
SMILE: Set Membership from Ideal Lattices
with Applications to Ring Signatures and

Confidential Transactions

Vadim Lyubashevsky1, Ngoc Khanh Nguyen1,2, and Gregor Seiler1,2

1 IBM Research Europe – Zurich, Switzerland
2 ETH Zurich, Switzerland

Abstract. In a set membership proof, the public information consists
of a set of elements and a commitment. The prover then produces a
zero-knowledge proof showing that the commitment is indeed to some
element from the set. This primitive is closely related to concepts like ring
signatures and “one-out-of-many” proofs that underlie many anonymity
and privacy protocols. The main result of this work is a new succinct
lattice-based set membership proof whose size is logarithmic in the size
of the set.
We also give a transformation of our set membership proof to a ring
signature scheme. The ring signature size is also logarithmic in the size
of the public key set and has size 16 KB for a set of 25 elements, and
22 KB for a set of size 225. At an approximately 128-bit security level,
these outputs are between 1.5X and 7X smaller than the current state of
the art succinct ring signatures of Beullens et al. (Asiacrypt 2020) and
Esgin et al. (CCS 2019).
We then show that our ring signature, combined with a few other tech-
niques and optimizations, can be turned into a fairly efficient Monero-like
confidential transaction system based on the MatRiCT framework of Es-
gin et al. (CCS 2019). With our new techniques, we are able to reduce
the transaction proof size by factors of about 4X - 10X over the afore-
mentioned work. For example, a transaction with two inputs and two
outputs, where each input is hidden among 215 other accounts, requires
approximately 30KB in our protocol.

1 Introduction

Privacy-based transaction systems are steadily gaining in popularity to the point
that central banks of the US and the EU are exploring an eventual shift to digital
currency. Transaction systems can be equipped with various degrees of privacy,
possibilities for auditability, and permission types for joining the transaction
network. The common element at the heart of most of these schemes is a zero-
knowledge proof which can be adapted to endow the scheme with the desired
features. The most efficient zero-knowledge proofs which allow for proving a rich
set of statements are generally based on the hardness of the discrete logarithm
problem over elliptic curves. This poses a problem for the eventual use of digital

currency because the timeline for widescale deployment of these transaction
systems could very well coincide with the advent of a quantum computer that is
able to break them. It is therefore important to begin considering schemes which
are based on assumptions that are believed to be resistant to quantum attacks.

The currently most efficient, in terms of size and speed, quantum-safe basic
primitives are based on the hardness of lattice problems with algebraic structure.
Lattice-based constructions are therefore natural candidates for more advanced
cryptographic tools like zero-knowledge proofs. Over the last few years, there
has indeed been rapid progress in the field of lattice-based zero knowledge (e.g.
[2, 7, 12, 25, 6, 11, 13, 1, 10, 18]). There now exist fairly practical protocols
for proving knowledge of pre-images of lattice-based 1-way functions, arithmetic
sums and products of committed values, as well as various primitives such as ring
signatures and group signatures. In virtually all of these cases, the lattice-based
solutions result in the most efficient (potentially) quantum-safe option.

As far as a relatively complete quantum-safe transaction system, the recent
work of Esgin et al. [13], also based on the hardness of lattice problems, appears
to be the most efficient solution. Their work adapts the RingCT protocol [22],
which serves as the foundation of the digital currency Monero, and provides
formal definitions upon which they construct their MatRiCT protocol. While
certainly not as efficient as discrete logarithm based schemes, this work showed
that a lattice-based confidential transaction system is something that may even-
tually be a very reasonable solution.

Our Results and Related Work. At the core of many privacy-based protocols
(including the one from [13]) is a set membership proof in which the prover
shows, in zero-knowledge, that a commitment is to a value from a public set.
This concept is very closely related to “one-out-of-many” proofs [14] and ring
signatures [24]. The main result of this work is a new set membership proof which
is logarithmic in the size of the set and leads to a ring signature scheme with
outputs noticeably smaller than the currently shortest schemes from [13, 4].3 We
point out that “one-out-of many” proofs [14], in which the prover shows that one
of the commitments in a set is a commitment to 0, are actually equivalent to the
ring signatures that we construct. This is because lattice-based public keys can
be thought of as commitments to 0. We then show how to use our ring signature
scheme / “one-out-of-many” proof, together with a few other optimizations of
prior work, to create a more efficient confidential transaction system based upon
the MatRiCT definitions.

We now give a brief overview of where the efficiency advantage comes from.
The shorter proofs in our scheme are partly a result of the fact that the modulus
in our underlying polynomial ring stays the same for all practical set sizes. On the

3 One can also obtain ring signatures which are linear (rather than logarithmic) in the
size of the public key set by plugging in a lattice-based signature scheme based on a
trapdoor function, such as [23], into the generic framework of [24]. Even though for
small set sizes (around a dozen), this may be smaller than our solution, it quickly
becomes much larger (see Table 2).

2

other hand, if the size of the set is n = 32m, then the exponent of the modulus
in the ring used in [13] increases linearly in m. The reason for this difference
is that [13] use “Ajtai-type” commitments which compress the input, but only
allow for commitments of “short” messages. In our construction, however, we use
BDLOP commitments [3] which allow commitments to arbitrary-size elements,
at the expense of a slightly larger commitment size. But because the number of
commitments we need is logarithmic in the size of the set, this does not pose a
problem with the commitment size becoming too big.

An additional advantage of BDLOP commitments that we extensively use
is that if one plans ahead by choosing a long-enough randomness vector in the
beginning of the protocol, then one can adjoin a new commitment at any time
and the size of the commitment only increases by the size of the committed
message. In particular, the increase in size does not depend on the security
parameter, which is what one would need if creating a new commitment. We
use this property when combining our new techniques along with the framework
for proving various relations committed to in BDLOP commitments from [1,
10, 18]. Thus our constructions essentially have just one BDLOP commitment
for the entire protocol. We further reduce the transaction size by employing an
amortization technique so that the proof contains just two elements whose size
depends on the security parameter.

In the rest of the introduction, we give rather detailed high-level descriptions
of our constructions. The reason for this level of detail is that the protocols in
the body of the paper use optimizations that combine the new ideas together
with prior work in a non-black box manner, which tends to somewhat obfuscate
the high level picture. In the introduction, we instead give slightly less efficient
constructions that try to highlight the separate parts making up the complete
protocols. We would then hope that with the high-level intuition in hand, the
interested reader can better follow the complete protocols in the body.

1.1 The Polynomial Ring and BDLOP Commitments

Throughout this paper, we will be working over the polynomial ring Rq =

Zq[X]/(X128 + 1) where q is set such that X128 + 1 =
32∏
i=1

(X4 − ri) and X4 − ri
are irreducible modulo q (c.f. [21] for how to set q to obtain such a factorization).
We will be exclusively using BDLOP commitments [3], where a commitment to
a polynomial vector ~m ∈ Rkq is of the form[

B0

B1

]
~r +

[
~0
~m

]
=

[
~t0
~t1

]
, (1)

where Bi are uniform4 public random matrices and ~r is a random low-norm
vector which serves as the commitment randomness. To open the commitment

4 For efficiency, a large portion ofBi can be the identity matrix (c.f. [3]), but we ignore
the form of the public randomness in this paper, as it does not affect any output
sizes.

3

without revealing it, one would ideally want to give a zero-knowledge proof of a
low-norm ~r satisfying B0~r = ~t0. Unfortunately, there is no particularly efficient
zero-knowledge proof for this statement, and so a relaxed opening is defined
which consists of a vector ~v and a polynomial c satisfying B0~v = ~t0 such that
‖c‖ and ‖c~v‖ are small (but ~v is not necessarily small itself). The committed
message is then implicitly

~m = ~t1 −B1~v. (2)

An efficient zero-knowledge proof for the above opening was given in [3].
That work also showed how to prove linear (over Rq) relations of ~m without
increasing the proof size. For this, it’s in fact enough to just be able to prove
that the commitment is to ~0. The reason is that a commitment of ~m can be
easily converted to a commitment of ~m+ ~m′ by adding ~m′ to ~t1. Similarly, for
any matrix L over Rq, one can convert a commitment of ~m to one of L ~m by

multiplying the bottom part by L to obtain

[
B0

LB1

]
· ~r +

[
~0
L ~m

]
=

[
~t0
L~t1

]
. Thus

proving that the message ~m in (1) satisfies L ~m = ~u, involves proving that the

commitment

[
~t0

L~t1 − ~u

]
with public key

[
B0

LB1

]
is a commitment to ~0.

Later works (e.g. [1, 10, 18]) showed how to prove more complicated relations
between the committed messages in BDLOP commitments. These include prov-
ing multiplicative relations among the polynomials comprising ~m and proving
linear relations over Zq (rather than Rq) of the integer coefficients comprising
~m. An important feature of these aforementioned proofs is that the proof size
does not grow with the number of relations that one needs to prove about one
commitment. So the cost, in terms of proof size, of proving multiple relations
about one commitment is the cost of proving the most expensive one.

1.2 The New Set Membership Proof

In this work we extend the toolbox of what can be proved about ~m in BDLOP
commitments by showing how to do set membership proofs. Given a collection
of polynomial vectors ~pi, and a commitment to one on them, we would like to
prove that the committed ~w is indeed one of the ~pi.

