
MHz2k: MPC from HE over Z2k with
New Packing, Simpler Reshare, and Better ZKP

Jung Hee Cheon1,3, Dongwoo Kim(�)2?, and Keewoo Lee(�)1

1 Seoul National University, Seoul, Republic of Korea
{jhcheon, activecondor}@snu.ac.kr

2 Western Digital Research, Milpitas, USA
Dongwoo.Kim@wdc.com

3 Crypto Lab Inc., Seoul, Republic of Korea

Abstract. We propose a multi-party computation (MPC) protocol over
Z2k secure against actively corrupted majority from somewhat homo-
morphic encryption. The main technical contributions are: (i) a new
efficient packing method for Z2k -messages in lattice-based somewhat ho-
momorphic encryption schemes, (ii) a simpler reshare protocol for level-
dependent packings, (iii) a more efficient zero-knowledge proof of plain-
text knowledge on cyclotomic rings Z[X]/ΦM (X) with M being a prime.
Integrating them, our protocol shows from 2.2x upto 4.8x improvements
in amortized communication costs compared to the previous best results.
Our techniques not only improve the efficiency of MPC over Z2k consid-
erably, but also provide a toolkit that can be leveraged when designing
other cryptographic primitives over Z2k .
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1 Introduction

Secure Multi-Party Computation (MPC) aims to jointly compute a function f
on input (x1, · · · , xn) each held by n parties (P1, · · · , Pn), without revealing
any information other than the desired output to each other. Through steady
development from the feasibility results in 1980s (e.g., [18]), MPC research is
now at the stage of improving practicality and developing applications to diverse
use-cases: auction [7], secure statistical analysis [6], privacy-preserving machine
learning [15], etc.

Among various settings of MPC, the most important setting in practice is
the actively corrupted dishonest majority case: corrupted majority is the only
meaningful goal in two-party computation (2PC), and modeling the security
threat as passive (honest-but-curious) adversaries is often unsatisfactory in real-
life applications. At the same time, however, it is notoriously difficult to handle
actively corrupted majority efficiently. It is a well-known fact that lightweight
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information-theoretically secure primitives are not sufficient in this setting and
we need rather heavier primitives [12].

A seminal work BeDOZa [4] observed that one can push the use of heavy
public key machinery into a preprocessing phase, without knowing input val-
ues and functions to compute. Meanwhile in an online phase, one can securely
compute a function using only lightweight primitives. This paradigm, so-called
preprocessing model, spotlighted the possibility of designing an efficient MPC
protocol even in actively corrupted dishonest majority setting. From then, there
have been active and steady research on improving efficiency of MPC protocol
in this setting: [17,16,21,22,2].

All previously mentioned works consider MPC only over finite fields where
arithmetic message authentication code (MAC), the main ingredients of the
protocols, is easily defined. Recently, SPDZ2k [14] initiated a study of efficient
MPC over Z2k in actively corrupted dishonest majority setting by introducing
an arithmetic MAC for Z2k -messages. This is to leverage the fact that integer
arithmetic on modern CPUs is done modulo 2k, e.g. k = 32, 64, 128; using MPC
over Z2k , one can naturally deal with such arithmetic. Also, there is no need
to emulate modulo prime P operations on CPUs, simplifying the online phase
implementation. The authors of SPDZ2k claimed that these advantages are much
beneficial than the loss from the modified MAC for Z2k . The claim was convinced
by the recent implementation and experimental results [15].

In regard to the cost of the preprocessing phase, however, there still remains
a substantial gap between the finite field case and the Z2k case. Particularly,
the authors of SPDZ2k , which is based on oblivious transfer (OT), left an open
problem to design an efficient preprocessing phase for MPC over Z2k from lattice-
based homomorphic encryption (HE). The motivation here is that the HE-based
approach has proved the best performance in the finite field case.

The main difficulty is that the conventional message packing method using

the isomorphism of cyclotomic ring Zt[X]/ΦM (X) ∼= Zϕ(M)
t does not work when

t is not prime, especially when t = 2k. In fact, cyclotomic polynomials ΦM (X)
never fully split in Z2k [X]. This makes it hard to fully leverage the batching tech-
nique of HE and causes inefficiency compared to the finite field case. Followup
works, Overdrive2k [23] and MonZ2ka [10], proposed more efficient preprocess-
ing phases for MPC over Z2k , yet they do not give a satisfactory solution to this
problem.

1.1 Our Contribution

MHz2k — MPC from HE over Z2k . We propose MHz2k, an MPC over Z2k

from Somewhat HE (SHE) in actively corrupted dishonest majority setting. It is
based on our new solution to the aforementioned problem (of developing high-
parallelism in SHE with Z2k -messages) and non-trivial adaptations of techniques
used in the finite field case to the Z2k case.

Note that the core of an SHE-based MPC preprocessing phase is the triple
(or authenticated Beaver’s triple [3]) generation protocol which consists of the
following building blocks (see Section 2.5):



MHz2k: MPC from HE over Z2k 3

• a packing method for SHE which enables parallelism of the protocol and
enhances amortized performance;

• the reshare protocol which re-encrypts a level-0 ciphertext to a fresh cipher-
text allowing two-level SHE to be sufficient for the generation of authenti-
cated triples;

• and ZKPoPK (zero-knowledge proof of plaintext knowledge) which guar-
antees that ciphertexts are validly generated from a plaintext and restricts
adversaries from submitting maliciously generated ciphertexts.

We present improvements on all of these building blocks for Z2k -messages and
integrate them into our new preprocessing phase, which is compatible with the
online phase of SPDZ2k .

New Packing Method for Z2k-messages. We suggest a new efficient Z2k -
message packing method for SHE which can be applied to a preprocessing phase
over Z2k (Section 3). Under the plaintext ring of degree N , our packing method
achieves near N/2-fold parallelism while providing depth-1 homomorphic cor-
respondence which is enough for the preprocessing phase. Previously, the best
solution over Z2k of Overdrive2k [23] only achieved roughly N/5-fold parallelism.
Thus, our packing method directly offers 2.5x improvement in the overall (amor-
tized) performance of the preprocessing phase.

When constructing our packing method, to remedy the impossibilityiv of
interpolation on Z2k , we devise a tweaked interpolation, in which we lift the
target points of Z2k to a larger ring Z2k+δ (Lemma 1).

Reshare Protocol for Level-dependent Packings. A seeming problem is
that it is difficult to design a level-consistent packing method for Z2k -messages
with high parallelism, while the previous reshare protocol for messages in finite
fields (with level-consistent packing) should be modified to be utilized in this
setting. To this end, in the reshare protocol of Overdrive2k [23], an extra mask-
ing ciphertext with ZKPoPK, which is the most costly part, is provided. We
propose a new reshare protocol for level-dependent packings, which resolves this
problem and closes the gap between the field case and the Z2k case (Section 4).
Concretely, in our triple generation, the total number of ZKPoPK is five as using
the original reshare, whereas Overdrive2k requires seven. From this aspect, we
gain an additional 1.4x efficiency improvement in total communication cost.

TopGear2k — Better ZKPoPKs over Z[X]/Φp(X). When the messages
are in Z2k , using power-of-two cyclotomic rings Z[X]/Φ2m(X) introduces a huge
inefficiency in packing, since Φ2m(X) has only one irreducible factor in Z2k [X].
Thus, it is common to use odd cyclotomic rings for Z2k -messages. In this case,

iv For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.
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however, we cannot leverage known efficient ZKPoPKs over the ciphertexts re-
garding Z[X]/Φ2m(X), such as TopGear [2]v.

To this end, we develop an efficient ZKPoPK over Z[X]/Φp(X) where p is
a prime (Section 5). This new protocol named TopGear2k is an adaptation of
TopGear to the Z2k case. The essence of TopGear2k is that the core properties
of power-of-two cyclotomic rings, which was observed in [5], hold similarly also
in prime cyclotomic rings (Lemma 4). This fact not only improves the amortized
communication cost, latency, and memory consumption of our ZKPoPK, but
can also has ramifications on works derived from [5].

ZKP of Message Knowledge. For the MPC preprocessing for messages from
a finite field ZP , where SHE has the plaintext space ZP [X]/Φ2m(X) isomorphic

to the message space Zϕ(2m)
P , ZKPoPK is sufficient. In the Z2k case, however,

packing methods are not surjective. In other words, there exist invalidly encoded
plaintexts which do not correspond to any messages. Thus, we must also make
sure that malicious adversaries had not deviated from the packing method when
generating the ciphertext. To this end, we propose a Zero-Knowledge Proof of
Message Knowledge (ZKPoMK) which guarantees that the given ciphertext is
generated with a plaintext which is a valid encoding with respect to our new
packing method (Section 6).

Performance. MHz2k achieves the best efficiency in amortized communica-
tion cost among all state-of-the-art MPC protocols over Z2k in the actively cor-
rupted dishonest majority setting. Concretely, in our preprocessing phase, the
amortized communication costs for triple generationvi (in kbit) over Z232 and
Z264 , respectively, are 27.4 and 43.3 which outperforms the current best results,
59.1 of MonZ2ka [10] and 153.3 of Overdrive2k [23], respectively showing 2.2x
and 3.5x improvements. Comparing our protocol with TopGear2k optimization
(MHz2k-TG2k) and without it (MHz2k-Plain), our ZKPoPK together with our
ZKPoMK improves memory requirement over 5.6x.

1.2 Roadmap

In Section 2, we define notations and recall some known ideas which we fre-
quently refer to in our paper. In Section 3, 4, 5, and 6, we present our results on
packing, reshare, ZKPoPK, and ZKPoMK, respectively. In Section 7, we present
a performance analysis of our protocols: MHz2k-plain (which exploits our new
packing and reshare protocol) and MHz2k-TG2k (which additionally exploits
our ZKPoPK and ZKPoMK).

