
Authenticated Key Exchange and Signatures
with Tight Security in the Standard Model

Shuai Han1,2 , Tibor Jager3 , Eike Kiltz4 , Shengli Liu1,2,5(�) , Jiaxin
Pan6 , Doreen Riepel4 , and Sven Schäge4
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Abstract. We construct the first authenticated key exchange protocols
that achieve tight security in the standard model. Previous works either
relied on techniques that seem to inherently require a random oracle, or
achieved only “Multi-Bit-Guess” security, which is not known to compose
tightly, for instance, to build a secure channel.

Our constructions are generic, based on digital signatures and key
encapsulation mechanisms (KEMs). The main technical challenges we
resolve is to determine suitable KEM security notions which on the one
hand are strong enough to yield tight security, but at the same time
weak enough to be efficiently instantiable in the standard model, based
on standard techniques such as universal hash proof systems.

Digital signature schemes with tight multi-user security in presence
of adaptive corruptions are a central building block, which is used in all
known constructions of tightly-secure AKE with full forward security.
We identify a subtle gap in the security proof of the only previously
known efficient standard model scheme by Bader et al. (TCC 2015). We
develop a new variant, which yields the currently most efficient signature
scheme that achieves this strong security notion without random oracles
and based on standard hardness assumptions.

Keywords: Authenticated key exchange, digital signatures, tightness

1 Introduction

A tight security proof establishes a close relation between the security of a cryp-
tosystem and its underlying building blocks, independent of deployment param-
eters such as the number of users, protocol sessions, issued signatures, etc. This
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enables a theoretically-sound instantiation with optimal parameters, without the
need to compensate a security loss by increasing key lengths or group sizes.

AKE. Authenticated key exchange (AKE) protocols enable two parties to au-
thenticate each other and compute a shared session key. In comparison to many
other cryptographic primitives, standard security models for AKE are extremely
complex. Following the approach of Bellare-Rogaway [5] and Canetti-Krawczyk
[7], a very strong active adversary is considered, which essentially “carries” all
protocol messages between parties running the protocol and thus is able to mod-
ify, replace, replay, drop, or inject arbitrary messages. Furthermore, the adver-
sary may adaptively corrupt parties and reveal session keys while adaptively
choosing which session(s) to “attack”.

Achieving security in such a strong and complex model gives very strong
security guarantees, but it also makes tightness particularly difficult to achieve.
Indeed, most security proofs of AKE protocols are extremely lossy, often even
with a quadratic security loss in the total number of sessions established over
the entire lifetime of the protocol. Considering for instance the huge number
of TLS connections per day in practice, this loss may be too large to compen-
sate in practice because the resulting increase of deployment parameters would
incur an intolerable performance overhead. Hence, such protocols could not be
instantiated in a theoretically-sound way.

Therefore tight security of AKE protocols is a well-established research area,
with several known constructions [2, 19, 29, 23, 13, 11]. As recently pointed out
by Jager et al. [23], some of these constructions [2, 19, 29] consider a “Multi-
Bit-Guess” (MBG) security experiment, which is not known to compose tightly
with primitives that apply the shared session key, e.g., to build a secure channel.
The standard and well established security notion in the context of multiple
challenges is “Single-Bit Guess” (SBG) security. Unfortunately, the only known
constructions in the SBG model [23, 13, 11] apply proof techniques that seem
to inherently require the random oracle model [4]. For instance, [23] is based
on non-committing encryption, which is known to be not instantiable without
random oracles [32], whereas [13, 11] use a similar approach based on adaptive
reprogramming of the random oracle.

Currently, there exists no AKE protocol which achieves tight security in a
standard (SBG) AKE security model, with a security proof in the standard
model, without random oracles, not even an impractical one.

Digital Signatures. Digital signatures are a foundational cryptographic prim-
itive and often used to build AKE protocols. All known tightly-secure AKE
protocols with full forward security [2, 19, 13, 11, 29, 23] are based on signa-
tures that provide tight existential unforgeability under chosen-message attacks
(EUF-CMA), but in a multi-user setting and in the presence of an adversary
that may adaptively corrupt users to obtain their secret keys (MU-EUF-CMAcorr

security [2]). It is easy to prove that MU-EUF-CMAcorr security is non-tightly
implied by standard EUF-CMA security, but with a linear security loss in the
number of users.
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The construction of a tightly MU-EUF-CMAcorr secure signature scheme has
to overcome the following, seemingly paradoxical technical problem. On the one
hand, the reduction must be able to output user secret keys to the adversary,
to respond to adaptive secret key corruption queries. However, it cannot apply
a guessing argument, as this would incur a tightness loss. Therefore it is forced
to “know” the secret keys of all users. On the other hand, it must be able to
extract a solution to a computationally hard problem from a forgery produced
by an adversary. This seems to be in conflict with the fact that the reduction has
to know secret keys for all users, as knowledge of the secret key should enable
the reduction to compute a “forged” signature by itself, without the adversary.
In fact, tight multi-user security is known to be impossible for many signature
schemes, for example when the public key uniquely defines the matching secret
key [3].

Several previous works have developed techniques to overcome this seeming
paradox [1, 2, 19, 12]. Essentially, their approach is to build schemes where
secret keys are not uniquely determined by public parameters, along with a
reduction that exploits this to evade the paradox. However, all currently known
constructions either use the random oracle model, and therefore cannot be used
to build tightly-secure AKE in the standard model, or are based on tree-based
signatures [2], which yields signatures with hundreds of group elements and thus
would incur even more overhead than compensating the security loss with larger
parameters. Jumping slightly ahead, we remark that [2] also describes a pairing-
based signature scheme with short constant-size signatures, but we identify a
gap in the security proof. Hence, currently there is no practical signature scheme
which achieves tight security in the multi-user setting with adaptive corruptions.

1.1 Contributions

Summarizing the previous paragraphs, we can formulate the following natural
questions related to AKE and signatures:

Do there exist efficient AKEs and signature schemes with tight multi-user
security in the standard model?

Tightly-secure signatures. We identify a subtle gap in the MU-EUF-CMAcorr

security proof of the scheme from [2] with constant-size signatures (namely, SIGC

in [2, Section 2.3]). We did not find a way to close this gap and therefore develop
a new variant of this scheme and prove tight MU-EUF-CMAcorr security in the
standard model. More precisely, SIGC follows the blueprint of the Blazy-Kiltz-
Pan (BKP) identity-based encryption scheme [6], and transforms an algebraic
message authentication code (MAC) scheme into a signature scheme with pair-
ings. If the MAC is tightly-secure in a model with adaptive corruptions, so is the
signature scheme. We notice, however, that their MAC does not achieve tight
security with adaptive corruptions since the corruption queries leak too much
secret information to the adversary.

To overcome this issue, we borrow recent techniques from tightly-secure hi-
erarchical identity-based encryption schemes [26, 27] to construct a new MAC

3



Alice ( sA, sskA, vkA) Bob (sskB , vkB)

Pick random nonce N ←$ {0, 1}λ

(p̂k, ŝk)←$ KEM.Gen

σ1 ← Sign(sskA, (Alice,Bob, p̂k,N))

Verify σ1 and abort if it is invalid

(c,K)←$ Encap(p̂k)

σ2 ← Sign(sskB , (Alice,Bob, p̂k, σ1, c,N))

Verify σ2 and abort if it is invalid

K ← Decap(ŝk, c)

stA ←$ SE.E(sA, ŝk)

N

(p̂k, σ1)

(c, σ2)

Fig. 1. The two-message protocol AKE2msg using the “KEM+2×SIG” approach and the
three-message protocols AKE3msg (including the red parts) and AKEstate

3msg (including the
red and gray parts) using the “Nonce+KEM+2×SIG” approach. (AKEstate

3msg additionally
uses a symmetric encryption scheme SE.)

scheme that can be proven tightly secure under adaptive corruptions. Our con-
struction is based on pairings and general random self-reducible matrix Diffie-
Hellman (MDDH) assumptions [15]. When instantiated based on the Dk-MDDH
assumption (e.g., k-Lin), a signature consists of 4k + 1 group elements. That is
5 group elements for k = 1 (SXDH). This yields the first tightly MU-EUF-
CMAcorr-secure signature in the standard model with practical efficiency.

We remark that our new signature scheme circumvents known impossibil-
ity results for signatures and MACs [3, 30], since these apply only to schemes
with re-randomizable signatures or re-randomizable secret keys [3], or deter-
ministic schemes [30]. Our construction is probabilistic and not efficiently re-
randomizable in the sense of [3].7

Tightly-secure AKE in the standard model. The classical “key encap-
sulation plus digital signatures” (KEM + 2 × SIG) paradigm to construct AKE
protocols gives rise to efficient protocols and is the basis of many constructions,
e.g., [7, 10, 19, 13, 11, 29, 23]. To establish a session key, two parties Alice and
Bob proceed as follows (cf. Figure 1). Alice generates an ephemeral KEM key
pair (p̂k, ŝk) and sends the signed public key to Bob. Bob then uses this public
key to encapsulate a session key, signs the ciphertext, and sends it back to Alice.
Alice then obtains the session key K by decapsulating with the KEM secret key.
For example, one can view the classical “signed Diffie-Hellman” as a specific
instantiation of this paradigm, by considering the Diffie-Hellman protocol as the
ElGamal KEM.

