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Abstract. We consider the efficiency of protocols for secure multiparty
computation (MPC) with a dishonest majority. A popular approach for
the design of such protocols is to employ preprocessing. Before the inputs
are known, the parties generate correlated secret randomness, which is
consumed by a fast and possibly “information-theoretic” online protocol.
A powerful technique for securing such protocols against malicious par-
ties uses homomorphic MACs to authenticate the values produced by the
online protocol. Compared to a baseline protocol, which is only secure
against semi-honest parties, this involves a significant increase in the size
of the correlated randomness, by a factor of up to a statistical security
parameter. Different approaches for partially mitigating this extra stor-
age cost come at the expense of increasing the online communication.
In this work we propose a new technique for protecting MPC with pre-
processing against malicious parties. We show that for circuit evaluation
protocols that satisfy mild security and structural requirements, that
are met by many standard protocols with semi-honest security, the extra
additive storage and online communication costs are both logarithmic
in the circuit size. This applies to Boolean circuits and to arithmetic
circuits over fields or rings, and to both information-theoretic and com-
putationally secure protocols. Our protocol can be viewed as a sublinear
information-theoretic variant of the celebrated “GMW compiler” that
applies to natural protocols for MPC with preprocessing.
Our compiler makes a novel use of the techniques of Boneh et al. (Crypto
2019) for sublinear distributed zero knowledge, which were previously
only used in the setting of honest-majority MPC.

1 Introduction

Protocols for secure computation [30, 23, 3, 14] enable a set of parties with private
inputs to compute a joint function of their inputs while revealing nothing but
the output. Secure computation protocols provide a general-purpose tool for
computing on sensitive data while eliminating single points of failure, and their
asymptotic and concrete optimization has been the subject of a significant body
of research.
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A popular approach for the design of such protocols is to employ preprocess-
ing. Before the inputs are known, the parties generate correlated secret random-
ness, which is consumed by a lightweight and typically “information-theoretic”
online protocol. This model, known also as the offline/online model, is in par-
ticular appealing when no honest majority can be guaranteed, since it allows to
push the heavy “cryptographic” part of the protocol to the offline phase, min-
imizing the cost of the online protocol. It also enables modular analysis, where
security of the online protocol can be treated independently given access to an
idealized “dealer” who delivers the correlated randomness from the offline phase.
The dealer can then be emulated by the parties via a secure preprocessing pro-
tocol for generating the correlated randomness. Alternatively, the dealer can be
directly realized by an external party or by trusted hardware, both of which are
only used before the protocol’s execution.

Originating from the work of Beaver [1], who showed how to use “multiplica-
tion triples” for secure arithmetic computation with no honest majority, many
protocols for secure computation make extensive use of correlated randomness [4,
19, 25, 28, 16, 20, 18, 15, 9]. In particular, a powerful technique for securing such
protocols against malicious parties uses homomorphic MACs to authenticate the
values produced by the online protocol [4, 19].

Efficiency of MPC protocols with security against malicious parties is typ-
ically measured with respect to the costs of the best known protocols with a
“minimal” level of security, namely security against semi-honest parties, who
act as prescribed by the protocol but try to learn additional information from
messages they receive. In the case of MPC with preprocessing, two primary
efficiency metrics are:

i. overhead to the online communication cost; and
ii. overhead to the correlated randomness consumed by the online protocol.

Indeed, communication and storage costs (as opposed to computation) typically
dominate the online cost of concretely efficient MPC protocols in the preprocess-
ing model. Minimizing both of these measures simultaneously is instrumental for
achieving a fast and scalable online protocol.

However, current MPC with preprocessing protocols exhibit a trade-off be-
tween these two efficiency goals. For the case of evaluating an arithmetic circuit
C with |C| multiplication gates, some protocols [4, 28, 19, 15] succeed to min-
imize the online communication cost, but with a large correlated randomness
overhead of O(|C|) field elements over large fields, or O(|C| · κ) for Boolean cir-
cuits or circuits over rings of any size, where κ is a statistical security parameter.
Other protocols [20, 13] manage to achieve O(|C|) correlated randomness size for
Boolean circuits (which asymptotically improves the storage cost), but at the
expense of substantially increasing the online communication cost and relying
on algebraic geometric codes that hurt concrete efficiency.

This raises the following question about MPC with preprocessing:

Can we achieve malicious security with sublinear (in |C|) additive overhead in
both the online communication and amount of correlated randomness?
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Further, can this be done without introducing any new assumption?

1.1 Our Contribution

In this work, we answer the above question in the affirmative. We present a
complier from any MPC with preprocessing protocol for arithmetic circuits that
satisfies mild security and structural requirements (met by most standard pro-
tocols with semi-honest security), to one achieving standard security against
malicious adversaries, where the extra additive storage and online communica-
tion costs are both logarithmic in the circuit size. This applies to Boolean circuits
and to arithmetic circuits over fields or rings, and to both information-theoretic
and computationally secure protocols. In particular, our compiler introduces no
additional assumptions. Our compiler can be viewed as an information-theoretic
variant of the “GMW compiler” [23] that applies to the setting of MPC with
preprocessing.

The compiler requires two properties from the underlying semi-honest secure
protocol. First, the protocol must be secure up to additive attacks. Such a pro-
tocol guarantees not only standard semi-honest security, but further that the
actions of a malicious adversary reduce to the ability to inject additive errors
to the circuit wires (independent of secret values). This notion was formulated
by [21], who showed that many semi-honest protocols that are based on secret
sharing (both in the honest- and the dishonest-majority setting), satisfy this
requirement. This in particular is true for standard semi-honest protocols in the
preprocessing model, which is what interests us in this work.

Our second requirement is a structural robustness property we refer to as
“star-compliance.” We observe that most natural semi-honest protocols with
preprocessing exhibit the following structure. The correlated randomness in-
cludes additive shares of a random mask rw for each wire w within the circuit
being evaluated; then, in the online phase, the parties iteratively compute the
masked wire values (xw − rw).4 Effectively, after an honest execution, each wire
value xw is held in a particular secret-shared form, which can be linearly recon-
structed either by all parties together by adding to (xw− rw) their shares of rw,
or by any individual party together with the dealer who knows rw—thus forming
a “star” structure.

Recall that the dealer is a physical or virtual entity that generates correlated
randomness for the online protocol. One of the ideas of this work, as we will
see later, is that the dealer itself can act as an additional honest party in the
system, with the restriction that its actions must be fully done before the start
of the online phase.

Our main result is summarized by the following theorem, which assumes only
point-to-point communication except for a final broadcast (of one bit) to enable
security with unanimous abort.

4 Note that xw may not be the correct wire value following an additive attack by the
adversary. This is not an issue.
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Theorem 1.1 (Sublinear GMW-style compiler, informal). Let C be an
arithmetic circuit of size |C| (counting multiplication gates, inputs and outputs)
over a ring R, where R is either a finite field F or the ring Z2k . Then, every n-
party MPC protocol Π in the preprocessing model that computes C with additive
security and is star-compliant can be compiled into a protocol Π ′ that computes
C with security against malicious parties and the following efficiency features.

– Correlated randomness: Π ′ uses the correlated randomness of Π and
additional O(n · log |C| · κ) elements of R per party for a statistical security
parameter κ;

– Online communication: In addition to the online communication of Π,
each party in Π ′ communicates O(log |C| · κ) elements of R.

Furthermore, if Π has information-theoretic security then so does Π ′.

We use this theorem to derive concretely efficient protocols with malicious
security, by applying our compiler to semi-honest secure protocols based on
multiplication triples [1]. Using circuit-dependent preprocessing (where the cor-
related randomness can depend on the choice of the circuit C), we obtain a
protocol where each party sends (2 − 2

n ) elements per multiplication gate, and
the correlated randomness includes |C|+O(n · log |C| ·κ) ring elements given to
one of the parties and O(n · log |C| · κ) elements given to the remaining n − 1
parties (in addition to seeds to a pseudorandom generator). Beginning with a
semi-honest protocol with circuit-independent preprocessing (where the corre-
lated randomness depends on the size of C, but not its topology), we obtain a
protocol with the same amount of correlated randomness but with slightly higher
communication, namely, (4− 4

n ) elements per multiplication gate per party.
The (logarithmic size) extra correlated randomness introduced by our com-

piler does depend on the structure of the circuit, and thus the resulting protocols
in both cases are in the circuit-dependent preprocessing model. However, we ad-
dress both versions, as the semi-honest portion of the correlated randomness is a
dominating cost that can be generated more efficiently in the circuit-independent
case (including recent techniques for concretely efficient generation with sublin-
ear communication via pseudorandom correlation generators (PCGs) [7]).5

Corollary 1.1 (Efficient MPC with preprocessing, informal). Let C be
an arithmetic circuit of size |C| (counting multiplication gates, inputs and out-
puts) over ring R, where R is either a finite field or the ring Z2k . Then there
exist n-party MPC protocols in the preprocessing model with security against
malicious parties and the following efficiency features.

