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Abstract. The best known n party unconditional multiparty computa-
tion protocols with an optimal corruption threshold communicates O(n)
field elements per gate. This has been the case even in the semi-honest
setting despite over a decade of research on communication complexity
in this setting. Going to the slightly sub-optimal corruption setting, the
work of Damg̊ard, Ishai, and Krøigaard (EUROCRYPT 2010) provided
the first protocol for a single circuit achieving communication complexity
of O(log |C|) elements per gate. While a number of works have improved
upon this result, obtaining a protocol with O(1) field elements per gate
has been an open problem.
In this work, we construct the first unconditional multi-party computa-
tion protocol evaluating a single arithmetic circuit with amortized com-
munication complexity of O(1) elements per gate.

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of n parties to mutually
run a protocol that computes some function f on their private inputs with-
out compromising the privacy of their inputs or the correctness of the out-
puts [Yao82,GMW87,CCD88,BOGW88]. An important distinction in designing
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MPC protocols is that of the power of the adversary. An adversary in a semi-
honest protocol follows the protocols specification but tries to learn information
from the received messages, and an adversary in a malicious protocol is allowed
to deviate from the protocols specification in arbitrary ways.

In this work, our focus is on the communication complexity of information
theoretic protocols evaluating an arithmetic circuit in the presence of semi-honest
or malicious adversaries. The “dream” in the unconditional setting is to get as
close to |C| as possible (or even below) where |C| is the circuit size. The best
known protocols in the so called optimal threshold regime tolerating t = (n−1)/2
corrupted parties require communicating O(n · |C|) field elements (ignoring cir-
cuit independent terms) [DN07,GIP+14,CGH+18,NV18,BBCG+19,GSZ20,BGIN20].
There are no constructions known beating this barrier even in the semi-honest
setting despite over a decade of research.

Moving to Sub-optimal Corruption Threshold. In a remarkable result, Damg̊ard
et al. [DIK10] showed an unconditional MPC protocol with communication com-
plexity of O(log |C|·n/k) per gate (ignoring circuit independent terms) tolerating
t′ = (n−1)/3−k+1 corrupted parties. This was later extended by Genkin et al.
[GIP15] to obtain a construction tolerating t′ = (n− 1)/2−k+ 1 corrupted par-
ties with also a constant factor improvement in the communication complexity.
These works rely on the packed secret sharing technique introduced by Franklin
and Yung [FY92] where k secrets are packed into a single secret sharing. An
incomparable result was given by Garay et al. [GIOZ17] who obtained a pro-
tocol with communication complexity O(log1+δ n · |C|) where δ is any positive
constant. If one was interested in evaluating the same circuit multiple times on
different inputs, Franklin and Yung [FY92] showed how to use packed secret
sharing to evaluate k copies of the circuit with amortized communication com-
plexity of O(n/k) elements per gate or O(1) elements when k = O(n). However
in case of a single circuit evaluation, the works mentioned [GIP15,GIOZ17]
remains the best known.

To our knowledge, there is no known unconditional MPC protocol which only
requires communicating O(1) field elements per gate for any corruption thresh-
old (assuming the number of corrupted parties is at least super-constant). This
raises the following natural question:

Is it possible to construct information theoretic MPC protocols for computing
a single arithmetic circuit with communication complexity O(1) field elements
per gate?

We answer the above question in the affirmative by constructing an informa-
tion theoretic n-party protocol based on packed secret sharing for an arithmetic
circuit over a finite field F of size |F| ≥ 2n. Our communication complexity
amortized over the multiplication gates within the same circuit (rather than
amortized over multiple circuits) is O(n/k) field elements per multiplication
gate. Informally, we prove the following:
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Theorem 1 (informal). Assume a point-to-point channel between every pair
or parties. For all 1 ≤ k ≤ t where t = b(n − 1)/2c, there exists an informa-
tion theoretic n-party MPC protocol which securely computes a single arithmetic
circuit in the presence of a semi-honest (malicious) adversary controlling up to
t−k+ 1 parties with an communication complexity of O(n/k) field elements per
multiplication gate. For the case where k = O(n), the achieved communication
complexity is O(1) elements per gate. In addition, our finite field F is of size
|F| ≥ 2n.

Our formal theorem for semi-honest security with perfect security can be
found in Theorem 6 and we refer the readers to the full version of this pa-
per [GPS21] for the formal theorem for malicious security (with abort and sta-
tistical security). In order to achieve these results, we introduce a set of combi-
natorial lemmas which could be of independent interest. In particular, we marry
packed secret sharing with techniques from graph theory. A key technical chal-
lenge with using packed secret sharing in the context of a single circuit is to make
sure that all the required secrets for a batch of gates appear in a single packed
secret sharing. In addition, one needs to ensure that these secrets appear in the
correct order. Our key technical contributions in this paper relate to performing
secure permutations of the secrets efficiency by using techniques from perfect
matching in bipartite graphs. In particular, we make an extensive use of Hall’s
Marriage Theorem.

2 Technical Overview

In the following, we will use n = 2t + 1 to denote the number of parties. Let
1 ≤ k ≤ t be an integer. We consider the scenario where an adversary is allowed
to corrupt t′ = t − k + 1 parties. For simplicity, we focus on the semi-honest
setting. We will discuss how to achieve malicious security at a later point.

Our construction will use the packed secret-sharing technique introduced by
Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. It allows to secret-share a batch of secrets within a single
Shamir sharing. In the case that t′ = t − k + 1, we can use a degree-t Shamir
sharing, which requires t+ 1 shares to reconstruct the whole sharing, to store k
secrets such that any t′ shares are independent of the secrets. We refer to such
a sharing as a degree-t packed Shamir sharing. Let x be a vector of dimension
k. We use [x] to denote a degree-t packed Shamir sharing of the secrets x.

In this work, we are interested in the information-theoretic setting. Our goal
is to construct a semi-honest MPC protocol for a single arithmetic circuit over
a finite field F (of size |F| ≥ 2n), such that the amortized communication com-
plexity (of each party) per gate is O(n/k) elements. Note that when k = O(n),
the amortized communication complexity per gate becomes O(1) elements.
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2.1 Background: Using the Packed Secret-sharing Technique in
MPC

In the information-theoretic setting, a general approach to construct an MPC
protocol is to compute a secret sharing for each wire of the circuit. The circuit
is evaluated gate by gate, and the problem is reduced to compute the output
sharing of an addition gate or a multiplication gate given the input sharings.
When the corruption threshold can be relaxed to t′ = t−k+ 1 where t = n−1

2 , a
natural way of using the packed secret-sharing technique [FY92] is to compute
k ≥ 1 copies of the same circuit (i.e., a SIMD circuit): by storing the value related
to the i-th copy in the i-th position of the secret sharing for each wire, all copies
of the same circuit are evaluated simultaneously. Moreover, the communication
complexity of a single operation for packed secret sharings is usually the same
as that for standard secret sharings. Effectively, the amortized communication
complexity per copy is reduced by a factor of k.

In 2010, Damg̊ard et al. [DIK10] provided the first protocol of using packed
secret-sharing technique to evaluate a single circuit. The original work focuses on
the corruption threshold t′ < (1/3− ε)n and perfect security. It is later extended
by [GIP15] to the setting of security with abort against t′ < (1/2−ε)n corrupted
parties with a constant factor improvement in the communication complexity4.
At a high-level, the idea is to divide the gates of the same type in each layer
into groups of k. Each group of gates will be evaluated at the same time. For
each group of gates, all parties need to prepare the input sharings by using the
output sharings from previous layers. Unlike the case when evaluating a SIMD
circuit, input sharings for each group of gates do not come for free:

– The secrets needed to be in a single sharing may be scattered in different
output sharings of previous layers.

– Even if we have all the secrets in a single sharing, we need the secrets to be
in the correct order so that the i-th secret is the input of the i-th gate.

The naive approach of preparing a single input sharing by collecting the secret
one by one would require O(k) operations, which eliminates the benefit of using
the packed secret-sharing technique. In [DIK10], they solve this problem by
compiling the circuit into a special form of a universal circuit such that it can be
viewed as k copies of the same circuit. In particular, the compilation uses the so-
called Beneš network, which increases the circuit size by a factor of log |C|, where
|C| is the circuit size. As a result, the amortized communication complexity per
gate is O(log |C| · n/k) elements.