Our approach to construct efficient AKE protocols with tight security is
based on this KEM + 2 × SIG paradigm. Given a tightly MU-EUF-CMAcorr se-
cure signature scheme, it remains to determine suitable security notions for the
underlying KEM, which finds a balance between two properties. The security

7 Our signatures are only re-randomizable over all strings output by the signing algo-
rithm. The impossibility result from [3] requires uniform re-randomizability over all
strings accepted by the verification algorithm, which does not hold for our scheme.
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KEMMDDH [22] MUC-CCA KEM

MUC-otCCA KEM
(Definition 3)

AKE2msg

SIGMDDH

(Subsection 5.3)
MU-EUF-CMAcorr

SIG

MUSC-otCCA KEM
(Definition 3)

AKE3msg

HPSMDDH
ε-MU-SIM KEM

(Definition 5) IND-mRPA SE AKEstate
3msg

Instantiations Building blocks
AKE

(Section 4)

+
+ nonce

+ nonce

+
Fig. 2. Schematic overview of our AKE constructions.

notion must be strong enough to enable a tight security proof in presence of
adaptive session key reveals and possibly even state reveals. At the same time, it
must be weak enough to be achievable in the standard model. We now sketch the
construction of our three AKE protocols along with the corresponding KEM se-
curity notions, see also Figure 2. In terms of AKE security, we consider a generic
and versatile security model which provides strong properties, such as full for-
ward security and key-compromise impersonation (KCI) security. “Partnering”
of oracles is defined based on original key partnering [28]. The model is defined
in pseudocode to avoid ambiguity.

– Our first result is a new tight security proof for the two-message proto-
col AKE2msg, which follows the KEM+2× SIG paradigm. AKE2msg is exactly
the LLGW protocol [29] and the main technical difficulty is to adopt the
LLGW proof strategy from the “Multi-Bit-Guess” to the standard “Single-
Bit-Guess” setting. This requires significant modifications to the proof out-
line and the underlying KEM security definition. Our new proof relies on
Multi-User/Challenge one-time CCA (MUC-otCCA) security for KEMs, al-
lowing the adversary to ask many challenge queries but only one decap-
sulation query per user. Even though this is a slightly weaker version of
the standard Multi-User/Challenge CCA (MUC-CCA) security notion for
KEMs (allowing for unbounded decapsulation queries [17]), the most effi-
cient instantiations we could find are the MUC-CCA-secure schemes with
tight security from [17, 18, 22].8

– Our second result is a three-message protocol AKE3msg resisting replay at-
tacks, which extends the KEM+2×SIG protocol AKE2msg with an additional
nonce sent at the beginning of the protocol (“Nonce + KEM + 2× SIG”). For
our security proof we require the KEM security notion of Multi-User Single-
Challenge one-time CCA (MUSC-otCCA) security, allowing the adversary

8 We are aware of the generic constructions of bounded-CCA secure KEMs from CPA-
secure KEMs [8], but they do not seem to offer tight security in a multi-challenge
setting.
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to ask only one challenge and one decapsulation query per user. This notion
is considerably weaker than MUC-otCCA security and it is achievable from
any universal2 hash proof system [9]. (For example, based on a standard
assumption such as Matrix DDH (MDDH) [15] which yields highly efficient
KEMs.)

– Our third result is a three-message protocol AKEstate
3msg, which extends the

Nonce + KEM + 2 × SIG protocol AKE3msg by encrypting the state with a
symmetric encryption (SE) scheme. AKEstate

3msg has tight security in a very
strong model that even allows the adversary to obtain session states of oracles
[7]. The fact that the reduction must be able to respond to adaptive queries
for session states by an adversary makes it significantly more difficult to
achieve tight security. Our key technical contribution is a new “Multi-User
SIMulatability” (ε-MU-SIM) security notion for KEMs, which we also show
to be tightly achievable by universal2 hash proof systems. We stress that the
reduction to the security of the symmetric encryption scheme is the only part
of the security proof which is not tight. We tolerate this, since compensating
a security loss for symmetric encryption incurs significantly less performance
penalty than for public key primitives.9

Note that our AKE3msg and AKEstate
3msg use nonce to resist replay attacks and admit

KEM security with one challenge per user. This can also be achieved generically
by assuming synchronized counters between parties, following the approach of
[29]. Consequently, we can also use counter instead of nonce in AKE3msg and
AKEstate

3msg, and obtain two two-message counter-based AKE protocols which have

the same efficiency and security as AKE3msg and AKEstate
3msg, respectively.

Instantiations. Table 1 gives example instantiations of our protocols from
universal2 hash proof systems from the MDDH assumption and compares them
to known protocols. The protocols BHJKL [2] and LLGW [29] only offer tight
security in the MBG model which implies security in our standard SBG model
with a loss of T , the number of test queries [23]. For more details on our instan-
tiations we refer to Section 6. Note that there are other works which study AKE
in the standard model (e.g., [16, 24]). However, they do not focus on tightness
and have a quadratic security loss.

Technical approach to AKE. In the following, we give a brief overview of
our technical approach to tight security under our SBG-type security definition
and show how our protocols prevent replay attacks and support state reveals.

To obtain an AKE protocol with a tight security reduction in the KEM + 2×
SIG framework, we rely on the tight MU-EUF-CMAcorr security of the signature
scheme to guarantee authentication and deal with corruptions, and on the tight
MUC-CCA security of KEM to deal with session key reveals. To this end, recall

9 For instance, openssl speed aes shows that AES-256 is only about 1.5 times slower
than AES-128 on a standard laptop computer. Given that the cost of symmetric key
operations is already small in comparison to the public key operations, we consider
this as negligible.
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Table 1. Comparison of standard model AKE protocols with full forward security,
where T refers to the number of test queries. Protocols AKEstate

3msg and AKE2msg refer to
our protocols given in Fig. 1, instantiated from Dk-MDDH. The column Communica-
tion counts the communication complexity of the protocols in terms of the number of
group elements, exponents and nonces, where we instantiate all protocols with our new
signature scheme from Subsection 5.3. The column Security Loss lists the security
loss of the reduction in the “Single-Bit-Guess” (SBG) model, ignoring all symmetric
bounds.

Protocol Communication #Msg. Assumption
State

Reveal
Security

Loss

BHJKL [2]
11 + 11

3
SXDH

no O(λT )
(2k2 + 6k + 5) + (6k + 9) Dk-MDDH

LLGW [29]
9 + 10

2
SXDH

no O(λT )
(k2 + 7k + 1) + (6k + 4) Dk-MDDH

AKEstate
3msg

8 + 7
3

SXDH
yes O(λ)

(5k + 3) + (5k + 2) Dk-MDDH

AKE2msg (= LLGW)
9 + 10

2
SXDH

no O(λ)
(k2 + 7k + 1) + (6k + 4) Dk-MDDH

that the SBG-style security game for MUC-CCA security allows multiple encap-
sulation and decapsulation queries per user, but considers only a single challenge
bit. At the same time, observe that the reduction algorithm can always use the
challenge key (which is either the real encapsulated key or a random key) as the
session key of the simulated AKE protocol. In combination, these observations
immediately lead to a tight security proof for AKE2msg. We remark that AKE2msg

can also be proved secure under an even weaker security notion for KEM, namely
MUC-otCCA, which allows only one decapsulation query per user. This assumes
that parties choose to “close” a session once this session accepts or rejects. In
this way we can guarantee that the adversary has only a single opportunity to
submit a ciphertext per p̂k.

To prevent replay attacks we make use of an exchange of nonces resulting
in protocol AKE3msg. As a byproduct of using nonces (in combination with the
signature scheme), we can now guarantee that the adversary cannot replay any
message anymore. This includes p̂k, and thus we can ensure that the simulator
only needs to respond to one encapsulation query per p̂k in the security game.
In this way we can further weaken the security requirement that we need from
the KEM to MUSC-otCCA.

Now, to support state reveals, we use a symmetric encryption scheme SE
that is used to encrypt the ephemeral secret key ŝk of each session, similar to
[23]. More concretely, we require that the state is computed as st = SE.E(s, ŝk),
where s is the secret key of SE that is made part of the long-term secret key.
This modification yields protocol AKEstate

3msg. Having introduced such a state, we
now also consider a security model that allows the adversary to issue state reveal
queries to obtain the state st. But now the reduction to the MUSC-otCCA se-

7



curity of the KEM cannot work as before, since the reduction algorithm cannot
output SE.E(s, ŝk) to the adversary. A natural way to address this problem is
to make use of the security of SE, and make the reduction change the state to
an encryption of some dummy random key r , i.e., st = SE.E(s, r). However,
now the SE reduction algorithm is faced with a critical decision: If the adver-
sary asks a state reveal query, should the reduction output st = SE.E(s, ŝk) or
st = SE.E(s, r)? It seems that both choices are problematic. If the reduction
responds with the encryption of KEM secret key ŝk, then the reduction to the
KEM will fail in case the adversary asks a test query. If on the other hand the
reduction outputs an encryption of a dummy random key, then the reduction
will fail in case the adversary queries the secret key via a corrupt query. To
solve this problem, the existing approaches rely on a non-committing symmetric
encryption scheme that is proven secure in the random oracle model [23].

To obtain a tight security supporting state reveals in the standard model,
we enhance the MUSC-otCCA security of KEM to our new ε-MU-SIM-security,
so that a symmetric encryption scheme SE with comparatively weak security
guarantees suffices. The idea is to rely on a security notion for the symmetric
encryption scheme that is as weak as possible while still being able to compen-
sate for this via a stronger KEM. Somewhat surprisingly, our proof shows that
when relying on an ε-MU-SIM-secure KEM, we only need to require IND-mRPA
security (indistinguishability against random plaintext attacks) from SE. Such a
symmetric encryption scheme can be easily instantiated using any weakly secure
(deterministic) encryption scheme like as AES or even using a weak PRF. Let
us now describe ε-MU-SIM-secure KEM in slightly more detail. In a nutshell, an
ε-MU-SIM-secure KEM provides the reduction with access to an additional en-
capsulation algorithm Encap∗ that is keyed with the secret key. We have security
requirements as follows:

• Computational indistinguishability between Encap and Encap∗: We require
that the reduction can switch to using Encap∗ without the adversary notic-
ing even given the secret key ŝk of the KEM. In particular, the resulting
indistinguishability notion must tightly reduce to an underlying security as-
sumption.