– Correlated randomness: 4 · |C|+O(n · log |C| ·κ) R-elements per party,
where κ is a statistical security parameter. Settling for computational security

5 We remark that efficient PCG constructions also exist for more complex correlations,
including circuit-dependent multiplication triples, as well as authenticated multipli-
cation triples [8]; however, these constructions rely on stronger tools and do not
extend effectively beyond the 2-party setting.



Sublinear GMW-Style Compiler for MPC with Preprocessing 5

and making a black-box use of a pseudorandom generator, this can be com-
pressed to |C|+O(n · log |C| ·κ) R-elements to one party and O(n · log |C| ·κ)
to the other n− 1 parties.

– Online communication:

• (2− 2
n ) R-elements per party per gate (circuit-dependent preprocessing);

• (4− 4
n ) R-elements per party per gate (circuit-independent preprocessing).

More concretely, the correlated randomness in the above protocols consists
of shared multiplication triples (i.e., additive shares of random a, b ∈ R, and a ·b,
where the shares of random values are directly compressible via black-box use of
a pseudorandom generator), together with additional O(n · log |C| ·κ) R-elements
resulting from our compiler.

Note that our improvement is particularly significant when the computation
is carried out over small fields or rings. For example, for Boolean circuits we are
able to eliminate the O(|C| · κ) additive storage overhead completely, without
increasing online communication as done in previous works.

A PCG-based compression. As noted above, by using a PCG to compress the
multiplication triples we can get the total storage complexity to be sublinear in
|C|. In particular, for secure 2-party computation of Boolean circuits, each triple
can be locally generated using 2 random OT correlations, where the latter can be
efficiently compressed using fast PCGs for OT [7, 6, 29]. For concretely efficient
PCG-based protocols for n ≥ 3 parties, one can use a PCG for OLE [8] for
arithmetic circuits over big fields or a PCG for OT for Boolean circuits, though
the latter incurs an O(n2) multiplicative overhead to the online communication.

Distributing the dealer. In Section 4 we discuss the cost of emulating the dealer
in our protocols by a secure preprocessing protocol involving the parties. Con-
cretely, we show that given the multiplication triples required by the semi-honest
protocol, generating the (sublinear) extra correlated randomness can be done us-
ing roughly 4|C|+ 2n|C| secure multiplications.

1.2 Our Techniques

Fully linear proofs. The main technical building block in our compiler is a fully
linear proof system [5], enabling information-theoretic zero-knowledge proofs
with sublinear communication, on secret-shared input statements. In this set-
ting, there is a prover who wishes to prove some statement over an input x to
a verifier. In each round of the protocol, the prover produces a proof which can
be queried by the verifier using linear queries only. Moreover, the verifier is al-
lowed to also make linear queries to the input x (this is what makes the proof
system fully linear). The main observation of [5] is that for low-degree languages
(i.e., languages for which membership can be checked using a degree-d polyno-
mial), there exist fully linear proof systems with communication which is only
logarithmic in the size of the input.
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A central motivating application of such proof systems is to proofs on input
statements which are distributed or linearly secret-shared between two or more
verifiers. If the prover also shares the proof in the same way, then the parties can
query their shares of the proof and the input, and then reconstruct the answers.
This is particularly useful for achieving malicious security in MPC protocols,
since it allows the parties to prove honest behavior, given the data being shared
across the parties. Indeed, this tool was used by [5, 10, 11] to compile semi-honest
protocols to malicious security with sublinear communication cost in the honest
majority setting, by observing that the statement to be proven in MPC protocols
can be represented by a low-degree polynomial.

All of these works crucially relies on the fact that in the honest majority
setting, the secret sharing is robust, meaning that the shares held by the honest
parties determine all the other shares. This fact is what prevents the corrupted
parties from cheating in the proof, since even if the prover colludes with some
of the verifiers, they cannot change the answers to the queries without being
caught by the honest verifiers.

Thus, at first glance, it seems that fully linear proof systems cannot be used
in the setting where an honest majority is not guaranteed, without adding some
kind of authentication to all sharings held by the parties during the execu-
tion, thereby increasing significantly the amount of correlated randomness. Our
main observation towards overcoming this challenge is that, in the preprocessing
model, we can view the star-sharing scheme discussed above, as a robust se-
cret sharing, since any honest party together with the trusted dealer determine
the shares held by the corrupted parties! Leveraging this property, we view the
dealer as one of the verifiers in the fully linear proof.

Our main technical contribution is a novel protocol with sublinear commu-
nication to verify the correctness of a semi-honest computation, which builds
upon the fully linear proof system. In each step of the protocol, we carefully
make sure that each piece of information along the way is robustly shared across
the parties and the dealer using the star-sharing scheme, which is what eventu-
ally guarantees that any cheating will be detected. Finally, we observe that all
messages sent by the dealer during the verification protocol are a function of ran-
dom data, and so we can let the dealer precompute all its messages and commit
to them before the start of the computation. When distributing the role of the
dealer, this amounts to having the parties securely compute the dealer’s mes-
sages, and then output an authenticated secret sharing of each message, which
can be later reconstructed by the parties. The main and final point here is that
the proof size and the public randomness in the verification protocol are both
logarithmic in the size of the computed circuit. This follows directly from the
efficiency features of fully linear proof systems for simple languages [5]. Thus, the
amount of correlated randomness the dealer needs to generate is also logarithmic
in the size of the circuit, thereby achieving our main result.

We believe that our technique is quite broadly applicable and will open the
door to new applications of fully linear proof systems in the dishonest majority
setting, which is something that has not been done prior to this work.
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1.3 Related Work

A long line of works have used an authenticated variant of Beaver’s protocol [1]
to achieve malicious security [4, 19, 16, 15, 26, 27], without increasing the online
communication cost beyond that of the semi-honest protocol. These protocols
use authenticated multiplication triples of the form (a·∆, b·∆, ab·∆) for a random
secret ∆. The parties receives additive shares of each value in the authenticated
triple as well as shares of ∆ (and of course shares of a, b and c, which are required
for the semi-honest protocol). These are used to authenticate the opening of the
actual values. Over a field F, the cheating probability is 1

|F| . Thus, over a large

field this method doubles the amount of correlated randomness compared to that
of the semi-honest protocol. When working over a small field, the triples should
be produced over a larger field, thus increasing the size of correlated randomness.
The situation is worse for rings, where the cheating probability is 1/2 regardless
of the size of the ring. Naively, this implies an overhead of |C| · κ for some
statistical parameter κ. This is indeed the case for the TinyOT protocol [28] for
Boolean circuits.

However, some improvements were suggested over the years. The MiniMac
protocol [20] (optimized and implemented in [17]) focuses on reducing overall
computation costs for circuits over small fields (including preprocessing corre-
lated randomness size) at the expense of greater online communication. Their
idea is to batch the authentication via linear error-correcting codes (ECC). How-
ever, the ECC being used requires good minimal distance for security within
multiplications of batched vectors. Achieving this requires smaller rate, trans-
lating to greater communication overhead. A recent work by [13] has suggested
an alternative to linear ECC of MiniMAC, via “reverse multiplication friendly
embeddings” for embedding (Fq)k-vector mults into a single Fqk′ field mult.
However, the gap between k and k′ yields overheads. While this construction
reduces the online work, it requires generating extra correlated randomness in
the preprocessing phase. The MiniMac protocol and its followers offer a trade-
off between the amount of correlated randomness and online communication for
computation over Boolean circuits. Their batching ideas remove the κ multi-
plicative factor, but increase the online communication. In any way, both the
correlated randomness and the online cost do not match those of the underlying
semi-honest protocols, which we are able to achieve.

Over a large ring, the SPDZ-2k protocol [15] introduced a way to reduce the
extra correlated randomness, without increasing communication. Specifically,
they require adding κ bits to the size of the authenticated triples instead of
multiplying the size by κ. For large rings, this amounts to doubling the size of
the correlated randomness compared to fields.

Finally, a different approach for 2-party computation was suggested in the
TinyTable protocol [18], based on generating a permuted version of its truth
table. The overhead of this protocol is O(|C|) for both communication and the
correlated randomness.

As can be seen from the above, we are the first to achieve sublinear overhead
for both the communication cost and the amount of correlated randomness.
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2 Preliminaries

Notation. Let P1, . . . , Pn be the parties participating in the protocol. We use [n]
to denote the set {1, . . . , n}. Let R be a ring which is either a finite field F or
the ring Z2k and let |R| be its size. Finally, let κ be the security parameter.

