runtimes are
all given in microseconds (µs).

parameters n = m = 256 and t = 81. The implemented 23-constructions use a
Toeplitz matrix in Z256×256

2 as the key, take as input a vector in Z256
2 and output

a vector in Z81
3 . The correlated randomness was implemented as if provided by a

trusted third party. See Section 5.4 for concretely efficient protocols for securely
generating the correlated randomness, which we did not implement but give
efficiency estimates based on prior works.

Optimizations. We start with a centralized implementation of the 23-wPRF.
We find optimizations that provide a roughly 25x better performance over a näıve
implementation. We use three major optimizations in our implementation. First,
we use bit packing for Z2 vectors through which we can pack several elements
in a machine word and operate on them together in an SIMD manner. Second,
we use bit slicing for Z3 vectors by representing them as a pair of Z2 vectors.
All operations on the Z3 vectors can now be translated to operations on the
Z2 vectors. Finally, we use a lookup table optimization for the final Z3 linear
mapping (i.e., multiplication by B). For this, we split the 256-column matrix
B into 16 pieces with 16 columns each and store multiplications with all Z16

3

vectors for each piece. The size for each piece was decided as a tradeoff between
the lookup table size and the computational efficiency. We provide benchmarks
for our optimizations in Table 5.

7.1 Performance Benchmarks

Experimental setup. We ran all our experiments on a t2.medium AWS EC2
instance with 4GiB RAM (architecture: x86-64 Intel(R) Xeon(R) CPU E5-2686
v4 @ 2.30GHz) running on Ubuntu 18.04. The performance benchmarks and
timing results we provide are averaged over 1000 runs. For the distributed con-
struction benchmarks, both parties were run on the same instance. We separately
report the computational runtime for the parties, and analytically compute the
communication costs.

Distributed wPRF evaluation. We implement our 2-party semi-honest dis-
tributed protocol for evaluating the (2, 3)-wPRF construction and report timings
for our implementation. Since this candidate was first proposed in [15], we also

MPC-Friendly Symmetric Cryptography from Alternating Moduli 27

Protocol
Runtime (µs)

Preprocessing (bits)
Communication (bits)

Client Server Client Server

πoprf
1

Key Update - 0.65 256 - 256
Evaluation 8.54 9.45 2092 512 385

πoprf
2

Key Update - 3.16 256 - 256
Evaluation 7.91 8.21 1836 256 385

DDH-based OPRF 57.38 28.69 - 256 256

Table 6: Comparison of protocols for (semi-honest) OPRF evaluation in the
preprocessing model. Runtimes in microseconds (µs) are provided separately for
refreshing the key (Key Update) and for evaluating an input (Evaluation). Com-
munication and preprocessing are also provided separately for the two stages.

implement their protocol as a comparison point. For both protocols, we use the
parameters n = m = 256, t = 81 for the PRF and use the same optimizations
for an accurate comparison. We found that our protocol is better in all metrics.
For a single evaluation, our protocol requires 12.12 µs, 662 bits of preprocess-
ing, and 1536 bits of online communication. On the other hand, the protocol
from [15] requires 28.02µs, 3533 bits of preprocessing, and 2612 bits of online
communication for one evaluation.

OPRF evaluation. In Table 6, we provide performance benchmarks for both
our oblivious protocols (see Section 5.3) for the (2, 3)-wPRF construction. We
also compare our results to the standard DDH-based OPRF (details in the full
version [34]). For our timing results, we report both the server and client runtimes
(averages over 1000 runs). For each construction, we also include the size of the
preprocessed correlated randomness, and the online communication cost. All
constructions are parameterized appropriately to provide 128-bit security.

For our constructions, we report separately, the timings for refreshing the
key and evaluating the input. For the comparison with the DDH-based OPRF
construction, we use the libsodium library [1] for the elliptic curve scalar multi-
plication operation. We use the Curve25519 elliptic curve, which has a 256-bit
key size, and provides 128 bits of security.