• Statistical ε-uniformity: When using the alternative encapsulation mecha-
nism Encap∗, we require that the encapsulated key in the challenge cipher-
text c∗ will be indistinguishable from random with statistical distance ε (even
if a decapsulation of some distinct ciphertext c 6= c∗ of its choice is given).
This is particularly useful when aiming at tight security reductions.

• Since we want to apply ε-MU-SIM-secure KEMs in a protocol setting with
multiple parties, security must in general hold in a multi-user setting.

Fortunately, such a KEM can be instantiated from universal2 hash proof systems
(HPS). In particular, we show that the ε-MU-SIM-security is implied by the
hardness of subset membership problems and the universal2-property of HPS.

Our new ε-MU-SIM-secure KEM now allows us to avoid the above mentioned
decision when dealing with state reveals and in this way opens a new avenue
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towards a tight security reduction. To this end, we use a novel strategy in our
security proof.

1. We first switch from using Encap to Encap∗. By the security properties of
our KEM, the adversary cannot notice this, even given ŝk.

2. Next, we replace the session keys of tested sessions with random keys – one
user at a time. We apply a hybrid argument over all users. In the η-th hybrid
(η = 1, ..., µ with µ being the number of users), we replace the test session
keys related to the η-th user with random keys. We can show that this is
not recognizable by the adversary since the key K∗ generated by Encap∗ is
statistically close to uniform even if the adversary gets to see another key
for a ciphertext of its choice. We distinguish the following cases.
Case 1: The adversary corrupts the η-th user. For each session related to

this user, the adversary can either reveal the session state or test this
session, but not both. If the adversary reveals the state, we do not have
to replace the session key at all, so the change is in fact only a concep-
tual one. If the session is tested, the adversary does not know the state
SE.E(s, ŝk) and thus we can replace the session key by exploiting the
ε-uniformity of Encap∗.

Case 2: The adversary does not corrupt the η-th user. In this case, we rely
on the IND-mRPA security of SE and replace ŝk in the encrypted state
with a random dummy key for this user. Then, we can use ε-uniformity
to replace all tested keys for that user with random keys, as the state
does not contain any information about ŝk. After that, we have to switch
back to using the original state encryption mechanism and encrypt the
real secret key ŝk, getting ready for the next hybrid.

After µ hybrids, we change all tested keys to random. At this point the
adversary has no advantage in the security game.

Overall, this security proof loses a factor of 2µ – but only when reducing to the
IND-mRPA security of the symmetric encryption scheme. All other steps of the
proof feature tight security reductions.

2 Security Notions for KEMs

2.1 Preliminaries

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned
to x, we write x := y. For µ ∈ N, define [µ] := {1, 2, ..., µ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. If D is distribu-
tion, x ← D means that x is sampled according to D. All our algorithms are
probabilistic unless states otherwise. We use y ←$ A(x) to define the random
variable y obtained by executing algorithm A on input x. We use y ∈ A(x)
to indicate that y lies in the support of A(x). If A is deterministic we write
y ← A(x). We also use y ← A(x; r) to make the random coins r used in the
probabilistic computation explicit. Denote by T(A) the running time of A. For
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two distributions X and Y , the statistical distance between them is defined by
∆(X;Y ) := 1

2 ·
∑
x |Pr[X = x]−Pr[Y = x]|, and conditioned on Z = z, the sta-

tistical distance between X and Y is denoted by ∆(X;Y |Z = z). For 0 ≤ ε ≤ 1,
X and Y are said to be ε-close, denoted by X ≈ε Y , if ∆(X;Y ) ≤ ε.

Definition 1 (Collision-resistant hash functions). A family of hash func-
tions H is collision resistant if for any adversary A,

AdvcrH(A) := Pr[x1 6= x2 ∧H(x1) = H(x2)|(x1, x2)←$ A(H), H ←$ H].

2.2 Key Encapsulation Mechanisms

Definition 2 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KEM.Setup,KEM.Gen,Encap,Decap) consists of four algorithms:

– KEM.Setup: The setup algorithm outputs public parameters ppKEM, which
determine an encapsulation key space K, public key & secret key spaces PK×
SK, and a ciphertext space CT .

– KEM.Gen(ppKEM): Taking ppKEM as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk) ∈ PK × SK. W.l.o.g., we
assume that KEM.Gen first samples sk ←$ SK uniformly, and then computes
pk from sk deterministically via a polynomial-time algorithm KEM.PK, i.e.,
pk := KEM.PK(sk). This is reasonable since we can always take the random-
ness used by KEM.Gen as the secret key.

– Encap(pk): Taking pk as input, the encapsulation algorithm outputs a pair
of ciphertext c ∈ CT and encapsulated key K ∈ K.

– Decap(sk, c): Taking as input sk and c, the deterministic decapsulation al-
gorithm outputs K ∈ K ∪ {⊥}.

We require that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈ KEM.Gen(ppKEM), (c,K) ∈
Encap(pk), it holds that Decap(sk, c) = K.

We define two security notions for KEMs, the first one in the Multi-User/Challenge
(MUC) setting, the second one in the Multi-User and Single Challenge (MUSC)
setting. Both notions only allow for one single decapsulation query per user.

Definition 3 (MUC-otCCA/MUSC-otCCA Security for KEM). To
KEM, the number of users µ ∈ N, and an adversary A we associate the advantage
functions Advmuc-otcca

KEM,µ (A) :=
∣∣Pr[Expmuc-otcca

KEM,µ,A ⇒ 1] − 1
2

∣∣ and Advmusc-otcca
KEM,µ (A) :=∣∣Pr[Expmusc-otcca

KEM,µ,A ⇒ 1] − 1
2

∣∣, where the experiments are defined in Figure 3.

Below we recall the definition of the diversity property from [29].

Definition 4 (γ-Diversity of KEM). A KEM scheme KEM is called γ-
diverse if for all ppKEM ∈ KEM.Setup, it holds that

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM);

r, r′ ←$ R; (c,K)← Encap(pk; r); (c′,K′)← Encap(pk; r′)
: K = K′

]
≤ 2−γ ,

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM); (pk′, sk′) ←$ KEM.Gen(ppKEM);

r ←$ R; (c,K)← Encap(pk; r); (c′,K′)← Encap(pk′; r)
: K = K′

]
≤ 2−γ ,

where R is the randomness space of Encap. If γ = log |K|, then KEM is perfectly
diverse.
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Expmuc-otcca
KEM,µ,A, Expmusc-otcca

KEM,µ,A :

ppKEM ←$ KEM.Setup

For i ∈ [µ]: (pki, ski) ←$ KEM.Gen(ppKEM)

EncList := ∅ �Records the encapsulation queries

b ←$ {0, 1} �Single challenge bit

PKList := {pki}i∈[µ]
b′ ←$ AO

b
Encap(·),ODecap(·,·)(ppKEM,PKList)

If b′ = b: Return 1; Else: Return 0

ObEncap(i): �at most once per user i

(c,K) ←$ Encap(pki)

EncList := EncList ∪ {(i, c)}
K0 := K; K1 ←$ K
Return (c,Kb)

ODecap(i, c
′): � at most once per user i

If (i, c′) /∈ EncList:

Return K′ ← Decap(ski, c
′)

Else: Return ⊥

Fig. 3. The MUC-otCCA security experiment Expmuc-otcca
KEM,µ,A and the MUSC-otCCA se-

curity experiment Expmusc-otcca
KEM,µ,A of KEM, where in the latter the adversary can query the

encapsulation oracle only once for each user.

We also propose a new security notion for KEMs called ε-MU-SIM (ε-multi-user
simulatable) security. Jumping ahead, ε-MU-SIM secure KEMs will serve as the
main building block in our generic AKE construction with state reveal later.
We present the formal definition of ε-MU-SIM security (Definition 5). We also
present simple constructions of ε-MU-SIM secure KEMs from universal2-HPS in
the full version [21].

Informally, ε-MU-SIM security requires that there exists a simulated en-
capsulation algorithm Encap∗(sk) which returns simulated ciphertext/key pairs
(c∗,K∗) satisfying the following two properties. Firstly, they should be computa-
tionally indistinguishable from real ciphertext/key pairs. Secondly, given c∗ and
an arbitrary single decryption query, the simulated key K∗ should be ε-close to
uniform.

Definition 5 (ε-MU-SIM Security for KEM). We require that there exists
a simulated encapsulation algorithm Encap∗(sk) which takes the secret key sk
as input, and outputs a pair of simulated c∗ ∈ CT and simulated K∗ ∈ K. For
ε-uniformity we require that for any (unbounded) adversary A, it holds that∣∣ Pr[c ←$ A(pk, c∗,K∗) : c 6= c∗ ∧ A(pk, c∗,K∗,Decap(sk, c))⇒ 1]

− Pr[c ←$ A(pk, c∗, R) : c 6= c∗ ∧ A(pk, c∗, R,Decap(sk, c))⇒ 1]
∣∣ ≤ ε, (1)

where the probability is over ppKEM ←$ KEM.Setup, (pk, sk)←$ KEM.Gen(ppKEM),
(c∗,K∗)←$ Encap∗(sk), R ←$ K and the internal randomness of A.