2.1 MPC with Preprocessing

In our setting, there is a set of n parties who wish to jointly run some com-
putation. We assume that all parties are connected via point-to-point channels,
which enable them to send private messages to each other.

We begin with defining the meaning of an n-party protocol to compute any
functionality in the preprocessing model.

Definition 2.1 (MPC with preprocessing). Let F be a family on n-party
functionalities and let f ∈ F be a function description. A protocol Π to com-
pute F consists of the PPT algorithm NextMsg, which given (1κ, f, j, i, xi, ri,m)
outputs a vector of messages sent by Pi in round j, based on its input xi, ran-
domness ri and vector m of messages sent to Pi in previous rounds. If the output
of NextMsg to Pi is of the form (out, y), then Pi outputs y and halts.

We say that Π is a protocol with function-dependent preprocessing, if in
addition to NextMsg, it consists of a PPT algorithm D (called “the dealer”),
which receives 1κ and f as an input, and outputs correlated random strings
r1, . . . , rn. We say that Π is a protocol with function-independent preprocessing,
if D receives only a bound 1S on the size of f as an input instead of f .

A protocol π = (NextMsg,D) computes any arithmetic circuit, when F is the
class of arithmetic circuits and f is a description of a ring R and a circuit C
over R, with the size S being a description of the ring and the number of output
wires and multiplication gates in C.

To define what it means to securely compute a functionality, we follow the
standard ideal-world vs. real-world paradigm of MPC [22, 12]. Let A be an ad-
versary who chooses a set of parties before the beginning of the execution and
corrupts them. There are two main types of adversaries which are usually consid-
ered in the literature. A semi-honest adversary follow the protocol instructions,
but sees the input and randomness of the corrupted parties, and all the messages
they receive in the execution. A malicious adversary can also choose the mes-
sages sent by the corrupted parties. We assume that the adversary is rushing,
meaning that it first receives the messages sent by the honest parties in each
round, and only then determines the corrupted parties’ messages in this round.

To formally define security, let realΠ,A,T (1κ, f,v) be a random variable that
consists of the view of the adversary A controlling a set of parties T , and the
honest parties’ outputs, following an execution of Π over a vector of inputs v to
compute f with security parameter κ. Similarly, we define an ideal-world execu-
tion with an ideal-world adversary S, where S and the honest parties interact
with a trusted party who computes f for them. We consider secure computation
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with selective abort, meaning that S is allowed to send the trusted party com-
puting f a special command abort. Specifically, S can send an abort command
instead of handing the corrupted parties’ inputs to the trusted party (causing all
parties to abort the execution), or, hand the inputs and then, after receiving the
corrupted parties’ outputs from the trusted party, send abortj for an honest party
Pj , preventing it from receiving its outputs6. We denote by idealF,S,T (1κ, f,v),
the random variable that consists of the output of S’s and the honest parties in
an ideal execution to compute f , over a vector of inputs v, where S controls a
set of parties T . The security definition states that a protocol Π securely com-
putes f with statistical error ε, if for every real-world adversary there exists an
ideal-world adversary, such that the statistical distance between the two random
variables is less than ε.

Definition 2.2 (Statistically-secure MPC with preprocessing). Let F be
a family of n-party functionalities and ε = ε(κ, f) be a statistical error bound.
We say that a protocol Π = (NextMsg,D) ε-securely computes F with abort in
the preprocessing model, if for every real-world malicious adversary A controlling
a set of parties T with |T | ≤ n− 1, there exists an ideal-world adversary S, such
that for every f ∈ F , every κ and every vector of inputs v it holds that

SD (realΠ,A,T (f,v), idealF,S,T (f,v)) ≤ ε

where SD(X,Y ) is the statistical distance between X and Y .

Secure computation of circuits with additive attacks [21]. In this work,
our protocol computes arithmetic circuits, which are defined in a natural way,
using addition and multiplication gates. We next define a weaker notion of secu-
rity for computing arithmetic circuits, called “security-up-to-additive-attack”,
which was introduced by Genkin et al [21]. In this model, we also allow the
ideal-world adversary S to add an error to the value on some of the wires of the
circuit. Specifically, we allow additive attacks on input wires to multiplication
gates and on the circuit’s output wires. The trusted party then determines the
output of the honest parties by computing the circuit over the parties’ inputs
and the additive errors. We denote by idealaddF,S,T (1κ, C,v) the random variable
consists of S’s and honest parties’ outputs in such an execution. Given this new
model of ideal-world execution, security is defined similarly to Definition 2.2.

Definition 2.3 (Secure MPC with additive security). Let F be the class
of n-party functionalities represented by an arithmetic circuit C and let ε =
ε(κ,C) be a statistical error bound. We say that a protocol Π = (NextMsg,D) ε-
securely computes F with abort and with additive security, in the pre-processing
model, if for every real-world malicious adversary A controlling a set of par-
ties T with |T | ≤ n − 1, there exists an ideal-world adversary S, such that

6 It easy to modify our protocol so that the honest parties unanimously abort by
running a single Byzantine agreement at the end of the protocol. For simplicity, we
omit the details from the description of our protocols.
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for every circuit C ∈ F , every κ, and every vector of inputs v it holds that
SD

(
realΠ,A,T (1κ, C,v), idealaddF,S,T (1κ, C,v)

)
≤ ε.

The hybrid model. We use the hybrid model to prove security of our proto-
cols. In this model, the parties run a protocol with real messages and also have
access to a trusted party computing a subfunctionality for them. The modular
sequential composition theorem of [12] states that it is possible to replace the
trusted party computing the subfunctionality with a real secure protocol com-
puting the subfunctionality. When the subfunctionality is g, we say that the
protocol works in the g-hybrid model.

Instantiations. Many standard semi-honest protocols in the preprocessing
model used in the literature are in fact, or can easily be converted into be-
ing additively-secure. Most notably, a semi-honest protocol which uses the well-
known Beaver’s method [1] to compute multiplication gates via random triples
satisfies this definition. For completeness, in Appendix A.1 we present the ver-
sion of this method which relies on circuit-dependent preprocessing (due to [9]
and [2]), and in Appendix A.1, the standard circuit-independent version.

2.2 Fully Linear Proof Systems

A main technical building block in our protocols is a fully linear proof system [5],
enabling information-theoretic sublinear-communication zero-knowledge proofs
on secret-shared input statements. More concretely, we can use any (public-
coin) zero-knowledge fully linear interactive oracle proof (zk-FLIOP), as defined
in Definition 2.4. In a nutshell, a zk-FLIOP is an information-theoretic proof
system in which a prover P wishes to prove that some statement about an input
x to a verifier V . In each round of the protocol, P produces a proof which,
together with x, can be queried by V using linear queries only. Then, a public
random challenge is generated and the parties proceed to the next round. At
the end, the verifier V accepts or rejects based on the answers it received to its
queries.

Definition 2.4 (Public-coin zk-FLIOP [5]). A public-coin fully linear in-
teractive proof system over R with ρ-round and `-query and message length
(u1, . . . , uρ) ∈ Nt, consists of a randomized prover algorithm P and a deter-
ministic verifier algorithm V . Let the input to P be x ∈ Rm and let r0 = ⊥. In
each round i ∈ [ρ]:

1. P outputs a proof πi ∈ Ru1 , computed as a function of x, r1, . . . , ri−1 and
π1, . . . , πi−1.

2. A random public challenge ri is chosen uniformly from a finite set Si.

3. ` linear oracle queries qi1, . . . , q
i
` ∈ Rm+ui are determined based on r1, . . . , ri.

Then, V receives ` answers (〈qi1, x||πi〉, . . . , 〈qi`, x||πi〉).



Sublinear GMW-Style Compiler for MPC with Preprocessing 11

At the end of round ρ, V outputs accept or reject based on the random challenges
and all the answers to the queries.

Let L ⊆ Rm be an efficiently recognizable language. We say that ρ-round `-
query interactive fully linear protocol (PFLIOP,VFLIOP) over R is zero-knowledge
fully linear interactive oracle proof system for L with soundness error ε if it
satisfies the following properties:

– Completeness: If x ∈ L, then VFLIOP always outputs accept
– Soundness: If x /∈ L , then for all P∗, the probability that VFLIOP outputs

accept is at most 2−ε.
– Zero-knowledge: There exists a simulator SFLIOP such that for all x ∈ L

it holds that SFLIOP ≡ view[PFLIOP(x),VFLIOP](VFLIOP) (where the verifier’s view
view[PFLIOP(x),VFLIOP](VFLIOP) consists of {ri}i∈[ρ] and {(qi1, . . . , qi`)}i∈[ρ]).