Our work aims to remove the log |C| factor in the communication complexity
and achieves the same communication efficiency as that for the evaluation of
many copies of the same circuit. In this paper, we describe our idea from the
bottom up:

4 While the semi-honest version of the protocol in [GIP15] can use a field F of size
O(n), the maliciously secure protocol requires to use a large enough field since the
error probability is proportional to the field size.
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1. We start with the basic protocols to evaluate input gates, addition gates, mul-
tiplication gates, and output gates using the packed Shamir sharing scheme.
These protocols are simple variants of the protocols in [DN07], which focuses
on the adversary that can corrupt t parties.

2. To use these protocols to evaluate addition gates and multiplication gates,
we need the secrets in the input packed Shamir sharings to have the correct
order. Assuming each input sharing contains all the secrets we want, we
discuss how to permute the secrets in each input sharing to the correct
order.

3. Next, we show how to collect the secrets of an input packed Shamir sharing
from the output sharings of previous layers. Our solution requires that each
output wire from each layer is only used once in the computation, as an input
wire to a single layer. This requirement can be met by further requiring that
there is a fan-out gate right after each gate that copies the output wire the
number of times it is used in later layers.

4. After that, we discuss how to evaluate fan-out gates efficiently.
5. Finally, we discuss how to achieve malicious security.

Our key techniques lie on the second point and the third point. We will
focus on these two points in the technical overview, which are in Section 2.2
and Section 2.3. We will briefly discuss the last two points in Section 2.4 and
Section 2.6.

2.2 Performing an Arbitrary Permutation on the Secrets of a Single
Sharing

During the computation, we may encounter the scenario that the order of the
secrets is not what we want. For example, when k = 2 and we want to compute
two multiplication gates with input secrets (x1, y1), (x2, y2), ideally we want all
parties to hold two packed Shamir sharings of x = (x1, x2) and y = (y1, y2)
so that when we use the multiplication protocol with these two packed Shamir
sharing, we can obtain a packed Shamir sharing of the secret x∗y = (x1 ·y1, x2 ·
y2). During the computation, however, all parties may hold two packed Shamir
sharings of x = (x1, x2) and y′ = (y2, y1). In particular, the secrets in the second
sharing are not in the order we want. Using these two packed Shamir sharings
in the multiplication protocol, we can only obtain a packed Shamir sharing of
x ∗ y′ = (x1 · y2, x2 · y1) instead of the correct result x ∗ y = (x1 · y1, x2 · y2).

To solve it, we need to construct a protocol which allows all parties to per-
form an arbitrary permutation on the secrets of a single sharing. Let p(·) be a
permutation over {1, 2, . . . , k}. We use Fp to denote the linear map which maps
x = (x1, x2, . . . , xk) to x̃ = (xp(1), xp(2), . . . , xp(k)). Given the input sharing [x],
the goal is to compute a degree-t packed Shamir sharing [Fp(x)].

We first review the approach in [DIK10] for permuting the secrets of [x]:

1. All parties prepare two random degree-t packed Shamir sharings ([r], [r̃]),
where r̃ = Fp(r) and p(·) is the permutation we want to perform.
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2. All parties locally compute [e] := [x] + [r] and send their shares to the first
party P1.

3. P1 reconstructs the secrets e and computes ẽ = Fp(e). P1 generates a random
degree-t packed Shamir sharing [ẽ] and distributes the shares to other parties.

4. All parties locally compute [x̃] := [ẽ]− [r̃].

To see the correctness, note that in the second step we have e = x+r. Therefore,

x̃ = Fp(x) = Fp(e− r) = Fp(e)− Fp(r) = ẽ− r̃.

The communication complexity of this protocol is O(n/k) elements per secret
(excluding the cost for the preparation of ([r], [r̃])).

As noted in [DIK10], the main issue of this approach is how to efficiently pre-
pare a pair of random sharings ([r], [r̃]). Although there are known techniques
to prepare random sharings ([r], [r̃]) for a fixed permutation p such that the
amortized communication complexity per pair is O(n) elements where in turn
the amortized cost per secret is O(n/k) elements, these techniques suffer a large
overhead (at least O(n2) elements) that is independent of the number of sharings
we want to prepare. It means that the overhead of preparing random sharings
depends on the number of different permutations we want to perform. In the
worst case where each time we need to perform a different permutation, the
overhead of each pair of random sharings is as large as O(n2) elements, which
eliminates the benefit of using the packed Shamir sharing scheme. In [DIK10],
this issue is solved by compiling the circuit such that only O(log n) different per-
mutations are needed in the computation with the cost of blowing up the circuit
size by a factor of O(log |C|), where |C| is the circuit size. This approach does
not achieve our goal since the amortized communication complexity per gate
becomes O(log |C| ·n/k) elements. To generate random sharings for m permuta-
tions, our idea is to first generate random sharings for a limited number (O(n2))
of different permutations which are related to the input permutations, and then
transform them to the random sharings for the desired permutations (the in-
put permutations). In this way, since we only need to prepare random sharings
for O(n2) different permutations, we do not suffer the quadratic overhead in
the communication complexity even if all the input permutations are different.
Moreover, we do not need to compile the circuit and therefore do not suffer
the O(log |C|) factor in the communication complexity as that in [DIK10]. As a
result, the amortized communication complexity of our permutation protocol is
O(n/k) elements per secret.

Before introducing our idea, we first introduce a useful functionality Fselect,
which selects secrets from one or more packed Shamir sharings and outputs a
single sharing which contains the chosen secrets. Later on, we will use Fselect to
solve the above issue of preparing random sharings for permutations. Concretely,
Fselect takes as input k degree-t packed Shamir sharings {[x(i)]}ki=1 (which do
not need to be distinct) and outputs a degree-t packed Shamir sharing of y such

that yi = x
(i)
i . Effectively, Fselect chooses the i-th secret of [x(i)] and generates

a new degree-t packed Shamir sharing [y] that contains the chosen secrets. Note
that the secrets we choose are from different positions and the positions of these
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secrets remain unchanged in the output sharing. To realize Fselect, we observe
that y can be computed by

∑k
i=1 e

(i) ∗x(i), where e(i) is a constant vector where
the i-th entry is 1 and all other entries are 0, and ∗ denotes the coordinate-wise
multiplication operation. We realize Fselect by extending the basic protocol for
multiplication gates as described in Section 4.2. The amortized communication
complexity of Fselect is O(n/k) elements per secret.

Using Fselect to Generate Random Sharings for Permuting Secrets. For all i, j ∈
{1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y]) contains
an (i, j)-component if xi = yj . To perform a permutation p(·), we need to pre-
pare two random degree-t packed Shamir sharings ([r], [Fp(r)]). We can view
([r], [Fp(r)]) as a composition of an (i, p(i))-component for all i ∈ [k].

Now we introduce a new approach for preparing random sharings ([r], [Fp(r)]):

1. Let q1, q2, . . . , qk be k different permutations over {1, 2, . . . , k} such that for
all i ∈ [k], qi(i) = p(i).

2. All parties prepare a pair of random sharings for each permutation qi, de-
noted by ([r(i)], [Fqi(r

(i))]). Since qi(i) = pi, ([r(i)], [Fqi(r
(i))]) contains an

(i, p(i))-component.
3. To prepare ([r], [Fp(r)]), we can use Fselect to select the (i, p(i))-component

from ([r(i)], [Fqi(r
(i))]) for all i ∈ [k]. More concretely, for [r], we use Fselect

to select the i-th secret of [r(i)] for all i ∈ [k]. For [Fp(r)], we use Fselect to
select the p(i)-th secret of [Fqi(r

(i))] for all i ∈ [k].

While this way of preparing a single pair of random sharings for the permu-
tation p requires k pairs of random sharings for k permutations q1, . . . , qk, we
note that the unused components of ([r(i)], [Fqi(r

(i))]) can potentially be used to
prepare random sharings for other permutations.

In general, when we want to prepare random sharings for m permutations
p1(·), p2(·), . . . , pm(·), relying on Fselect, it is sufficient to alternatively prepare
random sharings for m permutations q1(·), q2(·), . . . , qm(·) such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
which satisfies that p(i) = j is equal to the number of permutations q ∈
{q1, q2, . . . , qm} which satisfies that q(i) = j.