Furthermore, to KEM, a simulated encapsulation algorithm Encap∗, an ad-
versary A, and µ ∈ N we associate the advantage function Advmu-sim

KEM,Encap∗,µ(A) :=∣∣∣Pr
[
A
(
{pki, ski, c(0)

i ,K
(0)
i }i∈[µ]

)
⇒ 1

]
− Pr

[
A
(
{pki, ski, c(1)

i ,K
(1)
i }i∈[µ]

)
⇒ 1

]∣∣∣ , (2)

where ppKEM ←$ KEM.Setup, (pki, ski)←$ KEM.Gen(ppKEM), (c
(0)
i ,K

(0)
i )←$

Encap(pki), and (c
(1)
i ,K

(1)
i )←$ Encap∗(ski) for ∀i ∈ [µ].

Note that ε-MU-SIM security tightly implies MUSC-otCCArev&corr security which
is a stronger variant of MUSC-otCCA security supporting key reveal and user
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corrupt queries. Reveal and corrupt queries can be tolerated since in the security
experiment (2), adversary A also obtains secret keys sk1, . . . , skµ. By (1) one can
see that one single decapsulation query is supported. In particular, ε-MU-SIM
security tightly implies MUSC-otCCA security. In the full version [21], we will de-
fine universal2 hash proof systems, construct HPSMDDH schemes from the MDDH
assumptions, and show how they imply ε-MU-SIM secure KEMs.

3 Authenticated Key Exchange

3.1 Definition of Authenticated Key Exchange

Definition 6 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup, AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup: The setup algorithm outputs the public parameter ppAKE.
– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a

party Pi, and outputs a key pair (pki, ski).
– AKE.Protocol(Pi(resi) 
 Pj(resj)): The protocol involves two parties Pi and
Pj, who have access to their own resources, resi := (ski, ppAKE, {pku}u∈[µ])
and resj := (skj , ppAKE, {pku}u∈[µ]), respectively. Here µ is the total number
of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be the empty string ∅), and Pj outputs (Ψj , kj)
similarly.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution of AKE.Protocol(Pi(resi) 
 Pj(resj)),
i.e., Ψi = Ψj = accept, ki = kj 6= ∅.

3.2 Security Model of AKE

We will adapt the security model formalized by [2, 28, 19], which in turn followed
the model proposed by Bellare and Rogaway [5]. We also include replay attacks
[29] and multiple test queries with respect to the same random bit [23].

First, we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most µ users P1, P2, ..., Pµ, and each user will
involve at most ` instances. Pi is formalized by a series of oracles, π1

i , π
2
i , ..., π

`
i .

Oracle πsi formalizes Pi’s execution of the s-th protocol instance.
Each oracle πsi has access to Pi’s resource resi := (ski, ppAKE,PKList :=

{pku}u∈[µ]). π
s
i also has its own variables varsi := (stsi ,Pidsi , k

s
i , Ψ

s
i ).

– stsi : State information that has to be stored between two rounds in order to
execute the protocol.

– Pidsi : The intended communication peer’s identity.

12



– ksi ∈ K: The session key computed by πsi . Here K is the session key space.
We assume that ∅ ∈ K.

– Ψsi ∈ {∅,accept, reject}: Ψsi indicates whether πsi has completed the proto-
col execution and accepted ksi .

At the beginning, (stsi ,Pidsi , k
s
i , Ψ

s
i ) are initialized to (∅, ∅, ∅, ∅). We declare that

ksi 6= ∅ if and only if Ψsi = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKE,µ,`,A with the help of the oracles defined above.
ExpAKE,µ,`,A is a game played between an AKE challenger C and an adversary
A. C will simulate the executions of the ` protocol instances for each of the µ
users with oracles πsi . We give a formal description in Figure 4.

Adversary A may copy, delay, erase, replay, and interpolate the messages
transmitted in the network. This is formalized by the query Send to oracle
πsi . With Send, A can send arbitrary messages to any oracle πsi . Then πsi will
execute the AKE protocol according to the protocol specification for Pi. The
StateReveal(i, s) oracle allows A to reveal πsi ’s session state.

We also allow the adversary to observe session keys of its choices. This is
reflected by a SessionKeyReveal query to oracle πsi .

A Corrupt query allows A to corrupt a party Pi and get its long-term secret
key ski. With a RegisterCorrupt query, A can register a new party without public
key certification. The public key is then known to all other users.

We introduce a Test query to formalize the pseudorandomness of ksi . There-
fore, the challenger chooses a bit b←$ {0, 1} at the beginning of the experiment.
When A issues a Test query for πsi , the oracle will return ⊥ if the session key
ksi is not generated yet. Otherwise, πsi will return ksi or a truly random key,
depending on b. The task of A is to tell whether the key is the true session key
or a random key. The adversary is allowed to make multiple test queries.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = >, it means that A asks oracle πsi to send the first
protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πsi . Then πsi executes the AKE protocol with msg as Pi does, computes
a message msg′, and updates its own variables varsi = (stsi ,Pidsi , k

s
i , Ψ

s
i ). The

output message msg′ is returned to A.

If Send(i, s, j,msg) is the τ -th query asked by A and πsi changes Ψsi to accept
after that, then we say that πsi is τ -accepted.

– Corrupt(i): C reveals party Pi’s long-term secret key ski to A. After corrup-
tion, π1

i , ..., π
`
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > µ). C
distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– StateReveal(i, s): The query means that A asks C to reveal πsi ’s session state.
C returns stsi to A.
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ExpAKE,µ,`,A:

ppAKE ← AKE.Setup
For i ∈ [µ]:

(pki, ski)← AKE.Gen(ppAKE, Pi);
crpi := false �Corruption variable

PKList := {pki}i∈[µ]; b ←$ {0, 1}
For (i, s) ∈ [µ]× [`]:

varsi := (stsi ,Pidsi , k
s
i , Ψ

s
i ) := (∅, ∅, ∅, ∅);

Aflagsi := false �Whether Pidsi is corrupted when πsi accepts
T si := false; kRevsi := false � Test, Key Reveal variables
stRevsi := false, FirstAccsi := ∅
� State Reveal & First Acceptance variables

b∗ ← AOAKE(·)(ppAKE,PKList)

WinAuth := false
WinAuth := true, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept �πsi is τ -accepted
(2) Aflagsi = false �Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @ t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∧ Partner(πsi ← πt
′

j′)

(3.3) ∃ t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∧ Partner(πs
′

i′ ← πtj) �Replay attacks

WinInd := false
If b∗ = b:

WinInd := true; Return 1
Else: Return 0

Partner(πsi ← πtj): �Checking whether Partner(πsi ← πtj)

If πsi sent the first message and ksi = K(πsi , π
t
j) 6= ∅: Return 1

If πsi received the first message and ksi = K(πtj , π
s
i ) 6= ∅: Return 1

Return 0

πsi (msg, j):

�πs
i executes AKE according to the protocol specification

If Pidsi = ∅: Pidsi := j
If Pidsi = j:

πsi receives msg and uses resi, varsi to generate the next
message msg′ of AKE, and updates (stsi ,Pidsi , k

s
i , Ψ

s
i );

If msg = >: πsi generates the first message msg′ as initiator;
If msg is the last message of AKE: msg′ := ∅;
Return msg′

If Pidsi 6= j: Return ⊥

OAKE(query):

If query=RegisterCorrupt(u, pku):
If u ∈ [µ]: Return ⊥
PKList := PKList ∪ {pku}
crpu := true
Return PKList

OAKE(query):

If query=Send(i, s, j,msg):
If Ψsi = accept: Return ⊥
msg′ ← πsi (msg, j)
If Ψsi = accept:

If crpj = true: Aflagsi := true;
� Determine whether πsi accepts before its partner
If crpj = false ∧ ∃t ∈ [`] s.t. Partner(πsi ← πtj):

If Ψ tj 6= accept:
FirstAccsi := true; FirstAcctj := false

If Ψ tj = accept:
FirstAccsi := false; FirstAcctj := true

Return msg′

If query=Corrupt(i):
If i 6∈ [µ]: Return ⊥
For s ∈ [`]

If FirstAccsi = false ∧ stRevsi = true:
If T si = true: Return ⊥; �avoid TA6
If ∃t ∈ [`] s.t. Partner(πtj ← πsi ):

If T tj = true: Return ⊥; �avoid TA7
crpi := true
Return ski

If query=SessionKeyReveal(i, s):
If Ψsi 6= accept: Return ⊥
If T si = true: Return ⊥ �avoid TA2
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πsi ↔ πtj):

If T tj = true: Return ⊥ �avoid TA4
kRevsi := true; Return ksi

If query=StateReveal(i, s)
If FirstAccsi = false ∧ crpi = true:

If T si = true: Return ⊥; �avoid TA6
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πtj ← πsi ):

If T tj = true: Return ⊥; �avoid TA7
stRevsi := true; Return stsi

If query=Test(i, s):
If Ψsi 6= accept ∨ Aflagsi = true ∨ kRevsi = true
∨ T si = true: Return ⊥ �avoid TA1, TA2, TA3

If FirstAccsi = false:
If crpi = true ∧ stRevsi = true:

Return ⊥ �avoid TA6
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πsi ↔ πtj) :

If kRevtj = true ∨ T tj = true:
Return ⊥ �avoid TA4, TA5

If ∃t ∈ [`] s.t. Partner(πsi ← πtj) :
If FirstAcctj = false ∧ crpj = true
∧ stRevtj = true: Return ⊥ �avoid TA7

T si := true; k0 := ksi ; k1 ←$ K; Return kb

Fig. 4. The security experiments ExpAKE,µ,`,A, Expreplay
AKE,µ,`,A (both without red text)

and Expreplay, state
AKE,µ,`,A (with red text). The list of trivial attacks is given in Table 2.
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– SessionKeyReveal(i, s): The query means that A asks C to reveal πsi ’s session
key. If Ψsi 6= accept, C returns ⊥. Otherwise, C returns the session key ksi of
πsi .