Fig. 1 describes dependencies of this paper. Arrows denote dependencies, and
the dashed arrow denote rather weak dependency. Section 4 refers to Section 3

v It is the recent refinement with the most efficient ZKPoPK among the line of
works [17,22,2] exploiting (S)HE to MPC over a finite field.

vi We assume a two-party case, and similar improvements occur in multi-party cases.
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Section 3
(Packing)

Section 4
(Reshare)

MHz2k-Plain

Section 5
(ZKPoPK)

Section 6
(ZKPoMK)

MHz2k-TG2k

Fig. 1. Dependencies of This Paper

only in Section 4.2 to note that our new packing method is compatible with the
new reshare process. Section 3, 4, and 5 can be read (except Section 4.2) and
employed independently.

1.3 Related Work

We present the previous works achieving the same goal as ours: MPC over the
ring Z2k secure against actively corrupted dishonest majority. All of the works
(including ours) share the same online phase proposed by SPDZ2k [14], whereas
the preprocessing phases are all different.

SPDZ2k [14] is the first MPC protocol over Z2k secure against actively cor-
rupted dishonest majority. Their main technical contribution is the online phase
with an efficient MAC for Z2k (see Section 2.5). Their preprocessing phase re-
sembles that of MASCOT [21] which is based on oblivious transfers. The authors
of SPDZ2k left an open problem to design an efficient HE-based protocol over
Z2k since, in the finite field setting, it is the approach with the best performance.

Overdrive2k [23] is an HE-based MPC protocol over Z2k , partially solving
the open problem given in SPDZ2k . The protocol mainly follows the approach of
SPDZ [17] with the BGV SHE scheme [8]. Their main idea is a new HE-packing
method for Z2k messages supporting one homomorphic multiplication only (See
Section 2.4). Using their method, however, packing density for their parameters
stay below 0.25. Moreover, to remedy their level-dependent packing, they provide
extra masking ciphertexts with ZKPoPKs, substantially increasing the cost of
the preprocessing phase.

MonZ2ka [10] is a 2PC protocol over Z2k which mainly follows the linear-HE-
based approach of BDOZ [4] and Overdrive [22], but with a different HE scheme
by Joye-Libert [20]. Note that the Joye-Libert scheme does not provide packing
for batched computations, whereas major and fastest approaches of MPC over
finite fields leverage packing. Also note that MonZ2ka provides only 2PC and
does not provide general MPC.
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2 Preliminaries

2.1 Notations

The ring Zq := Z/qZ is identified with the set of integers in (−q/2, q/2]. We de-
note the set {1, 2, · · · , d} by [d] and the set {0, 1, · · · , d} by [0, d]. The additive
share of i-th party is denoted as [·]i. For a positive integer a, let ν2(a) be the
exponent of the largest power of two that divides a. All logarithms log(·) are
of base 2. On homomorphic encryption, ciphertext additions, subtractions, and
multiplications are denoted as �, �, and �, respectively. We denote the M th

cyclotomic polynomial as ΦM (X) and reserve N for its degree, i.e., N = ϕ(M)
where ϕ(·) denotes Euler’s totient function. Each elements of Z[X]/f(X) is iden-
tified with its representative of minimal degree. For an element a ∈ Z[X]/f(X),
we measure the size of a by ||a||∞, the largest absolute value of its coefficients.

2.2 The BGV Homomorphic Encryption Scheme

Following the approach of SPDZ [17], our preprocessing only requires secure
computations of multiplicative depth one. Hence, it is enough to initiate the
BGV [8] homomorphic encryption scheme supporting only two levels. Here, we
only give a brief description of the scheme, focusing on the necessary parts for
our proposal.

Two-Level BGV Scheme with Power-of-Two Plaintext Modulus. Let
R := Z[X]/ΦM (X). The scheme consists of six algorithms (KeyGen,Enc,ModSwitch,
Dec,Add,Mult), has a ring R2t := R/2tR = Z2t [X]/ΦM (X) as a plaintext space,
and each ciphertext has a level ` ∈ {0, 1}.

For a given security parameter λ, the public parameter ppλ fixes a cyclotomic
polynomial ΦM (X) with a sufficiently large degree; ciphertext moduli q1 = p1 ·p0

and q0 = p0 for some prime p0, p1. Now, the algorithms are as follows:

- KeyGen(ppλ): Given a public parameter ppλ, outputs a secret key sk ∈ R, a
public key pk = (a, b) ∈ R2

q1 , and relinearization data [8] for the ciphertext
multiplication.

- Enc(m, r; pk): For given plaintext m ∈ R2t , samples randomnesses r =
(e0, e1, v) ∈ R3 as e0, e1 ← DG(3.162) and v ← ZO(0.5), vii then sets,

c0 = b · v + 2t · e0 +m (mod q1), c1 = a · v + 2t · e1 (mod q1).

Then, outputs a level-one ciphertext ct(1) = (c0, c1) ∈ R2
q1 .

- ModSwitch(ct(1) = (c0, c1)): Given a level-one ciphertext ct(1), outputs a
level-zero ciphertext ct(0) = (c′0, c

′
1) ∈ R2

q0 having the same message as ct(1).
We call this a modulus-switching operation.

vii DG(σ2) samples each coefficient from discrete Gaussian distribution, ZO(ρ) samples
from {−1, 0, 1} with probability ρ/2 for each of −1 and 1, probability 1− ρ for 0.
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- Dec(ct(`) = (c0, c1); sk): If ` 6= 0, it gets a level-zero ciphertext ct(0) = (c′0, c
′
1)

via ModSwitch. Then, it decrypts as

(c′0 − sk · c′1 (mod q0)) (mod 2t),

and outputs an element of R2t .

- Homomorphic Operations: Ciphertexts at the same level can be added (�) or
multiplied (�) with each other, resulting in a ciphertext encrypting the sum
or the product of the plaintexts in R2t . Only level-one ciphertexts can be
multiplied (with each other) to result in a ciphertext of level-zero.

2.3 Cyclotomic Rings and CRT Isomorphism in Z2T [X]

For an odd M , the cyclotomic polynomial ΦM (X) of degree N is factorized as∏r
i=1 fi(X) in Z2[X] where each irreducible fi(X) has the same degree d =

ordM (2), the order of 2 modulo M . Hence, N = r · d holds. The factorization
induces the following ring isomorphism by the CRT, for any power of two 2T :

Z2T [X]/ΦM (X) ∼= (Z2T [X]/F1(X))× · · · × (Z2T [X]/Fr(X)), (1)

where each Fi(X) ∈ Z2T [X] is the Hensel lifting of fi(X) with degree d. Each
Z2T [X]/Fi(X) is often referred to as a slot of Z2T [X]/ΦM (X). In this paper, we
frequently refer to the isomorphism Eq.(1) and the notation ϕ(M) = N = r · d.

2.4 Packing Methods for SHE Schemes

Message, Plaintext, and Packing. This paper carefully distinguishes be-
tween the use of the terms message and plaintext. Messages are those we want
to compute with using HE. On the other hand, plaintexts are defined by the
HE scheme we are using. In this paper, messages are in Zt and plaintexts are in
Zt[X]/ΦM (X), for possibly different t’s.

Packing is the process of encoding multiple messages into a plaintext while
satisfying (somewhat) homomorphic correspondence. Then, when performing
homomorphic computations on a ciphertext packed with multiple messages, one
can have the effect of batching. The idea of packing [24] is very useful in most
cases, since plaintext space Zt[X]/ΦM (X) of practical lattice-based HE schemes
is usually not the space we want to compute in.

Basic Packing Methods. In lattice-based SHE schemes, including BGV [8],
it is common to choose the plaintext modulus as a prime P such that ΦM (X)
fully splits in ZP [X]. Then, we can pack N messages of ZP into one plaintext
in ZP [X]/ΦM (X) by the CRT ring isomorphism ZP [X]/ΦM (X) ∼= ZNP .

Above method, however, does not work for the case of Z2k -messages, since
ΦM (X) never fully splits in Z2k [X]. A common way [19] to detour this problem
is to identify each Z2k -message with each constant term of Z2k [X]/Fi(X) in
Eq.(1). It provides fully homomorphic correspondence between r messages of
Z2k and one element of Z2k [X]/ΦM (X), but with extremely low packing density
1/d, following the notations of Section 2.3.
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Overdrive2k Packing. Overdrive2k [23] observed that what we actually need
for MPC protocol is a packing method which provides somewhat homomorphic
correspondence supporting one multiplication (See Section 2.5). For a given de-
gree d = degF1(X), they consider a subset A = {ai}wi=1 of [0, d − 1] such
that 2ai 6= aj1 + aj2 for all (i, i) 6= (j1, j2) and ai + aj < d for all i, j. They
pack w messages in Z2k as the ai-th coefficients (ai ∈ A) of a polynomial in
Z2k [X]/F1(X), putting zeroes in the other coefficients. Repeating this r times
for each slot in Eq.(1), we can pack r · w messages into one plaintext achieving
the packing density of w/d. Since the set A is carefully chosen, if we multiply
two packed plaintexts, the (2ai)-th coefficient of the result equals to the product
of ai-th coefficients of the original plaintexts, providing depth-1 homomorphic
correspondence. Note that the Overdrive2k packing is level-dependent : messages
are at ai-th coefficients for level one plaintexts, and (2ai)-th coefficients for level
zero plaintexts. The authors of Overdrive2k note that the packing density of
their method with an optimal subset A seems to follow the trend of d0.6/d,
approximately.

2.5 Preprocessing Phase — Generation of Authenticated Triples

Since our MPC protocol follows the online phase of SPDZ2k [14], the goal of our
preprocessing phases is to generate authenticated triples with respect to SPDZ2k -
MAC. That is, n parties together securely generate secret shares [a]i, [b]i, [c]i and

[αa]i, [αb]i, [αc]i in Z2k̃ such that
∑
i[a]i = a (mod 2k),

∑
i[αa]i = αa (mod 2k̃),

and similar for the others, satisfying c = ab (mod 2k). Here, k̃ := k + s with
s as a security parameterviii, and α ∈ Z2k̃ is a single global MAC key of which
share [α]i ∈ Z2s is given to the i-th party. Then, in the online phase, the parties
can securely compute any arithmetic circuit via Beaver’s trick [3,14] with these
authenticated triples.