Then, from i = 1 to m, a pair of random sharings for the permutation pi can be
prepared by using Fselect to choose the first unused (j, pi(j))-component for all
j ∈ [k].

The major benefit of this approach is that we can limit the number of different
permutations in {q1, q2, . . . , qm} as we show in Theorem 2.

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm
over {1, 2, . . . , k}, there exists m permutations q1, q2, . . . , qm over {1, 2, . . . , k}
such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
such that p(i) = j is the same as the number of permutations q ∈ {q1, q2, . . . , qm}
such that q(i) = j.
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– q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

Recall that the issue of using known techniques to prepare random sharings
for p1, p2, . . . , pm is that there will be an overhead of O(n2) elements per differ-
ent permutation in p1, p2, . . . , pm. Relying on Fselect, we only need to prepare
random sharings for permutations q1, . . . , qm, which contain at most k2 ≤ n2

different permutations. In this way, the overhead is independent of the number
of permutations and the circuit size. Recall that the amortized communication
complexity for each pair of random sharings is O(n/k) elements per secret, and
our protocol for Fselect and the permutation protocol from [DIK10] also have
the same amortized communication complexity, i.e., O(n/k) elements per se-
cret. Therefore, the overall communication complexity to perform an arbitrary
permutation on the secrets of a single secret sharing is O(n/k) elements per
secret.

Using Hall’s Marriage Theorem to Prove Theorem 2. We note that Theorem 2
has a close connection to graph theory. We first introduce two basic notions.

– For a graph G = (V,E), we say G is a bipartite graph if there exists a
partition (V1, V2) of V such that all edges are between vertices in V1 and
vertices in V2. Such a graph is denoted by G = (V1, V2, E).

– For a bipartite graph G = (V1, V2, E) where |V1| = |V2|, a perfect matching
is a subset of edges E ∈ E which satisfies that each vertex in the sub-graph
(V1, V2, E) has degree exactly 1.

Note that a permutation p over {1, 2, . . . , k} corresponds to a perfect matching
in a bipartite graph: the set of vertices are V1 = V2 = {1, 2, . . . , k}, and the set
of edges are E = {(i, p(i))}ki=1.

We first construct a bipartite graph G = (V1, V2, E) where V1 = V2 =
{1, 2, . . . , k} and E contains all edges in the perfect matching that p1, p2, . . . , pm
correspond to. Strictly speaking, G is a multi-graph since a pair of vertices may
have multiple edges. Note that Theorem 2 is equivalent to decomposing G into m
perfect matching such that the number of different perfect matching is bounded
by k2. Our idea of finding these m perfect matching is to repeat the following
steps until E becomes empty:

1. We first find a perfect matching E ⊂ E in G.
2. We repeatedly remove E from E until E is no longer a subset of E. The

number of times that E is removed from E is the number of times that E
appears in the output perfect matching.

Note that the number of different perfect matches is the same as the number of
iterations of the above two steps. Suppose the first step always succeeds. The
second step guarantees that in each iteration, we will completely use up the edges
between one pair of vertices in E. Since there are at most k2 different pairs of
vertices, the above process will terminate within k2 iterations.

For the first step, we use Hall’s Marriage Theorem to prove the existence of
a perfect matching.
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Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E)
such that |V1| = |V2|, there exists a perfect matching iff for all subset V ′1 ⊂ V1,
the number of the neighbors of vertices in V2 is at least |V ′1 |.

Hall’s Marriage Theorem is a well-known theorem in graph theory which has
many applications in mathematics and computer science. It provides a necessary
and sufficient condition of the existence of a perfect matching in a bipartite
graph. In addition, there are known efficient polynomial-time algorithms to find
a perfect matching in a bipartite graph, e.g. the Hopcroft-Karp algorithm.

To prove the existence of a perfect matching, we show that the graph G at
the beginning of each iteration satisfies the necessary and sufficient condition
in Hall’s Marriage Theorem. We say a bipartite graph G′ = (V ′1 , V

′
2 , E

′) is d-
regular if the degree of each vertex in V ′1

⋃
V ′2 is d. A well-known corollary of

Hall’s Marriage Theorem states that:

Corollary 1. There exists a perfect matching in a d-regular bipartite graph.

Therefore, it is sufficient to show that the graph G at the beginning of each
iteration is a d-regular bipartite graph. Recall that in the beginning, the set of
edges E contains all edges in the perfect matching that p1, p2, . . . , pm correspond
to. Since by definition, the degree of each vertex in a perfect matching is exactly
1, the degree of each vertex in G is m, which means that G is a m-regular
bipartite graph. In each iteration, we first find a perfect matching in Step 1 and
then repeatedly remove this perfect matching from E in Step 2. Each time of
removing a perfect matching reduces the degree of each vertex in G by 1. Thus,
G is still a d-regular bipartite graph after each remove of a perfect matching.
Therefore, the graph G at the beginning of each iteration is a d-regular bipartite
graph.

2.3 Obtaining Input Sharings for Multiplication Gates and
Addition Gates

So far, we have introduced how to perform a permutation to the secrets of a
single sharing to obtain the correct order. However, this only solves the problem
when we have all the values we want in a single sharing. During the computation,
such a sharing does not come for free since the values we want may be scattered
in one or more output sharings of previous layers. This requires us to collect
the secrets from those sharings and generate a single sharing for these secrets
efficiently.

Our starting point is the functionality Fselect. Recall that Fselect allows us
to select secrets from one or more sharings and generate a new sharing for the
chosen secrets if the secrets we select are in different positions. To use Fselect,
we consider what we call the non-collision property stated in Property 1.

Property 1 (Non-collision). For each input sharing of each layer, the secrets
of this input sharing come from different positions in the output sharings of
previous layers.
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Note that if we can guarantee the non-collision property, then we can use
Fselect to generate the input sharing we want. Unfortunately, this property does
not hold in general. A counterexample is that we need the same secret twice in
a single input sharing. Then these two secrets will always come from the same
position. To solve this problem, we require that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming
that there is a fan-out gate right after each (input, addition, or multiplication)
gate that copies the output wire the number of times it is used in later layers.
In the next subsection, we will discuss how to evaluate fan-out gates efficiently.
With this requirement, there is a bijective map between the output wires (of the
input layer and all intermediate layers) and the input wires (of the output layer
and all intermediate layers).

Note that only meeting this requirement is not enough: it is still possible that
two secrets of a single input sharing come from the same position but in two
different output sharings. Our idea is to perform a permutation on each output
sharing to achieve the non-collision property.

Since every output wire from every layer is only used once as an input wire
of another layer, the number of output sharings in the circuit is the same as
the number of input sharings in the circuit. Let m denote the number of out-
put packed Shamir sharings of the input layer and all intermediate layers in
the circuit. Then the number of input packed Shamir sharings of the output
layer and all intermediate layers is also m. We label all the output sharings
by 1, 2, . . . ,m and all the input sharings also by 1, 2, . . . ,m. Consider a matrix
N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that the j-th
secret of the i-th output sharing wants to go to. Then for all ` ∈ {1, 2, . . . ,m},
there are exactly k entries of N which are equal to `. We will prove the following
theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m×k
in {1, 2, . . . ,m}m×k such that for all ` ∈ {1, 2, . . . ,m}, the number of entries of
N which are equal to ` is k. Then, there exists m permutations p1, p2, . . . , pm
over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over
(1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm can be found within
polynomial time.

Jumping ahead, when we apply pi to the i-th output sharing for all i ∈
{1, 2, . . . ,m}, Theorem 4 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets
of all output sharings want to go to different input sharings. Note that this
ensures the non-collision property. During the computation, we will perform the
permutation pi on the i-th output sharing right after it is computed. Note that
when preparing an input sharing, the secrets we need only come from the output
sharings which have been computed. The secrets of these output sharings have
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been properly permuted such that the secrets we want are in different positions.
Therefore, we can use Fselect to choose these secrets and obtain the desired input
sharing.

Using Hall’s Marriage Theorem to Prove Theorem 4. Let N be the matrix in
Theorem 4. Our idea is to repeat the following steps:

1. In the `-th iteration, for each row of N , we pick a value in the last k− `+ 1
entries of this row (so that the first ` − 1 entries will not be chosen), such
that the values we pick in all rows form a permutation over {1, 2, . . . ,m}.