– Test(i, s): If Ψsi 6= accept, C returns ⊥. Otherwise, C sets k0 = ksi , samples
k1 ←$ K, and returns kb to A. We require that A can ask Test(i, s) to each
oracle πsi only once.

Informally, the pseudorandomness of ksi asks that any PPT adversary A with
access to Test(i, s) cannot distinguish ksi from a uniformly random key. Yet, we
have to exclude some trivial attacks. We will define them later and first introduce
partnering.

Definition 7 (Original Key [28]). For two oracles πsi and πtj, the original
key, denoted as K(πsi , π

t
j), is the session key computed by the two peers of the

protocol under a passive adversary only, where πsi is the initiator.

Remark 1. We note that K(πsi , π
t
j) is determined by the identities of Pi and Pj

and the internal randomness.

Definition 8 (Partner [28]). Let K(·, ·) denote the original key function. We
say that an oracle πsi is partnered to πtj, denoted as Partner(πsi ← πtj)

3, if one of
the following requirements holds:

– πsi has sent the first message and ksi = K(πsi , π
t
j) 6= ∅, or

– πsi has received the first message and ksi = K(πtj , π
s
i ) 6= ∅.

We write Partner(πsi ↔ πtj) if Partner(πsi ← πtj) and Partner(πtj ← πsi ).

Trivial Attacks. In order to prevent the adversary from trivial attacks, we keep
track of the following variables for each party Pi and oracle πsi :

– crpi: whether Pi is corrupted.
– Aflagsi : whether the intended partner is corrupted when πsi accepts.
– T si : whether πsi was tested.
– kRevsi : whether the session key ksi was revealed.
– stRevsi : whether the session state stsi was revealed.
– FirstAccsi : whether Pi or its partner is the first to accept the key in the

session.

Based on that we give a list of trivial attacks TA1-TA7 in Table 2.

Remark 2. We introduced variable FirstAcc to indicate whether the party or its
partner is the first to accept the key. This is used to determine whether the state
of an oracle is allowed to be revealed when the oracle or its partner is tested.

3 The arrow notion πsi ← πtj means πsi (not necessarily πtj) has computed and accepted
the original key.
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– In general, the session key of the party which accepts the key after its partner
(i.e., FirstAcc = false), by the correctness of AKE, must be identical to its
partner’s. Thus, the session key is fully determined by the state and long-
term key of that party (as well as transcripts).

– However, the session key of the party which accepts the key before its partner
(i.e., FirstAcc = true) might involve fresh randomness beyond its state and
long-term key.

Thus, it is a trivial attack to reveal the state and the long-term key of the same
oracle, if the oracle or its partner is tested and the oracle accepts the key after
its partner (i.e., FirstAcc = false). This is a minimal trivial attack regarding
state reveal10, and it is formalized as TA6 and TA7 in Table 2.

The following definition also captures replay attacks. Given Partner(πs
′

i′ ← πtj),
a successful replay attack means that A resends to πsi the messages, which were

sent from πtj to πs
′

i′ , and πsi is fooled to compute a session key, i.e., Partner(πsi ←
πtj). Note that a stateless 2-pass AKE protocol cannot be secure against re-
play attacks [29]. Therefore, we also define security without replay attacks in
Definition 11.

Furthermore, we distinguish between security with state reveals (Definition
9) and without state reveals (Definition 10), where in the latter the adversary
cannot query the session state of an oracle.

Table 2. Trivial attacks TA1-TA7 for security experiments ExpAKE,µ,`,A,

Expreplay
AKE,µ,`,A and Expreplay, state

AKE,µ,`,A, where TA6 and TA7 are only defined in Expreplay, state
AKE,µ,`,A.

Note that “Aflagsi = false” is implicitly contained in TA2-TA7 because of TA1.

Types Trivial attacks Explanation

TA1 T si = true ∧ Aflagsi = true
πsi is tested but πsi ’s partner is corrupted

when πsi accepts session key ksi

TA2 T si = true ∧ kRevsi = true πsi is tested and its session key ksi is revealed

TA3 T si = true when Test(i, s) is queried Test(i, s) is queried at least twice

TA4 T si = true ∧ Partner(πsi ↔ πtj) ∧ kRevtj = true
πsi is tested, πsi and πtj are partnered to each other,

and πtj ’s session key ktj is revealed

TA5 T si = true ∧ Partner(πsi ↔ πtj) ∧ T tj = true
πsi is tested, πsi and πtj are partnered to each other,

and πtj is tested

TA6
T si = true ∧ FirstAccsi = false
∧ stRevsi = true ∧ crpi = true

πsi is tested, πsi accepts its key after its partner,
and πsi is both corrupted and has its state stsi revealed

TA7
T si = true ∧ Partner(πsi ← πtj)

∧ FirstAcctj = false ∧ stRevtj = true ∧ crpj = true
πsi is tested, πsi accepts its session key before its partner,
but its partner πtj is both corrupted and state revealed

Definition 9 (Security of AKE with Replay Attacks and State Reveal).
Let µ be the number of users and ` the maximum number of protocol executions

10 It is also possible to define the trivial attack regardless of FirstAcc, but our definition
of TA6 and TA7 is minimal and makes our security model stronger.
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per user. The security experiment Expreplay, state
AKE,µ,`,A (see Fig. 4) is played between the

challenger C and the adversary A.

1. C runs AKE.Setup to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski). Next it chooses a random bit b ←$ {0, 1} and provides A with the
public parameter ppAKE and the list of public keys PKList := {pki}i∈[µ].

3. A asks C Send, Corrupt, RegisterCorrupt, SessionKeyReveal, StateReveal and
Test queries adaptively.

4. At the end of the experiment, A terminates with an output b∗.

• Strong Authentication. Let WinAuth denote the event that A breaks au-
thentication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [µ]× [`]
s.t.
(1) πsi is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens11. Let j := Pidsi .

(3.1) There is no oracle πtj that πsi is partnered to.

(3.2) There exist two distinct oracles πtj and πt
′

j′ , to which πsi is part-
nered.

(3.3) There exist two oracles πs
′

i′ and πtj with (i′, s′) 6= (i, s), such that

both πsi and πs
′

i′ are partnered to πtj.
• Indistinguishability. Let WinInd denote the event that A breaks indistin-

guishability in Expreplay, state
AKE,µ,`,A above. Let b∗ be A’s output. Then WinInd happens

iff b∗ = b. Trivial attacks are already considered during the execution of the
experiment. A list of trivial attacks is given in Table 2.

Note that Expreplay, state
AKE,µ,`,A ⇒ 1 iff WinInd happens. Hence, the advantage of A

is defined as

Advreplay, stateAKE,µ,` (A) : = max{Pr[WinAuth], |Pr[WinInd]− 1/2|}

= max{Pr[WinAuth], |Pr[Expreplay, state
AKE,µ,`,A ⇒ 1]− 1/2|}.

Definition 10 (Security of AKE with Replay Attacks and without State

Reveal). The security experiment Expreplay
AKE,µ,`,A (see Fig. 4) is defined like

Expreplay, state
AKE,µ,`,A except that we disallow state reveal queries. Similarly, the advantage

of an adversary A in Expreplay
AKE,µ,`,A is defined as

AdvreplayAKE,µ,`(A) := max{Pr[WinAuth], |Pr[Expreplay
AKE,µ,`,A ⇒ 1]− 1/2|}.

Definition 11 (Security of AKE without Replay Attack and State Re-

veal). The security experiment ExpAKE,µ,`,A (see Fig. 4) is defined like Expreplay, state
AKE,µ,`,A

11 Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj , (3.2) suggests one
instance of Pi has multiple partners, and (3.3) corresponds to a successful replay
attack.
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except that we disallow replay attacks and state reveal queries. Similarly, the ad-
vantage of an adversary A in ExpAKE,µ,`,A is defined as

AdvAKE,µ,`(A) := max{Pr[WinAuth], |Pr[ExpAKE,µ,`,A ⇒ 1]− 1/2|}.

Remark 3 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [20]). That is,
if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys computed before the corruption remain hidden from the adversary.
Meanwhile, πsi may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [25].

4 AKE Protocols

We construct AKE protocols AKE2msg, AKE3msg and AKEstate
3msg from a signature

scheme SIG and a key encapsulation mechanism KEM. Additionally, we use a
symmetric encryption scheme SE with key space KSE to encrypt the state in
protocol AKEstate

3msg. Apart from that, AKEstate
3msg and AKE3msg are the same. The

protocols are given in Figure 5.
The setup algorithm generates the public parameter ppAKE := (ppSIG, ppKEM)

by running SIG.Setup and KEM.Setup. The key generation algorithm inputs the
public parameter and a party Pi and generates a signature key pair (vki, sski).
In AKEstate

3msg, it also chooses a symmetric key si uniformly from the key space
KSE. It returns the public key vki and the secret key (sski, si).