In this paper, we will use this tool for degree-d languages. That is, languages
for which membership can be checked using a degree-d polynomial. The following
theorem, which will be used by us, states that for degree-d languages, there are
zk-FLIOP protocols with sublinear communication and rounds in the size of the
input and number of monomials.

Theorem 2.1 ([5]). Let q : Rm → R be a polynomial of degree-d with M
monomials, and let Lq = {x ∈ Rm | q(x) = 0}. Let ε be the required soudness
error. Then, there is a zk-FLIOP for Lq with the following properties:

– Constant rounds, d = 2: It has 1 round, proof length O(η
√
m), challenge

length O(η) and the number of queries is O(
√
m), where η = log|R|

(√
m
ε

)
when R is a finite field, and η = log2

(√
m
ε

)
when R = Z2k . The computational

complexity is Õ(M).
– Logarithmic rounds, d ≥ 2: It has O(logM) rounds, proof length O(dη logM),

challenge length O(η logM)and the number of queries is O(d+ logM), where

η = log|R|

(
d logm
ε

)
when R is a finite field, and η = log2

(
d logm
ε

)
when

R = Z2k . The computational complexity is O(dM).

2.3 Ideal Functionalities

We now describe two ideal functionalities that will be used in our construction.
We stress that both of them are called sublinear number of times (in the size of
the computed circuit), and so any way to implement them will suffice.

Honest dealer commitment with selective abort. We denote by F dealer
com an ideal

functionality which allows an honest dealer to commit to a value which is re-
vealed to parties at a later stage. Upon receiving a secret from the dealer, the
functionality F dealer

com stores it. Then, upon receiving a request from the honest
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parties to reveal it to parties in a set J , it lets the adversary decide for each party
in J , whether to send each party Pj in J the secret or the command abortj .

To implement it with information-theoretic security we can use information-
theoretic MACs as in [4, 19]. Specifically, each party will hold an additive sharing
of the secret x, and in addition, will hold an additive sharing of a information-
theoretic MAC over x computed with each party’s key. Then, when opening the
secret towards a party Pi, all parties send it their additive shares of x and their
additive shares of the MAC computed using Pi’s key. Since Pi knows its own
key, it can use it to check the correctness of x. If any party tries to cheat, then
over a field F, it will succeed without being caught with probability of 1

|F| . Over

a small field or a ring, we can have the MAC over an extension field or ring, to
achieve a sufficiently small error.

Broadcast with selective abort. Throughout the paper, when we say that a party
broadcasts x to the other parties, it means that it uses an ideal functionality Fbc

which allows sending a message to all parties, while, as before, giving the ad-
versary the ability to cause any party to abort. This can be implemented by
having each party sending x to all other parties and then having all parties
echo-broadcast the message they received to the other parties. It is possible to
batch the second-round check for many messages together, by taking a random
linear combination of all received messages. The random coefficients can be de-
rived from a single random element r, by taking r, r2 . . . and so on. If the parties
check m messages together, then the random linear combination yields a poly-
nomial of degree m, which is evaluated on a random point r. Thus, the cheating
probability in this case when working over a field F is, by the Schwartz-Zippel
Lemma, m

|F| . As before, to obtain a sufficiently small error over small fields or

over rings, this check should be run over a suitable extension field or ring.

3 The General Framework

In this section, we present a protocol to compute any arithmetic circuit with
malicious security and dishonest majority. Our protocol works by first computing
the circuit using a secure-up-to-additive-attack protocol, and then running a light
verification step, where the parties verify the correctness of the computation
and abort if cheating was detected. Our protocol is statistically secure in the
preprocessing model, i.e., it relies on a trusted dealer D which provides correlated
randomness to the parties. We will discuss how to securely distribute the dealer
in the next section.

Before proceeding, we define an additional property that will be required
from our protocol. Specifically, we require the parties to maintain an invariant
over wires which we call “star-sharing”.

Definition 3.1 (Star-sharing). We say that x ∈ R is star-shared across a set
of parties P = {P1, . . . , Pn} and a trusted dealer D, if there exists x̂, (r1, . . . , rn),
such that each party Pi holds the pair (x̂, ri), where x̂ = x− r, r =

∑n
i=1 ri, and

D holds {ri}ni=1.
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The main feature of this sharing scheme is that it is robust, in the sense that
an honest party and the dealer alone determine all the other values, and in par-
ticular the values held by the corrupted parties. In addition, as we will see later,
given star-sharing of x and star-sharing of y, this scheme allows local conversion
to an additive sharing of x · y. These two features will play an important role in
our constructions.

We next define what it means for a protocol to be “star-sharing compliant”.

Definition 3.2 (Star-sharing compliance). Let Π = (NextMsg,D) be a pro-
tocol with preprocessing to compute any arithmetic circuit C, and let W denote
the set of output wires and input wires to multiplication gates in C. We say that
Π is star sharing compliant if the following holds: if all parties follow the proto-
col’s instructions, then the parties hold a star-sharing of the value on each wire
w ∈W .

Note that if a protocol is both secure-up-to-additive-attack and star-sharing
compliant, then it implies that the parties hold on each wire w ∈ W a star-
sharing of either the correct value or of a different value determined by the
adversary’s additive attack.

3.1 Verifying Correctness via zk-FLIOP

In this section, we present our protocol to verify the correctness of the values
the parties hold on the circuit’s wires. Recall that we allow the adversary to
add errors to wires of the circuit. The protocol we describe in this section aims
to detect such cheating. Let W be the set of the circuit’s output wires and
multiplication gates’ input wires. For each wire w ∈W , the parties need to verify
that they hold a sharing of the correct value on w, given the sharings they hold on
wires that feed w. Specifically, let Gw be the set of multiplication gates that feed
w (i.e., that between their output wire and w there are no other multiplication
gates). For each g ∈ Gw, let xg1, x

g
2 be the two input wires to g. The parties wish

thus to verify for each w ∈W that φ(xw, {xg1, x
g
2}g∈Gw) = xw−

∑
g∈Gw x

g
1 ·x

g
2 =

0. Recall that the parties hold x̂w = xw − rw, x̂g1 = xg1 − r
g
1 , x̂g2 = xg2 − r

g
2 on

each wire, as well as additive shares rw,i, r
g
1,i and rg2,i for each party Pi. The

trusted dealer D knows the additive shares of all parties and so knows the mask
on each wire. Now, in the protocol, instead of checking equality to 0 for each
equation separately, the parties will batch all the checks together, by taking a
random linear combination of all φ(xw, {xg1, x

g
2}g∈Gw) for each w ∈ W . That is,

the parties will check that

p(W ) =
∑
w∈W

αw · φ (xw, {xg1, x
g
2}g∈Gw) = 0.

Next, for each multiplication gate g`, let W g` be the set of wires w for which

g` ∈ Gw (i.e., that g`’s output feed these wires). Then, let γ` =
∑

w∈W g`

αw.
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Letting mult be the set of all multiplication gates, we can thus write

p(W ) =
∑
w∈W

αw · xw −
∑

g`∈mult

γ` · (xg`1 · x
g`
2 )

=
∑
w∈W

αw · (x̂w + rw)−
∑

g`∈mult

γ` · ((x̂g`1 + rg`1 ) · (x̂g`2 + rg`2 ))

=
∑
w∈W

αw · x̂w +
∑
w∈W

αw · rw −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 )

−
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2 + x̂g`2 · r

g`
1 ) +

∑
g`∈mult

γ` · (rg`1 · r
g`
2 )

Now, letting

Λ =
∑
w∈W

αw · x̂w −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 ),

Γi =
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2,i + x̂g`2 · r

g`
1,i) (1)

and
Ω =

∑
w∈W

αw · rw +
∑

g`∈mult

γ` · (rg`1 · r
g`
2 )

we have that checking that p(W ) = 0 is equivalent to checking that

Λ−
n∑
i=1

Γi +Ω = 0.