Overview of Triple Generation. We give an overview of our preprocessing
phase, focusing on the triple generation protocol, which follows the standard
methods of SPDZ [17] (and Overdrive2k [23]) exploiting two-level SHE and zero-
knowledge proofs (ZKP) on it. We remark that message packing of SHE enable
the parties to generate multiple authenticated triples (represented by vectors)
in one execution of the triple generation protocol, significantly reducing the
amortized costs.

First, each party Pi generates and broadcasts ciphertexts ctai and ctbi each
encrypting the vectors [a]i and [b]i of random shares from Z2k̃ ; we omit the

superscript(1) for level-one ciphertexts. Then, all parties run ZKPs (ZKPoPK
and ZKPoMK in Section 5 and 6) on cta =

∑
i ctai and ctb =

∑
i ctbi to guarantee

that each ciphertext is generated correctly. Next, all parties compute a ciphertext

ct
(0)
c := cta � ctb whose underlying message is the Hadamard product c = a �
b. Similarly, given ciphertexts ctαi , all parties can also compute ct

(0)
αa and ct

(0)
αb

viii SPDZ2k -MAC provides sec = s− log(s+1)-bit statistical security ([14, Theorem 1]).
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with homomorphic operations on the ciphertexts. The parties, however, cannot

directly compute ctαc from ciphertext multiplication between ct
(0)
c and ctα since

the former is of level-zero.
Thus, the parties perform so-called reshare protocol [17] which, given ct

(0)
c

as the input, outputs a level-one ciphertext ctc having the same message as
the input and/or the random shares [c]i of the message to each party. Roughly,

it proceeds by decrypting the masked input ModSwitch(ctf ) � ct
(0)
c to get a

(masked) message f+c, then subtracting the mask ctf from the fresh encryption
ctf+c of the message, resulting in ctc = ctf+c � ctf . Then, parties can compute

ct
(0)
αc := ctc � ctα. Here, ZKPs for the masking ciphertext ctf is also required.

Finally, parties jointly perform distributed decryption on the ciphertexts ctαa,
ctαb, and ctαc to get random shares of the underlying messages: [αa]i, [αb]i, and
[αc]i. The parties already have the other components of the triple ([a]i, [b]i, and
[c]i), so the authenticated triple is generated.

3 New Packing Method for Z2k-Messages

In this section, we present a new and efficient Z2k -message packing method
for contemporary SHE schemes, e.g. BGV [8]. Since the conventional plaintext

packing method of using the isomorphism Zt[X]/ΦM (X) ∼= Zϕ(M)
t does not work

when t = 2k, an alternative method is required to provide high parallelism.
To tackle this problem, unlike previous approaches which packed messages in

coefficients of a polynomial (Section 2.4), we pack messages in evaluation points
of a polynomial. Here, we detour the impossibilityix of interpolation on Z2k by
introducing a tweaked interpolation on Z2k .

3.1 Tweaked Interpolation

The crux of our packing method is the following lemma: we can perform in-
terpolation on Z2k if we lift the target points of Z2k upto a larger ring Z2k+δ ,
multiplying an appropriate power of two to eliminate the effect of non-invertible
elements.

Lemma 1 (Tweaked Interpolation on Z2k). Let µ0, µ1, . . . , µn be elements
in Z2k . Assume that an integer δ is not smaller than ν2(n!), the multiplicity of
2 in the factorization of n!. Then, there exists a polynomial Λ(X) ∈ Z2k+δ [X] of
degree at most n such that

Λ(i) = µi · 2δ ∀i ∈ [0, n].

Proof. Recall that, for i ∈ [0, n], an i-th Lagrange polynomial on [0, n] is defined
as λi(X) :=

∏
j∈[0,n]\{i}

X−j
i−j ∈ Q[X]. Lagrange polynomial satisfies

λi(X) =

{
0 if X ∈ [0, n] and X 6= i,

1 if X = i.

ix For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.
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Note that 2δλi(X) has no multiples of 2 in denominators of its coefficients since
δ ≥ ν2(n!). Then, we can identify 2δλi(X) as a polynomial over Z2k+δ of degree
at most n, since the denominator of each coefficient is now invertible in Z2k+δ .
Let λ̃i(X) ∈ Z2k+δ [X] denote the polynomial. Then,

λ̃i(X) =

{
0 if X ∈ [0, n] and X 6= i,

2δ if X = i.

Now, Λ(X) :=
∑n
i=0 µi · λ̃i(X) ∈ Z2k+δ [X] satisfies the claimed property. ut

3.2 New Packing Method from Tweaked Interpolation

Our tweaked interpolation on Z2k gives an efficient Z2k -message packing into
Z2k+2δ [X]/ΦM (X), while providing depth-1 homomorphic correspondence. Notice
the extra δ added to preserve packed messages: after multiplying two polyno-
mials constructed from tweaked interpolation, the resulting polynomial carries
a factor of 22δ. In bird’s eye view, our new packing method applies tweaked
interpolation on each CRT slots (Eq. (1), Section 2.3), while preventing degree
overflow and modulus overflow when multiplying two packed polynomials. Recall
the isomorphism Eq. (1) and the notation ϕ(M) = r · d of ΦM (X) (Section 2.3).

Theorem 1 (Tweaked Interpolation Packing). Let {µij}i,j be Z2k -messages
for i ∈ [r] and j ∈ [0,

⌊
d−1

2

⌋
]. For integers δ, t satisfying δ ≥ ν2(

⌊
d−1

2

⌋
!) and

t ≥ k+δ, there exists L(X) ∈ Z2t [X]/ΦM (X) satisfying the following properties:

Let Li(X) be the projection of L(X) onto the i-th slot Z2t [X]/Fi(X). Then,
for each i and j,

(i) deg(Li(X)) ≤
⌊
d−1

2

⌋
,

(ii) Li(j) = µij · 2δ mod 2k+δ.

We call such L(X) a tweaked interpolation packing of {µij}.

Proof. By Lemma 1, the condition on δ guarantees that there exists Li(X) ∈
Z2k+δ [X] ⊂ Z2t [X] of degree not greater than

⌊
d−1

2

⌋
such that Li(j) = µij · 2δ

mod 2k+δ for all j ∈ [0,
⌊
d−1

2

⌋
]. Now, we can define L(X) ∈ Z2t [X]/ΦM (X)

as the isomorphic image of (L1(X), · · · , Lr(X)) ∈
∏r
i=1 Z2t [X]/Fi(X) from the

CRT isomorphism; L(X) satisfies the property. ut

The next theorem suggests that the tweaked interpolation packing (Theo-
rem 1) homomorphically preserves the messages under (multiplicative) depth-1
arithmetic circuits. This property implies that we can naturally plug our pack-
ing method into the two-level BGV scheme (Section 2.2) with a plaintext space
Z2k+2δ [X]/ΦM (X) and exploit it for MPC preprocessing phase.
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Theorem 2 (Depth-1 Homomorphic Correspondencex). Let L(X) and
R(X) be polynomials in Z2k+2δ [X]/ΦM (X) which are tweaked interpolation pack-
ings (Theorem 1, t = k+ 2δ) of Z2k -messages {µLij} and {µRij}, respectively. For

α ∈ Z2k , let α̃ denote an element of Z2k+2δ such that α̃ = α (mod 2k). Then,

(a) L(X) +R(X) is a tweaked interpolation packing of {µLij + µRij}.
(b) α̃ · L(X) is a tweaked interpolation packing of {α · µLij}.
(c) From LR(X) := L(X) ·R(X), one can decode homomorphically multiplied

Z2k -messages {µLij · µRij}.

Proof. Properties (a) and (b) are straightforward from the linearity of projec-
tion map and evaluation map, together with the fact that additions and scalar
multiplications preserves the degree of polynomial.

To prove (c), let Li(X), Ri(X), and LRi(X) respectively be the projection
of L(X), R(X), and LR(X) onto the i-th slot Z2k+2δ [X]/Fi(X). Then,

LRi(X) = Li(X) ·Ri(X) in Z2k+2δ [X]/Fi(X).

Note that the above equation holds also in Z2k+2δ [X]: Since the degree of Li(X)
and Ri(X) are at most

⌊
d−1

2

⌋
, the sum of their degree is less than the degree d

of Fi(X). Therefore,

LRi(j) = Li(j) ·Ri(j) = µLij · µRij · 22δ (mod 2k+2δ),

from which one can decode the desired values. ut

Remark 1. We call the packing structure of LR(X) in Theorem 2(c) the level-
zero tweaked interpolation packing, whereas the original packing in Theorem 1
is called level-one packing. We omit the level when the packing is of level-one.

3.3 Performance Analysis

Efficiency (Packing Density). As a measure of the efficiency of packing meth-
ods, we define packing density as the ratio of the total (bit)-size of points packed
in a polynomial to the (bit)-size of the polynomial. For example, in the case of
finite field F, we can pack N points (of F) to one polynomial (over F) of degree
N − 1 (having N coefficients), which gives the perfect packing density of 1.

Now, let κk(d) denote the packing density of tweaked interpolation packing
method for Z2k -messages when the cyclotomic polynomial ΦM (X) splits into
irreducible factors of degree d. Then,

κk(d) =
k · bd+1

2 c(
k + 2ν2(bd−1

2 c!)
)
d
≈ k

2(k + d)
,

where the approximation follows from ν2(bd−1
2 c!) ≈

d
2 and bd+1

2 c ≈
d
2 .

x Our packing (Zn2k ↪→ Z2k+2δ [X]/Fi(X)) can be interpreted as an analogue of reverse
multiplication-friendly embeddings (Fnq ↪→ Fqd) [9]. The composition lemma holds
similarly in Z2k case, since a Galois extension of a Galois ring is again a Galois ring.
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Fig. 2. Comparison of packing densities on each method according to d

Remark 2. For a fixed Z2k , the packing density of our method (Theorem 1)
depends only on d: it is better to use ΦM (X) with smaller d. When d is sufficiently
smaller than k, the packing density of our method approaches 1

2 .