2. For each row of N , we swap the `-th entry with the value we picked in this
row. In this way, the `-th column of N is a permutation over {1, 2, . . . ,m}.

Note that in each iteration, we switch two elements in each row. At the end of
the above process, we can compute the permutation for each row based on the
elements we switched in each iteration.

To make this idea work, we need to show that we can always find the values
which form a permutation over {1, 2, . . . ,m} in Step 1. We transform this prob-
lem to finding a perfect matching in a bipartite graph. We explain our solution
for the first iteration.

Consider a graph G = (V1, V2, E) where V1 = V2 = {1, 2, . . . ,m}. For each
entry Ni,j , there is an edge (i,Ni,j) in E. Then picking a value in each row is
equivalent to picking an edge for each vertex in V1. The chosen values forming a
permutation over {1, 2, . . . ,m} is equivalent to the chosen edges forming a perfect
matching in G. To prove the existence of a perfect matching, we show that the
graph G is a k-regular bipartite graph and rely on the corollary (Corollary 1) of
Hall’s Marriage Theorem. For all vertex i ∈ V1, there is an edge (i,Ni,j) in E for
each entry in the i-th row of N . Therefore, the degree of the vertex i is k. For all
vertex j ∈ V2, the degree of j equals to the number of entries in N which equal
to j. Note that there are exactly k entries which equals to j. Thus, the degree of
the vertex j is k. Therefore G is a k-regular graph. By Corollary 1, there exists a
perfect matching in G. The same arguments work for other iterations. We refer
the readers to Section 4.3 for more details.

It is worth noting that we use Hall’s Marriage Theorem to solve two different
problems:

– In Theorem 2, we use Hall’s Marriage Theorem to find a different set of
permutations q1, q2, . . . , qm given the permutations p1, p2, . . . , pm and limit
the number of different permutations in q1, q2, . . . , qm.

– In Theorem 4, we use Hall’s Marriage Theorem to find a permutation for
each output sharing to achieve the non-collision property (Property 1).

2.4 Handling Fan-out Gates

We briefly discuss how to evaluate fan-out gates efficiently. We first model the
problem as follows: given a degree-t packed Shamir sharing [x] along with a
vector (n1, n2, . . . , nk) ∈ Nk, where ni ≥ 1 is the number of times that xi is
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used in later layers, the goal is to compute n1+n2+...+nk

k degree-t packed Shamir
sharings which contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}. (For
simplicity, we assume that n1 + n2 + . . . + nk is a multiple of k. We refer the
readers to Section 5.1 for how we handle the edge case.)

Our idea is to compute the output sharings one by one. For each output
sharing [y], all values of y come from x, which means that we may write y as a
linear function of x. Let F be a linear map such that y = F (x). To compute [y],
we can prepare a pair of random sharings ([r], [F (r)]) and use the same method
to compute [y] as that for permutations. Then we face the same problem that
naively preparing the random sharings ([r], [F (r)]) suffer an overhead which
depends on the number of different linear maps F . In the worst case where
we need a different linear map for different output packed Shamir sharing, the
overhead of preparing each pair of random sharings is as large as O(n2) elements,
which eliminate the benefit of using the packed Shamir sharing scheme.

We follow the same idea as that for permutation to prepare the random shar-
ings ([r], [F (r)]): Given m different linear maps F1, F2, . . . , Fm, we will prepare
random sharings for m other linear maps G1, G2, . . . , Gm and then recompose
the components in the random sharings for G1, G2, . . . , Gm to obtain random
sharings for F1, F2, . . . , Fm. The main difficulty is that it is unclear how to define
a component. Our solution includes the following additional steps:

– We require the secrets of the output packed Shamir sharings to be in a
specific order.

– To compute each output packed Shamir sharing [y], we first permute the
secrets of [x] based on y.

These two steps allow us to properly define a component in a way that we can
efficiently find G1, G2, . . . , Gm such that the above idea works. The description
of the ideal functionality for fan-out gates is presented in Section 4.4. We refer
the readers to the full version of this paper [GPS21] for more details about our
protocol for fan-out gates.

2.5 Overview of Our Semi-honest Protocol

So far, we have introduced all the building blocks we need in our semi-honest
protocol. To evaluate a single circuit:

1. All parties first transform the circuit to a good form in the sense that the
number of gates of each type in each layer is a multiple of k. The transfor-
mation is done locally by running a deterministic algorithm. Unlike [DIK10],
our transformation only increases the circuit size by a constant factor and an
additive term O(k · Depth), where the latter term comes from the fact that
the number of gates in each layer is a multiple of k after the transformation.
The same term (or a larger term) also exists in [DIK10,GIP15]. We refer the
readers to Section 5.1 for more details.

2. All parties preprocess the circuit to determine how the wire values should
be packed. Also, all parties compute a permutation for each output sharing
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for the non-collision property (see Property 1 in Section 2.3). This step is
also done locally. We refer the readers to Section 5.2 for more details.

3. Finally, all parties evaluate the circuits using the protocols we described
above. We refer the readers to Section 5.3 for more details.

Note that only the third step requires communication. We briefly analyze the
communication complexity. For each group of k gates, all parties use the basic
protocol to evaluate these gates. The communication complexity of the basic
protocol is O(n) elements. To prepare the input sharings for this group of k
(addition, multiplication, or output) gates, we need to evaluate fan-out gates,
perform permutations to achieve the non-collision property, use Fselect to collect
the secrets of the input sharings, and perform permutations again to obtain
the correct orders. Since each operation requires O(n) elements, the amortized
communication complexity per gate is O(n/k) elements.

2.6 Achieving Malicious Security

We briefly discuss how to compile our semi-honest protocol to a fully malicious
one. Our main observation is that most of our semi-honest protocols have al-
ready achieved perfect privacy against a fully malicious adversary, namely the
executions of these protocols do not leak any information to the adversary. Also,
the deviation of a fully malicious adversary can be reduced to the following two
kinds of attacks:

– An adversary can distribute an inconsistent degree-t packed Shamir sharing.
– An adversary can add additive errors to the secrets of the output sharing.

To achieve malicious security, our idea is to first run our semi-honest proto-
col before the output phase, check whether the above two kinds of attacks are
launched by the adversary, and finally reconstruct the output.

To this end, for each semi-honest protocol, we first construct a functional-
ity which allows the adversary to launch the above two kinds of attacks, and
prove that our semi-honest protocol securely (with abort) computes the new
functionality against a fully malicious adversary. Then we construct protocols to
check whether the above two kinds of attacks are launched by the adversary. We
view the computation as a composition of two parts: (1) evaluation of the basic
gates, i.e., addition gates and multiplication gates, and (2) network routing, i.e.,
computing input sharings of each layer using the output sharings from previous
layers.

– For the first part, since addition gates are computed without interaction, it
is sufficient to only check the correctness of multiplications. We extend the
recent sub-linear verification techniques [BBCG+19,GSZ20] which are used
in the honest majority setting (i.e., the corruption threshold t′ = t) to our
setting (i.e., the corruption threshold t′ = t− k + 1).

– For the second part, it includes evaluating fan-out gates, performing per-
mutations to achieve the non-collision property, using Fselect to collect the
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secrets of the input sharings, performing permutations again to obtain the
correct orders. We note that the network routing does not change the secret
values. Instead, its goal is to create new sharings which contain the secret
values we want in the correct positions. Thus, it is sufficient to only focus on
the front sharing before the network routing and the end sharing after the
network routing, and check whether they have the same values.

Finally, when both checks pass, all parties reconstruct the output as the semi-
honest protocol. We refer the readers to the full version of this paper [GPS21]
for more details.

Remark 1. We note that the multiplication protocol is an exception in the sense
that it cannot be reduced directly to the additive attacks we mention above. In
fact, the work [GIP15] showed that a malicious attack can only be reduced to
a linear attack, where the error in the output secret can depend on the input
secrets. Our observation is that the linear attack is due to the inconsistency of
the input sharings. If the input sharings are consistent, then the linear attack
in [GIP15] degenerates to an additive attack to the final result. To model such a
security property, we use a weaker functionality for the multiplication protocol,
which does not guarantee the correctness of the multiplication result when the
input sharings are inconsistent. The verification is done by first checking the con-
sistency of all sharings. If the verification passes, then the attack of an adversary
degenerates to additive attacks, which allows us to use the efficient verification
protocol for multiplication gates in previous works. We refer the readers to the
full version of this paper [GPS21] for more discussion.