More specifically, the public information consists of P = [~p1 | . . . | ~pn],
where n = lm = 32m, and a commitment ω. The prover gives a zero knowledge
proof that a commitment ω opens to (~v1, . . . , ~vm, ~w) where

P · (~v1 ⊗ . . .⊗ ~vm) = ~w (3)

∀i, ~vi ∈ {0, 1}l and ‖~vi‖1 = 1. (4)

Notice that by definition of the ~vi, their tensor product will be a vector of
length n consisting of all zeros and one 1 (this decomposition observation was
originally used in [14]). If each vector ~vi will be committed as a polynomialmi in

4

the BDLOP commitment,5 then (4) can already be proved using the aforemen-
tioned techniques from [1, 10]. Our main result in this work is an efficient proof
of (3) whose size is linear in m, and thus logarithmic in the number of elements
in P . We also prove a more generic k-dimensional version of this problem. In
this version, there are k public lists

P (1) =
[
~p
(1)
1 | . . . | ~p (1)

n

]
, . . . ,P (k) =

[
~p
(k)
1 | . . . | ~p (k)

n

]
and ~w is a sum of k elements, one taken from each set. The prover gives a zero
knowledge proof that the commitment ω opens to

(~v
(1)
1 , . . . , ~v (1)

m , . . . , ~v
(k)
1 , . . . , ~v (k)

m , ~w)

where

k∑
j=1

P (j) · (~v (j)
1 ⊗ . . .⊗ ~v (j)

m) = ~w (5)

∀i, j, ~v (j)
i ∈ {0, 1}l and ‖~v (j)

i ‖1 = 1 (6)

This proof is of size O(mk), so there is no amortization happening. But being
able to prove the above will allow us to amortize away many of the other parts
of the anonymous transaction protocol.

1.3 Set Membership Proof Sketch

We now give a sketch of how to prove (3) and (4). Let us first define the set
Mq = Zq + ZqX + ZqX2 + ZqX3. Because of the way we defined Rq, the NTT
and inverse NTT functions are bijective functions NTT (w) : Rq → M32

q and

NTT−1 (~w) :M32
q → Rq where

NTT (w) = (w mod X4 − r1, . . . ,w mod X4 − r32).

These functions extend to polynomial vectors in the natural way by being applied
to each polynomial separately.

We will also need to overload the inner product operator. For a polyno-
mial w such that NTT (w) = ~w = (w1, . . . , w32) ∈ M32

q , define the func-

tion g(w) =
32∑
i=1

wi. In other words, it’s just the sum of the NTT coefficients

as polynomials in Mq. For two vectors ~w, ~w′ ∈ M32
q , we define 〈~w, ~w′〉 =

g(NTT−1 (w)NTT−1 (w′)). It resembles an inner product because we can equiv-
alently write it as

〈~w, ~w′〉 =

32∑
i=1

wiw
′
i mod (X4 − ri).

5 Actually the inverse NTT of the vector ~vi, which is an element of Rq, will be com-
mitted – see Section 1.3.

5

The multiplication is performed modulo different polynomials, amd so this func-
tion is not an inner product. But it is commutative and satisfies 〈~w+ ~w′, ~w′′〉 =
〈~w, ~w′′〉 + 〈~w′, ~w′′〉. Similarly, for ~w = (~w1, . . . , ~wk), ~w′ = (~w′1, . . . , ~w

′
k), where

each ~wi, ~w
′
i ∈M32

q , one defines 〈~w, ~w′〉 =
k∑
i=1

〈~wi, ~w′i〉.

For convenience, we will now rewrite the set membership problem to be over
Mq. In particular, the public information consists of vectors P = [~p1 | . . . | ~pn]
where each ~pi ∈ M32k

q , for some arbitrary k. And we also have a commitment

to a vector ~w ∈ M32k
q such that ~w = ~pi for some i. Notice that the ~pi and ~w

are the NTT of the ~pi, ~w from (3). To commit to the vector ~w, we define the
polynomial vector ~w = NTT−1 (~w) ∈ Rkq and then use the BDLOP commitment
from (1) to commit to ~w. Later rows of this BDLOP commitment will also
include commitments to the vectors ~v1, . . . , ~vm ∈ M32

q (defined as in (4)). We

will define the polynomials vj = NTT−1 (~vj) and commit to them in the BDLOP
commitment. Note that we can already prove (4) using the techniques from [1, 10]
by proving that ~v · (~1−~v) = ~0 and that the NTT coefficients of each polynomial
in ~v sum to 1.

We now describe how to prove (3) – in other words, that P ·(~v1⊗. . .⊗~vm)−~w =
~0. We will prove this by showing that for a random challenge ~γ ∈ M32k

q , the
“inner product” 〈P · (~v1 ⊗ . . . ⊗ ~vm) − ~w,~γ〉 = 0. Because Zq[X]/(X4 − ri) are
fields and of size q4, it’s not hard to see that if the left term in the inner product
is not ~0, then the probability of the inner product being 0 is exactly q−4. Because
we will be working with a q ≈ 232, this probability is approximately 2−128, so
no repetitions are required.

We now get to the main technical part of the protocol. Let’s break up P into

32 parts as P = [P1 | . . . , | P32] and define P ′ :=

 γ
TP1

...
γTP32

 ∈M32×32m−1

q .

Then using the property that ~vi are vectors over Mq with just constant
coefficients,6 with some algebraic manipulation (see (18)), it can be shown that

〈P (~v1 ⊗ . . .⊗ ~vm)− ~w,~γ〉 = 〈~v1, P ′(~v2 ⊗ . . .⊗ ~vm)〉 − 〈~w,~γ〉. (7)

To prove that the left-hand side is 0, it is therefore equivalent to prove that
the right-hand side is 0. The crucial part is that the right-hand side contains
an expression which selects one element from a set P ′ – but this set is 32 times
smaller than P . If we define ~x = P ′(~v2⊗ . . .⊗~vm) and send a commitment to ~x,
then proving the original set membership involves proving a new set membership
proof in which the set is 32 times smaller, as well as the equation 〈~v1, ~x〉 = 〈~w,~γ〉.
6 Intuitively, if the coefficients of ~vi were polynomials of degree > 0, then the term
〈~v1, P ′(~v2⊗ . . .⊗~vm)〉 in (7) would make very little algebraic sense because there is a
multiplication on one side of P ′ which involves reduction modulo X4 − rj , and then
there would be a multiplication on the other side which would get reduced modulo
different X4−rj′ . But since vectors ~vi only have constant terms, the “inner product”
with ~vi does not involve any modular reduction.

6

If this latter equation can be proved with a constant number of commitments (in
our case, it will essentially be one), then continuing the proof recursively would
mean that the whole proof requires approximately 2m commitments for sets P
containing n = 32m elements.

Both ~w and ~γ are vectors inM32k
q , so let us write them as ~w = (~w1, . . . , ~wk)

and ~γ = (~γ1, . . . , ~γk) where ~wi, ~γi ∈M32
q . Then

〈~v1, ~x〉 = 〈~w,~γ〉 ⇔ g(v1x) = g

(
k∑
i=1

wiγi

)
,

where the bold letters correspond to the inverse NTTs and the function g is the
sum of the NTT’s of the polynomial. Because we have BDLOP commitments

to x and wi, we can compute a commitment to y = v1x −
k∑
i=1

wiγi, and then

we just have to prove that the sum of the NTT coefficients of this polynomial is
0. For this, we employ a lemma used in [10], which states that for the ring Rq

as defined in this section and a polynomial y ∈ Rq =
127∑
i=0

yiX
i, we have g(y) =

32(y0 + y1X + y2X
2 + y3X

3). In other words, the sum of the NTT coefficients is
0 if and only if the first four coefficients of the polynomial representation are 0.
To prove this in zero knowledge, we can first commit to a masking polynomial
z whose first 4 coefficients are 0 and the rest uniform in Zq, and then output
y + z and prove that this is indeed the right sum. The verifier can then check
that the first four coefficients are 0. We don’t need to multiply y by a challenge
because in our case, it already contains a challenge ~γ. In the body of the paper,
we present an efficient way to do this proof which does not require committing
to y and so we just need an extra commitment to ~x ∈ M32

q at each level of the
recursion.

1.4 From Set Membership to Ring Signatures

A ring signature scheme allows a signer to sign in a way that hides the public
key that he is using. More specifically, the signer creates a set comprised of his
public key and other public keys for which he may not know the secret key.
He then creates a signature with the property that the verifier can check that
the message was signed by an entity who knows the secret key to one of the
public keys in the list. We now sketch how one can convert a “Schnorr-like”
lattice-based signature scheme into a ring signature by using a set membership
proof.

The basic signature scheme underlying the ring signature follows the usual
“Fiat-Shamir with Aborts” approach for constructing lattice-based digital sig-
natures (e.g. [16, 17, 9]). In particular, the secret key is a low-norm vector ~s,
while the public key consists of a random matrix A and a vector ~t = A~s. The
signature is then a “relaxed” zero-knowledge proof of knowledge (made non-
interactive using the Fiat-Shamir transform) of a vector ~s′ and a polynomial c′,
both with small norms, satisfying c′~t = A~s′.