The protocol is executed between two parties Pi and Pj . Each party has ac-
cess to their own resources resi and resj which contain the corresponding secret
key, the public parameter and a list PKList consisting of the public keys of all
parties. Each party initializes its local variables Ψi, ki and sti with the empty
string. To initiate a session in AKE3msg and AKEstate

3msg, the party Pj chooses a

bitstring N uniformly from {0, 1}λ and sends it to Pi. The next message and the
first message in protocol AKE2msg is sent by Pi. It generates an ephemeral key
pair (p̂k, ŝk) by running KEM.Gen(ppKEM) and computes a signature σ1 over the
identities of Pi and Pj , the ephemeral public key and the nonce (only in AKE3msg

and AKEstate
3msg). When using state encryption, it also encrypts the ephemeral se-

cret key using its symmetric key si and stores the ciphertext in sti. It then sends
(p̂k, σ1) to Pj . Pj verifies the signature using vki and rejects if it is not valid.
Otherwise, it continues the protocol by computing (c,K)←$ Encap(p̂k). It com-
putes a signature σ2 over the identities as well as the previous message, c and
the nonce (only in AKE3msg and AKEstate

3msg). Pj accepts the session key and sets
kj to K. It sends (c, σ2) to Pi. Pi verifies the signature and rejects if it is in-
valid. Otherwise, it retrieves the ephemeral secret key by decrypting the state,
computes the session key K from c and accepts.

Correctness. Correctness of AKE2msg, AKE3msg and AKEstate
3msg follows directly

from the correctness of SIG, KEM and SE.
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AKE.Setup
ppSIG ←$ SIG.Setup
ppKEM ←$ KEM.Setup
Return ppAKE := (ppSIG, ppKEM)

AKE.Gen(ppAKE, Pi)

(vki, sski) ←$ SIG.Gen(ppSIG)

si ←$ KSE

Return (vki, (sski, si ))

AKE.Protocol(Pi 
 Pj)

Pi(resi) Pj(resj)

resi = (sski, si, ppAKE,PKList = {vku}u∈[µ]) resj = (sskj , sj , ppAKE,PKList = {vku}u∈[µ])

Ψj := ∅; kj := ∅; stj := ∅
N ←$ {0, 1}λ

Ψi := ∅; ki := ∅; sti := ∅
(p̂k, ŝk) ←$ KEM.Gen(ppKEM)

σ1 ←$ Sign(sski, (Pi, Pj , p̂k,N))

sti ←$ E(si, ŝk)

If Ψj 6= ∅ : Return ⊥
If Ver(vki, (Pi, Pj , p̂k,N), σ1) 6= 1 :

Ψj := reject
Else:

(c,K) ←$ Encap(p̂k)

σ2 ←$ Sign(sskj , (Pi, Pj , p̂k, σ1, c,N))
kj := K; Ψj := accept

Return (Ψj , kj)

If Ψi 6= ∅ : Return ⊥
If Ver(vkj , (Pi, Pj , p̂k, σ1, c,N), σ2) 6= 1 :

Ψj := reject
Else:

ŝk ← D(si, sti)

K ← Decap(ŝk, c)
ki := K; Ψi := accept

Return (Ψi, ki)

N

(p̂k, σ1)

(c, σ2)

sti

Fig. 5. Generic construction of AKE2msg (without red and gray parts), AKE3msg (with
red and without gray parts) and AKEstate

3msg (with red and gray parts) from KEM, SIG
and SE. Note that the state of Pj only consists of public parts and is therefore omitted
here.

Theorem 1 (Security of AKEstate
3msg with Replay Attacks and State Re-

veals). For any adversary A against AKEstate
3msg with replay attacks and state re-

veals, there exist an MU-EUF-CMAcorr adversary BSIG against SIG, an ε-MU-SIM
adversary BKEM against KEM and an IND-mRPA adversary BSE against SE such
that

Advreplay, stateAKEstate
3msg,µ,`

(A) ≤ Advmu-sim
KEM,Encap∗,µ`(BKEM) + 2 · Advmu-corr

SIG,µ (BSIG)

+ 2µ · Advmrpa
SE,µ(BSE) + 2µ` · ε+ 2(µ`)2 · 2−γ + µ`2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM), T(A) ≈ T(BSIG) and T(A) ≈ T(BSE).

We will give a proof sketch below. The formal proof is given in the full version
[21].
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Proof Sketch. The signatures in the protocol ensure that the adversary can only
forward messages for those sessions that it wants to test. Thus the experiment
can control all ephemeral public keys p̂k and ciphertexts c that are used for test
queries. Due to the nonce, the adversary can also not replay a message containing
a particular p̂k. Thus, each p̂k is used in at most one test query.

A party will close a session when it accepts or rejects the session. Thus,
the adversary can submit at most one ciphertext c′ which is different from the
ciphertext used in the test query. Using a session key reveal query, the adversary
will only see at most one more key decapsulated with ŝk.

To deal with state reveals, the adversary A can additionally obtain the state
which is the encrypted ŝk. The reduction must know ŝk in order to answer those
queries. The simulatability property of KEM ensures that Encap and Encap∗

are indistinguishable, even given ŝk. So, we first switch from Encap to Encap∗.
Now, we want to replace the session keys of tested sessions with random keys.
Therefore, we have to do a hybrid argument over all users. In the η-th hybrid, we
replace the test session keys for party Pη. We can show that this is unnoticeable
using that the key K∗ generated by Encap∗ is statistically close to uniform even if
the adversary gets to see another key for a ciphertext of its choice. We distinguish
the following cases.

Case 1: The adversary corrupts Pη. For each session, the adversary can either
reveal the session state or test this session. If the adversary reveals the state,
we do not have to replace the session key. If the session is tested, the adver-
sary does not know the state E(sη, ŝk) and thus we can replace the session
key by ε-uniformity of Encap∗.

Case 2: The adversary does not corrupt Pη. In this case, we use that SE is IND-
mRPA secure and replace ŝk in the encrypted state with a random secret
key for this party. Then we can use ε-uniformity to replace all tested keys for
that party with random keys, as the state does not contain any information
about ŝk. After that, we have to switch back the state encryption to encrypt
the real secret key ŝk, getting ready for the next hybrid.

After these changes, the Test oracle will always output a random key, indepen-
dent of the bit b.

Overall, the proof loses a factor of 2µ only in the IND-mRPA security of the
symmetric encryption scheme. All other parts are tight.

Theorem 2 (Security of AKE3msg with Replay Attacks and without
State Reveals). For any adversary A against AKE3msg with replay attacks and
without state reveals, there exist an MU-EUF-CMAcorr adversary BSIG against
SIG and an MUSC-otCCA adversary BKEM against KEM such that

AdvreplayAKE3msg,µ,`
(A) ≤ 2 · Advmusc-otcca

KEM,µ` (BKEM) + 2 · Advmu-corr
SIG,µ (BSIG)

+ 2(µ`)2 · 2−γ + µ`2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM) and T(A) ≈ T(BSIG).
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Theorem 3 (Security of AKE2msg without State Reveals and Replay
Attacks). For any adversary A against AKE2msg without state reveals and
replay attacks, there exist an MU-EUF-CMAcorr adversary BSIG against SIG and
an MUC-otCCA adversary BKEM against KEM such that

AdvAKE2msg,µ,`(A) ≤ 2 · Advmuc-otcca
KEM,µ` (BKEM) + Advmu-corr

SIG,µ (BSIG) + (µ`)2 · 2−γ ,

where γ is the diversity parameter of KEM. Furthermore, T(A) ≈ T(BKEM) and
T(A) ≈ T(BSIG).

The proofs of Theorem 2 and Theorem 3 are given in the full version [21], due
to space limitations.

5 Signatures with Tight Adaptive Corruptions

5.1 Pairing Groups and MDDH Assumptions

Let GGen be a pairing group generation algorithm that returns a description
PG := (G1,G2,GT , q,P1,P2, e) of asymmetric pairing groups where G1, G2,
GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are generators
of G1 and G2, respectively, and e : G1 × G2 is an efficient computable (non-
degenerated) bilinear map. PT := e(P1,P2) is a generator in GT . In this paper,
we only consider Type III pairings, where G1 6= G2 and there is no efficient
homomorphism between them. All constructions in this paper can be easily
instantiated with Type I pairings by setting G1 = G2 and defining the dimension
k to be greater than 1.

We use the implicit representation of group elements as in [14]. For s ∈
{1, 2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation
of a in Gs. Similarly, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the
implicit representation of A in Gs. Span(A) := {Ar | r ∈ Zmq } ⊂ Znq denotes
the linear span of A, and similarly Span([A]s) := {[Ar]s | r ∈ Zmq } ⊂ Gns .
Note that it is efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with
matching dimensions. We define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can
be efficiently computed given [A]1 and [B]2.

We recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
and related assumptions from [14].

Definition 12 (Matrix distribution). Let k, ` ∈ N with ` > k. We call D`,k
a matrix distribution if it outputs matrices in Z`×kq of full rank k in polynomial
time. Let Dk := Dk+1,k.

For positive integers k, η, n ∈ N+ and a matrix A ∈ Z(k+η)×n
q , we denote the k

rows of A by A ∈ Zk×nq and the lower η rows of A by A ∈ Zη×nq . Without loss of

generality, we assume A for A ←$ D`,k form an invertible square matrix in Zk×kq .
The D`,k-MDDH problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A ←$ D`,k, w ←$ Zkq and u ←$ Z`q.
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Definition 13 (D`,k-MDDH assumption). Let D`,k be a matrix distribution
and s ∈ {1, 2, T}. We say that the D`,k-MDDH assumption holds relative to
GGen in group Gs if for all adversaries A, it holds that

AdvMDDH
GGen,D`,k,Gs

(A) := |Pr[A(PG, [A]s, [Aw]s)⇒ 1]− Pr[A(PG, [A]s, [u]s)⇒ 1]|

is negligible where the probability is taken over PG ←$ GGen(1λ), A ←$ D`,k,w
←$ Zkq and u ←$ Z`q.