3 Preliminaries

3.1 The Model

In this work, we use the client-server model for the secure multi-party compu-
tation. In the client-server model, clients provide inputs to the functionality and
receive outputs, and servers can participate in the computation but do not have
inputs or get outputs. Each party may have different roles in the computation.
Note that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authen-
tic) synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

We focus on functions that can be represented as arithmetic circuits over a
finite field F with input, addition, multiplication, and output gates. We use κ to
denote the security parameter, C to denote the circuit, and |C| for the size of
the circuit. We assume that the field size is |F| ≥ 2n.

Let 1 ≤ k ≤ t be an integer. An adversary A can corrupt at most c clients
and t′ = t − k + 1 servers, provide inputs to corrupted clients, and receive all
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messages sent to corrupted clients and servers. Corrupted clients and servers
can deviate from the protocol arbitrarily. One benefit of the client-server model
is that it is sufficient to only consider maximum adversaries, i.e., adversaries
which corrupt t′ = t − k + 1 parties. We refer the readers to the full version of
this paper [GPS21] for more details about the security definition and the benefit
of the client-server model. In the following, we assume that there are exactly
t′ = t− k + 1 corrupted parties.

3.2 Packed Shamir Secret Sharing Scheme

In this work, we will use the packed secret-sharing technique introduced by
Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. Let n be the number of parties and k be the number
of secrets that are packed in one sharing. Let α1, . . . , αn, β1, . . . , βk be n + k
distinct non-zero elements in F.

A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a
vector (w1, . . . , wn) which satisfies that, there exists a polynomial f(·) ∈ F[X] of
degree at most d such that ∀i ∈ [k], f(βi) = xi and ∀i ∈ [n], f(αi) = wi. The i-th
share wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing
requires d+ 1 shares and can be done by Lagrange interpolation. For a random
degree-d packed Shamir sharing of x, any d − k + 1 shares are independent of
the secret x.

We will use [x] to denote a degree-t packed Shamir sharing of x ∈ Fk, and
〈x〉 to denote a degree-2t packed Shamir sharing. Recall that the number of
corrupted parties is at most t− k + 1. Therefore, using degree-t packed Shamir
sharings is sufficient to protect the privacy of the secrets. In the following, op-
erations (addition and multiplication) between two packed Shamir sharings are
coordinate-wise.

We recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all x,y ∈ Fk, [x + y] = [x] + [y].
– Multiplication: Let ∗ denote coordinate-wise multiplication. For all x,y ∈

Fk, 〈x ∗ y〉 = [x] · [y].

These two properties directly follow from the computation of the polynomials.
For a constant vector v ∈ Fk which is known by all parties, sometimes it

is convenient to transform it to a degree-t packed Shamir sharing. This can be
done by constructing a polynomial f(·) ∈ F [X] of degree k − 1 such that for all
i ∈ [k], f(βi) = vi. The i-th share of [v] is defined to be f(αi) as usual.

3.3 Generating Random Sharings

In our work, we adopt the notion of an abstract definition of a general linear
secret sharing scheme (GLSSS) in [CCXY18]. We will make use of a functionality
Frand introduced in [PS21], which allows all parties to prepare a random sharing
for a given F-linear secret sharing scheme.
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In [PS21], Polychroniadou and Song proposed an instantiation of Frand which
is secure against an adversary that corrupts t parties. We note that their proto-
col can be extended to any corruption threshold (with different communication
complexity). In particular, in our setting where t′ = t − k + 1, if the share size
of the given F-linear secret sharing scheme is sh field elements in F, the com-
munication complexity of generating N random sharings is O(N · n · sh+ n3 · κ)
elements in F. We refer the readers to the full version of this paper [GPS21] for
more details.

3.4 Permutation Matrix, Bipartite Graph and Hall’s Marriage
Theorem

Definition 1 (Permutation Matrix). Let k ≥ 1 be an integer. A matrix
M ∈ {0, 1}k×k is a permutation matrix if for each row and each column, there
is exactly one entry which is 1.

For a permutation p(·) over {1, 2, . . . , k}, let Mp be a permutation matrix
such that for all i, j ∈ {1, . . . , k}, (Mp)i,j = 1 iff p(i) = j. Note that for each
permutation matrix M ′, there exists a permutation p(·) such that M ′ = Mp.

Definition 2 (Balanced Matrix). Let k ≥ 1 be an integer. A matrix M ∈
Nk×k is a balanced matrix if for each row and each column, the summation of
all the entries is the same.

Note that for all permutations p(·) over {1, 2, . . . , k}, the permutation matrix
Mp is a balanced matrix since the summation of the entries in each row and
each column is 1.

Definition 3 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if
there exists a partition (V1, V2) of V such that for all edge (vi, vj) ∈ E, vi ∈ V1
and vj ∈ V2.

In the following, we will use (V1, V2, E) to denote a bipartite graph. We say
a bipartite graph (V1, V2, E) is d-regular if the degree of each vertex in V1

⋃
V2

is d.

Definition 4 (Perfect Matching). For a bipartite graph (V1, V2, E) such that
|V1| = |V2|, a perfect matching is a subset of edges E ∈ E which satisfies that
each vertex in the sub-graph (V1, V2, E) has degree 1.

Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E)
such that |V1| = |V2|, there exists a perfect matching iff for all subset V ′1 ⊂ V1,
the number of the neighbors of vertices in V2 is at least |V ′1 |.

In this work, we will make use of the following two well-known corollaries
of Hall’s Marriage Theorem. For completeness, we also provide proofs for the
corollaries in the full version of this paper [GPS21].

Corollary 1. There exists a perfect matching in a d-regular bipartite graph.
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Corollary 2. Let k ≥ 1 be an integer. For all non-zero balanced matrix N ∈
Nk×k, there exists a permutation matrix M such that for all i, j ∈ {1, 2, . . . , k},
Ni,j ≥Mi,j.

4 Circuit Evaluation - Against a Semi-honest Adversary

In this section, we discuss how to evaluate a general circuit by using the packed
Shamir sharing scheme. For simplicity, we assume the adversary is semi-honest.
Recall that we are in the client-server model where there are c clients and n =
2t + 1 parties (servers). Recall that 1 ≤ k ≤ t is an integer. An adversary is
allowed to corrupt t′ = t−k+ 1 parties. We will use the degree-t packed Shamir
sharing scheme, which can store k secrets within one sharing. Recall that C
denotes the set of corrupted parties and H denotes the set of honest parties.

4.1 Basic Protocols for Input Gates, Addition Gates, Multiplication
Gates, and Output Gates

We distinguish input gates and output gates belonging to different clients. For
each client, we assume the number of input gates belonging to this client and the
number of output gates belonging to this client are multiples of k. For each layer,
we assume that the number of addition gates and the number of multiplication
gates are multiples of k. In Section 5, we will show how to compile a general
circuit to meet this requirement.

Evaluating Input Gates and Output Gates. The functionalities Finput-semi and
Foutput-semi are described in Functionality 1 and Functionality 2 respectively.
We refer the readers to the full version of this paper [GPS21] for the protocols
that realize Finput-semi and Foutput-semi. The communication complexity of each
protocol is O(n) field elements.

Functionality 1: Finput-semi

1. Suppose x ∈ Fk is the input associated with the input gate which belongs to
the Client. Finput-semi receives the input x from the Client.

2. Finput-semi receives from the adversary a set of shares {si}i∈C . Finput-semi sam-
ples a random degree-t packed Shamir sharing [x] such that for all Pi ∈ C, the
i-th share of [x] is si.

3. Finput-semi distributes the shares of [x] to honest parties.
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Functionality 2: Foutput-semi

1. Suppose [x] is the sharing associated with the output gate which belongs to
the Client. Foutput-semi receives the shares of [x] from honest parties.

2. Foutput-semi recovers the whole sharing [x], and sends the shares of corrupted
parties to the adversary.

3. Foutput-semi reconstructs x and sends it to the Client.

Evaluating Addition Gates and Multiplication Gates. In the following, we use
[x], [y] to denote the input degree-t packed Shamir sharings.