7

The ring signature public information consists of the matrix A and vectors
~t1, . . . , ~tn. A signer who knows an ~si satisfying A~si = ~ti will want to give a
zero-knowledge proof knowledge of ~s′, c′, and i ∈ [0, n) satisfying c′~ti = A~s′.
An interactive version of this proof is presented in Figure 1 and it is then made
non-interactive using the Fiat-Shamir transform and inserting the message to be
signed into the random oracle which is used to produce the challenge.

Private information: ~v1, . . . , ~vm ∈ {0, 1}l as in (4), and ~s with a small norm
Public information: A, T = [~t1 | . . . | ~tn], where n = lm s.t. T · (~v1 ⊗ . . .⊗ ~vm) = A~s

Prover Verifier

~y ← D
~w := A~y
ω := Com(~v1, . . . , ~vm,− ~w)

ω -
c← C

c�
~z := c~s+ ~y, and rejection sample

Define P =
[
c~t1 | . . . | c~tn

]
ω := ω + (0, . . . , 0,A~z)
(i.e. ω = Com(~v1, . . . , ~vm,A~z − ~w))

π = ZKPoK for (3) and (4) ~z, π -
1. check that ‖~z‖ is small
2. verify π

Fig. 1. A lattice-based ring signature using the set membership proof. Com is a BDLOP
commitment, while D is a distribution that outputs polynomial vectors with small
coefficients. As in Section 1.3, a BDLOP commitment to ~vi is a commitment to the
polynomial NTT−1 (~vi) ∈ Rq.

To see that this proof is complete (assuming that all the norm-checks pass),
notice that A~z − c~ti = A~y = ~w. And this is exactly what π proves. The
zero-knowledge property follows from the fact that π is a zero-knowledge proof
and that ~z is independent of ~s and c due to the employed rejection sampling.
To see that the protocol is a proof of knowledge, note that verifying π implies
that A~z − c~ti = ~w. Because the ~vi and ~w in the commitment are fixed, if we
rewind the prover with a different challenge c′, we will obtain A~z′ − c′~ti = ~w.
Eliminating ~w by subtracting the two equations results in the statement that
we would like to extract.

1.5 Bimodal Gaussians (almost) for Free

The goal of the rejection sampling in the signing algorithm is to remove the
dependence of the secret key ~s from the output ~z. If the distribution D in

8

Ring Size 23 25 26 210 212 215 221 225

Falafl [4] 30 32 35 39

Esgin et al. [13] 19 31 59 148

Raptor [15] / [24]+[23] 10 81 5161

This Work 16 18 19 22

Fig. 2. Sizes, in KB, of the different lattice-based ring signature schemes with approx-
imately 128 bits of security. The sizes for [4, 13, 15] are taken from [4, Table 1].

Figure 1 is a zero-centered discrete Gaussian, then the distribution of ~z = c~s+ ~y
before rejection sampling is performed is a discrete Gaussian centered at c~s. In
order for the rejection probability to not be too large (e.g. < 1 − 1/e), one
needs the standard deviation of the ~z after the rejection sampling to be around
12 · ‖c~s‖ [17]. In [8], it was shown that if one can get the distribution of ~z
before rejection sampling to follow a bimodal Gaussian distribution with the two
centers being ±c~s, then one only needs the standard deviation of the ~z after
rejection sampling to be ‖c~s‖/

√
2 for the same repetition rate. Such a reduction

has a direct consequence on reducing the output length and increasing the SIS-
hardness of the underlying problem.

The way to create a bimodal gaussian with the two centers being ±c~s is
for the prover to choose a y ← D and also a b ← {−1, 1} and then create
~z = b~c~s + ~y. It is crucial for security that b remains hidden and so the verifier
is not allowed to know b or use it during verification. This could be an issue in
regular signature schemes because the verifier would need to directly check that

A~z = c~t+ ~w. (8)

Since A~z = A(bc~s+ ~y), we would need A~s = −A~s to always hold. In our case,
this does not hold, but it will not pose a problem because the verifier does not
directly verify (8) because, for privacy, the prover cannot send ~w in the clear
anyway. Instead, the verifier gets Com(~w) and a ZK proof that this commitment
opens to a ~w satisfying (8). Since the prover already sends a commitment to
~w along with the ones for ~vi (and eventually all the “garbage terms” required
in π), he can just increase the commitment size by one (128-degree) polynomial
and also commit to b. Then the proof π would need to be modified to prove that

[bc~t1 | . . . | bc~tn] · (~v1 ⊗ . . .⊗ ~vm) = ~w −A~z.

Notice that because b ∈ {−1, 1} and all the ~vi consist of all 0’s and one 1, this
can be rewritten as

[c~t1 | . . . | c~tn] · (b~v1 ⊗ ~v2 ⊗ . . .⊗ ~vm) = ~w −A~z,

and so the only thing that changes is that instead of committing to ~v1, the
prover commits to b~v1. He then just has to show that the coefficients of b~v1 are
in {0, b} rather than {0, 1} – but this proof is exactly the same if we already
have a commitment to b (which we proved to be in {−1, 1}).

9

1.6 Application to Confidential Transactions

We now show how to construct a confidential transaction system in the model
of [13]. The setup is the following: at any given moment, the state (which is
managed by the blockchain, and is outside the scope of this work) consists of a
set of accounts act = (pk, cn), each of which contains a public key and a coin.
The state also contains a set of serial numbers which implicitly correspond to
the accounts that were already spent (to prevent double-spending). The secret
account key associated to each account is ask = (sk, ck, amt), which consists of
the secret key corresponding to pk and the commitment key ck, which is the
randomness used to create the BDLOP commitment cn to the amount amt in
the account. As in [13], we will assume that amt takes values between 0 and
264−1. Since we are working over rings with 32 NTT slots, we will represent the
values in base 4. The basic operation has the sender choosing M input accounts
for which he knows the secret keys associated to pk (1), . . . , pk (M), and then
creating S new output accounts with given public keys for which he does not
need to know the associated secret keys. There are three correctness constraints.
The first is that the spender knows the associated secret keys for the M input
accounts. The second is that the sum of the values of the input coins (i.e. the
sum of the amt) equals to the sum of the values of the output coins. And the
third is that none of the M input accounts were used as inputs in any previous
transaction.

In addition to correctness, there are also secrecy and anonymity require-
ments. The secrecy requirement states that nothing about the amounts amt is
known except that the sum of the input and output coins is equal. The spender’s
anonymity is defined by hiding the spenders account among N other accounts.
In particular, rather than stating which M accounts the spender is using, he will
instead choose M sets of N accounts each, and then choose one account from
each set in a way that hides which of the N accounts has been chosen. How the
spender chooses the N − 1 other accounts is a policy issue that is outside the
scope of this work.

The public information for the system consists of a polynomial matrix B
which forms the “top part” of the BDLOP commitment. The polynomial vectors
~bc (which will be used to commit to amt) and ~bs (which will be used to “commit”
to zero, with the commitment being the serial number) form the “bottom part”
of the commitments. In particular, sk is a low-norm vector ~s where[

B
~bs

]
~s =

[
pk
sn

]
. (9)

And ck is another low-norm vector ~r such that[
B
~bc

]
~r +

[
0

amt

]
= cn. (10)

Correctness. Let’s ignore anonymity for a moment, and just briefly discuss how
the correctness of the protocol could be handled. If the spender wants to spend

10

accounts act (1), . . . , act (M), then he outputs the values sn (j), ~s (j), ~r (j), amt (j)

for the input accounts, and the verifier can check that (9) and (10) are satisfied.
Furthermore, the verifier checks that none of the sn (j) are in the set of used
serial numbers, and adds these sn (j) to the set. Note that because the value of
~s (j) is uniquely determined by B and pk (unless SIS is easy), the value of sn is
uniquely tied to pk; and so it is not possible to spend a coin more than once.
The spender then creates valid output tokens with the values of pk that he is
given and creates the output coins with by picking small vectors ~r and using
them to create BDLOP commitments to amt as in (10). He then outputs these ~r
and amt so that everyone can check that the sum of the input amounts is equal
to the sum of the output amounts.

Anonymity and Secrecy. We now sketch how anonymity and secrecy is achieved
in our confidential transactions protocol. The spender chooses the M accounts
act (j) = (pk (j), cn (j)) that he wants to spend. He puts each of the right hand
sides of (10) (i.e. the coin commitments) from these accounts into M lists T (j),
one coin per list. The rest of the lists are filled with N coins from accounts
among which the spender wants to hide his. He then creates S output accounts
act (j) = (pk (j), cn (j)) using the given public keys. He does not need to hide these
accounts and so he just creates S lists of size 1 for the output coins. He then
wants to create one BDLOP commitment that includes all the coin values (i.e.
the amt) from the input and output tokens. This protocol is described in Figure
6. Once the spender has one BDLOP commitment, he can prove that the sum
of the input and output tokens matches, which can be done using techniques
similar to those in [13, 18].