Acknowledgments. Itai Dinur is supported by ISF grants 573/16 and 1903/20,
and by the European Research Council under the ERC starting grant agree-
ment No. 757731 (LightCrypt). Yuval Ishai is supported by ERC Project NTSC
(742754), ISF grant 2774/20, NSF-BSF grant 2015782, and BSF grant 2018393.

References

1. libsodium 1.0.18-stable. https://libsodium.gitbook.io/doc/ (2020), online; De-
cember 31 2020

2. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseu-
dorandom functions in AC mod 2. In: ITCS. pp. 251–260 (2014)

https://libsodium.gitbook.io/doc/

28 Dinur et al.

3. Albrecht, M.R., Perrin, L.G.L., Ramacher, S., Rechberger, C., Rotaru, D., Roy, A.,
Schofnegger, M.: Feistel structures for MPC, and more. In: ESORICS. pp. 151–171
(2019)

4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: EUROCRYPT. pp. 430–454 (2015)

5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. TOSC 2020(3),
1–45 (2020)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: FOCS. pp.
166–175 (2004)

7. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.:
Banquet: Short and fast signatures from AES. In: PKC. pp. 266–297 (2021)

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO. pp. 420–432 (1991)

9. Becker, A., Coron, J., Joux, A.: Improved generic algorithms for hard knapsacks.
In: EUROCRYPT. pp. 364–385 (2011)

10. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC. pp. 1–10 (1988)

11. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In: EUROCRYPT. pp. 183–211 (2020)

12. Beullens, W., de Saint Guilhem, C.: LegRoast: Efficient post-quantum signatures
from the legendre PRF. In: PQCRYPTO. pp. 130–150 (2020)

13. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SICOMP 13(4), 850–864 (1984)

14. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: CRYPTO. pp. 67–97 (2019)

15. Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., Wu, D.J.: Exploring crypto dark
matter: New simple PRF candidates and their applications. In: TCC. pp. 699–729
(2018)

16. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: ASIACRYPT. pp. 633–666 (2020)

17. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee, M.:
Function secret sharing for mixed-mode and fixed-point secure computation. In:
EUROCRYPT. pp. 871–900 (2021)

18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: CCS.
pp. 896–912 (2018)

19. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: CCS. pp. 291–308 (2019)

20. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent OT extension and more. In: CRYPTO. pp.
489–518 (2019)

21. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from Ring-LPN. In: CRYPTO. pp. 387–416 (2020)

22. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT. pp.
337–367 (2015)

23. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: TCC. pp. 341–371 (2019)

24. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party com-
putation via sublinear distributed zero-knowledge proofs. In: CCS. pp. 869–886
(2019)

MPC-Friendly Symmetric Cryptography from Alternating Moduli 29

25. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS. pp. 1825–1842 (2017)

26. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC. pp. 11–19 (1988)

27. Chen, L.: Non-deterministic quasi-polynomial time is average-case hard for ACC
circuits. In: FOCS. pp. 1281–1304 (2019)

28. Chen, L., Ren, H.: Strong average-case lower bounds from non-trivial derandom-
ization. In: STOC. pp. 1327–1334 (2020)

29. Cheon, J.H., Cho, W., Kim, J.H., Kim, J.: Adventures in crypto dark matter:
Attacks, fixes for weak pseudorandom function candidates. In: PKC. pp. 739–760
(2021)

30. Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security
of Goldreich’s pseudorandom generator. In: ASIACRYPT. pp. 96–124 (2018)

31. Damg̊ard, I.: On the randomness of legendre and jacobi sequences. In: CRYPTO.
pp. 161–172 (1988)

32. Damg̊ard, I., Keller, M.: Secure multiparty AES. In: FC. pp. 367–374 (2010)
33. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for

2-party secure computation, or: Gate-scrambling revisited. In: EUROCRYPT. pp.
167–187 (2017)