Observe that the parties can locally compute Λ, each party can locally compute
Γi and the dealer can locally compute Ω. In our protocol, we will ask each Pi to
compute Γi and share it to the other parties via our robust star-sharing scheme.
This can be done by having the trusted dealer hand a random string si to Pi ,
which then broadcasts Γ̂i = Γi − si to the parties. Similarly, the trusted dealer
can compute Ω and share it to the parties. Since now Γi for each i ∈ [n] and
Ω are shared in a robust way across the parties, and Λ is known, the parties
can locally compute a robust secret sharing of p(W ), open it by unmasking the
secret with the help of the dealer, and check equality to 0. The only remaining
problem is that a corrupt Pi may have cheated and share an incorrect Γi. Here
is where the zk-FLIOP machinery becomes useful. Define the vector of inputs
y ∈ F|W |+4|mult|+2 as:

y = (y1, . . . , y4|mult|+2)

=
(
Γ̂i, si,

{
(γ` · x̂g`1 ), rg`2,i, (γ` · x̂

g`
2 ), rg`1,i

}
g`∈mult

)
(2)

and consider the 2-degree polynomial c defined by

c(y) = y1 + y2 +

|mult|∑
k=1

(
y[4(k−1)+|W |+3] · y[4(k−1)+|W |+4] + y[4(k−1)+|W |+5] · y[4(k−1)+|W |+6]

)
.
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This polynomial checks that each party star-shared Γi correctly, by verifying
that Eq. (1) holds. By Theorem 2.1, there exists a zk-FLIOP for proving the
satisfiability of this polynomial with sublinear proof size. We thus let each party
Pi prove that it shared the correct value, by proving that the output of the
polynomial is 0. In particular, party Pi emulates the role of the prover in the
zk-FLIOP protocol, whereas the other parties emulate together the role of the
verifier. A crucial point that we rely upon in the protocol, is that each input to
the circuit is known by either all parties or by Pi and the dealer. In addition,
in the zk-FLIOP protocol, we ask the prover to star-share the proof that it
generates in each step. This implies that each piece of information (inputs or the
proof) is known by an honest participant (i.e., an honest party or the trusted
dealer). This fact is what helps us to prevent a cheating prover from convincing
the other parties that a false statement is correct. From the side of the verifiers,
holding their star-shares of both the proof and the input, they can make the zk-
FLIOP queries over their shares. Observe that here we crucially rely on the fact
that in zk-FLIOP, all the queries are linear, and so querying the star-shares of
the proof or the input, will yield a star-sharing of the answer. Then, the answers
are revealed by having the trusted dealer send its star-share of the answers (these
shares are eventually a random mask of the answer). Privacy is maintained in this
process, since the parties see in each round, a masked proof which looks random,
and answers to the linear queries, which by the zero-knowledge property of the
zk-FLIOP, leak no information on the inputs and can be simulated. Formally, our
protocol works as follows (we describe the protocol for finite fields and explain
how to extend it to rings later):

Πvrfy: Let (PFLIOP,VFLIOP) be a zk-FLIOP protocol with ρ rounds, `-queries per
round and message length u1, . . . , uρ ∈ N.

1. The trusted dealer D:
(a) For each i ∈ [n], it chooses a random si ∈ F and hands it to Pi.
(b) chooses a random seed α ∈ F and hands in to the parties.
(c) For each j ∈ [ρ] and i ∈ [n], it chooses a random tij ∈ Fuj and hands it

to Pi.
(d) computes Ω (after expanding all αw from α), chooses a random µ ∈ F

and then hand Ω̂ = Ω − µ to the parties.
2. The parties set for each w ∈W : αw = αw (or use α as a seed to a PRG).
3. Each party Pi locally compute Λ and Γi. Then, each Pi broadcasts Γ̂i = Γi−si

to the other parties.
4. For each i ∈ [n], party Pi proves that Γi was computed correctly:

Let yi be the vector of inputs for the proof of Pi (as defined in Eq. (2)). Let
yPi a vector of elements generated by replacing all elements in yi which are
not known to all parties by 0, and let yDi be a vector of elements generated
by replacing all elements in yi not known to D by 0. Note that yi = yPi +yDi .
(a) For each round j of the zk-FLIOP:

i. If j = 1, party Pi lets πij = PFLIOP(yi,⊥). Otherwise, it lets πij =

PFLIOP(yi, π
i
j−1, r

i
j−1).
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ii. Pi broadcasts π̂ij = πij − tij to the other parties.

iii. The dealer D chooses a random challenge rij and hands it to the
parties.

iv. The parties and the dealer let qij,1, . . . , q
i
j,` be the query vector de-

termined by VFLIOP based on rij . Then, the parties compute the
answers

âij,1, . . . , â
i
j,` ← 〈qij,1,yPi ||π̂ij〉, . . . , 〈qij,`,yPi ||π̂ij〉.

Similarly, D computes his answers

ãij,1, . . . , ã
i
j,` ← 〈qij,1,yDi ||tij〉, . . . , 〈qij,`,yDi ||tij〉.

v. The Dealer D sends ãij,1, . . . , ã
i
j,` to the parties, who then compute

aij,1, . . . , a
i
j,` ← âij,1 + ãij,1, . . . , â

i
j,` + ãij,`.

(b) The parties run the decision predicate of VFLIOP on all the queries’ an-
swers they received. If any party received reject, then it outputs reject.
Otherwise, the parties proceed to the next step.

5. The parties locally compute p̂(W ) = Λ −
∑n
i=1 Γ̂i + Ω̂. Then, the dealer D

hands s = −
∑n
i=1 si + µ to the parties.

6. The parties locally compute p(W ) = p̂(W ) + s. If p(W ) = 0, then the parties
output accept. Otherwise, they output reject.

Proposition 3.1. Let εw be additive error on each wire w ∈W (where W is the
set of all output wires and inputs to multiplication gates), and let (PFLIOP,VFLIOP)
be a ρ-rounds, `-queries and ε-soundness error zk-FLIOP protocol. Then, Πvrfy

satisfies the following properties:

1. Correctness: If ∀w ∈ W : εw = 0 and all parties follow the protocol’s
instructions, then the honest parties always output accept.

2. Soundness: If ∃w ∈ W : εw 6= 0, then the honest parties output accept with

probability of at most |W ||F| + ε.

3. Privacy: For every adversary A controlling a subset T of size ≤ n−1, there
exists a simulator S, who receives {εw, x̂w, {rw,i}i∈T }w∈W as an input, and
outputs a transcript viewS , such that viewS ≡ view

πvrfy

A .

Proof: Correctness. It is easy to see from the description of the protocol,
that if no additive errors were introduced and all parties acted honestly in the
protocol, then p(W ) = 0. It remains to show that the parties will output accept
in the zk-FLIOP protocol. Given a proof πij , it holds that πij = π̂ij + tij . Then,
when the parties compute the answers to the linear queries, we have ∀l ∈ [`] :

aij,l = âij,l + ãij,l = 〈qij,l,yPi ||(πij − tij)〉+ 〈qij,l,yDi ||tij〉 = 〈qij,l,yi||πij〉

and so by the completeness of the zk-FLIOP protocol, they will hold the correct
answer and output accept.



Sublinear GMW-Style Compiler for MPC with Preprocessing 17

Soundness. If ∃w ∈ W : εw 6= 0, then the parties will output accept if
p(W ) = 0. This can happen if one of two events occur: (i) the random linear
combination yield 0. since αw = αw for a random α, we have that p(W ) =∑
w∈W αw · εw =

∑
w∈W αw · εw and so, fixing all εw, this is a polynomial

of degree |W | evaluated on a random point α. Thus, by the Schwartz-Zippel

lemma, p(W ) = 0 with probability |W |
|F| . (ii) the parties output accept in the

zk-FLIOP, even though a corrupted party Pi shared an incorrect Γi. By the
soundness property of the zk-FLIOP protocol, this can happen with probability
of at most ε. Hence, by the union bound, the overall cheating probability is
|W |
|F| + ε.

Privacy. We construct a simulator S for our protocol and show that the
view it generates is distributed identically to the adversary A’s view in a real
execution. The simulator S receives {εw, x̂w, {rw,i}i∈T }w∈W as an input, and
then interacts with A playing the role of the honest parties and the trusted
dealer D. In particular, S works as follows:

1. Playing the role of D, it hands A a random si for each i ∈ T , a random seed α
and a random tij for each i ∈ T and j ∈ [ρ]. In addition, S chooses a random

Ω̂ and hands it to A.
2. For each honest party Pi, it chooses a random Γ̂i and hands it to A.
3. S computes all αw and then, knowing all the corrupted parties’ inputs, it

computes Γi for each corrupted party Pi. In addition, knowing all x̂w, it
computs Λ.

4. Upon receiving from A all {Γ̂i}ı∈T , the simulator S computes for each i ∈ T ,
Γ ′i = Γ̂i + si.

5. Simulating the zk-FLIOP execution:

– The prover Pi is honest: In each round j ∈ [ρ], S chooses a random π̂ij and
sends it to A. Then, playing the role of D, it hands a random challenge
rij to A. To simulate the opening of the query answers, S run SFLIOP to

receive aij,1, . . . , a
i
j,`. Then, for each l ∈ [`], it computes âij,l (since it knows

all the corrupted parties’ inputs and so all the values in yPi ) and then sets
ãij,l = aij,l − âij,l and hands the answers to A.