The prover also needs to show that he knows ~s that satisfy (9) for the input
accounts. He does this by creating M lists U (j) that are derived from T (j). If the

spender’s coin is in position i in the list T (j), then he puts

[
pk

(j)
i

sn (j)

]
into position

i. He then fills the list with the public keys from the accounts corresponding
to the coins in T (j). For the serial numbers, he attaches the same one (i.e. the
one corresponding to his public key) to all the public keys. In particular, if the
spender wants to hide the jth account that he will be using in position i among
N − 1 other accounts act1, . . . , acti−1, acti+1, . . . , actN , then the lists T (j) and
U (j) are

T (j) =
[
cn

(j)
1 , . . . , cn

(j)
N

]
U (j) =

[[
pk

(j)
1

sn (j)

]
, · · · ,

[
pk

(j)
i−1

sn (j)

]
,

[
pk

(j)
i

sn (j)

]
,

[
pk

(j)
i+1

sn (j)

]
, . . . ,

[
pk

(j)
N

sn (j)

]]
For the lists U (j), the spender simply wants to prove that he knows the

secret keys ~s (j) for the elements in the same position as those in T (j). Since the
positions are already committed to, the proof of knowledge of the ~s (j) does not
require any extra BDLOP commitments and the proof of knowledge of the ~s (j)

can be amortized into the output vector ~z in Figure 6. The verifier will need to
check that the serial numbers sn (j) have never been used (i.e. don’t appear in

11

ring size N
(M,S) 25 210 215 220 225

(1, 2) This Work 22 KB 24 KB 25 KB 27 KB 28 KB
(1, 2) Esgin et al. [13] 100 KB 160 KB 250 KB 375 KB 520 KB

(2, 2) This Work 24 KB 27 KB 30 KB 33 KB 36 KB
(2, 2) Esgin et al. [13] 110 KB 190 KB 300 KB 440 KB 660 KB

Fig. 3. Transaction proof sizes depending on ring size (anonymity set size) N , number
M of input accounts, and number S of output accounts. The sizes for [13] are taken
from [13, Figure 1].

M 25 50 75 100

size (This Work N = 1024) 100 KB 180 KB 262 KB 345 KB

size (Esgin et al. [13] N = 100) 370 KB 610 KB 900 KB 1170 KB

Fig. 4. Transaction proof sizes with M input accounts and S = 2 output accounts.
The anonymity set N is 100 in [13] and 322 = 1024 in our work. The sizes for [13] are
taken from [13, Figure 2].

the “used” pile) and that the lists T (j),m (j) are valid (i.e. the positions pk
(j)
i in

list T (j) and cn
(j)
i in list U (j) correspond to some account act =

(
pk

(j)
i , cn

(j)
i

)
).

The verifier also has to verify the proof from Figure 6 and the addition proof
confirming that the amounts in the input and output accounts match.

The protocol in Figure 6, which is at the center of the confidential transaction
protocol, creates a new BDLOP commitment and proves that it is committing
to the same values as the M input and S output accounts. It additionally proves
that the spender knows the secret keys of the M input accounts. This involves
using the protocol for the k-dimensional version of the set membership problem
as well as an amortization technique which will allow us to only send one “masked
value” for all the randomness used in the M+S accounts.

Aggregating BDLOP Commitments. Before describing the protocol in Figure 6,
we ignore the part where each of the M input accounts are hidden among N
others, and give a simpler protocol in Figure 5 that takes k BDLOP commitments
with distinct randomnesses, and creates one BDLOP commitment to the same
messages. The improvement in this protocol over the trivial one is in the fact
that only one output ~z is enough to prove knowledge that all k commitments
are valid. The norm of this vector ~z is larger by a factor of k (or

√
k in the

asymptote), so its representation grows only logarithmically in k.

The protocol in Figure 5 takes as input k BDLOP commitments under ran-
domness ~si and produces one BDLOP commitment ω under randomness ~r. The
commitment includes all the mi and one additional “garbage polynomial” w̃.
When the prover computes and outputs ~z, he proves that all the k commitments

12

Private information: For 1 ≤ i ≤ k, polynomials mi, low-norm vectors ~si

Public information: Uniformly random B, ~b,A, ~aw, ~ai,

[
~ti
ui

]
=

[
B
~b

]
~si +

[
~0
mi

]

Prover Verifier

(~y, ~r)← Dy ×Dr
~w := B~y; w̃ := ~b · ~y
A
~a1

. . .
~ak
~aw

 ~r +

~0
m1

. . .
mk

w̃

 =

~f
g1
. . .
gk
g̃w

 = ω ~w, ω -

c1, . . . , ck ← C
c1, . . . , ck�

~z := ~y +
∑
ci~si, and rejection sample

~a∗ :=
k∑
i=1

ci~ai − ~aw

g∗ :=
k∑
i=1

cigi − ~gw + ~b · ~z

π = ZKPoK that

[
~f
g∗

]
under public key[

A
~a∗

]
is a commitment to

k∑
i=1

ciui

~z, π -
1. check that ‖~z‖ is small

2. check that
k∑
i=1

ci~ti = B~z − ~w

3. Compute ~a∗, g∗ and verify π

Fig. 5. A protocol which takes commitments

[
~ti
ui

]
=

[
B
~b

]
~si +

[
~0
mi

]
to mi under dis-

tinct randomnesses ~si, and outputs one BDLOP commitment ω to all themi (and some
auxiliary garage term(s)) under one common randomness ~r. Along with outputting the

commitment, the protocol also proves that

[
~ti
ui

]
are valid commitments and that the

new commitment is to the same mi.

13

under ~si are valid. The rest of the steps are needed to show that the commitment
under ~r is to the same mi. We discuss this in more detail below.

The proof that the k commitments are valid follows from the ideas in [2]
where one does rewinding by keeping most of the challenge fixed. As long as the
new challenge still has κ bits of entropy conditioned on the prior challenge, the
soundness error will still be ≈ 2−κ. Without loss of generality, suppose that we
would like to prove that the new commitment is a commitment to m1 (in the
row that contains g1). Let (~w, ω, c1, c2 . . . , ck, ~z, π) be the transcript of one run
and (~w, ω, c′1, c2 . . . , ck, ~z

′, π′) be the view of the second run when we rewind
while keeping all the challenges, except for c1 fixed.

Rewinding on the second verification equation, we obtain (c1−c′1)~t1 = A(~z−

~z′). By (2), this implies that the message mi committed to by

[
~t1
u1

]
satisfies

(c1 − c′1)m1 = (c− c′)u1 − ~b · (~z − ~z′). (11)

Notice that repeating this for all i, we can prove that all the commitments

[
~ti
ui

]
are valid. The intuition for proving that ω is a commitment to the same messages
is to prove that the messages in the commitment of ω (call them m̄i and w̄)
satisfy the linear equation∑

i

cim̄i =
∑
i

ciui + w̄ − ~b · ~z. (12)

Rewinding in the same way as above, we would obtain

(c1 − c′1)m̄1 = (c1 − c′1)u1 − ~b · (~z − ~z′).

Substituting ~b · (~z− ~z′) from (11), we get (c1−c′1)m̄1 = (c1−c′1)m1. And since
c1 − c′1 is invertible, we have m1 = m̄1 as desired.

We now observe that we exactly prove (12). The proof π proves that ω is a
valid commitment and therefore there is a unique ~v (and a short polynomial d s.t.
d~v has small norm) satisfying gi−~ai·~v = m̄i and gw−~aw ·~v = w̄. Because we also
prove that

∑
ciui is a valid commitment, it implies that 〈~a∗, ~v〉+

∑
civi = g∗.

If we expand out the definitions of ~a∗ and g∗, and then plug it in, along with
the expressions for (ci − c′i)gi and (ci − c′i)gw, into the previous equation, we
will exactly end up with (12).

We now sketch the zero-knowledge proof. By assumption, π can be simu-
lated and ~z is independent of ~si and ci by rejection sampling. The BDLOP
commitment ω is indistinguishable from uniform by the LWE assumption, and
~w is unique once ~z and ci are chosen. Something worth noting is that while
~w = B~y can be sent in the clear, the value w̃ = ~b · ~y needs to be sent as part
of a commitment because revealing it in the clear would end up revealing some
function of the mi.

14

Private information: For 1 ≤ j ≤ k, V (j) = (~v
(j)
1 , . . . , ~v

(j)
m) ∈ {0, 1}l×m s.t.

‖~v (j)
i ‖1 = 1, ~s (j) with a small norm, and message polynomials m (j)

Public information: B, ~b, T (j) =

[[
~t
(j)
1

u
(j)
1

]
| . . . |

[
~t
(j)
n

u
(j)
n

]]
, where n = lm, s.t

T (j) · (~v (j)
1 ⊗ . . .⊗ ~v (j)

m) =

[
B
~b

]
~s (j) +

[
~0

m (j)

]

Prover Verifier

~y ← D
~w := B~y

w̃ := ~b · ~y
ω = Com(m (1), . . . ,m (k), V (1), . . . , V (k), w̃,− ~w)

ω -
c (1), . . . , c (k) ← C

c (1), . . . , c (k)

�
~z := ~y +

∑
c (j)~s (j), and rejection sample

Define P (i) = c (i)T (i)

Define g∗ :=
k∑
j=1

c (j)g (j) − g̃ (w) + ~b · ~z

π = ZKPoK that

[
B~z − ~w
g∗

]
is a

commitment to
k∑
j=1

P (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m) ~z, π -

1. check that ‖~z‖ is small
2. verify π

Fig. 6. Given T (j) ·(~v (j)
1 ⊗. . .⊗~v

(j)
m) =

[
B
~b

]
~s (j)+

[
~0

m (j)

]
, the prover creates a BDLOP

commitment to all the k m (j) and proves its correctness. The new commitment Com
uses public matrices (e.g. A, etc. as in Figure 5) which we do not explicitly state in
this sketch. The terms comprising g∗ are parts of ω, and are described in detail in the
protocol in Figure 5 (except with subscripts instead of superscripts).