Comparison with Overdrive2k. Let κρ̌3(d) denote the packing density of
Overdrive2k packing [23] for given d (Section 2.4). In Fig. 2a, the rough plots
of packing densities according to d are presented: the lowest one is the plot of
d0.6/d which was mentioned as a rough estimate of κρ̌3(d) in [23]. The graph
suggests that our method has higher packing density than theirs when k is not
too small compared to d. For practical parameters, this is always the case: in
Fig. 2b, the exact plots of packing densities on 13 ≤ d ≤ 68 demonstrates that
the density of our method is higher than that of Overdrive2k.

3.4 Predicates for Valid Packing

In this subsection, we define some predicates P : R → {true, false} over a cyclo-
tomic ring R = Z[X]/ΦM (X), with which we can formally describe the state of
a plaintext in regards to our new packing method. We will use these predicates
when describing our Reshare protocol (in Section 4) and our ZKP of Message
Knowledge (ZKPoMK) (in Section 6). Readers may skip this subsection and
consult it when succeeding sections refer to the definitions.

Definition 1 (Predicates). The predicates Deg
(D)
T ,Div

(D,∆)
T , and Pack

(D,∆)
T ,

each mapping R to {true, false}, are defined as follows:
For an element a ∈ R, let ã ∈ R2T be defined by ã ≡ a (mod 2T ), and let

(ãi)
r
i=1 be the CRT projections (Eq. (1)) of ã.

• Deg(D)
T (a) = true ⇐⇒ deg ãi ≤ D ∀i ∈ [r]

• Div(D,∆)
T (a) = true ⇐⇒ 2∆ divides ãi(j) ∀i ∈ [r] & j ∈ [0, D]

• Pack(D,∆)
T (a) = true ⇐⇒ Deg

(D)
T (a) = true ∧ Div

(D,∆)
T (a) = true.



MHz2k: MPC from HE over Z2k 13

In addition, the predicate DivCheck
(D,∆)
T : R × R̂ → {true, false} is defined as

follows, where R̂ = Z[X]/ΦM̂ (X) is another cyclotomic ring:

For b ∈ R̂, let b̃ij ∈ Z2T be b̃ij ≡ bij (mod 2T ), where bij is the ((i− 1)(D +
1) + j)-th coefficient of b.xi

• DivCheck(D,∆)
T (a, b) = true ⇐⇒ ãi(j) = 2∆ · b̃ij ∀i ∈ [r] & j ∈ [0, D]

We omit T when it is obvious from the context.

Example 1. Theorem 1 states that, for ν =
⌊
d−1

2

⌋
, the predicate Pack

(ν,δ)
t (a) =

true if and only if a ∈ R contains Z2k -messages with respect to the tweaked
interpolation packing.

Example 2. The essence of Theorem 2(c) is the following fact:

If Pack
(ν,δ)
k+2δ(a) ∧ Pack

(ν,δ)
k+2δ(b) = true, then Deg

(2ν)
k+2δ(a · b)∧Div

(ν,2δ)
k+2δ (a · b) = true.

3.5 Sampling Zero Polynomials in Z2k [X]

We propose efficient random sampling algorithms from the sets of elements sat-
isfying the predicates defined in Section 3.4. These play important roles when we
construct our Reshare protocol (in Section 4) and our ZKP of Message Knowl-
edge (ZKPoMK) (in Section 6). Readers may skip this subsection and consult it
when succeeding sections refer to the definitions.

Due to the unique feature of Z2k , sampling process is not trivial and has
a deep connection with zero polynomialsxii in Z2k [X]. Our result possibly has
ramifications on cryptographic works regarding polynomial evaluation (or inter-
polation) over Z2k , outside of our protocols.

Definition 2 (Distribution with Predicate). Let U(B) be the uniform dis-
tribution over {a ∈ R : ||a||∞ ≤ B}. For a predicate P ∈ {Deg,Div} (we omit
the superscripts) over R = Z[X]/ΦM (X), the distribution UP(B) is the uniform
distribution over the following set:

{a ∈ R : ||a||∞ ≤ B ∧ P(a) = true}.

To show that one can efficiently sample elements from UP(B) with P = Div,
we first identify all zero polynomials in Z2k [X] as follows.

Lemma 2. For χ0(X) := 1 and χi(X) :=
∏i−1
`=0(X − `) ∈ Z2k [X], let f(X) =∑d

i=0 ciχi(X). Then, f(j) = 0 (mod 2k) for all j ∈ [0, n] if and only if ci · i! = 0
(mod 2k) for all i ∈ [0, n].

Proof. Assume f(j) = 0 (mod 2k) for all j ∈ [0, n]. We proceed by mathematical
induction on i. First, since f(0) = 0 (mod 2k), c0 ·0! = c0 = 0 (mod 2k). Assume

xi Such tricky definition is useful when describing our ZKPoMK (Section 6.1).
xii A zero polynomial is a polynomial whose evaluations at certain points are all zero.



14 J. H. Cheon et al.

ci ·i! = 0 (mod 2k) holds for all 0 ≤ i < s ≤ n. Then, from the fact that χi(s) = 0
for i > s and that i! divides χi(s), along with the induction hypothesis, the
following equations hold.

0 = f(s) =

n∑
i=0

ciχi(s) =

s∑
i=0

ciχi(s) = csχs(s) = cs · s! (mod 2k)

For the other direction, assume ci · i! = 0 (mod 2k) holds for all i ∈ [0, n].
Since i! always divides χi(j) for any j ∈ Z, ciχi(j) = 0 (mod 2k) holds. Then,
f(j) =

∑n
i=0 ciχi(j) = 0 (mod 2k) for all j ∈ [0, n]. ut

Corollary 1 (Zero Polynomials over Z2k). Let f(X) be a polynomial in
Z2k [X]. Then, for a positive integer n, f(j) = 0 (mod 2k) for all j ∈ [0, n] if
and only if f(X) is of the form χn+1(X) · q(X) +

∑n
i=0 ciχi(X) where ci’s are

such that ci · i! = 0 (mod 2k) for all i ∈ [0, n].

Proof. Note that {χi(X)}ni=0 form a basis of the polynomials of degree at most
n and χn+1(j) = 0 for all j ∈ [0, n]. Then, the claim follows from Lemma 2. ut

With the identification of zero polynomials from Corollary 1, we can effi-
ciently sample an element from the distribution UP(B) as follows.

Corollary 2 (Efficient Sampling from UP(B)). Let P ∈ {Deg(D)
T ,Div

(D,∆)
T ,

Pack
(D,∆)
T } be a predicate over R = Z[X]/ΦM (X). Then, one can efficiently

sample an element from the distribution UP(B), given that T ≥ ∆ ≥ ν2(D!).

Proof. In both cases, it suffices to sample an element satisfying the predicate
from Z2T [X]/ΦM (X) first with CRT isomorphism (Eq.(1)), then add an element
from the distribution U(B) conditioned on multiples of 2T .

The case of P = Deg is straightforward, since one can sample a polynomial of
bounded degree on each CRT slot. For the cases of P = Div and P = Pack, first
note that differences of tweaked interpolations with same messages are zero poly-
nomials. Fixing representatives for tweaked interpolations with same messages,
each CRT slot of an element satisfying P can be uniquely represented modulo 2T

by the sum of a tweaked interpolation and a zero polynomial. Thus, to randomly
sample from each CRT slot of Z2T [X]/ΦM (X), first compute a tweaked interpo-
lation (Lemma 1 with δ = ∆,n = D) with uniform random points from Z2T−∆ .

Then, for Div
(D,∆)
T , add a random zero polynomial of degree at most d (Eq. (1))

using Corollary 1 with n = D. For Pack
(D,∆)
T , add a random zero polynomial of

degree at most D. ut
Finally, for the construction of ZKPoMK (Section 6), we present the adap-

tation of usual statistical masking method to our case with the predicates.

Lemma 3 (Statistical Masking). For a positive integer B < B∞ and a pred-
icate P ∈ {Deg,Div,Pack}, let a ∈ R = Z[X]/ΦM (X) be an element such that
||a||∞ ≤ B and P(a) = true. Then, the statistical distance between a + UP(B∞)
and UP(B∞) is bounded by NB

B∞
where N = ϕ(M). The similar holds for U .

Proof. The case of N = 1 directly follows from the definition of statistical dis-
tance, and the claim is a generalization with (B∞−B)N > BN∞−NBN−1

∞ B. ut
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4 Reshare Protocol for Level-dependent Packings

When designing a packing method for Z2k -messages with high parallelism, it is
inevitable to design a level-dependent packing, e.g., the Overdrive2k [23] pack-
ing (Section 2.4) and our tweaked interpolation packing (Section 3, Remark 1).
However, this leads to a complication in the reshare protocol for Z2k -messages,
which does not occur in the case of a finite field ZP with level-consistent pack-

ing from the isomorphism ZP [X]/Φ2m(X) ∼= Zϕ(2m)
P . In particular, the reshare

protocol of Overdrive2k [23] exploits an extra masking ciphertext with ZKPoPK
on it, which is the most costly part, to remedy the issue.

In this section, we propose a new reshare protocol for level-dependent pack-
ings, which resolves this complication: our protocol extends the previous reshare
protocol of the finite field case to operate also with level-dependent packings
without any extra cost. Our result closes the gap between the finite field and the
Z2k cases which originates from the level-dependency.

4.1 Improved Reshare Protocol for Level-dependent Packings

The Problem of Level-dependent Packings. Recall that the goal of the
reshare protocols is, for an input level-zero ciphertext, to output shares of the
underlying message along with a level-one ciphertext having the same message
as the input (Section 2.5). The complication, with a level-dependent packing, is
that we have to manage not only the ciphertext level but also the packing level.