– The prover Pi is corrupted: In this case, S simply plays the role of the honest
parties acting as verifiers in this proof, and the role of D. Since it knows
the corrupted parties’ inputs, it knows the verifiers’ inputs to this proof,
and so it can perfectly simulate this execution.

6. S computes p(W ) =
∑
w∈W

αw · εw +
∑
i∈T

(Γ ′i − Γi) and p̂(W ) = Λ−
n∑
i=1

Γ̂i + Ω̂.

Then it sets s = p(W )− p̂(W ) and hands it to A.

Observe that the view of A in a real execution consists of three types of values:(i)
masked data which is distributed uniformly over F; (ii) the answers to the zk-
FLIOP linear queries; (iii) and the value of p(W ) which is determined by A
(since it chooses the additive errors). In the simulation, values of type (i) are
chosen uniformly from F and so are distributed the same as in the real execution.
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Type (ii) of data is distributed the same by the ZK property of the zk-FLIOP.
Finally, since S knows all the inputs held by A and the additive errors, it can
compute the actual value of p(W ) and so perfectly simulate the opening of
this value. We conclude that the view generated by the simulation is identically
distributed to the view in the real execution. This concludes the proof.

Working over small fields. The soundness error of our protocol depends on
the size of the field F. When we compute the circuit over small fields, it is possible
to run Πvrfy over an extension field to reduce the error. This is carried-out by
lifting each input to the verification protocol into the extension field. Suppose
that we want the error to be 2−ε. Then, one can choose an extension field F̃ such

that |W ||F̃| + ε1 ≤ 2−ε, where ε1 is the soundness error of the zk-FLOIP protocol

over F̃.

Working over the ring Z2k . When the circuit is computed over the ring Z2k ,
then by Theorem 2.1, we still have a zk-FLIOP with sublinear cost. However, the
probability that p(W ) = 0 when the random coefficients taken as r, r2, . . . , r|W |

and so p is a polynomial of degree |W | evaluated on a random point r, is constant
regardless of the size of the ring. Nevertheless, since the cost of our verification
protocol is small, we can afford an “expensive” solution here, and run Πvrfy over
the extension ring Z2k [x]/f(x), i.e., the ring of polynomials with coefficients from
Z2k modulo a polynomial f(x) which is of the right degree and is irreducible over
Z2. As shown in [5, 10], taking f of degree d, the number of roots of a polynomial
of degree δ over Z2k [x]/f(x) is at most 2(k−1)dδ + 1. Thus, the probability that

p(W ) = 0 when r is chosen at random, is at most 2(k−1)d|W |+1
2kd

≈ |W |
2d

. Hence, by
choosing d appropriately, we can achieve a desired soundness error.

From an active dealer to an offline dealer. In the above description we
treated the dealer as an active participant in the computation. Note however,
that all the operations carried-out by the dealer in our protocol, can be done
offline before the start of the computation, because they depend only on random
data. These include operations over randomness it chooses for the execution of
Πvrfy, and operations over the prover’s random shares of the masks, which were
chosen by the dealer.

Now, there are two types of randomness that the dealer provides in the
execution:

Type I: randomness given to a single party. This type of randomness can
be handed to the intended party before the beginning of the execution. This
includes: (i) random masks si ∈ R and {tij}j∈[ρ] where tij ∈ Ruj , given to each
party Pi.

Type II: randomness given to all parties during the protocol. For each ran-

domness of this type, the dealer can precompute it and send it to F dealer
com before

the beginning of the computation. Then, whenever the parties reach the point
where the randomness needs to be revealed, they can send a reveal command
to F dealer

com . This includes: (ii) a random seed α ∈ R given to all parties; (iii)
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Ω̂ =
∑
w∈W αw · rw +

∑
g`∈mult γ` · (r

g`
1 · r

g`
2 )− ν given to all parties, where each

αw and γ` is expanded from α and ν ∈ R is random; (iv) a challenge rij ∈ R for

each i ∈ [n] and j ∈ [ρ]; (v) the queries’ answers ãij,1, . . . , ã
i
j,`, for each j ∈ [ρ]

and i ∈ [n] (which are computed over the random challenges and prover’s inputs
which are known to the dealer); and (vi) the random mask s.

Summing the above and given that the extension degree used in the verifica-
tion protocol is d, then the amount of correlated randomness is3 + n ·

 ρ∑
j=1

uj + ρ(1 + `)

 · d ring elements.

The main observation is that the amount of correlated randomness is loga-
rithmic in the size of the input to the verification subprotocol, i.e., logarithmic
in |W |. This holds since by Theorem 2.1, there exists a zk-FLIOP protocol,
where the proof,

∑ρ
j=1 uj , the number of rounds ρ and the number of queries

` · ρ are all of size log(M), with M being the number of distinct monomials in
the polynomial for which the proof takes place. As can be seen from Eq. (1), in
our case, M equals to 2|mult|. It follows that the amount of required correlated
randomness is O(n · log |mult| · d).

Communication cost. The interaction in Πvrfy consists of having each party
sending the proof to the other parties in each round, and interaction with F dealer

com

to reveal the public randomness. Thus, the overall cost is (n·
∑ρ
j=1 uj)·d+(3+n·

(ρ+ρ ·`)) ·d ·F dealer
com ring elements, which by Theorem 2.1, for the same reasoning

explained above for the correlated randomness, is of size O(n · log |mult| · d)

Computation cost. In Πvrfy, each party Pi first computes αw = αw for each
w ∈ W and Λ and Γi. Each of these computations consists of O(|W |) local
multiplication operation. Then, the parties run the zk-FLIOP protocol to prove
the correctness of Γi for each i ∈ [n], where by Theorem 2.1, the computational
complexity is O(M), which means, as explained above, that the computation
complexity is O(n · |W |).

Summing the above, we obtain:

Proposition 3.2. Let ε be a statistical error bound. Then, Protocol Πvrfy has
communication cost O(log |mult| · κ) per party, computational cost O(n · |W |)
per party and the amount of correlated randomness required from the dealer is

O(n · log |mult| · κ) per party, where κ = log|F|

(
|W |
ε

)
when R is finite field, and

κ = log2

(
|W |
ε

)
when R = Z2k (where W is the set of output wires and input

wires to multiplication gate in the verified circuit).

Concrete instantiation for the zk-FLIOP. Based on the general construc-
tions from [5], we describe a concrete protocol in the full version for implementing
the zk-FLIOP protocol in our setting with the following parameters:
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– ρ = log(2|mult|)− 1
– uj = 3 for j ∈ [ρ− 1] and uρ = 8
– ` = 1

Furthermore, we show how to optimize the protocol such that the number of
queries becomes constant instead of logarithmic. The concrete costs of the real-
ization we obtain are:

– communication cost: 3(log(2|mult|)−1)+8 elements broadcasted by the prover.
– Correlated randomness: the dealer needs to provide 5(log(2|mult|) − 1) + 9

elements.
– Computation: each party performs approximately 2|mult| local operations.

3.2 The Main Protocol

We are now ready to present the main protocol to compute any arithmetic
circuits with malicious security. Informally, Our protocol takes any secure-up-
to-additive attack and star-sharing compliant protocol, and compile it into ma-
licious security, by adding a verification step, where the parties run the proto-
col Πvrfy from Section 3.1. Formally:

ΠMPC: Let C be the circuit to compute, defined over a ring R, let W be the
set of C’s output wires and input to multiplication gates and let ε be a desired
statistical security bound. Let Πadd

mpc be a protocol to compute C which is secure-

up-to-additive-attack with star-sharing compliance. Let R̃ be an extension ring
of R defined as:

– If R is a finite field F, then set R̃ = Fκ, such that κ is the smallest number

for which |W ||Fκ| ≤ ε/2.

– If R = Z2k , then set R̃ = Z2k [x]/f(x) where f is a polynomial of degree κ
which is irreducible over Z2, such that κ is the smallest number for which
|W |
|2κ| ≤ ε/2.

– Preprocessing: The dealer D hands the parties the following correlated ran-
domness:

• For input wire k held by party Pi, it hands a random mask ski ∈ R to Pi
and a random ski,j to Pj such that ski =

∑n
j=1 s

k
i,j .

• It hands the parties the correlated randomness required by Πadd
mpc. This in-

cludes a random rw,i for each party Pi and wire w.
• It hands the parties the correlated randomness required by Πvrfy as defined

is Section 3.1 over R̃.
• For each output wire w, it sends the random mask rw of this wire to F dealer

com .

– The online protocol:

• Sharing the inputs: For each wire k, with input vki held by Pi, it broad-
casts v̂ki = vki − ski to the other parties.
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• Circuit emulation: The parties compute the circuit C gate-by-gate in
some predetermined topological order, by running Πadd

mpc, using the correlated
randomness received from the dealer, up to and not including the output
reconstruction step.