Aggregation and Set Membership. Converting the protocol from Figure 5 into
the one in Figure 6 uses very similar intuition as when converting a signature
scheme into a ring signature scheme in Figure 1.

We will now proceed to briefly explain the transition from the protocol in
Figure 5 to the one in Figure 6. First, the second verifier check in Figure 5 cannot
be done in the clear – that is the verifier cannot know ~w. If he knows ~w, then
he can compute the weighted sum of the committed values

∑
ci~ti, which would

leak information about which commitments were chosen. The prover therefore
must commit to ~w. So the commitment ω in Figure 6 creates commitments to

15

m (j), w̃ exactly like to mi, w̃ in Figure 5, and also commits to ~w and to V (j),
which are needed for the set membership proof.

The prover then sets up the ~a∗ and g∗ exactly as in Figure 5. Therefore

g∗ is a commitment to the bottom part of
k∑
j=1

c (j)T (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m).

From the second verification equation in Figure 5, we know that the top part
of the preceding is B~z − ~w, and we can create a commitment to this value
by adding B~z to the commitment of − ~w that we already have. We therefore

have a commitment to
k∑
j=1

c (j)T (j) · (~v (j)
1 ⊗ · · · ⊗ ~v (j)

m) and creating the proof

π is therefore equivalent to creating a proof for (5) and (6). Showing that this
protocol is sound is done the same way as the one in Figure 5 because ~z and π
in Figure 6 satisfy the three verification parts in Figure 5.

2 Preliminaries

2.1 Notation

Let N ∈ N be a security parameter and q be an odd prime. We write x ← S
when x ∈ S is sampled uniformly at random from the finite set S and similarly
x ← D when x is sampled according to the distribution D. For a < b and
n ∈ N, we define [a, b] := {a, a + 1 . . . , b} and [n] := [1, n]. Given two functions
f, g : N→ [0, 1], we write f(µ) ≈ g(µ) if |f(µ)− g(µ)| < µ−ω(1). A function f is
negligible if f ≈ 0. We write negl(n) to denote an unspecified negligible function
in n.

For a power of two d, denoteR andRq respectively to be the rings Z[X]/(Xd+
1) and Zq[X]/(Xd + 1). Bold lower-case letters denote elements in R or Rq and
bold lower-case letters with arrows represent column vectors with coefficients in
R or Rq. We also write bold upper-case letters for matrices in R or Rq. By
default, for a polynomial denoted as a bold letter, we write its i-th coefficient
as its corresponding regular font letter subscript i, e.g. f0 ∈ Zq is a constant
coefficient of f ∈ Rq.

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l in R. This means Xd + 1 ≡
ϕ1 . . .ϕl (mod q) with irreducible polynomials ϕj of degree d/l modulo q. We
assume that Zq contains a primitive 2l-th root of unity ζ ∈ Zq but no elements
whose order is a higher power of two, i.e. q − 1 ≡ 2l (mod 4l). Therefore, we
have

Xd + 1 ≡
∏
j∈Zl

(
X

d
l − ζ2j+1

)
(mod q). (13)

Let Mq := {p ∈ Zq[X] : deg(p) < d/l} be the Zq-module of polynomials of
degree less than d/l. We define the Number Theoretic Transform (NTT) of a

16

polynomial p ∈ Rq as follows:

NTT (p) :=

 p̂0...
p̂l−1

 ∈Ml
q where NTT (p)j = p̂j = p mod (X

d
l − ζ2j+1).

Furthermore, we expand the definition of NTT to vectors of polynomials ~p ∈ Rkq ,
where the NTT operation is applied to each coefficient of ~p, resulting in a vector
in Mkl

q .

We also define the inverse NTT operation. Namely, for a vector ~v ∈ Ml
q,

NTT−1 (~v) is the polynomial p ∈ Rq such that NTT (p) = ~v.
Let ~v = (v0, . . . , vl−1), ~w = (w0, . . . , wl−1) ∈ Ml

q. Then, we define the

component-wise product ~v ◦ ~w to be the vector ~u = (u0, . . . , ul−1) ∈ Ml
q such

that
uj = vjwj mod (X

d
l − ζ2j+1)

for j ∈ Zl. By definition, we have the following property of the inverse NTT
operation:

NTT−1 (~v) · NTT−1 (~w) = NTT−1 (~v ◦ ~w) .

Similarly, we define the inner product :

〈~v, ~w〉 =

l−1∑
j=0

(
vjwj mod (X

d
l − ζ2j+1)

)
.

We remark that this operation is not an inner product in the strictly mathemat-
ical sense (e.g. it is not linear). However, it has a few properties which are char-
acteristic for an inner product. For instance, given arbitrary vectors ~x, ~y, ~z ∈Ml

q

and scalar c ∈ Zq we have: 〈~x, ~y〉 = 〈~y, ~x〉 (symmetry), 〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉
(distributive law) and 〈c~x, ~y〉 = c〈~x, ~z〉. We also highlight that the definition of
〈·, ·〉 depends on the factors of Xd + 1 modulo q.

We generalise the newly introduced operations to work for vectors ~v =
(~v1, . . . , ~vk) and ~w = (~w1, . . . , ~wk) ∈ Mkl

q of length being a multiple of l in

the usual way. In particular 〈~v, ~w〉 =
∑k
i=1〈~vi, ~wi〉.

Eventually, for a matrix A ∈Mn×kl
q with rows ~a1, . . . ,~an ∈Mkl

q and a vector

~v ∈Mkl
q , we define the matrix-vector operation:

A~v =

〈~a1, ~v〉...
〈~an, ~v〉

 ∈Mn
q .

In proving linear relations, we will need the following simple lemma.

Lemma 2.1. Let n, k ∈ N. Then, for any A ∈ Mnl×kl
q , ~v ∈ Mnl

q and ~s ∈ Zklq
we have

〈A~s,~v〉 = 〈~s,AT~v〉.

17

Proof. We prove the statement for k = n = 1. The proof can then be easily
using the definition of an inner product. Let ~ai be the (i + 1)-th row of A and
ai,j ∈ Mq be its (j + 1)-th coefficient. Similarly, we define si and vi to be the
(i+ 1)-th coefficient of ~s and ~v respectively. Then, by definition we have:

〈A~s,~v〉 =

l−1∑
i=0

〈~ai, ~s〉vi mod (X
d
l − ζ2i+1)

=

l−1∑
i=0

 l−1∑
j=0

ai,jsj mod (X
d
l − ζ2j+1)

 vi mod (X
d
l − ζ2i+1)

=

l−1∑
i=0

l−1∑
j=0

ai,jsjvi mod (X
d
l − ζ2i+1)

=

l−1∑
j=0

sj

(
l−1∑
i=0

ai,jvi mod (X
d
l − ζ2i+1)

)
= 〈~s,AT~v〉.

(14)

Here, the crucial step was the observation that for ~s ∈ Zlq and any i, j ∈ Zl we
have:

ai,jsj mod (X
d
l − ζ2j+1) = ai,jsj ,

i.e. there is no reduction modulo the polynomial when multiplying by a scalar.
ut

Last but not least, we recall the following lemma from [10].

Lemma 2.2. Let p = p0 + p1X + . . .+ pd−1X
d−1 ∈ Rq. Then,

1

l

l∑
i=0

NTT (p)i =

d/l−1∑
i=0

piX
i.

For our constructions in this work, the practical hardness of either of the
problems against known attacks is not affected by the parameter m. Therefore,
we sometimes simply write M-SISκ,B or M-LWEλ,χ. The parameters κ and λ
denote the module ranks for M-SIS and M-LWE, respectively. Also, when χ is a
uniform distribution for the set [−µ, µ], we simply denote M-LWEλ,µ.

2.3 Probability Distributions

In this paper we sample the coefficients of the random polynomials in the com-
mitment scheme using the distribution χ on {−1, 0, 1} where ±1 both have
probability 5/16 and 0 has probability 6/16 identically as in [6, 1, 10].

18

Discrete Gaussian distribution. We now define the discrete Gaussian distribution
used for the rejection sampling.

Definition 2.3. The discrete Gaussian distribution on R` centered around ~v ∈
R` with standard deviation s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2/2s2∑

~z′∈R` e−‖~z
′‖2/2s2 .

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s

2.4 BDLOP Commitment Scheme

We recall the BDLOP commitment scheme from [3]. Suppose that we want to
commit to a message vector ~m = (m1, . . . ,mn) ∈ Rnq for n ≥ 1 and that module
ranks of κ and λ are required for M-SIS and M-LWE security, respectively. Then,

in the key generation, a matrix B0 ← Rκ×(κ+λ+n)q and vectors ~b1, . . . ,~bn ←
Rκ+λ+nq are generated and output as public parameters. Note that one could

choose to generate B0,~b1, . . . ,~bn in a more structured way as in [3] since it
saves some computation. However, for readability, we write the commitment
matrices in the “Knapsack” form as above. In our case, the hiding property of
the commitment scheme is established via the duality between the Knapsack and
M-LWE problems. We refer to [13, Appendix C] for a more detailed discussion.