For an addition gate, all parties want to compute [x+y]. Note that this can
be done by computing [x+y] := [x] + [y], i.e., each party locally adds its shares
of [x], [y]. The correctness follows from the property that packed Shamir sharing
is linearly homomorphic.

Recall that ∗ denotes the coordinate-wise multiplication. For a multiplication
gate, all parties want to compute a degree-t packed Shamir sharing of z := x∗y.
We summarize the functionality Fmult-semi in Functionality 3.

Functionality 3: Fmult-semi

1. Suppose [x], [y] are the input degree-t packed Shamir sharings. Fmult-semi re-
ceives the shares of [x], [y] from honest parties.

2. Fmult-semi recovers the whole sharings [x], [y] and reconstructs the secrets x,y.
Fmult-semi computes z := x ∗ y.

3. Fmult-semi receives from the adversary a set of shares {si}i∈C . Fmult-semi sam-
ples a random degree-t packed Shamir sharing [z] such that for all Pi ∈ C, the
i-th share of [z] is si.

4. Fmult-semi distributes the shares of [z] to honest parties.

A multiplication gate can be evaluated by a natural extension of the DN
multiplication protocol in [DN07]. The main observation is that all parties can
locally compute a degree-2t packed Shamir sharing 〈z〉 = 〈x ∗ y〉 = [x] · [y].
The only task is to reduce the degree of 〈z〉. Following the approach in [DN07],
this can be achieved by preparing a pair of two random sharings ([r], 〈r〉) of the
same secrets r. We refer the readers to the full version of this paper [GPS21]
for the protocol that realizes Fmult-semi. The communication complexity of m
invocations of Fmult-semi is O(m · n+ n3 · κ) field elements.
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4.2 Performing an Arbitrary Permutation on the Secrets of a Single
Sharing

During the computation, we may encounter the scenario that the order of the
secrets is not what we want (see more discussion in Section 2.2). To solve it,
we need a functionality which allows us to perform an arbitrary permutation
on the secrets of a single sharing. Let p(·) be a permutation over {1, 2, . . . , k}.
Recall that each permutation p(·) maps to a permutation matrix Mp ∈ {0, 1}k×k
where (Mp)i,j = 1 iff p(i) = j. To permute a vector x = (x1, x2, . . . , xk) to
x̃ = (xp(1), xp(2), . . . , xp(k)), it is equivalent to computing x̃ = Mp ·x. We model
the functionality Fpermute-semi in Functionality 4.

Functionality 4: Fpermute-semi

1. Fpermute-semi receives a permutation p and the shares of a degree-t packed
Shamir sharing [x] from honest parties.

2. Fpermute-semi reconstructs the secrets x from the shares of honest parties, and
computes x̃ = Mp · x.

3. Fpermute-semi receives from the adversary a set of shares {si}i∈C . Fpermute-semi

samples a random degree-t packed Shamir sharing [x̃] such that for all Pi ∈ C,
the i-th share of [x̃] is si.

4. Fpermute-semi distributes the shares of [x̃] to honest parties.

We follow the techniques in [DIK10] to realize Fpermute-semi by making use
of a pair of random degree-t packed Shamir sharings ([r], [Mp · r]). We refer
the readers to Section 2.2 for an overview of these techniques. As we discussed
in Section 2.2, the main issue of this approach is how to how to efficiently
prepare a pair of random sharings ([r], [r̃]). To generate random sharings for m
permutations, our idea is to first generate random sharings for a limited number
(O(n2)) of different permutations which are related to the input permutations,
and then transform them to the random sharings for the desired permutations
(the input permutations).

Before moving forward, we first introduce a useful functionality Fselect, which
selects secrets from one or more packed Shamir sharings and outputs a single
sharing which contains the chosen secrets. Later on, we will use Fselect to solve
the above issue of preparing random sharings for permutations.

Selecting Secrets from One or More Packed Shamir Sharings. Concretely, we
want to realize the functionality Fselect-semi, which takes as input k degree-t
packed Shamir sharings [x(1)], [x(2)], . . . , [x(k)] (which do not need to be distinct)
and a permutation p(·) over {1, 2, . . . , k}, and outputs a degree-t packed Shamir

sharing [y] such that for all i ∈ [k], yp(i) = x
(i)
p(i), where x

(i)
j is the j-th value
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of x(i). Effectively, Fselect-semi chooses the p(1)-th secret of [x(1)], the p(2)-th
secret of [x(2)], ..., the p(k)-th secret of [x(k)] and generates a new degree-t
packed Shamir sharing [y] which contains the chosen secrets. Note that the
positions of the chosen secrets remain the same. Therefore, we require p to be
a permutation so that the chosen secrets come from different positions. The
description of Fselect-semi appears in Functionality 5.

Functionality 5: Fselect-semi

1. Fselect-semi receives from honest parties their shares of k degree-t packed
Shamir sharings [x(1)], [x(2)], . . . , [x(k)]. Fselect-semi also receives a permuta-
tion p from honest parties.

2. Fselect-semi reconstructs x(1),x(2), . . . ,x(k). Then Fselect-semi sets y =
(y1, y2, . . . , yk) such that for all i ∈ [k], yp(i) = x

(i)

p(i), where x
(i)
j is the j-th

value of x(i).
3. Fselect-semi receives from the adversary a set of shares {si}i∈C . Fselect-semi sam-

ples a random degree-t packed Shamir sharing [y] such that for all Pi ∈ C, the
i-th share of [y] is si.

4. Fselect-semi distributes the shares of [y] to honest parties.

For all i ∈ [k], let ei ∈ {0, 1}k denote the vector where the i-th entry is 1
and for all j 6= i, the j-th entry is 0. Recall that in Section 3.2 we show how to
transform a constant vector to a degree-t packed Shamir sharing. Let [ei] denote
the degree-t packed Shamir sharing of ei.

To realize Fselect-semi, note that [ep(i)] · [x(i)] is a degree-2t packed Shamir

sharing of ep(i) ∗x(i). Also note that y =
∑k
i=1 ep(i) ∗x(i). Therefore, all parties

can locally compute 〈y〉 =
∑k
i=1[ep(i)] · [x(i)]. And the only task is to reduce the

degree of 〈y〉. Note that this can be achieved by the same technique as Mult. The
description of the protocol Select appears in Protocol 6. The communication
complexity of m invocations of Select is O(m · n+ n3 · κ) field elements.

Lemma 1. Protocol Select securely computes Fselect-semi in the Frand-hybrid
model against a semi-honest adversary who controls t′ = t− k + 1 parties.

We refer the readers to the full version of this paper [GPS21] for more dis-
cussion about Lemma 1.

Using Fselect-semi to Generate Random Sharings for Permuting Secrets. For all
i, j ∈ {1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y])
contains an (i, j)-component if the secrets of these two sharings satisfy that
xi = yj .
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Protocol 6: Select

1. Let [x(1)], [x(2)], . . . , [x(k)] denote the k input packed Shamir sharings and
p(·) denote the permutation. The goal is to generate a degree-t packed Shamir

sharing [y] such that for all i ∈ [k], yp(i) = x
(i)

p(i). Recall that ei ∈ {0, 1}k
denote the vector where the i-th entry is 1 and for all j 6= i, the j-th entry
is 0. For all i ∈ [k], all parties agree on the whole sharing [ei] based on the
transformation in Section 3.2.

2. All parties invoke Frand to prepare a pair of random sharings ([r], 〈r〉).
3. All parties locally compute 〈e〉 :=

∑k
i=1[ep(i)] · [x(i)] + 〈r〉.

4. All parties send their shares of 〈e〉 to the first party P1.
5. P1 reconstructs the secrets e, generates a random degree-t packed Shamir

sharing [e], and distributes the shares to other parties.
6. All parties locally compute [y] := [e]− [r].

To perform a permutation p(·), we need to prepare two random degree-t
packed Shamir sharings ([r], [Mp ·r]). We can view ([r], [Mp ·r]) as a composition
of a (1, p(1))-component, a (2, p(2))-component, . . . , and a (k, p(k))-component.