Recall that one masking ciphertext ctf is used twice in the reshare protocol
for the finite field case: once to mask the input ciphertext of level-zero and once
to reconstruct the fresh ciphertext of level-one by subtracting it (Section 2.5).
While the difference of ciphertext levels can be managed easily with modulus-
switching, that of the packing levels seems to be problematic.

Solution of Overdrive2k. To resolve this problem, Overdrive2k [23] provides
two masking ciphertexts having the same messages but in different packing :
one with level-zero packing and the other with level-one packing. This approach
requires an extra ZKPoPK with the additional broadcast of the masking cipher-
text, doubling the cost of the reshare protocol. It results in substantial increase
of cost in the whole preprocessing protocol. In the triple generation protocol,
the number of ZKPoPK with broadcasts of ciphertexts is five using the original
reshare protocol in the field case, whereas Overdrive2k requires seven due to
their reshare protocol, resulting roughly a 1.4x reduction in efficiency.xiii

Our Solution. The crux of our reshare protocol for level-dependent packings
is the idea of generating the ciphertext ctα of the MAC key α ∈ Z2s by treat-
ing α as a constant in the cyclotomic ring Z2t/ΦM (X), i.e. ctα = Enc(α) for
α ∈ Z2t/ΦM (X) without any packing structure. Then, we actually do not need

xiii The number of ZKPoPK is counted regarding the correlated sacrifice technique [21].
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the fresh ciphertext to be of packing level-one: it is okay to be of packing level-
zero. This is because, whereas multiplying ctα to a ciphertext consumes a ci-
phertext level, multiplying α to a plaintext does not consumes a packing level,
i.e. multiplying α is a linear operation in the aspect of packing (Theorem 2(b)).

Our reshare protocol itself is more or less verbatim of the previous reshare
protocol for the finite field cases [17]. Thus, we omit the formal description and
proof of our reshare protocol for general level-dependent packings. Instead, we
present an instantiation of our reshare protocol with our tweaked interpolation
packing in the next subsection.

4.2 Compatibility with Our Packing Method

We present our reshare protocol instantiated with our tweaked interpolation
packing (Section 3). While our protocol resembles the Reshare protocol of [17]
with Zp messages, it is slightly more involved due to the nontrivial task of mask-
ing the Z2k messages encoded with our tweaked interpolation (we will borrow
the results from Section 3.5). We give an overview focusing on our modifica-
tion and correctness of the protocol, and refer to the full version for the formal
description.

Our reshare protocol ΠReshare is presented in Figure 3. The protocol exploits a
zero-knowledge proof on a ciphertext, depicted as ZKPoPK and ZKPoMK, which
will be described in Section 5,6. For now, we simply assume that they guarantee
that the messages are encoded correctly in the ciphertext with respect to our
packing method.

A noticeable difference of our protocol from other reshare protocols of [17,23]
is that each party samples the message fi of a mask ciphertext from the distri-

bution with predicate, UP(2T ) with P = Div
(D,∆)
T (Definition 2, Corollary 2).

It not only preserves the packing structure, but also prevent the information
leakage from our packing method in the following distributed decryption (5.-7.
in Fig. 3). If fi was sampled from a random polynomial without any restriction,

Div
(D,∆)
T (v) = false (with high probability) and each party cannot retrieve [m]i.

On the other hand, if fi was not added as a mask, each party can get additional
information from the plaintext polynomial v which may contain more coefficients
than the messages.

Since the mask ri together with fi can be seen as a statistical masking from
UP(BDDec) of Lemma 3, we can show that the protocol implements the FDistrDec

functionality (see the full version) which is required in the SPDZ2k preprocessing
phase (Section 2.5, or formally, ΠPrep in the full version).

Theorem 3 (Reshare Protocol). On a cyclotomic ring Z[X]/ΦM (X), the
protocol ΠReshare (Fig. 3) implements the functionality FDistrDec.D2 against any
static, active adversary corrupting up to n − 1 parties in the (FKeyGen, FRand)-
hybrid model with statistical security ϕ(M) · 2−sec if BDDec > 2sec · (Bnoise + 2T )
and (Bnoise + n · BDDec) < q0/2.

Proof. We refer to the full version.
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Protocol ΠReshare

Implicitly call FRand (full version) when it is required in ZKPoPK (or ZKPoMK).
Parameters:

- BDDec: a bound on the coefficients of the mask values.
- Bnoise: a bound on the noise of input ciphertexts.
- n: the number of participating parties Pi.

Common Input:

- The parameter pp = (D,∆, T ) for the predicate Div
(D,∆)
T (Definition 1).

- ct
(0)
m : a level-zero ciphertext satisfying that Div

(D,∆)
T (Dec(ct

(0)
m , sk)) = true,

having a message m ∈ Zν2k with our encoding method (Theorem 1, 2).

Initialize: Each party Pi calls FKeyGen (full version) receiving (pk, [sk]i).

D2: On input ciphertext ct
(0)
m (see Common Input), parties do as follows.

1. Set P = Div
(D,∆)
T . Each Pi samples a polynomial fi ← UP(2T−1) and set fi ∈ Zν2k

as the uniform random points used in the sampling process, i.e., fi are messages
of fi when regarded as a tweaked interpolation (see the proof of Corollary 2).

2. Each Pi generates level-one ciphertext ct
(1)
fi

having the polynomial fi as a message,
then broadcasts this ciphertext.

3. All parties together run ZKPoPK (and ZKPoMK) as provers and verifiers on the

summed ciphertext ct
(1)
f =

∑
i ct

(1)
fi

. If the proof of ZKPoPK is rejected, then abort.

4. All parties compute ct
(0)
f = ModSwitch(ct

(1)
f ), then compute ct

(0)
m+f = ct

(0)
m � ct

(0)
f .

Let ct
(0)
m+f be (c0, c1).

5. Each Pi computes wi =

{
c0 − [sk]1 · c1 if i = 1

−[sk]i · c1 if i 6= 1
.

6. Each Pi samples a mask ri ← U(BDDec/2
T ) (Definition 2),

then broadcasts vi = wi + 2T · ri (mod q0).

7. All parties compute v =
∑
i vi (mod q0), then check if ||v||∞ < Bnoise + n · BDDec

and Div
(D,∆)
T (v) = true. If not, abort.

8. All parties retrieve m + f from v by regarding v as a Tweaked Interpolation
(Theorem 1) with δ = ∆,

⌊
d−1

2

⌋
= D, and t = T .

9. Each Pi sets [m]i =

{
(m + f)− [f ]1 if i = 1

−[f ]i if i 6= 1
.

10. All parties compute, using default value (e.g., 0) for the randomness,

c̄t(1)
m = (Enc(m+ f,0; pk)) � ct

(1)
f ,

where the polynomial m+ f ∈ Z2t [X]/ΦM (X) is the Tweaked Interpolation (The-
orem 1) for the message m + f ∈ Zν2k with δ = ∆,

⌊
d−1

2

⌋
= D, and t = T .

Fig. 3. Our reshare protocol
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5 Better ZKP for Lattice Encryption on Z[X]/Φp(X)

We present an improved ZKP of Plaintext Knowledge (ZKPoPK) for BGV [8]
ciphertexts over prime cyclotomic rings Z[X]/Φp(X), which proves that a ci-
phertext is generated with appropriate sizes of noises and a plaintext. ZKPoPK
plays an important role in SHE-based MPC preprocessing phases [17,22,23] as
it restricts adversaries from submitting maliciously generated ciphertexts.

Note that power-of-two cyclotomic polynomials Φ2m(X) are detrimental for
Z2k -messages.xiv Accordingly, Overdrive2k [23] proposed a ZKPoPK over prime
cyclotomic rings, adapting the High Gear approach of Overdrive [22] which is
over power-of-two cyclotomic rings. Likewise to Overdrive, the challenge space
of Overdrive2k is restricted to a rather small set: {0, 1}.

Taking one step further, we propose a ZKPoPK named TopGear2k for prime
cyclotomic rings, adapting the state-of-the-art ZKPoPK over power-of-two cy-
clotomic rings called TopGear [2]. Our ZKPoPK, similarly as TopGear, allows a
larger challenge space {Xj}j∪{0}, resulting in a better efficiency. The essence is
a new observation that the core properties of power-of-two cyclotomic rings (ob-
served in [5]) also hold similarly in prime cyclotomic rings. Our result possibly
has ramifications on works derived from [5], outside of our specific ZKPoPK.

5.1 A Technical Lemma on Cyclotomic Polynomials of Primes

We present a technical lemma on cyclotomic polynomials of primes, which is the
essence of our ZKPoPK protocol. We first recall some facts on R = Z[X]/ΦM (X)
when M is a power-of-two, which are the main ingredients of the TopGear pro-
tocol [2] and its forebear [5].

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) ·Xi||∞ = ||a(X)||∞.
(b) ([5, Lemma 4]) For all 1 ≤ j < i ≤M , there exists h(X) ∈ R such that

• (Xi −Xj) · h(X) ≡ 2 (mod ΦM (X))
• and ||h(X)||∞ = 1.

Statement (a) indicates that the coefficients do not grow when multiplied by Xi,
which is straightforward from the fact that multiplication by Xi acts as skewed
coefficient shift in Z[X]/(XM/2 + 1). On the other hand, (b) says, roughly, that
there is a scaled inverse of (Xi −Xj) in R with small coefficients.

We now present an analogue of the above facts when M is a prime.

Lemma 4. For a prime p and R := Z[X]/Φp(X), the followings hold.