Definition 14 (Uniform distribution). Let k, ` ∈ N+ with ` > k. We call
U`,k a uniform distribution if it outputs uniformly random matrices in Z`×kq of
rank k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (D`,k-MDDH ⇒ Uk-MDDH [14]). Let `, k ∈ N+ with ` > k and
let D`,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D`,k instance. More precisely, for each adversary A there exists an adversary B
with

AdvMDDH
GGen,Uk,Gs

(A) ≤ AdvMDDH
GGen,D`,k,Gs

(B)

and T(A) ≈ T(B).

The Kernel-Diffie-Hellman assumption (Dk-KMDH) [31] is a (weaker) com-
putational analogue of the Dk-MDDH Assumption.

Definition 15 (Dk-KMDH). Let Dk be a matrix distribution. We say that the
Dk-Kernel Diffie-Hellman (Dk-KMDH) assumption holds relative to a prime
order group Gs for s ∈ {1, 2} if for all PPT adversaries A,

AdvKMDH
GGen,Dk,Gs

(A) : = Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←$ A(PG, [A]s)],

where the probabilities are taken over PG ←$ GGen(1λ) and A←$ Dk.

5.2 Previous Schemes with Tight Adaptive Corruptions

We will construct a signature scheme with tight MU-EUF-CMAcorr security and
only small constant number of elements in signatures. Such a scheme has been
proposed in [2, Section 2.3] (called SIGC), but we identify a gap in their proof.
We now present the gap in their security proof and why we think it will be hard
to close it.

The construction of SIGC follows the BKP IBE schemes [6], namely, it tightly
transforms an affine MAC [6] into a signature in the multi-user setting. In order
to have a tightly MU-EUF-CMAcorr secure signature scheme, the underlying
MAC needs to be tightly secure against adaptive corruption of its secret keys
in the multi-user setting. We will now point to potential problems in formally
proving it.

We abstract the underlying MAC of SIGC as MACBHJKL: For message space
{0, 1}`, it chooses A′ ←$ Dk and random vectors xi,j ←$ Zkq (for 1 ≤ i ≤ ` and

j = 0, 1). Then it defines B := A′ ∈ Zk×kq and publishes system parameters
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pp := ([B]1, ([B
>xi,j ]1)1≤i≤`,j=0,1). For each user n, it chooses its MAC secret

key as [x′n]1 ←$ G1, and its MAC tag consist of ([t]1, [u]1), where

t = Bs ∈ Zkq for s ←$ Zkq
u = x′n + t>

∑
i
xi,mi︸ ︷︷ ︸

=:x(m)

∈ Zq. (3)

In their security proof, they argue that [u]1 in the MAC tagging queries is pseudo-
random, given pp and some of the secret keys [x′n]1 (via the adaptive corruption
queries) to an adversary.12 In achieving this, they define a sequence of hybrids
Hj for 1 ≤ j ≤ `. In each Hj , they replace x′n for each user n with RFn,j(m|j),
where RFn,j : {0, 1}j → Zq is a random function and m is the first tagging query
to user n, and generate the MAC tag of m′ as

u = RFn,j(m′|j) + t>x(m′) (4)

with t as in Equation (3).
In their final step (between H` and Game 4), they argue that the distribution

of u = RFn,`(m′) + t>x(m′) is uniformly random (as in Game 4) even for an
unbounded adversary, given pp and adaptive corruptions. Then they conclude
that H` (where u = RFn,`(m′) + t>x(m′)) and Game 4 (where u is chosen
uniformly at random) are identical and Pr[χ4] = Pr[H` = 1] (according to their
notation). However, this is not the case: B ∈ Zk×kq is full-rank and thus, given

[B>xi,j ]1 in pp, xi,j ∈ Zkq is uniquely defined. (For concreteness, imagine a
simple example where an (unbounded) adversary A only queries one MAG tag
for message m for user n and then asks for the secret key [x′n]1 := RFn,`(m) of
user n. Then, A sees that u = RFn,`(m)+t>x(m) is uniquely defined by [x′n]1, [t]1
and pp in H`, while u is uniformly at random in Game 4.) We suppose this gap
is inherent, since the terms B>xi,j completely leak the information about xi,j .
This is also the same reason why the BKP MAC cannot be used to construct a
tightly secure hierarchical IBE (HIBE) (cf. [26] for more discussion).

To resolve this, we follow the tightly secure HIBE approach in [26] and choose
B←$ Z3k×k

q . Now, there is a non-zero kernel matrix B⊥ ∈ Z3k×2k
q for B (with

overwhelming probability), and the mapping xi,j ∈ Z3k
q 7→ B>xi,j ∈ Zkq is lossy.

In particular, the information about xi,j in the orthogonal space of B is perfectly
hidden from (unbounded) adversaries, given B>xi,j .

5.3 Our Construction

Let H : {0, 1}∗ → {0, 1}λ be a function chosen from a collision-resistant hash
function familyH. Our signature scheme SIGMDDH := (SIG.Setup,SIG.Gen,Sign,Ver)
is defined in Figure 6. Correctness can be verified as

12 This is different to the BKP IBE where [B>xi,j ]1 and [x′n]1 are not available to an
adversary.
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SIG.Setup:

PG ←$ GGen
A ←$ Dk; B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q ; Yi,j ←$ Z3k×k

q

Zi,j := (Yi,j ‖ xi,j) ·A ∈ Z3k×k
q

Pi,j := B> · (Yi,j ‖ xi,j) ∈ Zk×(k+1)
q

pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
Return pp

SIG.Gen(pp)

x′ ←$ Zq; y′ ←$ Z1×k
q

ssk := ([x′]1, [y
′]1)

vk := [z′]2 := [(y′ ‖ x′)A]2 ∈ G1×k
2

Return (vk, ssk)

Sign(ssk,m):

s ←$ Zkq ; t := Bs ∈ Z3k
q

hm := H(vk,m)

u := x′ + s>B>x(hm) ∈ Zq
v := y′ + s>B>Y(hm) ∈ Z1×k

q

Return σ := ([t]1, [u]1, [v]1)

Ver(vk,m, σ := ([t]1, [u]1, [v]1)):

hm := H(vk,m)

If [v, u]1 ◦ [A]2 = [1]1 ◦ [z′]2 + [t>]1 ◦ [Z(hm)]2:
Return 1

Else: Return 0

Fig. 6. Our signature scheme with tight adaptive corruptions, where for hm ∈ {0, 1}λ
we define the functions x(hm) :=

∑λ
i=1 xi,hmi , Y(hm) :=

∑λ
i=1 Yi,hmi , Z(hm) :=∑λ

i=1 Zi,hmi , and P(hm) :=
∑λ
i=1 Pi,hmi .

[v, u]1 ◦ [A]2 = [(y′, x′) ·A + t> · (Y(hm) | x(hm)) ·A]T

for ([t]1, [u]1, [v]1)←$ Sign(ssk,m).

Theorem 4 (Security of SIGMDDH). For any adversary A against the
MU-EUF-CMAcorr security of SIGMDDH, there are adversaries B against the col-
lision resistance of H, B1 against the U3k,k-MDDH assumption over G1 and B2

against the Dk-KMDH assumption over G2 with

Pr[Expmu-corr
SIG,µ,A ⇒ 1] ≤AdvcrH(B) + (8kλ+ 2k)AdvMDDH

GGen,U3k,k,G1
(B1)

+ AdvKMDH
GGen,Dk,G2

(B2) +
4λ+ 2k + 2

q − 1
,

where T(B) ≈ T(A) ≈ T(B1) ≈ T(B2).

Proof. We prove the tight MU-EUF-CMAcorr security of SIGMDDH with a se-
quence of games given in Figure 7. LetA be an adversary against the MU-EUF-CMAcorr

security of SIGMDDH, and let Wini denote the probability that Gi returns 1.
Game G0: G0 is the original MU-EUF-CMAcorr security experiment Expmu-corr

SIG,µ,A
(see the full version [21] for the formal definition). In addition to the original
game, we add a rejection rule if there is a collision between the forgery and a
signing query, namely, H(vki∗ ,m

∗) = H(vki,m) where (i,m) is one of the signing
queries. By the collision resistance of H, we have

|Pr[Expmu-corr
SIG,µ,A ⇒ 1]− Pr[Win0]| ≤ AdvcrH(B).

For better readability, we assume all the signing queries are distinct for
the following games. If the same (i,m) is asked multiple times, we can take
the first response ([t]1, [u]1, [v]1) and answer the repeated queries with the re-
randomization ([t′]1, [u

′]1, [v
′]1) as t′ := t + Bs′ (for s′ ←$ Zkq ), u′ := u +
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G0, G1, G2 :

PG ←$ GGen; A ←$ Dk; B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q ; Yi,j ←$ Z3k×k

q

Zi,j := (Yi,j ‖ xi,j) ·A ∈ Z3k×k
q

Pi,j := B> · (Yi,j ‖ xi,j) ∈ Zk×(k+1)
q

Zi,j ←$ Z3k×k
q

di,j := B>xi,j ∈ Zkq
Ei,j := (B>Zi,j − di,j ·A)A

−1 ∈ Zk×kq

Pi,j := (Ei,j ‖ di,j)
pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:

x′i ←$ Zq; y′i ←$ Z1×k
q

z′i := (y′i ‖ x′i)A ∈ Z1×k
q

z′i ←$ Z1×k
q ; y′i = (z′i − x′i ·A)(A)−1

sski := ([x′i]1, [y
′
i]1)

vki := [z′i]2
(i∗,m∗, σ∗) ←$ AOSign(·,·),OCorr(·)(pp, {vki}1≤i≤µ)
If (i∗ ∈ Scorr) ∨ (m∗ ∈Mi∗) ∨ (Ver(vki∗ ,m

∗, σ∗) = 0):
Return 0

hm∗ := H(vki∗ ,m
∗)