Let m denote the number of permutations we want to prepare random shar-
ings for. These permutations are denoted by p1(·), p2(·), . . . , pm(·). Our idea is
as follows:

1. We first find m permutations q1(·), q2(·), . . . , qm(·) such that:
– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}

which satisfies that p(i) = j is equal to the number of permutations
q ∈ {q1, q2, . . . , qm} which satisfies that q(i) = j.

2. All parties prepare random sharings for permutations q1, q2, . . . , qm.
3. From i = 1 tom, a pair of random sharings for the permutation pi is prepared

by using Fselect-semi to choose the first unused (j, pi(j))-component from the
random sharings for q1, q2, . . . , qm for all j ∈ [k].

We refer the readers to Section 2.2 for a more detailed explanation.
The major benefit of this approach is that we can limit the number of different

permutations in {q1, q2, . . . , qm} as we show below. More concretely, we will prove
the following theorem:

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm
over {1, 2, . . . , k}, there exists m permutations q1, q2, . . . , qm over {1, 2, . . . , k}
such that:

– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm}
such that p(i) = j is the same as the number of permutations q ∈ {q1, q2, . . . , qm}
such that q(i) = j.

– q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

The proof of Theorem 2 can be found in the full version of this paper [GPS21].
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Preparing Random Sharings for Different Permutations. We are ready to intro-
duce the functionality and its implementation for preparing random sharings for
different permutations. The functionality Frand-perm-semi appears in Functional-
ity 7.

Functionality 7: Frand-perm-semi

1. Frand-perm-semi receives from honest parties m permutations p1, p2, . . . , pm over
{1, 2, . . . , k}.

2. For all i ∈ [m], Frand-perm-semi receives from the adversary a set of shares

{(u(i)
j , v

(i)
j )}j∈C . Frand-perm-semi samples a random vector r(i) ∈ Fk and sam-

ples two degree-t packed Shamir sharings ([r(i)], [Mpi · r(i)]) such that for all

Pj ∈ C, the j-th share of ([r(i)], [Mpi · r(i)]) is (u
(i)
j , v

(i)
j ).

3. For all i ∈ [m], Frand-perm-semi distributes the shares of ([r(i)], [Mpi · r(i)]) to
honest parties.

For a fixed permutation p(·) over {1, 2, . . . , k}, we show how to use Frand

to prepare a pair of random sharings ([r], [Mp · r]) in the full version of this
paper [GPS21]. The communication complexity of preparing m pairs of random
sharings in the form of ([r], [Mp ·r]) for a fixed permutation p(·) is O(m·n+n3 ·κ)
elements in F. We describe the protocol for Frand-perm-semi in Protocol 8. The
communication complexity of using Rand-Perm to prepare random sharings
for m permutations is O(m · n+ n5 · κ) field elements.

Lemma 2. Protocol Rand-Perm securely computes Frand-perm-semi in the (Frand,
Fselect-semi)-hybrid model against a semi-honest adversary who controls t′ =
t− k + 1 parties.

The proof of Lemma 2 can be found in the full version of this paper [GPS21].

Realizing Fpermute-semi. Now we are ready to present the protocol for Fpermute-semi.
The protocol Permute uses Frand-perm-semi to prepare the random sharings for
the permutation we want to perform and then follows the techniques in [DIK10].
In Permute, we will prepare a random degree-2t packed Shamir sharing of
0 ∈ Fk, which is used as a random mask for the shares of honest parties (see
the proof of Lemma 3). This is not needed for semi-honest security but will be
helpful when we consider a fully malicious adversary at a later point.

We show how to use Frand to prepare a random degree-2t packed Shamir
sharing of 0 ∈ Fk in the full version of this paper [GPS21]. The communication
complexity of preparing m random degree-2t packed Shamir sharings of 0 is
O(m·n+n3·κ) elements in F. The description of Permute appears in Protocol 9.
The communication complexity of m invocations of Permute is O(m ·n+n5 ·κ)
field elements.
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Protocol 8: Rand-Perm

1. Let p1, p2, . . . , pm be the permutations over {1, 2, . . . , k} that all parties want
to prepare random sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute
m permutations q1, q2, . . . , qm such that
– For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈
{p1, p2, . . . , pm} such that p(i) = j is the same as the number of per-
mutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

– q1, q2, . . . , qm contain at most k2 different permutations.
The existence of such an algorithm is guaranteed by Theorem 2.

3. Suppose q′1, q
′
2, . . . , q

′
k2 denote the different permutations in q1, q2, . . . , qm. For

all i ∈ {1, 2, . . . , k2}, let n′i denote the number of times that q′i appears in
q1, q2, . . . , qm. All parties invoke Frand to prepare n′i pairs of random sharings
in the form ([r], [Mq′i

· r]) for all i ∈ {1, 2, . . . , k2}. Note that we have pre-
pared a pair of random sharings for each permutation qi for all i ∈ [m]. Let
([r(i)], [Mqi · r(i)]) denote the random sharings for the permutation qi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From ` = 1 to
m, for all i, j ∈ {1, 2, . . . , k}, if ([r(`)], [Mq` ·r

(`)]) contains an (i, j)-component,
all parties insert ([r(`)], [Mq` · r

(`)]) into the list Li,j .
5. From ` = 1 to m, all parties prepare a pair of random sharings for p` as

follows:
– From i = 1 to k, let ([r(`i)], [Mq`i

·r(`i)]) denote the first pair of sharings in

the list Li,p`(i), and then remove it from Li,p`(i). Note that ([r(`i)], [Mq`i
·

r(`i)]) contains an (i, p`(i))-component, which is not used when preparing
random sharings for p1, p2, . . . , p`−1.

– Let I denote the identity permutation over {1, 2, . . . , k}.
• All parties invoke Fselect-semi with

[r(`1)], [r(`2)], . . . , [r(`k)]

and the permutation I. The output is denoted by [v(`)].
• All parties invoke Fselect-semi with

[Mq`1
· r(`1)], [Mq`2

· r(`2)], . . . , [Mq`k
· r(`k)]

and the permutation p`. The output is denoted by [ṽ(`)]. Note that

for all i ∈ [k], v
(`)
i = r

(`i)
i = (Mq`i

· r(`i))q`i (i) = (Mq`i
· r(`i))p`(i) =

ṽ
(`)

p`(i)
.

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

Lemma 3. Protocol Permute securely computes Fpermute-semi in the (Frand,
Frand-perm-semi)-hybrid model against a semi-honest adversary who controls t′ =
t− k + 1 parties.

The proof of Lemma 3 can be found in the full version of this paper [GPS21].
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Protocol 9: Permute

1. Let [x] denote the input degree-t packed Shamir sharing and p(·) denote the
permutation all parties want to perform on x.

2. All parties invoke Frand-perm-semi with p to prepare a pair of random sharings
([r], [Mp · r]). All parties invoke Frand to prepare a random degree-2t packed
Shamir sharing 〈0〉.

3. All parties locally compute 〈e〉 := [x] + [r] + 〈0〉.
4. All parties send their shares of 〈e〉 to the first party P1.
5. P1 reconstructs the secrets e, and computes ẽ = Mp · e. Then P1 generates

a random degree-t packed Shamir sharing [ẽ], and distributes the shares to
other parties.

6. All parties locally compute [x̃] := [ẽ]− [Mp · r].

4.3 Obtaining Input Sharings for Multiplication Gates and
Addition Gates

So far, we have introduced how to evaluate multiplication gates and addition
gates using the packed Shamir sharing scheme. In the case that the secrets of
an input sharing are not in the correct order, we have shown how to efficiently
perform a permutation to obtain the correct order. During the computation,
however, input sharings of multiplication gates and addition gates do not come
for free. When evaluating the multiplication gates and addition gates in some
layer, the secrets we want to be in a single sharing may be scattered in one
or more output sharings from the previous layers. This requires us to collect
the secrets from those sharings and generate a single sharing for these secrets
efficiently. Our idea is to achieve the non-collision property:

Property 1 (Non-collision). For each input sharing of each layer, the secrets
of this input sharing come from different positions in the output sharings of
previous layers.