• Verification step: Let (x̂w, rw,i) be the pair held by each party Pi on

each wire w ∈W . The parties lift
(
x̂w, {rw,i}i∈[n]

)
w∈W into R̃. Then, they

run Πvrfy with a zk-FLIOP protocol with soundness error ε/2 on the lifted
values and on the correlated randomness received from the dealer.
If any party outputs reject, then it sends abort to the other parties and
aborts the protocol. Otherwise, the parties proceed to the next step.

• Output reconstruction: For each output wire w, with output intended
to party Pi, let x̂w be the value held by the parties on this wire. Then,
the parties send (w, i) to F dealer

com , who sends rw to Pi. Finally, party Pi sets
xw = x̂w + rw as its output.

We thus obtain the following proposition:

Proposition 3.3. Let f be a n-party functionality represented by an arithmetic
circuit C over a ring R and let ε be a statistical security bound. Then, if Πadd

mpc is
star-sharing compliant and securely computes f with additive security as defined
in Definition 2.3, and (PFLIOP,VFLIOP) is public-coin zk-FLIOP as defined in
Definition 2.4, then ΠMPC (ε)-securely computes f in the F dealer

com -hybrid model
with abort in the preprocessing model.

Proof: We describe a simulator S for our protocol. In the simulation, S plays
the role of the honest parties and the dealer D when interacting with the real-
world adversaryA, who controls a set of parties T with |T | ≤ n−1. The simulator
S invokes A by handing it the correlated randomness for the honest parties as
would D do. Then, in the online protocol it works as follows:

– Input sharing step: The simulator S sends random elements to A as the masked
inputs of the honest parties. Upon receiving the masked inputs x̂k of the
corrupted parties for each input wire k from A, it extracts the corrupted
parties’ inputs by computing xk = x̂k + rk.

– Circuit emulation: Let Sadd be the simulator for Πadd
mpc. The simulator S follows

the instructions of Sadd while interacting with A. Playing the role of Sadd, it
extracts the additive attack εw for each wire w ∈W .

– Verification: Let Svrfy be the simulator for Πvrfy from Theorem 3.1. The simu-
lator S invokes Svrfy on {εw, x̂w, {rw,i}i∈T }w∈W , and follows its instructions.
Let out be the output held by the honest parties, played by S, at the end of the
execution. If out = reject, then S sends abort to the trusted party computing
f and outputs whatever A outputs. Else, out = accept. If ∀w ∈ W : εw = 0,
then S proceeds to the next step. Otherwise, ∃w ∈W : εw 6= 0 and the output
is accept. In this case, S outputs fail and halts.

– Output reconstruction: The simulator S sends the corrupted parties’ inputs to
the trusted party computing f , to receive back their outputs. For each output
wire w with output xw on it, S sends to A the random mask rw = xw − x̂w.
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For each output intended to an honest party Pj , it waits for A’s command to
F dealer
com . If A sends abort to F dealer

com , then S sends abortj to the trusted party.
Otherwise, it sends continuej . Finally, S outputs whatever A outputs.

We show thatA’s view in the simulation is statistically close to its view in the real
execution. First, observe that in the input sharing step, A sees random masked
values in both executions. In the circuit emulation step, by the definition of Πadd

mpc,
the simulation has has at most statistical distance from the real execution. In
the verification step, by the privacy property of Πvrfy, the views are distributed
identically, except for the case S outputs fail. Note however that this event
occurs when the honest parties output accept even though ∃εw 6= 0. From the
soundness property of Πvrfy, it thus follows that Pr[fail] = ε/2 + ε/2 = ε. To see

why this holds, recall that R̃ was chosen such that |W ||Fκ| ≤ ε/2 when R = F and
|W |
|2κ| ≤ ε/2 when R = Z2k , and that the parties called the zk-FLIOP protocol

with parameter ε/2. By the soundness property of Πvrfy (Proposition 3.1), the

cheating probability is |W ||Fκ|+
ε
2 when R = F, and |W |2κ + ε

2 when R = Z2k , implying

that it is bounded by ε. Finally, given that the view until the reconstruction step
are distributed similarly in both executions, then the same applies for this step as
well, since A sees only random values. Overall, by a standard hybrid argument,
we have that A’s view is distributed the same with statistical error ε as allowed
by the theorem. This concludes the proof.

Combining Proposition 3.2 and Proposition 3.3, we obtain the following the-
orem, which summarize our main result in this work:

Theorem 3.1. Let f be a n-party functionality represented by an arithmetic
circuit C of size |C| (number of multiplication gates and output wires) over a
ring R which is either a finite field or the ring Z2k and let ε be a statistical
security bound. Then, every protocol in the preprocessing model which securely
computes f with additive security and is star-compliant, can be compiled into
a ε-secure protocol, with additional O(n · log |C| · κ) correlated randomness and

O(log |C| · κ) communication per party, where κ = log|F|

(
|C|
ε

)
when R is finite

field, and κ = log2

(
|C|
ε

)
when R = Z2k .

From our main theorem we derive the following corollaries. We apply our
construction on the well-known semi-honest protocol based on Beaver triples [1].
First, we obtain a protocol in the circuit-dependent preporocessing, where both
the amortized communication cost and the amount of correlated randomness
match the cost of the underlying semi-honest protocol, for rings of any size:

Corollary 3.1 (Circuit-dependent preprocessing). Let C be a circuit with
size |C| (which is the number of multiplication gates, input and output wires in
C) defined over a ring R which is either a finite field F or the ring Z2k and let ε
be a statistical error bound. Then, there exists a protocol to ε-securely compute
C with abort, with the following properties:



Sublinear GMW-Style Compiler for MPC with Preprocessing 23

– Communication: each party sends (2− 2
n ) · |C|+O(log |C| ·κ) ring elements.

– Correlated randomness: the circuit-dependent preprocessing outputs 4 ·
|C|+O(n · log |C| · κ) ring elements to each party.
With PRG-based compression, this can be reduced to |C| + O(n · log |C| · κ)
elements to one party, and O(n · log |C| · κ) elements to the other parties.

where κ is defined as in Theorem 3.1.

Proof: Consider the semi-honest protocol described in Appendix A.1, which
is the circuit-dependent version of the well-known Beaver’s [1] protocol, as de-
scribed in [9]. In this protocol, the parties hold x̂w = xw − rw for each wire w,
which is a circuit’s output wire or input wire to a multiplication gate. In addi-
tion, they hold for each multiplication gate g with input wires wgi1 and wgi2 and
output wire wgo , an additive sharings of rgi1 , rgi2 , rgi1 · r

g
i2

and rgo . Then, they use
these to locally compute an additive sharing of masked output (masked with rgo)
and interact to reveal the masked output, by having each party sending 2 − 2

n
ring elements. The amount of correlated randomness in this protocol is 4 ring
elements per multiplication gate without compression. Alternatively, the dealer
can hand each party a PRG seed from which its shares of rgi1 , rgi2 and rgo are
derived, thereby removing completely 3 · |C| elements of correlated randomness.
For rgi1 ·r

g
i2

, the dealer can hand n−1 parties a PRG seed from which their shares
are expanded, and give the remaining party one share for each gate. We remark
that for each input, each party needs to send one element (masked input) to
all parties, while for each output wire, the dealer sends the mask to one party.
Thus, per party, the communication cost for an input/output wire is bounded
by the cost per multiplication.

The protocol is thus star-sharing compliant. In addition, as shown in Ap-
pendix A.1, the protocol satisfies the property of additive security. Hence, by
applying Theorem 3.1 on this protocol the corollary follows.

In the circuit-independent model, we have a similar result. Here the commu-
nication is slightly higher because the cost of the underlying semi-honest protocol
is higher.

Corollary 3.2 (Circuit-independent preprocessing). Let C be a circuit
with size |C| (number of multiplication gates, input and output wires in C) de-
fined over a ring R which is either a finite field F or the ring Z2k and let ε be
a statistical error bound. Then, there exists a protocol to ε-securely compute C
with abort, with the following properties:

– Communication: each party sends (4− 4
n ) · |C|+O(log |C| ·κ) ring elements.

– Correlated randomness: the circuit-independent preprocessing outputs 3 ·
|C| ring elements to each party, and there is an additional circuit-dependent
preprocessing which outputs O(n · log |C| · κ) elements to each party.
With PRG-based compression, this can be reduced to |C| + O(n · log |C| · κ)
elements to one party, and O(n · log |C| · κ) elements to the other parties.

where κ is defined as in Theorem 3.1.
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Proof: The proof is identical to the proof of Corollary 3.1, with the only
difference being the underlying protocol with additive security. Here we use
the standard multplication with Beaver triples shown in Appendix A.2. The
parties interact for each multiplication’s input wire and thus communication is
doubled. The correlated randomness consists of additive sharings of the input
masks and their multiplication, and so the per gate each party stores 3 random
ring elements.