If ∃1 ≤ i ≤ µ ∧m ∈Mi : H(vki,m) = hm∗

Return 0

Parse σ∗ := ([t∗]1, [u
∗]1, [v

∗]1)
If [u∗]1 6= [x′i∗ ]1 + [t∗]>1 · x(hm∗)

Return 0

Return 1

OSign(i,m):

s ←$ Zkq ; t := Bs ∈ Z3k
q

hm := H(vki,m)

u := x′i + s>B>x(hm) ∈ Zq
v := y′i + s>B>Y(hm) ∈ Z1×k

q

v := (z′i + t>Z(hm)− u ·A) · (A)−1

Mi :=Mi ∪ {m}
Return σ := ([t]1, [u]1, [v]1)

OCorr(i):

Scorr := Scorr ∪ {i}
Return sski

Fig. 7. Games used to prove Theorem 4.

s′>(B>x(hm)) and v′ := v + s′>(B>x(hm)) and hm := H(vki,m). Note that
this will not change the view of A.
Game G1: For verifying the forgery, in addition to using Ver, we use the se-
cret [x′i∗ ]1 and ([xj,b]1)1≤j≤λ to check if ([t∗]1, [u

∗]1) in the forgery satisfies the
following equation:

[u∗]1 = [x′i∗ ]1 + [t∗]>1 · x(hm∗). (5)

We note that

Ver(vki∗ ,m
∗, σ∗) = 1

⇔(v ‖ u) ·A = (y′i∗ ‖ x′i∗)A + t∗> · (Y(hm) ‖ x(hm)) ·A.

Thus, if Equation (5) does not hold, then the vector [(v ‖ u)]1 − ([y′i∗ ‖ x′i∗ ]1 +

[t∗>]1 · x(hm∗)) ∈ G1×(k+1)
1 is non-zero and orthogonal to [A]2. Therefore, we

bound the difference between G0 and G1 with the Dk-KMDH assumption as

|Pr[Win0]− Pr[Win1]| ≤ AdvKMDH
GGen,Dk,G2

(B).

Game G2: We do not use the values Yj,b (for 1 ≤ j ≤ λ and b = 0, 1) and y′i
(for 1 ≤ i ≤ µ) to simulate G2. We make this change by substituting all Yj,b
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and y′i using the formulas

Y>j,b = (Zj,b − xj,b ·A)(A)−1 and y′i = (z′i − x′i ·A)(A)−1, (6)

respectively. More precisely, the public parameters pp are computed by picking
Zj,b and xj,b at random and then defining Yj,b using Equation (6). The veri-
fication keys vki for user i (1 ≤ i ≤ µ) are computed by picking z′i and x′i at
random. For OSign(i,m), we now compute

v := y′i + t>Y(hm) ∈ Z1×k
q

= (z′i − x′i ·A)(A)−1 + t>(Z(hm)− x(hm) ·A)(A)−1

= (z′i + t>Z(hm)− (x′i + t>x(hm))︸ ︷︷ ︸
=u

·A)(A)−1.

The secret verification of the forgery can be done by knowing x′i∗ and xj,b.
The changes in G2 are only conceptual, since Equations (6) are equivalent to

Zj,b = (Yj,b ‖ xj,b)A and z′i = (y′i ‖ x′i)A. Thus, we have

Pr[Win1] = Pr[Win2].

In order to bound Pr[Win2], consider a “message authentication code” MAC
which is defined as follows.

– The public parameters consist of ppMAC := (PG, [B]1, ([di,j ]1)1≤i≤λ,j=0,1),
where di,j := B>xi,j ∈ Zkq for xi,j ←$ Z3k

q and B←$ U3k,k.
– The secret key is [x′]1.
– The MAC tag on hm is ([t]1, [u]1), where t := Bs and u := x′ + t>x(hm),

for s←$ Zkq .

Note that strictly speaking MAC is not a MAC since verification cannot only be
done efficiently by knowing the values xi,j .

The following lemma states MU-EUF-CMAcorr security of MAC, with proof
in the full version [21].

Lemma 2 (Core Lemma). For every adversaries A interacting with UF-CMAcorr,
there exists an adversary B against the U3k,k-MDDH assumption in G1 with

Pr[UF-CMAcorr
A ⇒ 1] ≤ (8kλ+ 2k) · AdvMDDH

GGen,U3k,k,G1
(B1) +

4λ+ 2k + 2

q − 1
,

and T(B) ≈ T(A), where Qe is the number of A’s queries to OMac.

Finally, we bound the probability that the adversary wins in G2 using our
Core Lemma (Lemma 2) by constructing an adversary BMAC as in Figure 9.

Pr[Win2] = Pr[UF-CMAcorr
BMAC

⇒ 1].

In order to analyze Pr[Win2] we argue as follows. The simulated pp and (vki)1≤i≤µ
are distributed as in G2. Further, queries to OSign and OCorr from sski can be
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UF-CMAcorr
A :

β = 0
PG ←$ GGen
B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q

ppMAC := (PG, [B]1, ([B
>xi,j ]1)1≤i≤λ,j=0,1)

For 1 ≤ i ≤ µ:
x′i ←$ Zq

AOMac(·),OVer(·,·),O′Corr(·)(ppMAC)
Return β

OMac(i, hm):

Q := Q∪ {(i, hm)}
s ←$ Zkq ; t := Bs ∈ Z3k

q

u := x′i + t>x(hm) ∈ Zq
Return σ := ([t]1, [u]1)

OVer(i∗, hm∗, ([t∗]1, [u
∗]1)): �at most once

If (i∗, hm∗) ∈ Q ∨ (i∗ ∈ L):
Return 0

If [u∗]1 := [x′i∗ ]1 + [t∗>]1 · x(hm∗):
β := 1
Return 1

Else: Return 0

O′Corr(i)

L := L ∪ {i}
Return [x′i]1

Fig. 8. Game UF-CMAcorr for Lemma 2.

perfectly simulated using OMac and O′Corr, respectively. The additional group
elements [v]1 from σ and [y′i]1 can be simulated as in G2. Finally, using a
valid forgery (i∗,m∗, σ∗) output by A, BMAC wins its own game by calling
OVer(i∗, hm∗, ([t∗]1, [u

∗]1), where ([t∗]1, [u
∗]1) is a valid MAC tag on hm∗ for

user i∗. �

BOMac(·),OVer(·),O′Corr(·)
MAC (ppMAC):

Parse ppMAC =: (PG, [B]1, ([di,j ]1)1≤iλ,j=0,1)
A ←$ Dk
For 1 ≤ i ≤ λ and j = 0, 1:

Zi,j ←$ Z3k×k
q

Ei,j := (B>Zi,j − di,j ·A)A
−1 ∈ Zk×kq

Pi,j := (Ei,j ‖ di,j)
pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:

z′i ←$ Z1×k
q

vki := [z′i]2 �sski is undefined

(i∗,m∗, σ∗) ←$ AOSign(·,·),OCorr(·)(pp, {vki}1≤i≤µ)
If (i∗ ∈ Scorr) ∨ (m∗ ∈Mi∗) ∨ (Ver(vki∗ ,m

∗, σ∗) = 0):
Return 0

hm∗ := H(vki∗ ,m
∗)

If ∃1 ≤ i ≤ µ ∧m ∈Mi : H(vki,m) = hm∗

Return 0
Parse σ∗ := ([t∗]1, [u

∗]1, [v
∗]1)

OVer(i∗, hm∗, [t∗]1, [u
∗]1)

Return 1

OSign(i,m):

hm := H(vki,m)
([t]1, [u]1) ←$ OMac(hm)

v := (z′i + t>Z(hm)− u ·A) · (A)−1

Mi :=Mi ∪ {m}
Return σ := ([t]1, [u]1, [v]1)

OCorr(i):

Scorr := Scorr ∪ {i}
[x′i]1 ← O′Corr(i)

y′i = (z′i − x′i ·A)(A)−1

Return sski := ([x′i]1, [y
′
i]1)

Fig. 9. Reduction BMAC to bound the winning probability in G2. BMAC receives ppMAC

and gets oracle access to OMac and OVer, and O′Corr as in Figure 8.
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6 Concrete Instantiation of Our AKE Protocols

For AKE3msg, we use our new signature scheme SIGMDDH (Figure 6) and the
ε-MU-SIM KEM constructed from the MDDH-based hash proof system HPSMDDH

(cf. the full version [21]). For AKEstate
3msg, the symmetric encryption scheme to pro-

tect against state reveals can be instantiated using any weakly secure (determin-
istic) encryption scheme such as AES or even a weak PRF.

For the KEM constructed in the full version [21], the KEM public key consists
of 2k group elements and the ciphertext of k + 1 group elements. A signature
consists of 4k + 1 group elements, cf. Figure 6. Therefore, the first message is
a bitstring of length λ, the second message consists of 6k + 1 group elements
and the third message consists of 5k + 2 group elements. For k = 1, we get an
efficient SXDH-based scheme with 15 elements in total.

We instantiate protocol AKE2msg using our signature scheme from Figure 6
and the MUC-otCCA secure KEM from Han et al. [22]. γ-diversity of the KEM
is proven in [29, Appendix D.2]. We analyze the communication complexity of
AKE2msg as follows. The KEM public key consists of k2 + 3k group elements and
the ciphertext of 2k + 3 group elements. A signature consists of 4k + 1 group
elements. Therefore, the first message consists of k2 + 7k + 1 group elements
and the second message consists of 6k + 4 group elements. For k = 1, we get an
efficient SXDH-based scheme with 9 + 10 = 19 group elements in total.

For an overview we refer to Table 1 of the introduction.
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