As we discussed in Section 2.3, with this property, we can use Fselect-semi to
choose the secrets and generates the input sharing we want. To avoid the case
that we need the same secret twice in a single input sharing, which makes the
non-collision property impossible to achieve, we further require that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming
that there is a fan-out gate right after each (input, addition, or multiplication)
gate that copies the output wire the number of times it is used in later layers.
To achieve the non-collision property, our idea is to perform a permutation on
each output sharing.
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In the following, when we use the term ”output sharings”, we refer to the
output sharings from the input layer and all intermediate layers. When we use
the term ”input sharings”, we refer to the input sharings of the output layer
and all intermediate layers. We further assume that the number of the input
wires and the number of the output wires of each layer are multiples of k, where
recall that k is the number of secrets we can store in a single packed Shamir
sharing. In Section 5, we will show how to compile a general circuit to meet this
requirement.

Let m denote the number of output sharings in the circuit. Then the num-
ber of input sharings is also m. We will label all the output sharings by 1, 2, . . . ,m
and all the input sharings also by 1, 2, . . . ,m. Consider a matrix N ∈ {1, 2, . . . ,m}m×k
where Ni,j is the index of the input sharing that the j-th secret of the i-th out-
put sharing wants to go to. Then for all ` ∈ {1, 2, . . . ,m}, there are exactly k
entries of N which are equal to `. And the secrets at those positions are the
secrets we want to collect for the `-th input sharing. We will prove the following
theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m×k
in {1, 2, . . . ,m}m×k such that for all ` ∈ {1, 2, . . . ,m}, the number of entries of
N which are equal to ` is k. Then, there exists m permutations p1, p2, . . . , pm
over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over
(1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm can be found within
polynomial time.

The proof of Theorem 4 can be found in the full version of this paper [GPS21].
When we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, The-

orem 4 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output
sharings need to go to different input sharings. Note that this ensures the non-
collision property. During the computation, we will perform the permutation pi
on the i-th output sharing right after it is computed. Note that when preparing
an input sharing, the secrets we need only come from the output sharings which
have been computed. The secrets of these output sharings have been properly
permuted such that the secrets we want are in different positions. Therefore, we
can use Fselect-semi to choose these secrets and obtain the desired input sharing.

4.4 Handling Fan-out Gates

In the last subsection, we discussed how to prepare the input sharings for mul-
tiplication gates and addition gates. Our solution requires that

– every output wire of the input layer and all intermediate layers is used exactly
once as an input wire of a later layer (which may not be the next layer).

This requirement can be met by inserting fan-out gates in each layer, which
copy each output wire the number of times it is used in later layers. Specif-
ically, we consider a functionality Ffan-out-semi which takes as input a degree-
t packed Shamir sharing of x = (x1, x2, . . . , xk) ∈ Fk along with a vector
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(n1, n2, . . . , nk) ∈ Nk, where ni ≥ 1 is the number of times that xi is used in later
layers, and outputs n1+n2+...+nk

k degree-t packed Shamir sharings which contain

ni copies of the value xi for all i ∈ {1, 2, . . . , k}. We assume that
∑k
i=1 ni is a

multiple of k. In Section 5, we will show how to compile a general circuit to meet
this requirement. The description of Ffan-out-semi appears in Functionality 10.

Functionality 10: Ffan-out-semi

1. Ffan-out-semi receives from honest parties the shares of [x] and a vector
(n1, n2, . . . , nk).

2. Ffan-out-semi reconstructs the secrets x = (x1, x2, . . . , xk). Then Ffan-out-semi

initiates an empty list L. From i = 1 to k, Ffan-out-semi inserts ni times of xi

into L.
3. Let m = n1+n2+...+nk

k
. From i = 1 to m,

(a) Ffan-out-semi sets x(i) to be the vector of the first k elements in L, and
then removes the first k elements in L.

(b) Ffan-out-semi receives from the adversary a set of shares {s(i)j }j∈C .
Ffan-out-semi generates a degree-t packed Shamir sharing [x(i)] such that

the j-th share of [x(i)] is s
(i)
j .

(c) Ffan-out-semi distributes the shares of [x(i)] to honest parties.

We refer the readers to the full version of this paper [GPS21] for the pro-
tocol that realizes Ffan-out-semi. Our protocol prepares the output sharings of
Ffan-out-semi one by one. Therefore, the communication complexity only depends
on the number of output sharings even if the output sharings come from differ-
ent invocations with different input sharings. The communication complexity of
computing m output sharings is O(m · n+ n5 · κ) field elements.

5 Main Protocol - Against a Semi-honest Adversary

In this section, we will introduce our main protocol of using packed Shamir
sharing to evaluate a general circuit C against a semi-honest adversary. We first
discuss how to compile a general circuit to meet the requirements we assume in
Section 4. Then we give the main protocol and analyze its security and commu-
nication complexity.

5.1 Transforming a General Circuit C

We will prove the following theorem.

Theorem 5. Given an arithmetic circuit C with input coming from c clients,
there exists an efficient algorithm which takes C as input and outputs an arith-
metic circuit C ′ with the following properties:
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– For all input x, C(x) = C ′(x).
– In the input layer and the output layer, the number of input gates belonging

to each client and the number of output gates belonging to each client are
multiples of k. In each intermediate layer, the number of addition gates and
the number of multiplication gates are multiples of k.

– After grouping the gates that have the same type in each layer, the number
of times that the output wires of each group are used in later layers is a
multiple of k.

– Circuit size: |C ′| = O(|C|+ k · (c+Depth)), where c is the number of clients
that provide inputs and Depth is the depth of C.

In the full version of this paper [GPS21], we explain why the properties we
assume in Section 4 can be met by applying the transformation in Theorem 5
and then formally prove this theorem.

5.2 Preprocessing Phase

In this part, we describe how parties preprocess the circuit before doing the com-
putation. During the computation phase, a batch of k wire values are stored in a
single packed Shamir sharing. The main task of the preprocessing phase is to de-
termine how the wire values should be packed. Also, all parties need to compute
a permutation for each output sharing using the algorithm in Theorem 4. These
permutations are used to achieve the non-collision property. See Section 4.3 for
more details. The preprocessing phase only depends on the circuit C and does
not need any communication. We refer the readers to the full version of this
paper [GPS21] for the description of the protocol Preprocess.

5.3 Main Protocol - Against Semi-honest Adversary

We are ready to introduce our main protocol. At a high-level, given the prepro-
cessed circuit,

– all parties use Finput-semi,Foutput-semi,Fmult-semi (see Section 4.1) to evaluate
input gates, output gates, multiplication gates, and addition gates in each
layer;

– for the input layer and all intermediate layers, all parties use Ffan-out-semi to
evaluate fan-out gates (see Section 4.4);

– for each output sharing, all parties use Fpermute-semi to perform the permuta-
tion associated with this sharing (see Section 4.2) to achieve the non-collision
property (see Section 4.3);

– to prepare each input sharing for the next layer, all parties use Fselect-semi

to choose the secrets it wants from the output sharings from previous layers
(see Section 4.2), and then use Fpermute-semi to permute the secrets to the
correct order (see Section 4.2).

The ideal functionality Fmain-semi appears in Functionality 11. The main protocol
is introduced in Protocol 12.
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Functionality 11: Fmain-semi

1. Fmain-semi receives the input from all clients. Let x denote the input.
2. Fmain-semi computes C(x) and distributes the output to all clients.

Lemma 4. Protocol Main-semi securely computes Fmain-semi in the (Finput-semi,
Ffan-out-semi,Fpermute-semi,Fselect-semi,Fmult-semi,Foutput-semi)-hybrid model against
a semi-honest adversary who controls t′ = t− k + 1 parties.

The proof of Lemma 4 can be found in the full version of this paper [GPS21].
The overall communication complexity of our protocol Main-semi is O(|C| ·

n/k+n·(c+Depth)+n5·κ) field elements. In the full version of this paper [GPS21],
we provide the analysis of the communication complexity of our protocol in
details. Together with Lemma 4, we have the following theorem.

Theorem 6. In the client-server model, let c denote the number of clients, and
n = 2t + 1 denote the number of parties (servers). Let κ denote the security
parameter, and F denote a finite field. For an arithmetic circuit C over F and for
all 1 ≤ k ≤ t, there exists an information-theoretic MPC protocol which securely
computes the arithmetic circuit C in the presence of a semi-honest adversary
controlling up to c clients and t− k + 1 parties. The communication complexity
of this protocol is O(|C| · n/k + n · (c+ Depth) + n5 · κ) elements in F.
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