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) ·Xi||∞ ≤ 2||a(X)||∞.
(b) For all 1 ≤ j < i ≤ p, there exists h(X) ∈ R such that

• (Xi −Xj) · h(X) ≡ p (mod Φp(X))
• and ||h(X)||∞ ≤ p− 1.

xiv For k > 1, the ring Z2k [X]/Φ2m(X) never split into a product of smaller rings,
resulting low packing density (see the full version).
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Proof. (a) Let ã(X) ∈ Z[X] be the representative of a(X) with the minimal
degree. When reduced modulo (Xp−1), every monomials of ã(X)·Xi are reduced
to distinct-degree monomials preserving the coefficients. Let us denote the `-

th coefficient of (ã(X) ·Xi mod (Xp − 1)) as ã
(i)
` . Applying modulo Φp(X) to

(ã(X)·Xi mod (Xp−1)), the `-th coefficients of (ã(X)·Xi mod Φp(X)) equals

(ã
(i)
` − ã

(i)
(p−1)), and the inequality ||a ·Xi||∞ ≤ 2||a||∞ follows.

(b) Consider the following polynomial in Z[X].

v(X) :=
Φp(X)− p
X − 1

=

p−1∑
k=0

(p− 1− k) ·Xk

We claim that h̃(X) := −Xp−j · v(Xi−j) ∈ Z[X] satisfies the conditions after
being reduced by Φp(X). By definition, the first condition can be easily checked
with the fact that Φp(X) divides Φp(X

i−j) since p does not divide (i− j).
Since p does not divide (i−j), when reduced modulo (Xp−1), every monomi-

als of h̃(X) are reduced to distinct-degree monomials with coefficients remaining
in the interval [1−p, 0]. Let us denote the `-th coefficient of (h̃(X) (mod (Xp−1)))
as h̃` ∈ [1−p, 0]. Applying modulo Φp(X) to (h̃(X) (mod (Xp−1))), the `-th co-

efficients of (h̃(X) (mod Φp(X))) equals (h̃`−h̃(p−1)). Certainly, (h̃`−h̃(p−1)) lies

in the interval of [1−p, p−1]. Thus, the inequality ||h̃(X) (mod Φp(X))||∞ ≤ p−1
holds. ut

5.2 TopGear2k: Better ZKPoPK over Z[X]/Φp(X)

We describe our ZKPoPK protocol named TopGear2k for BGV ciphertexts with
prime cyclotomic rings Z[X]/Φp(X). In a high level, our ZKPoPK is a batched
Schnorr-like protocol as those of SPDZ-family [17,22,23].

ZKPoPK Framewok — Schnorr-like Protocol with Predicates. We first
introduce the ZKPoPK framework of SPDZ-family which proceeds as the stan-
dard batched Schnorr-like protocols [13] to prove that the underlying plaintext
satisfies a certain predicate. While our protocol (Fig. 4) follows the global proof
style of Overdrive [22] for efficiency, we describe in per-party proof style of
SPDZ [17] for simplicity.

To prove that a plaintext vector a = (ai)
u
i=1, (ai ∈ R := Z[X]/ΦM (X))

of input ciphertexts cta = (Enc(ai))
u
i=1 satisfy a given predicate P : R →

{true, false}xv, the prover publishes a vector of masking ciphertexts cty for a
plaintext vector y ∈ Rv satisfying P. Then, after the verifier queries a challenge
matrix W ∈ Rv×u, the prover publishes a plaintext vector z ∈ Rv with which
the verifier checks if P(z) = true and cty +W · cta = ctz. The prover/verifier do
similar proofs/checks on the randomnesses required in the encryptions.

xv The predicate, for example, can capture the boundedness of the sizes of plaintext
and randomnesses, or the correctness of packing (Definition 1).
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Then, the usual rewinding argument guarantees that the elements of a also
satisfy P as follows: by inverting the equation on plaintexts (W − W ) · a =
z−z̄ derived from the two accepting transcripts with different challenge matrices
W and W , we deduce that a also satisfies the predicate P given that P(z) =
P(z̄) = true. Note, for this argument to work, two conditions are required: (a)
the difference (W −W ) should satisfy some types of invertibility, so that one can
derive, e.g., a = (W −W )−1 · (z− z̄), (b) the predicate should be homomorphic
under (additions and) multiplications by challenge matrices W (and also by
pseudo-inverses of their differences), i.e. P(a) = true =⇒ P(W · a) = true (and
similarly for the pseudo-inverse).

Here, the difficulty is to identify a nice challenge space, where the elements
of W are sampled from, which meets all of the above conditions. In the previous
works [17,22,23], the challenge space is restricted to the set {0, 1} (and the form
of W was also restricted) to satisfy the above conditions. In this case, however,
v (the size of masking ciphertext vector) should be as large as the soundness
security parameter, leading to substantial inefficiency.

TopGear Review. TopGear [2] offers the most efficient ZKPoPK among the
line of works [17,22] exploiting (S)HE to MPC over finite fields with power-of-
two cyclotomic rings. It is also a batched Schnorr-like protocol (described above)
with global proof approach. The essence of their work is to use a larger challenge
space Chal = {Xj}2mj=1 ∪ {0} than {0, 1} of the other previous works. This is an
adaptation of the nice properties (Section 5.1) of power-of-two cyclotomic ring
Z[X]/Φ2m(X) from [5] to the ZKPoPK framework, and is desirable in commu-
nication cost, latency, and memory consumption.

Extending the result of TopGear to other cyclotomic polynomials, however,
was an open problem, e.g., Overdrive2k [23] exploited a rather small challenge
space of {0, 1}, mentioning that “TopGear improvements cannot be applied di-
rectly” to their work.

TopGear2k: Our ZKPoPK over Z[X]/Φp(X). Following the above frame-
work, we propose ZKPoPK named TopGear2k which is a batched Schnorr-like
protocol with global proofs, working over prime cyclotomic rings Z[X]/ΦM (X)
(M = p is a primexvi) with larger challenge space Chal = {Xj}Mj=1 ∪ {0}, adapt-
ing Lemma 4. Our ZKPoPK is a prime cyclotomic ring analogue of the ZKPoPK
of TopGear [2] over power-of-two cyclotomic rings. The full description of our
ZKPoPK protocol TopGear2k (ΠTG2k

PoPK) is given in Fig. 4.

Our TopGear2k aims to prove that the given ciphertexts are generated with
appropriate sizes of a plaintext and randomnesses. If all parties run Sampling

xvi We denote p as the smallest prime factor of M . This is to consider the general case
of M = ps and M = psqt in Section 5.4.
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Protocol ΠTG2k
PoPK

Parameters:

- ZK sec: the zero-knowledge security parameter.
- 2t: the plaintext modulus.
- u: the number of ciphertexts to be verified in one protocol execution.
- v: the number of masking ciphertexts (related to soundness probability).
- n: the number of participating parties Pi (i ∈ [n]).

Samplingi (Sampling phase for the ith party Pi)

1. For each k ∈ [u] do

(a) Choose a plaintext aik ∈ Z2t [X]/ΦM (X) and proper randomness (r
(i)
ak ). xvii

(b) Compute a ciphertext ctiak = Enc(aik, r
i
ak ; pk).

2. Let ctia = (ctia1 , ct
i
a2 , . . . , ct

i
au), ai = (ai1, a

i
2, . . . , a

i
u), and ria = (ria1 , r

i
a2 , . . . , r

i
au).

3. Output (ctia,a
i, ria).

Commit (Commitment phase)

1. To generate v masking ciphertexts, each party Pi do the followings, for each l ∈ [v].

(a) Pi samples yil ← U(2ZK sec · 2t−1) and riyl = (r
i,(`)
yl ← U(2ZK sec · ρ`))`∈[3].

(b) Pi computes ctiyl = Enc(yil , r
i
yl ; pk).

2. Party Pi keeps statei = (yi, riy) where yi = (yil )l∈[v] and riy = (riyl)l∈[v].

3. Party Pi broadcasts commi = ctiy where ctiy = (ctiyl)l∈[v].

Challenge (Challenge phase)

1. Parties together randomly sample challenge matrix W of size v× u, whose entries
are sampled from the challenge space Chal = {Xj}Mj=1 ∪ {0}.

Response (Response phase)

1. Each party Pi computes zi = yi +W · ai and riz = riy +W · ria.xviii

2. Party Pi sets respi = (zi, riz) and broadcasts respi.

Verify (Verification phase)

1. Each party Pi computes,
(a) ctiz = (Enc(zil , r

i
zl ; pk))l∈[v].

(b) cta =
∑n
i=1 ct

i
a, cty =

∑n
i=1 ct

i
y, ctz =

∑n
i=1 ct

i
z.

(c) z =
∑n
i=1 z

i, rz =
∑n
i=1 r

i
z.

2. Parties accept if all of the followings hold, otherwise they reject.
(a) ctz = cty +W · cta.

(b) For l ∈ [v],

||zl||∞ ≤ n · 2ZK sec · 2t, ||r(`)
zl ||∞ ≤ n · 2

ZK sec+1 · ρ` for ` ∈ [3]. (2)

xvii Sample (r(1), r(2), r(3)) where r(1), r(2) ← DG(σ2) and r(3) ← ZO(ρ) (Section 2.2).
xviii This means that r

i,(`)
z = r

i,(`)
y +W · ri,(`)a for each ` ∈ [3].

Fig. 4. Protocol ΠTG2k
PoPK
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honestly, then the outputs satisfy the following relation:

RuPoPK :=

{
input

({(
ctiak

)n
i=1

}
k∈[u]

, pk

)
,witness

({(
aik, r

i
k

)n
i=1

}
k∈[u]

)
:

For all k ∈ [u], ctak =

n∑
i=1

ctiak , ak =

n∑
i=1

aik, rk =

n∑
i=1

rik,

ctak = Enc(ak, rk; pk), ‖ak‖∞ ≤ n · 2t−1, ‖r(j)
k ‖∞ ≤ nρj (∀j ∈ [3])

}
,

where ρ1 = ρ2 = 20, and ρ3 = 1 are the bound of noises and randomnesses,
while 2t is the plaintext modulus.