To commit to the message ~m, we first sample ~r ← χd·(κ+λ+n). Now, there
are two parts of the commitment scheme: the binding part and the message
encoding part. In particular, we compute

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+mi mod q,

for i ∈ [n], where ~t0 forms the binding part and each ti encodes a message
polynomial mi. In this paper, when we write that we compute a BDLOP com-
mitment to a vector ~m = (~m1, . . . , ~mn) ∈Mnl

q , we mean that we commit to the

vector of polynomials ~m = (NTT−1 (~m1) , . . . ,NTT−1 (~mn)) ∈ Rnq as above.
Next, we define the notion of a weak opening of the commitment [1].

Definition 2.4. A weak opening for the commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn
consists of a polynomial c̄ ∈ Rq, a randomness vector ~r∗ over Rq and messages
m∗1, . . . ,m

∗
n ∈ Rq such that

‖c̄‖1 ≤ 2d and c̄ is invertible over Rq
‖c̄~r∗‖2 ≤ 2β,

B0~r
∗ = ~t0,

〈~bi, ~r∗〉+m∗i = ti for i ∈ [n].

Attema et al. [1] show that the commitment scheme is still binding with respect
to weak openings if M-SISκ,8dβ is hard.

19

3 Efficient Lattice-Based Set Membership Proof

In this section we construct an efficient logarithmic-size ring signature protocol
using recent results [1, 10, 18, 19] as the building blocks. Security analysis of the
interactive protocol as well as ring signature instantiation are described in the
full version of the paper [20].

3.1 Overview

In order to showcase our main techniques, let us consider the following set mem-
bership problem. Namely, suppose we would like to prove knowledge of a secret
element ~wi ∈ Mkl

q , for some k ∈ N, such that ~w ∈ S, where S is a public set

S = {~p1, . . . , ~pn} ⊆ Mkl
q of size n = lm which is a power of l.

We now use the observation from [12, 14, 5] that ~w ∈ S if and only if there
exists a binary vector ~v ∈ {0, 1}n with exactly one 1 such that P~v = ~w where
P ∈ Mkl×n

q is the matrix with i-th column being ~pi. One could then directly
prove knowledge of ~w and ~v which satisfy conditions above using e.g. the protocol
from [10, 18]. However, the proof size grows significantly when n gets bigger. In
order to overcome this limitation, [14, 5] observe that vector ~v can be uniquely
decomposed into smaller vectors ~v1, . . . , ~vm ∈ {0, 1}l which have exactly one 1
each and

~v = ~v1 ⊗ ~v2 ⊗ · · · ⊗ ~vm. (15)

In the end, we want to commit to ~w and smaller vectors ~v1, . . . , ~vm and prove

P (~v1 ⊗ · · · ⊗ ~vm) = ~w (16)

along with
~vi ◦ (~vi −~1) = ~0 and 〈~1, ~vi〉 = 1 for i ∈ [m] (17)

where for an integer a ∈ Zq, ~a := (a, . . . , a) ∈ Zlq. We highlight that Equation
16 is over the Zq-module Mq (see Section 2.2).

We now present a new recursive approach to prove (16) and (17) efficiently.
For readability, we first introduce the following notation:

~uj := ~vj ⊗ · · · ⊗ ~vm for j ∈ [m],

P1 := P and ~x1 = (~x1,1, . . . , ~x1,k) := ~w.

We start by sending the BDLOP commitments (as described in Sections 1.1
and 2.4) to ~v1, . . . , ~vm, ~w1, . . . , ~wk to the verifier:

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~vi) mod q for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+ NTT−1 (~xi) mod q for i ∈ [k].

Then, a verifier V sends a challenge ~γ1 = (~γ1,1, . . . , ~γ1,k)←Mkl
q . Clearly, if (16)

holds then we have
〈P1(~v1 ⊗ ~u2)− ~x1, ~γ1〉 = 0.

20

Otherwise, the probability that the inner product above is equal to zero is exactly
q−d/l which is negligible.

Now, by Lemma 2.1 and using the fact that each ~vi ∈ Zlq, we have:

〈P1(~v1 ⊗ ~u2)− ~x1, ~γ1〉 = 〈~v1 ⊗ ~u2, PT1 ~γ1〉 − 〈~x1, ~γ1〉

=

l∑
i=1

v1,i〈~u2, PT1,i~γ1〉 − 〈~x1, ~γ1〉

=

l∑
i=1

v1,iγ
T
1 P1,i~u2 − 〈~x1, ~γ1〉

= ~vT1 P2~u2 − 〈~x1, ~γ1〉 = 〈~v1, P2~u2〉 − 〈~x1, ~γ1〉

(18)

where we denote
P1 =

(
P1,1 P1,2 · · · P1,l

)
∈Ml×lm

q

and the matrix P2 is defined as

P2 :=

γ
T
1 P1,1

...
γT1 P1,l

 ∈Ml×lm−1

q . (19)

Let us define the following vectors:

~x2 := P2~u2 ∈Ml
q and ~y1 := ~v1 ◦ ~x2 −

k∑
i=1

~x1,i ◦ ~γ1,i. (20)

First, we prove that ~x2 is constructed correctly. Note that by definition of ~u2 we
have

~x2 = P2(~v2 ⊗ · · · ⊗ ~vm)

which is of the form (16) but with one less tensor. Hence, in order to prove this
equation, we recursively follow the argument above. Then, assuming one can
prove (20) for ~x2, by Lemma 2.2 we know that 〈P1(~v1 ⊗ · · · ⊗ ~vm)− ~x1, ~γ1〉 = 0
if and only if y1 := NTT−1 (~y1) has the first d/l coefficients equal to zero. We
present how to prove this property for y1 below.

Let us fix j = 2. Suppose that j < m. Then, in order to show that ~x2 from
(20) is well-formed, we apply the exact strategy as before. Namely, we send a
commitment to ~xj :

tm+k+j−1 = 〈~bm+k+j−1, ~r〉+ NTT−1 (~xj) .

Then, given a challenge ~γj ←Ml
q, we deduce as in Equation 18 that

〈Pj(~vj ⊗ ~uj+1)− ~xj , ~γ〉 = 〈~vj , Pj+1~uj+1〉 − 〈~xj , ~γj〉

where
Pj =

(
Pj,1 Pj,2 · · · Pj,l

)
∈Ml×lm−j+1

q

21

and the matrix Pj+1 is defined as

Pj+1 :=

γ
T
j Pj,1

...
γTj Pj,l

 ∈Ml×lm−j

q . (21)

Next, we define vectors ~xj+1, ~yj ∈Ml
q:

~xj+1 := Pj+1~uj+1 and ~yj := ~vj ◦ ~xj+1 − ~xj ◦ ~γj . (22)

Now, in order to prove well-formedness of ~xj+1 we simply run the argument
from this paragraph for j := j + 1. Assuming that ~xj+1 is constructed correctly,
we also need to prove that the coefficients of ~yj sum up to 0, i.e. the first d/l
coefficients of yj = NTT−1 (~yj) are all zeroes. Below we describe how it can be
done for all the yj ’s simultaneously.

Eventually, for j = m we want to prove that ~xm = Pm~um = Pm~vm which is
a simple linear proof from [10]. We also want to show 〈~1, ~vi〉 = 1 for i ∈ [m]. All
these relations can be combined into one linear equation:

0 0 · · · 0 Pm
B 0 · · · 0 0
0 B · · · 0 0
...

...
...

...
...

0 0 · · · B 0

~v1...
~vm

 =

~xm
~e1
...
~e1

 (23)

where

B =

1 · · · 1
0 · · · 0
...

...
...

0 · · · 0

 ∈ Zl×lq and ~e1 =

1
0
...
0

 ∈ Zlq.

Let us denote Pm ∈ M(m+1)l×ml
q to be the matrix on the left-hand side of

Equation 23.
We proceed to proving (23). First, we get a challenge vector

~γm = (~γm,1, . . . , ~γm,m+1)←M(m+1)l
q

from V and deduce that:

〈
P̃m

~v1...
~vm

−

~xm
~e1
...
~e1

 , ~γm

〉
=

〈~v1...
~vm

 , P̃Tm~γm

〉
− 〈~xm, ~γm,1〉 −

m∑
i=1

〈~e1, ~γm,i+1〉.

Let ~xm+1 = (~xm+1,1, . . . , ~xm+1,m) := P̃Tm~γm ∈Mml
q and

~ym :=

(
m∑
i=1

~vi ◦ ~xm+1,i

)
− ~xm ◦ ~γm,1 − ~e1 ◦

m∑
i=1

~γm,i. (24)

22

Note that in this case ~xm+1 is public (as opposed to ~x1, . . . , ~xm). Then, as before
we get that ym = ym,0 + ym,1X + . . .+ ym,d−1X

d−1 = NTT−1 (~ym) satisfies:

ym,0 + . . .+ ym,d/l−1X
d/l−1 =

1

l

〈
P̃m

~v1...
~vm

−

~xm
~e1
...
~e1

 , ~γm

〉
.

Therefore, we need to argue that ym has the first d/l polynomial coefficients
equal to 0.