Remark 3.1 (multicast Vs. private channels). The communication cost presented
in Corollaries 3.1 and 3.2 is achieved when only private channels between the
parties exist. In case the parties have access to a multicast channel, where sending
one message to n parties has the same cost as sending n private messages, then
the communication cost is 1 ring element per multiplication gate per party in
the circuit-dependent preprocesssing model, and 2 ring elements with circuit-
independent preprocessing.

4 Distributing the Dealer

In this section, we show how the role of the trusted dealer can be emulated by
the parties in a secure way. Our focus here is only on the correlated randomness
required by our compiler, ignoring the correlated randomness for the underly-
ing additively-secure protocol, which is usually easier to generate. To this end,
we need to present a MPC protocol which outputs to each party the correlated
randomness required by our verification protocol. Our approach to this task is
to view the dealer’s work as computing an arithmetic circuit, and then one can
use any general MPC protocol to compute this circuit by the parties. This is
motivated by the fact that, as shown in Section 3.1, the computational work of
the dealer in the verification protocol, is O(n · |C|). This implies that the compu-
tational work is asymptotically proportional to the size of the circuit (times the
number of parties). We now show that the hidden constants are actually very
small, which means that the circuit computed by the dealer has almost the same
size as the original circuit. We remind the reader that general MPC protocols
require interaction only for multiplication operations and not for linear opera-
tions. Thus, we are only interested here in counting the number of multiplication
operations carried-out by the dealer.

When looking into our verification protocol Πvrfy, we identify three compu-
tations which require multiplications:

– Computing the random coefficients αw for each output wire or multiplication
gate’s input wire w. This computation is done by taking αw = αw for a random
α ∈ R. Thus, for |W | wires, this requires |W | multiplications. Assuming that
the number of outputs is considerably smaller compared to the number of
multiplication gates, this amount to 2|C| multiplications.

– Computing Ω =
∑
w∈W αw ·rw+

∑
g`∈mult γ` ·(r

g`
1 ·r

g`
2 ). Recall that the random

coefficients γ` are computed as a summation of several αw coefficients, and so
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are computed without interaction. Thus, the cost here is 2 multiplications for
each multiplication gate g`, and so 2 · |C|.

– Computing the queries answers ãij,1, . . . , ã
i
j,` ← 〈qij,1,yDi ||tij〉, . . . , 〈qij,`,yDi ||tij〉

in each round of the zk-FLIOP. The cost here depends of course on the way
the zk-FLIOP is realized. When using the logarithmic construction described
in the full version, the parties need to compute approximately 2|mult| mul-
tiplications overall, and so 2|C| multiplications for each of the n calls to the
zk-FLIOP.

Summing the above, we conclude that the size of the dealer’s circuit, mea-
sured by the number of multiplications, is 4|C|+n ·2|C|. For the popular setting
of 2-party secure computation, for instance, this amount so 8 · |C|.

Thus, to securely compute this circuit, the parties can use any state-of-art
general MPC protocols for computing arithmetic circuits, such as the recent
results of [15, 27, 24, 8], depending on the type of underlying ring/field. Together
with our light online protocol, this yields a protocol for computing arithmetic
circuits with practical potential.

Remark 4.1 (Distributing the dealer for PRG-based protocols.). The approach
above works also when the semi-honest correlated randomness is compressed
using a PRG. In particular, distributing the dealer does not require securely
evaluating the PRG. To illustrate this, consider PRG compression in protocols
based on multiplication triples (as in Corollary 3.1 and 3.2). When the n parties
emulate the dealer, each party chooses a PRG seed from which it derives its
shares of vectors a and b. In addition, all but one party derive their share of
c = a · b from their seed. Then, the parties run an MPC protocol to compute
the share of c of the remaining party from the 3n − 1 vectors, and finally the
correlated randomness for sublinear ZK verification. The crucial point is that
feeding the MPC with an incorrect PRG output does not hurt the security of
the online protocol since the latter is secure even with the “corruptible” version
of the multiplication triples correlation (this was also observed in the context of
SPDZ-style protocols and pseudorandom correlation generators, see [7]).
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A Protocols which are Secure-up-to-Additive-Attack

In this section, we present two instatiations for a protocol to compute an arith-
metic circuit, which is secure up to additive attack, as defined in Definition 2.3
and star-sharing compliant as defined in Defintion 3.2. Recall that the require-
ment is that for each multiplication gate or output wire of the circuit, the parties
will hold a masked value on this wire, plus an error that the adversary added,
which can be extracted by a simulator.

A.1 Multiplication in the Circuit-Dependent Preprocessing
Model [9]

In this model, the structure of the circuit is known in advance. At the beginning
of the protocol, the parties hold two masked inputs x̂ = x− r1 and ŷ = y − r2.
The parties wish to obtain ẑ = x · y − r3. Observe that

ẑ = x · y − r3 = (x̂+ r1)(ŷ + r2)− r3

= x̂ · ŷ + r1 · ŷ + r2 · x̂+ r1 · r2 − r3 (3)

and so if the parties are given an additive sharing of r1, r2, r1 ·r2 and r3, they can
locally compute an additive sharing of ẑ. Note that in this approach, if a multipli-
cation’s output wire is entering multiple gates in the next layer, then we need to
make sure that the same mask is used for the input wires of the following gates.
This is why the correlated randomness for this protocol is circuit-dependent, i.e.,
depends on the structure of the circuit. The multiplication protocol thus works
as follows:

– Inputs: Each party Pi holds: x̂, ŷ, ri1, ri2, (r1 · r2)i and ri3.
– The protocol:

1. Each party Pi locally computes zi = ri1 · ŷ + ri2 · x̂ + (r1 · r2)i − ri3 and
sends zi to P1.

2. Party P1 computes z′ =
∑n
i=1 z

i and broadcasts z′ to all the other parties.
3. The parties compute ẑ = x̂ · ŷ + z′ and store the result as the output.
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Recall that when P1 broadcasting z′, this amounts to sending z′ to all parties
and then at the end run a batch check with constant cost for the entire circuit,
to assert that the same z′ was sent to all parties in each gate (see Section 2.3).
Thus, the overall communication cost in this protocol is 2(n− 1) elements, and
so each party sends 2− 2

n elements per multiplication gate. Note that for 2-party
computation, this comes down to sending just a single element per party per
multiplication.

Security up to an additive error. The above protocol does not guarantee cor-
rectness; a corrupted party can send incorrect values and cause the output to
be incorrect. However, the only attack that corrupted parties can carry-out is
to add an error to the output. To see this, consider a simulator that holds x̂, ŷ
and the randomness of the corrupted parties. Such a simulator can predict the
messages sent by the corrupted parties. Thus, it can interact with the adversary,
by sending him random values as the messages from the honest parties. Once it
receives the messages from the corrutped parties, it can compute the error by
comparing the received messages and the messages that should have been sent.

A.2 Multiplication in the Circuit-Independent Preprocessing
Model [1]

When the structure of the circuit to be computed is yet to be known, we view
the preprocessing as a service which produces random multiplication triples (i.e.,
Beaver triples). These triples are later consumed by the online computation. In
this model, the parties interact to compute the masked input for each multipli-
cation gate or a circuit’s output wire. Then, they locally compute an additive
sharing of the multiplication’s output value. Addition gates which are between
two multiplication gates are locally computed over the additive sharing of wire
values. The protocol works as follows:

– Inputs: Each party Pi holds: xi, yi, ri1, ri2 and (r1 · r2)i.
– The protocol:

1. Each party computes xi − ri1 and yi − ri2 and sends it to P1.

2. Party P1 computes x̂ = x−r1 =
n∑
i=1

(xi−ri1) and ŷ = y−r2 =

n∑
i=1

(yi−ri2).

Then, it broadcasts x̂ and ŷ to all the other parties.
3. Each party Pi computes zi = ri1 · ŷ + ri2 · x̂ + (r1 · r2)i. Then, party P1

defines x̂ · t̂+ z1 as its output share, where each Pi, with i 6= 1 defines zi

as its output share.

Observe that the communication cost here is doubled compared to the mul-
tiplication protocol in the circuit-dependent preprocessing model.

By the same reasoning which was used to compute the additive error for each
multiplication gate separately in the circuit-dependent model presented above,
we can compute the additive error on each multiplication’s input wire or circuit’s
output wire, given the masked inputs to multiplication gates which feed these
wires and the corrupted parties’ randomness.