However, our protocol only guarantees that the given ciphertexts {ctk}k∈[u]

satisfies the following relation RS,uPoPK which is relaxed from RuPoPK:

RS,uPoPK :=
{

the same input and witness as RuPoPK :

For all k ∈ [u], ctak , ak, rk are defined the same as RuPoPK,
ctak = Enc(ak, rk; pk),

‖ak‖∞ ≤ nS · 2t−1, ‖r(j)
k ‖∞ ≤ nSρj (∀j ∈ [3])

}
,

(3)

where S is called a soundness slack. This soundness slack S comes from the
rewinding process and appears also in the previous ZKPoPKs [17,22,2,23] for
MPC and ZKPs for lattice encryptions [5]. Meanwhile, it is standard to design
the (S)HE-based MPC preprocessing phase so that it runs correctly even with
the soundness slack, e.g., by enlarging the ciphertext modulus.

5.3 Correctness, Zero-Knowledge, and Soundness

We show that ΠTG2k
PoPK satisfies the correctness, soundness, and zero-knowledge

properties. For correctness, it suffices to show that honest inputs pass the checks
in line 2 of Verify algorithm, which can be done by setting the parameters con-
sidering Lemma 4(a).
Theorem 4 (Correctness). The n-party ZKPoPK protocol ΠTG2k

PoPK (Fig. 4)
with u ≤ 2ZK sec−1 satisfies the following Correctness:

– If all parties Pi, with inputs sampled using Sampling algorithm, follow the
protocol honestly, then Verify algorithm outputs accept with probability one.

Proof. The correctness of the equality check (a) in line 2 of Verify is trivial. For
the bound checks (b), let (W )l ·ai denotes the innerproduct between the l-th row
of W and the vector ai. Then, by the equality zi = yi+W ·ai and Lemma 4(a),

||zl||∞ = ||
n∑
i=1

zil ||∞ ≤
n∑
i=1

||yil + (W )l · ai||∞

≤ n · (2ZK sec · 2t

2
+ u · 2 · 2t

2
) ≤ n · 2ZK sec · 2t,
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where the final inequality follows from our assumption u ≤ 2ZK sec−1. The bound

on r
(`)
zl can be proved similarly. ut

Zero-knowledgeness essentially follows from the fact that the yi’s in protocol
ΠTG2k

PoPK can statistically mask the responses with Lemma 3.

Theorem 5 (Zero-Knowledge). The n-party ZKPoPK protocol ΠTG2k
PoPK (Fig. 4)

satisfies the following Honest-verifier Zero-knowledge:

– There exists a PPT algorithm SI′ indexed by a (honest) set I ′ ⊂ [n], which
takes as input an element in RuPoPK and a challenge W , and outputs tuples
{commi, respi}i∈I′ such that this output is statistically indistinguishable from
a valid execution of the protocol (with statistical distance ≤ 8Muv/2ZK sec).

Proof. Let the simulator SI′ output respi by sampling each component from the
uniform distribution with sufficiently large bound, e.g., sample zi = (zil )l∈[v]

where zil ← U(2ZK sec · 2t−1). Then it outputs commi by computing each com-
ponent from the challenge W and corresponding input ciphertexts, e.g., ctiy =

Enc(zi, riz; pk)−W · ctia.
Note that the statistical distance between the simulated and the real execu-

tion is determined by that between the distribution of respi in both executions
(since each commi is computed in the same way from respi). In the real execu-
tion, zi is computed by sampling yi and adding W · ai. Thus, Lemma 3 (with-
out P) gives that the distance between zi from both executions are bounded by

ϕ(M) ||(W )l·ai||∞
2ZK sec·2t−1 · ≤ 2Mu

2ZK sec , and similar results hold for riz. ut

Finally, the soundness of ΠTG2k
PoPK follows from the usual rewinding argument

leveraging Lemma 4(b) on invertibility.

Theorem 6 (Soundness). Assume that the n-party ZKPoPK protocol ΠTG2k
PoPK

(Fig. 4) is parameterized with v ≥ (Snd sec+2)/ log(|Chal|) where Snd sec is the
soundness security parameter and |Chal| is the size of the challenge space. Then,
it satisfies the Soundness (see [2, Definition 1]) with soundness probability
2−Snd sec and slack S = 8ϕ(M) · 2ZK sec.

Proof. The proof mostly resembles that of [2, Theorem 1], and we give detailed
description focusing on the unique aspects of our protocol. With a usual rewind-
ing argument (we refer to [2, Theorem 1] for formal description of an extractor),
an extractor can output (W, {zi, riz}ni=1) and (W, {z̄i, r̄iz}ni=1), which are two ac-
cepting transcripts corresponding to cta and cty such that W and W are identical
except k-th column. Let z :=

∑n
i=1 z

i and similarly for rz, z̄, r̄z. Then, since
these values satisfy the equation at line 2(a) of Verify algorithm (Fig. 4) and ci-
phertexts have homomorphic property, we get z = y+W ·a and z̄ = y+W ·a.
With subtraction, since W and W are identical except k-th column, we get,

zl − z̄l = (wl,k − w̄l,k) · ak for some l ∈ [v],
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where wl,k and w̄l,k are entries of W and W and are from {Xj}Mj=1. Thus,
multiplying h(X) (of Lemma 4 (b)) according to (wl,k − w̄l,k) on both sides, we
get

||p · ak||∞ = ||h(X) · (z1,l − z̄1,l)||∞ ≤ 2 · ϕ(M) · ||h(X)||∞ · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p− 1) · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p− 1) · 2

(
n · 2ZK sec · 2t

)
.

The first inequality follows by regarding h(X) as sum of monomials then ap-
plying Lemma 4 (a). The second inequality is obtained by the definition of
h(X) (Lemma 4 (b)). The last inequality follows from Eq. (2) (Fig. 4). Hence,
||ak||∞ ≤ nS · 2t−1 with the desired soundness slack S = 8ϕ(M) · 2ZK sec. Sim-
ilarly, one can derive the bound and slackness on the rak from rz, r̄z in the
transcripts. ut

5.4 Extension to Φps(X) and Φpsqt(X)

In fact, we can extend our ZKPoPK to work over cyclotomic polynomials ΦM (X)
with M = ps or M = psqt where p, q are primes satisfying p < q and s, t are
positive integers. Then, we can increase the packing density of our packing by
taking cyclotomic polynomials of composites into consideration, which allow
parameters with smaller d = ordM (2) (see Section 3.3).

These follow from the results of [11] which are generalization of Lemma 4 to
the cases with M = ps or M = psqt. Then, in both cases of Φps(X) and Φpsqt(X),
the protocol ΠTG2k

PoPK is exactly the same with the prime case. In the case of ps, the
statements and the proofs of Theorem 4, 5, 6 also stay exactly the same. (We
carefully distinguished the role of M and p for this.) In the case of psqt, the major
changes are the followings: the condition on u in Theorem 4 is u ≤ 2ZK sec−1/p,
the statistical distance in Theorem 5 is bounded by 8pMuv/2ZK sec, and the
soundness slack in Theorem 6 is S = 8p2M · 2ZK sec.

6 Zero-Knowledge Proof of Message Knowledge

In SHE with messages from a finite field ZP , the plaintext space ZP [X]/Φ2m(X)

can be taken to be isomorphic to Zϕ(2m)
P , a product of message spaces. When

we deal with messages from Z2k , however, the plaintext space Z2t [X]/ΦM (X)
is never isomorphic to a product of Z2k ’s. It is inevitable that some plaintexts
do not correspond to any packing of messages. Thus, we must be guaranteed, in
MPC preprocessings for Z2k -messages, that each party encrypted a valid plain-
text according to a specific packing method, in addition to the guarantee of valid
encryption. This is an intricacy of the Z2k -case that differs from the ZP -case
where ZKPoPK (for the guarantee of valid encryption) is sufficient [17,22,2].

Therefore, we propose, in addition to ZKPoPK, a Zero-Knowledge Proof of
Message Knowledge (ZKPoMK) which guarantees that the given ciphertext is
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generated with a plaintext which is a valid encoding with respect to our tweaked
interpolation packing (Section 3).xix

6.1 ZKPoMK for Tweaked Interpolation Packing

As our ZKPoPK, our ZKPoMK is a batched Schnorr-like protocol with pred-
icates, and it proceeds similarly but with appropriate challenge spaces for the
predicates which capture the valid plaintexts of our packing method. Since most
parts of our ZKPoMK are similar to the ZKPoPK, here we only give an overview
and refer to the full version for the detailed description.

Overview of Our ZKPoMK. Recall the predicates (Definition 1) presented
in Section 3.4 and that a ∈ R is a valid plaintext, i.e. a tweaked interpolation of
Theorem 1, if and only if, for D =

⌊
d−1

2

⌋
, ∆ = δ, and T = t,

Pack
(D,∆)
T (a) ⇐⇒ Deg

(D)
T (a) ∧ Div

(D,∆)
T (a).

Our ZKPoMK separately proves those two statements (i) Deg
(D)
T (a) = true and

(ii) Div
(D,∆)
T (a) = true as follows.

For the statement (i), we run the same as our ΠTG2k
PoPK (Fig. 4) but with two

modifications: (1) set the predicate P = Pack
(D,∆)
T then sample the masks yil

from UP(2ZK sec · 2t−1) using Corollary 2 and check if P(zl) = true, instead of the
bound check on it; (2) set the challenge space Chal = [−2E + 1, 2E ] ∩ Z for a
positive integer E. Note that these constants from the challenge space preserve
the degree of given element a when multiplied, giving the key equation for the
rewinding argument (and the soundness), while enlarging the challenge space.
We remark that this approach introduces a new type of slackness which will be
described later in this section.

For the statement (ii), a prover provides a′ such that DivCheck
(D,∆)
T (a, a′) =

true (see Definition 1), or very roughly, a′ = a/2∆. For zero-knowledgeness,
a′ must be provided as a ciphertext ĉta′ with the proof that ĉta′ is generated
correctly as well. Then, the parties (simultaneously) execute Schnorr-like pro-
tocol on cta′ with the same challenge matrix W from the above proof on cta
for the statement (i) and the masks y′il such that DivCheck

(D,∆)
T (yil , y

′i
l ) = true.