Finally, what have left to prove is that (i) polynomials y1, . . . ,ym have the
first d/l coefficients equal to zero and (ii) vectors ~vi are binary. We first focus
on (i) and adapt the strategy shown in [10]. At the beginning, we will commit
to a uniformly random polynomial g which has the first d/l coefficients equal to
zero:

tk+2m = 〈~bk+2m, ~r〉+ g.

Then, we will reveal the polynomial

h = g + y1 + . . .+ ym. (25)

Hence, the verifier manually checks the the first d/l coefficients of h are indeed
zeroes. On the other hand, to prove (25) we follow the approach for proving
multiplicative relations from [1].

Let ~y ← D(κ+λ+k+2m) be the masking vector. That is, given a challenge
polynomial c ← C from a challenge distribution C (defined in Section 3.2),
the prover will output a masked opening ~z of the randomness ~r defined as:
~z = ~y + c~r. Then, define polynomials fη as:

fη =

〈~bη, ~y〉 − cvη if η ∈ [m]

〈~bm+i, ~y〉 − cx1,i for η = m+ i; i ∈ [k]

〈~bm+k+j , ~y〉 − cxj+1 for η = m+ k + j; j ∈ [m− 1]

〈~bk+2m, ~y〉 − cg if η = k + 2m

where xj = NTT−1 (~xj) and similarly for vi and γj . Note that fη = 〈~bη, ~z〉−c~tη
for all η and thus can be calculated by the verifier.

First, let us focus on y1. By definition we have (see (20)):

F1 := f1fm+k+1 + c

k∑
i=1

γ1,ifm+i = ω1 +ψ1c+ y1c
2

where polynomials ω1,ψ1 are defined as follows

ω1 := 〈~b1, ~y〉〈~bm+k+1, ~y〉

ψ1 :=

k∑
i=1

γ1,i〈~bm+i, ~y〉 − 〈~b1, ~y〉x2 − 〈~bm+k+1, ~y〉v1

23

Now, by Definition of yj (see (22)), for fixed j ∈ [2,m− 1] we have:

Fj := fjfm+k+j + cγjfm+k+j−1 = ωj +ψjc+ yjc
2

where
ωj := 〈~bj , ~y〉〈~bm+k+j , ~y〉

ψj := γj〈~bm+k+j−1, ~y〉 − 〈~bj , ~y〉xj+1 − 〈~bm+k+j , ~y〉vj .
(26)

In case of j = m, we transform Equation 24 into:

Fm := c

(
−

m∑
i=1

xm+1,ifi + γm,1fk+2m−1 − e1
m∑
i=1

γm,i

)
= ψmc+ ymc

2

where

ψm := −
m∑
i=1

xm+1,i〈~bi., ~y〉+ γm,1〈~bk+2m−1, ~y〉 − e1
m∑
i=1

γm,i. (27)

Clearly, all Fj can be computed by the verifier. Therefore, if we denote

ωsm :=

m−1∑
i=1

ωi and ψsm :=

m∑
i=1

ψi − 〈~bk+2m, ~y〉 (28)

then we obtain:

m∑
j=1

Fj − cfk+2m − c2h = ωsm +ψsmc+ (y1 + . . .+ ym + g − h)c2.

Hence, we want to prove that the coefficient corresponding to the quadratic term
of
∑m
j=1 Fj − cfk+2m − c2h vanishes.

Recall that we still need to prove (ii), i.e. all ~vi’s are binary. We first get
challenges α0, . . . ,αm ← Rq from the verifier. Then, we observe that

m∑
i=1

αi(f
2
i + cfi) = ωbin +ψbinc+

(
m∑
i=1

αivi(vi − 1)

)
c2

where

ωbin :=

m∑
i=1

αi〈~bi, ~y〉2 and ψbin :=

m∑
i=1

αi〈~bi, ~y〉(1− 2vi). (29)

Therefore, we combine (i) and (ii) by proving that the quadratic term in

α0

 m∑
j=1

Fj − cfk+2m − c2h

+

m∑
i=1

αi(f
2
i + cfi) (30)

24

is equal to zero. In order to do so, we commit to the garbage polynomial

tk+2m+1 = 〈~bk+2m+1, ~r〉+ψbin +α0ψsm

and additionally send ω := 〈~bk+2m+1, ~y〉 + ωbin + α0ωsm. Then, the verifier

computes fk+2m+1 = 〈~bk+2m+1, ~z〉 − ctk+2m+1 and checks whether:

α0

 m∑
j=1

Fj − cfk+2m − c2h

+

m∑
i=1

αi(f
2
i + cfi) + fk+2m+1

?
= ω.

3.2 Main Protocol

We present our main lattice-based one-out-of-many proof using the techniques
from Section 3.1 and show how it can be turned into an efficient, logarithmic-
sized ring signature.

Similarly as in the previous works [12, 13], the secret key of a user is a
vector ~s← [−µ, µ]`d of short polynomials over Rq and the corresponding public

key ~pk ∈ Rkq is defined as ~pk := A~s for a public matrix A ∈ Rk×`q . Suppose

there are n = lm users in the ring 7 and for ι ∈ [n], let ~pkι be the public key
corresponding to the ι-th user. Then, during the signing process, user ι wants to
prove knowledge of a short vector ~s such that

A~s ∈ { ~pk1, . . . , ~pkn}

without revealing any information about its index ι.
We present the main protocol in Fig. 7 with verification equations in Fig.

9. User ι ∈ [n], which acts as a prover P, starts by decomposing the index
vector ~v = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}n, where the ι-th coefficient is equal
to 1, into m smaller vectors of length l as in (15). Note that each ~vi ∈ Zlq
satisfies (17). At the same time, P samples a masking ~y′ ← D`d

s′ and computes
~w′ = (w′1, . . . ,w

′
k) = A~y′ ∈ Rkq . Furthermore, for the linear proof P generates

a random g ∈ Rq such that g0 = . . . = gd/l−1 = 0. Now, the prover sends
the BDLOP commitments to ~vi as well as to ~w′ and g. Namely, it generates a
randomness vector ~r ← χ(λ+κ+2m+1)d and sends:

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~vi) for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+w′i for i ∈ [k].

tk+2m = 〈~bk+2m, ~r〉+ g

7 If there are less than lm users then we simply add the zero vectors as public keys
so that the ring has exactly lm elements. Then the proof that the prover knows a
short preimage to one of the columns implies that they must know a preimage to one
of the actual public keys because knowing a preimage for one of the zero columns
would constitute a SIS solution.

25

Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+k+2m+1)
q ,~b1, . . . ,~bk+2m+1 ∈ Rλ+κ+k+2m+1

q B0,~b1, . . . ,~bk+2m+1

~v = ~v1 ⊗ · · · ⊗ ~vm where ∀j 6= ι, vj = 0 and vι = 1 A, { ~pk1, . . . ,
~pkn}

A ∈ Rk×`q , ~s ∈ [−µ, µ]`d such that A~s = ~pkι

~r ← χ(λ+κ+k+2m+1)d

g ← {p ∈ Rq : p0 = . . . = pd/l−1 = 0}

~y ← D(λ+κ+k+2m+1)d
s , ~y′ ← D`

s′

~w = B0~y, ~w
′ = A~y′

~w′i = NTT
(
w′i
)

for i ∈ [k]

ti = 〈~bi, ~r〉+ NTT−1 (~vi) for i ∈ [m]

tm+i = 〈~bm+i, ~r〉+w′i for i ∈ [k]

~t = (~t0, t1, . . . , tm+k)

tk+2m = 〈~bk+2m, ~r〉+ g

~t, tk+2m, ~w-

c′� c′ ← C

~z′ = ~y′ + c′~s

If Rej0(~z′, c′~s, s′) = 1, abort ~z′ -

Define P1 ∈Mkl×n
q as in (31)

~x1 = NTT
(
~w′ −A~z′

)
For j = 1, 2, . . . ,m− 1 :

(Pj+1, ~xj+1, ~yj)← SMj(Pj , (~vj , . . . , ~vm), ~xj)

~γm� ~γm ←M(m+1)l
q

Define P̃m as the matrix in Equation 23

(~xm+1,1, . . . , ~xm+1,m) = P̃Tm~γm

~ym :=

(
m∑
i=1

~vi ◦ ~xm+1,i

)
− ~xm ◦ ~γm,1 − ~e1 ◦

m∑
i=1

~γm,i

yi = NTT−1 (~yi) for i ∈ [m]

h = g + y1 + . . .+ ym h -
α0, . . . ,αm� α0, . . . ,αm ←Rq

Compute ψsm,ωsm,ψbin,ωbin as in (28) and (29)

tk+2m+1 = 〈~bk+2m+1, ~r〉+α0ψsm +ψbin

ω = 〈~bk+2m+1, ~y〉+α0ωsm + ωbin
tk+2m+1,ω-

c� c← C

~z = ~y + c~r

If Rej1(~z, c~r, s) = 1, abort ~z -

Ver(~t0, ti,h,ω, c, c
′

, ~z, ~z′, ~γj , ~αj)

Fig. 7. Interactive protocol for our ring signature construction. Verifications equations
Ver and the sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) are defined in Fig. 9 and 8 respec-
tively. We note that Reji, for i = 0, 1, are the rejection sampling algorithms from [17]
and [19] respectively. See [20, Appendix A.3] for more details.