34. Dinur, I., Goldfeder, S., Halevi, T., Ishai, Y., Kelkar, M., Sharma, V., Zaverucha,
G.: MPC-friendly symmetric cryptography from alternating moduli: Candidates,
protocols, and applications. Cryptology ePrint Archive (2021)

35. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS. pp. 523–
535 (2017)

36. Filmus, Y., Ishai, Y., Kaplan, A., Kindler, G.: Limits of preprocessing. In: CCC.
pp. 17:1–17:22 (2020)

37. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: TCC. pp. 303–324 (2005)

38. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Random-
ness and Computation, Lecture Notes in Computer Science, vol. 6650, pp. 76–87
(2011)

39. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: CRYPTO. pp. 276–288 (1984)

40. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229
(1987)

41. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: CCS. p. 430–443 (2016)

42. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
EUROCRYPT. pp. 235–256 (2010)

43. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: CRYPTO. pp. 145–161 (2003)

44. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: CT-RSA. pp. 90–107 (2016)

45. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC. pp. 21–30 (2007)

46. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: ASIACRYPT. pp. 233–253
(2014)

30 Dinur et al.

47. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your Bitcoin wallet online).
In: EURO S&P. pp. 276–291 (2016)

48. Jarecki, S., Liu., X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: TCC. pp. 577–594
(2009)

49. Kabanets, V., Koroth, S., Lu, Z., Myrisiotis, D., Oliveira, I.: Algorithms and lower
bounds for De Morgan formulas of low-communication leaf gates. In: CCC. pp.
15:1–15:41 (2020)

50. Kales, D., Zaverucha, G.: Improving the performance of the Picnic signature
scheme. TCHES 2020(4), 154–188 (2020)

51. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: CCS. pp. 525–537 (2018)

52. Kelsey, J., Chang, S.J., Perlner, R.: SHA-3 derived functions: cSHAKE KMAC Tu-
pleHash and ParallelHash (2016), national Institute for Standards and Technology,
Special Publication 800-185.

53. Levin, L.: One-way functions and pseudorandom generators. In: STOC. pp. 363–
365 (1985)

54. Matsumoto, T., Imai, H.: Public quadratic polynominal-tuples for efficient
signature-verification and message-encryption. In: EUROCRYPT. pp. 419–453
(1988)

55. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions,
and natural proofs. J. ACM 62(6), 46:1–46:29 (2015)

56. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computa-
tion is practical. In: ASIACRYPT. pp. 250–267 (2009)

57. Proposal, B.I.: Hierarchical deterministic wallets (2017), https://en.bitcoin.it/
wiki/BIP_0032

58. de Saint Guilhem, C.D., Meyer, L.D., Orsini, E., Smart, N.P.: BBQ: Using AES in
picnic signatures. In: SAC. pp. 669–692 (2019)

59. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed Vector-OLE:
Improved constructions and implementation. In: CCS. pp. 1055–1072 (2019)

60. Seres, I.A., Horváth, M., Burcsi, P.: The Legendre pseudorandom function as a
multivariate quadratic cryptosystem: Security and applications. Cryptology ePrint
Archive, Report 2021/182 (2021)

61. Team, T.P.D.: The Picnic signature algorithm specification (September 2020), ver-
sion 3.0, Available at https://microsoft.github.io/Picnic/

62. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
CCS. pp. 39–56 (2017)

63. Yang, J., Guo, Q., Johansson, T., Lentmaier, M.: Revisiting the concrete security
of goldreich’s pseudorandom generator (2021)

64. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated ot with small communication. In: CCS. pp. 1607–1626 (2020)

65. Yao, A.C.: Theory and application of trapdoor functions. In: FOCS. pp. 80–91
(1982)

66. Yao, A.C.: How to generate and exchange secrets. In: FOCS. pp. 162–167 (1986)

https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032
https://microsoft.github.io/Picnic/

	MPC-Friendly Symmetric Cryptography from Alternating Moduli: Candidates, Protocols, and Applications