Then verifiers check if DivCheck
(D,∆)
T (z, z′) = true from which one can derive

DivCheck
(D,∆)
T (a, a′) = true with a rewinding argument (see the full version).

A caveat here is that we cannot use tweaked interpolation packing for ĉta′ : a
factor of 2T will also arise in the tweaked interpolation packing for ĉta′ ; and we
again need ZKPoMK on ĉta′ to check that it is encoded correctly.

The key observation for our solution is that ĉta′ (in contrasts to cta) does not
need to satisfy multiplicative homomorphism (on message space) since it is only

xix Overdrive2k [23] performs ZKPoMK implicitly in their ZKPoPK. If we set Chal =
{0, 1} as their ZKPoPK, our ZKPoMK can also be integrated into ZKPoPK (by
additionally checking if z is a valid encoding), resulting in our MHz2k-Plain protocol.
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used in ZKPoMK for cta, which requires linear homomorphism only. Therefore,
we exploit coefficient packing (i.e., each message is encoded as each coefficient
of a′) for ĉta′ ,

xx which makes ZKPoPK ΠTG2k
PoPK (without any ZKPoMK) suffices

to guarantee that ĉta′ is correctly encoded. As a bonus, we can use consider-
ably smaller parameters for ĉta′ , providing almost perfect packing density and
resulting better efficiency.

A New Type of Slackness. We now describe the new type of slackness arises
from our ZKPoMK ΠPoMK. If all parties run Sampling honestly, then the outputs
satisfy the following relation:

Ru,PackPoMK :=
{

the same input and witness as RuPoPK :

For all k ∈ [u], Pack
(D,∆)
T (ak) = true

}
Note that, however, a verifier cannot be guaranteed that Deg

(D)
T (ak) = true

with our ZKPoMK (for the statement (i) in above). This is because, in the

rewinding argument, Deg
(D)
T ((wl,k − w̄l,k) · ak) = true can occur even with

Deg
(D)
T (ak) = false, since there is a possibility of some non-zero coefficients of

ak becoming zero when multiplied by (wl,k− w̄l,k). However, since the difference
wl,k − w̄l,k of elements from the challenge space Chal = [−2E + 1, 2E ] ∩ Z is at
most divisible by 2E , our ZKPoMK protocol can only guarantee that the given
ciphertexts {ctk}k∈[u] satisfies the following relation Ru,Pack sl

PoMK which is relaxed

from Ru,PackPoMK :

Ru,Pack sl
PoMK := {the same input and witness as RuPoPK :

For all k ∈ [u], Pack slT (ak) = true},

where the predicate Pack sl : R → {true, false} is defined as follows (see Sec-
tion 3.4 for comparison with the original predicates). For a ∈ R, let (ãi)

r
i=1

denote the CRT projections (Eq. (1)) of ã = a (mod 2T ).

• Pack sl
(D,∆,E)
T (a) = true ⇐⇒ Deg sl

(D,E)
T (a) = true ∧ Div

(D,∆)
T (a) = true.

• Deg sl
(D,E)
T (a) = true ⇐⇒ All CRT projections ãi of a satisfy that

coefficients at deg > D are divisible by 2T−E .

While the soundness slack S of ZKPoPK appeared also in the previous liter-
ature, above slackness represented by the predicate Pack sl is a unique feature
of our ZKPoMK protocol.

6.2 Managing the Slackness in MPC Preprocessing

In this subsection, we clarify that the new type of slackness which arises in our
ZKPoMK can be managed, i.e., that the guarantee of ZKPoMK is sufficient for
the MPC preprocessing phase (Section 2.5).

xx This is why we denoted it as ĉta′ (not cta′) and DivCheck is defined in such a way.
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The idea is to reserve an extra space in the plaintext modulus for the slackness
E: for Z2k -messages, we apply the tweaked interpolation packing (Theorem 1)
with t = E + k + 2δ instead of t = k + 2δ (Theorem 2)xxi.

Let cta be a ciphertext encrypting a(X), which passed the verification of
our ZKPoMK parameterized by D =

⌊
d−1

2

⌋
, ∆ = δ, T = t, and E. For sim-

plicity, we assume that the plaintext space Z2T [X]/ΦM (X) does not split. Since

Pack sl
(D,∆,E)
T (a) = true and T −E = k+2δ, we can regard a(X) (mod 2T−E) as

a tweaked interpolation packing of Z2k -messages in Z2k+2δ [X]/ΦM (X) as before.
The only thing we have to make sure is that, when performing the distributed
decryption, the upper E bits do not leak any information about the plaintexts.
This can be done trivially by masking the upper E bits in the distributed de-
cryption.

7 Performance Analysis

In this section, we analyze the performance of our MHz2k with comparison to
other works in the literature. We can summarize the improvements by our pack-
ing (Section 3) and reshare protocol (Section 4) as follows: (i) Our tweaked
interpolation packing achieves near 1/2 packing density, 2.5x compared to 1/5
of Overdrive2k [23], (ii) Our reshare protocol requires only 5 ZKPoPKs which
is 1.4x less than 7 ZKPoPKs of Overdrive2k. In total, we can expect that the
amortized communication costs of MHz2k-Plain (without the Topgear2k opti-
mization) will show 3.5x improvements from Overdrive2k.

On the other hand, how our ZKPoPK and ZKPoMK (Section 5,6) affect the
performance in MHz2k is a bit more involved. In the following subsection we
provide a brief cost analysis on our ZKPs.

7.1 Cost Analysis on ZKPoPK and ZKPoMK

The communication cost of ZKPoPK and ZKPoMK per party can be estimated
by the size of ciphertexts arise in protocols, which dominates the others. Ex-
cluding the u input ciphertexts ctia, using our ZKPoPK and ZKPoMK, there

arise additional u ciphertexts ĉt
i

a′ , 2v masking ciphertexts ctiy, and 2v masking

ciphertexts ĉt
i

y′ . Assuming that u = 2v (as in Topgear [2]) and that the size of

ĉt is a half of that of ct, we can conclude that the total cost is roughly 2u · |ct| in
ZKPoPK and ZKPoMK on u input ciphertexts ctia.

On the other hand, following the approach of Overdrive2k [23], MHz2k can
also be initiated with the challenge space of {0, 1} without TopGear2k opti-
mization, which we call MHz2k-Plain. In this case, while the challenge space is
restricted to {0, 1}, it requires only one Schnorr-like protocol (contrary to four in
our case) but with v = 2u− 1. Hence, the size of masking ciphertexts ctiy will be
roughly 2u · |ct|, and in amortized sense, the communication cost does not differ

xxi Our ZKPoMK does not produce the slackness when E = 0. An appropriate E > 0
enlarges the challenge space in a cost of only a slight reduction in the packing density.
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Table 1. Amortized communication (in kbit) of producing triples (2PC)

(k, s) SPDZ2k MonZ2ka Overdrive2k
MHz2k
Plain

MHz2k
TG2k

(u = 2v)

MHz2k
TG2k

(u = 4v)

(32,32) 79.9 59.1 101.8 ( 72.8) 27.2 26.4 20.1
(64,64) 319.5 175.5 171.4 (153.3) 46.2 43.3 31.9
(128,64) 557.1 176.6 190.4 (212.2) 56.6 55.0 40.9

seriously between the case with TopGear2k and without it. The main advantage
of our TopGear2k with ZKPoMK (similarly as TopGear [2] to [17,22,23]) is that u
can be chosen much smaller than that of ZKPoPK of [17,22,23] where u is forced
to be as large as statistical security parameter at least. This contributes to the
substantial reduction of latency and memory requirement (Table 2). Moreover,
since there is a trade-off between amortized communication cost versus latency
and memory requirement along the choice of u, we can shift the improvements
to the amortized communication cost.

7.2 Comparison

For comparison, we present the communication costs of our schemes and previous
works. Though we restrict our discussion to secure two-party computation (2PC),
similar efficiency improvements occur in any multi-party case. We refer to the
full version for the detailed description on the parameters for our schemes and
others. All parameters are set to satisfy 128 bits computational security.

In Table 1, we compare the previous works [14,10,23] and ours with respect
to (amortized) communication costs for triple generation. For lattice-based HE
approaches (Overdrive2k, MHz2k-Plain, and MHz2k-TG2k), the results are com-
puted from the parameters with more than 128 bits security according to LWE
Estimator [1]. For reader’s convenience, we also present communication costs
of Overdrive2k which are listed in the paper [23] in parenthesesxxii. Note that
MonZ2ka only provides secure two-party computation, whereas other protocols
can be used for general multi-party computation. MHz2k-Plain shows substan-
tial improvements in communication costs from previous works. In particular, we
can check that MHz2k-Plain shows roughly 3.5x improvement from Overdrive2k
as we predicted in Section 7.1. As mentioned, applying TopGear2k technique to
MHz2k-Plain does not significantly effect the communication costs, if we choose
parameters as u = 2v. However, increasing the ratio between u and v, we can fur-
ther reduce the communication costs utilizing more memory (still, less memory
than Overdrive2k).

In Table 2, we compare the memory consumption of SHE-based approaches,
which are computed as (u+ v) · 2ϕ(M) log q. Applying TopGear2k optimization,

xxii Due to the lack of information, it was hard to reproduce the communication costs
of Overdrive2k. In particular, their parameters does not seem to achieve 128 bits
security if we consider key-switching modulus which is not noted.
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Table 2. Memory usage (in MB) of producing triples (2PC)

(k, s) Overdrive2k MHz2k-Plain
MHz2k-TG2k

(u = 2v)
MHz2k-TG2k

(u = 4v)

(32,32) 272 503 44 74
(64,64) 1273 1392 137 229
(128,64) 2555 2237 241 402

we can significantly reduce the memory consumption. With Table 1, we can also
check the trade-off between the amortized communication costs and the memory
utilization along the choice of u.
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