26

Prover P Verifier V

Inputs:

~vj , . . . , ~vm ∈ {0, 1}l, ~x Pj

Pj =
(
Pj,1 Pj,2 · · · Pj,l

)
If j = 1 : ~γ1 ←Mkl

q

~γj� Else: ~γj ←Ml
q

Pj+1 =

γ
T
j Pj,1

...
γTj Pj,l

 ∈Ml×lm−j

q

If j = 1 :

~x2 := P2(~v2 ⊗ · · · ⊗ ~vm)

~y1 := ~v1 ◦ ~x2 −
k∑
i=1

~x1,i ◦ ~γ1,i

Else:

~xj+1 := Pj+1(~vj+1 ⊗ · · · ⊗ ~vm)

~yj := ~vj ◦ ~xj+1 − ~xj ◦ ~γj
tm+k+j = 〈~bm+k+j , ~r〉+ NTT−1 (~xj+1)

tm+k+j -

Return (Pj+1, ~xj+1, ~yj)

Fig. 8. The sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) used in Fig. 7.

Additionally, P computes ~w = B0~y for ~y sampled from D
(κ+k+2m+1)d
s . Then,

P sends

(~t0, t1, . . . , tm+k, tk+2m, ~w)

to the verifier.
The verifier V outputs a challenge polynomial c′ ← C. Next, P computes

~z′ = ~y′ + c′~s and applies the rejection sampling algorithm. If it does not abort,
P returns ~z′.

Let P ∈Mkl×n
q be the matrix defined as

P =
(
NTT

(
−c′ · ~pk1

)
· · · NTT

(
−c′ · ~pkn

))
, (31)

i.e. the i-th column of P is equal to NTT
(
−c′ · ~pki

)
∈ Mkl

q . Clearly, it can be

computed by the verifier. Also, define

~w = NTT (w′ −A~z′) ∈Mkl
q .

Then, user ι wants to prove that P (~v1 ⊗ · · · ⊗ ~vm) = ~w. Obviously, the verifier
can manually construct a commitment to ~w by subtracting (tm+1, . . . , tm+k) by
A~z′. One observes that this is the equation of type (16) and it is where we apply

27

Ver(~t0, t1, . . . , tk+2m+1,h,ω, c, c
′, ~z, ~z′, ~γ1, . . . , ~γm,α0, . . . ,αm)

01 ‖~z′‖2
?
< β′ = s′

√
2`d

02 ‖~z‖2
?
< β = s

√
2(λ+ κ+ k + 2m+ 1)d

03 B0~z
?
= ~w + c~t0

04 (tm+1, . . . , tm+k) = (tm+1, . . . , tm+k)−A~z′ ∈ Rkq
05 ∀j ∈ [k + 2m+ 1],fj = 〈~bj , ~z〉 − ctj
06 ∀i ∈ [m+ 1],γm,i := NTT−1 (~γ1,i) ; ∀j ∈ [1, k],γ1,j := NTT−1 (~γ1,j)
07 ∀j ∈ [2,m− 1],γj = NTT−1 (~γj)

08 (xm+1,1, . . . ,xm+1,m) := NTT−1
(
P̃Tm~γm

)
where P̃m is the matrix in (23)

09 e1 := NTT−1 ((1, 0, . . . , 0))
10 F1 := f1fm+k+1 + c

∑k
i=1 γ1,ifm+i

11 ∀j ∈ [2,m− 1],Fj := fjfm+k+j + cγjfm+k+j−1

12 Fm := c
(
−
∑m
i=1 xm+1,ifi + γm,1fk+2m−1 − e1

∑m
i=1 γm,i

)
13 α0

(∑m
j=1 Fj − cfk+2m − c2h

)
+
∑m
i=1αi(f

2
i + cfi) + fk+2m+1

?
= ω

14 For i = 0, . . . , d/l − 1 :

15 hi
?
= 0

Fig. 9. Verification equations for the protocol in Fig. 7.

the strategy described in Section 3.1. Namely, for j = 1, 2, 3, . . . ,m− 1, we run
a two-round sub-protocol SMj(Pj , (~vj , . . . , ~vm), ~xj) defined in Fig. 8 which does
the following. The verifier V starts by sending a challenge vector ~γj . Then, P
computes the matrix Pj+1 and vectors ~xj+1, ~yj ∈Ml

q as defined in the previous
section. Eventually, it outputs the commitment to ~xj+1:

tm+k+j = 〈~bm+k+j , ~r〉+ NTT−1 (~xj+1) .

In the end, the sub-protocol returns

(Pj+1, ~xj+1, ~yj)← SMj(Pj , (~vj , . . . , ~vm), ~xj).

After executing the SM sub-protocol m − 1 times, the verifier sends ~γm ←
M(m+1)l

q . Then, in order to prove Equation 23, P first computes ~ym as in Equa-
tion 24 and outputs the polynomial h = g+y1+. . .+ym, where yi = NTT−1 (~yi)
for i ∈ [m].

Next, V sends uniform polynomials α0, . . . ,αm ← Rq. Then, P returns a
commitment

tk+2m+1 = 〈~bk+2m+1, ~y〉+ψ

to the garbage polynomial ψ = ψbin + α0ψsm along with ω := 〈~bk+2m+1, ~y〉 +
ωbin +α0ωsm (where their components are defined in (28) and (29)).

Finally, the verifier picks a challenge c ← C and outputs c. Here, the co-
efficients of a challenge c ← C are independently identically distributed with
P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4 8. Then, prover P computes ~z = ~y + c~r
and applies rejection sampling. If it does not abort, P returns ~z.

8 We will make use of the properties of C described in [1]. We refer to [20, Appendix
A.1] for more details.

28

Acknowledgements

We would like to thank anonymous reviews for useful feedback. This work was
supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY.

References

1. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product proofs
for lattice commitments. In CRYPTO (2), volume 12171 of Lecture Notes in
Computer Science, pages 470–499. Springer, 2020.

2. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth,
and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for
arithmetic circuits. In CRYPTO, pages 669–699, 2018.

3. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and Chris
Peikert. More efficient commitments from structured lattice assumptions. In SCN,
pages 368–385, 2018.

4. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and falafl:
Logarithmic (linkable) ring signatures from isogenies and lattices. In ASIACRYPT
(2), volume 12492 of Lecture Notes in Computer Science, pages 464–492. Springer,
2020.

5. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on DDH. In ESORICS
(1), volume 9326 of Lecture Notes in Computer Science, pages 243–265. Springer,
2015.

6. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques
for short(er) exact lattice-based zero-knowledge proofs. In CRYPTO (1), volume
11692 of Lecture Notes in Computer Science, pages 176–202. Springer, 2019.

7. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group sig-
natures and zero-knowledge proofs of automorphism stability. In ACM Conference
on Computer and Communications Security, pages 574–591. ACM, 2018.

8. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In CRYPTO (1), pages 40–56, 2013.

9. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital sig-
nature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–268,
2018.

10. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical ex-
act proofs from lattices: New techniques to exploit fully-splitting rings. In ASI-
ACRYPT (2), volume 12492 of Lecture Notes in Computer Science, pages 259–288.
Springer, 2020.

11. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-
based zero-knowledge proofs: New techniques for shorter and faster constructions
and applications. In CRYPTO (1), volume 11692 of Lecture Notes in Computer
Science, pages 115–146. Springer, 2019.

12. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu.
Short lattice-based one-out-of-many proofs and applications to ring signatures. In
ACNS, volume 11464 of Lecture Notes in Computer Science, pages 67–88. Springer,
2019.

29

13. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi
Liu. Matrict: Efficient, scalable and post-quantum blockchain confidential trans-
actions protocol. In CCS, pages 567–584. ACM, 2019.

14. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a
secret and spend a coin. In EUROCRYPT, pages 253–280, 2015.

15. Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based
(linkable) ring signature. In ACNS, volume 11464 of Lecture Notes in Computer
Science, pages 110–130. Springer, 2019.

16. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009.

17. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
pages 738–755, 2012.

18. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical lattice-
based zero-knowledge proofs for integer relations. In CCS, pages 1051–1070. ACM,
2020.

19. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-
based zero-knowledge proofs via one-time commitments. In Public Key Cryptog-
raphy (1), volume 12710 of Lecture Notes in Computer Science, pages 215–241.
Springer, 2021.

20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Smile: Set mem-
bership from ideal lattices with applications to ring signatures and confiden-
tial transactions. Cryptology ePrint Archive, Report 2021/564, 2021. https:

//eprint.iacr.org/2021/564.
21. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially

splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs.
In EUROCRYPT (1), volume 10820 of Lecture Notes in Computer Science, pages
204–224. Springer, 2018.

22. Shen Noether. Ring signature confidential transactions for monero. IACR Cryptol.
ePrint Arch., 2015:1098, 2015.

23. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. FALCON. Technical report, National Institute of
Standards and Technology, 2017. https://csrc.nist.gov/projects/post-quantum-
cryptography/ round-1-submissions.

24. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASI-
ACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 552–565.
Springer, 2001.

25. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William
Whyte. Efficient lattice-based zero-knowledge arguments with standard soundness:
Construction and applications. In CRYPTO (1), volume 11692 of Lecture Notes
in Computer Science, pages 147–175. Springer, 2019.

30

https://eprint.iacr.org/2021/564
https://eprint.iacr.org/2021/564

	SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions

