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Abstract. We construct public-coin time- and space-efficient zero-knowledge
arguments for NP. For every time T and space S non-deterministic
RAM computation, the prover runs in time T · polylog(T ) and space
S · polylog(T ), and the verifier runs in time n · polylog(T ), where n is
the input length. Our protocol relies on hidden order groups, which
can be instantiated with a trusted setup from the hardness of factoring
(products of safe primes), or without a trusted setup using class groups.
The argument-system can heuristically be made non-interactive using the
Fiat-Shamir transform.

Our proof builds on DARK (Bünz et al., Eurocrypt 2020), a recent
succinct and efficiently verifiable polynomial commitment scheme. We
show how to implement a variant of DARK in a time- and space-efficient
way. Along the way we:

1. Identify a significant gap in the proof of security of DARK.
2. Give a non-trivial modification of the DARK scheme that overcomes

the aforementioned gap. The modified version also relies on signifi-
cantly weaker cryptographic assumptions than those in the original
DARK scheme. Our proof utilizes ideas from the theory of integer
lattices in a novel way.

3. Generalize Pietrzak’s (ITCS 2019) proof of exponentiation (PoE)
protocol to work with general groups of unknown order (without
relying on any cryptographic assumption).

In proving these results, we develop general-purpose techniques for
working with (hidden order) groups, which may be of independent interest.

1 Introduction

Significant overhead in prover efficiency is the main roadblock standing between
zero-knowledge proofs and widespread deployment. While there has been extensive
work on optimizing the running time of the prover, much less attention has been
drawn to the space (or memory) usage. In particular, most protocols in the
literature suffer from the drawback that memory consumption by the prover is
exceedingly large: computations that take time T and space S to compute directly,



require the prover to invest Ω(T ) space in order to prove correctness (with some
notable exceptions [9–11,13,31,44] to be discussed shortly). Moreover, due to the
way that modern memory architectures work, large memory usage also inevitably
leads to more cache misses and slower runtime. Thus, space efficiency of the
prover is a severe bottleneck to enabling zero-knowledge proofs for large-scale
complex computations.

The recent work of Block et al. [11] constructed the first publicly verifiable6

zero-knowledge proofs (under standard cryptographic assumptions) in which the
prover is efficient both in terms of time and space. In more detail, for every
NP relation R, for which membership can be computed in time T and space S,
the prover (given as input the instance and corresponding witness) can be
implemented in time T ·poly(λ, log T ) and space S ·poly(λ, log T ) and the verifier
can be implemented in time roughly T ·poly(λ, log T ), where here and throughout
this work λ denotes the security parameter. The fact that verification takes Ω(T )
time is a significant drawback of this protocol and precludes applications like
delegation of computation.

1.1 Our Results

In this work we overcome the main disadvantage of the work of Block et al. by
constructing zero-knowledge proofs with a time- and space-efficient prover and
poly-logarithmic verification. For this result we rely on groups of unknown order,
which are discussed immediately after the statement of Theorem 1.1.

Theorem 1.1 (Informally Stated, see Theorem 4.1). Assume that there
exists a group for which the hidden order assumption holds. Then, every NP
relation that can be verified by a time T and space S RAM machine has a
public-coin zero-knowledge argument-system in which the prover, given as input
the instance x and witness w, runs in time T · poly(λ, log T ) and uses space
S ·poly(λ, log T ). The verifier runs in time |x| ·poly(λ, log T ), the communication
complexity is poly(λ, log T ) and the number of rounds is O(log T ).

The argument-system uses a common reference string, which is simply a
description of the hidden-order group G and a random element g ∈ G.

As usual, the protocol can heuristically be made non-interactive by applying
the Fiat-Shamir [29] transform. It is also worth noting that a result similar to
Theorem 1.1 was not known even without the zero-knowledge requirement.

As for the assumption that we use, the hidden order assumption for a group G
states that given a random group element g ∈ G it is computationally infeasible
to find (any multiple of) the order of g. For example, assuming the hardness of
factoring N which is a product of two safe primes, the group Z∗N , is a hidden

6 Public verifiability has emerged as a central requirement for proof-systems. In a
nutshell it means that anyone who possesses the proof-string can verify its correctness
(while possibly also requiring access to a common reference string). We mention that
time- and space-efficient protocols that are either privately-verifiable or based on
non-standard computational assumptions were previously known. See Section 1.2.
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order group. Therefore, our scheme can be instantiated assuming the hardness of
factoring (products of safe primes).

Lately there has been much interest in public-coin hidden order groups which
means that the description of the group can be generated without a trusted party
(aka a transparent setup). This is not known for the factoring based group (since
one needs to be able to generate a hard instance for factoring without using
private coins). However, as pointed out in [21,26], class groups of an imaginary
quadratic field are a candidate public-coin hidden order group. Since our common
reference string only includes a description of the group and a random element,
using class groups we obtain a protocol that does not require a trusted setup.

Time- and Space-efficient Polynomial Commitments. Theorem 1.1 is derived
from a new polynomial-commitment scheme that we construct, based on a prior
scheme due to Bünz et al. [21]. Roughly speaking, a polynomial-commitment
scheme allows Alice to commit to a low degree polynomial P so that later Bob
can ask her for evaluations P (x) along with proofs that the supplied values
are indeed consistent with her commitment (see Section 3.4 for the formal
definition). Polynomial commitments have drawn significant attention recently
(see Section 1.2), especially due to their use in compiling ideal model information-
theoretic proof-systems into real-world protocols. Most works use polynomial
commitments in order to obtain shorter proof sizes. In contrast, following [11], we
use polynomial commitments to enable a small space (and time) implementation
of the prover. We believe that this aspect of polynomial commitments will be a
key enabler of large-scale zero-knowledge proofs.

For simplicity, and since it suffices for proving Theorem 1.1, we focus on
polynomial commitments for multilinear7 polynomials P : Fn → F, where F
is a prime order field. Following [11], we consider polynomial commitments in
a streaming model, in which the committer are given (multi-pass) streaming
access to the representation of the polynomial; in our case, the restriction of
the multilinear polynomial to the Boolean hypercube. This streaming model is
motivated by the fact that when using the commitment scheme to construct an
efficient argument-system, the prover commits to a transcript of the computation
- which can indeed be generated in a streaming manner in small space.

In order to construct their time- and space-efficient arguments, [11] first
construct a polynomial commitment scheme for multilinear polynomials in which
the prover runs in quasi-linear time (in the description of the polynomial, which
is of size 2n · log(|F|)) and logarithmic space. However, the verifier for their
evaluation proof also runs in time that is linear in the size of the polynomial. This
is the core reason that the argument-system constructed in [11] does not achieve
sub-linear verification. In contrast, we give a polynomial commitment scheme in
which the prover is time- and space-efficient and verification is poly-logarithmic.

Theorem 1.2 (Informally Stated, see Theorem 4.2). Assume that there
exists a group for which the hidden order assumption holds. Then, there exists a

7 Recall that a multi-variate polynomial is multilinear if its degree in each variable is
at most 1.
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polynomial commitment scheme for multilinear polynomials P : Fn → F over a
prime order field F (of size |F| ⩽ 2poly(n)) with the following efficiency properties:

1. Commitment and evaluation proofs can be computed in time 2n · poly(n, λ)
and space n · poly(λ), given multi-pass streaming access to the evaluations of
P on the Boolean hypercube.

2. The communication complexity and verification time are both poly(n, λ).

Similarly to Theorem 1.1, the commitment scheme is defined relative to a
reference string containing the description of the hidden order group and a random
group element.

Theorem 1.1 follows from Theorem 1.2 using techniques from the work of
Block et al. [11]. Namely, we use a time- and space-efficient polynomial interactive
oracle proof 8 (polynomial IOP), constructed in [11] (based on the 2-prover MIP
of [13]). We then compile this polynomial IOP into an argument-system using
the polynomial commitment of Theorem 1.2 in the natural way: namely, rather
than sending polynomials in the clear, the prover simply commits to them and
later proves correctness of evaluations queries. This compilation results in a
succinct argument, which can be made zero-knowledge (while preserving time-
and space-efficiency) using standard techniques [4] (see [12] for details).

Our proof of Theorem 1.2 builds on a recent remarkable polynomial-commitment
scheme called DARK (for Diophantine Argument of Knowledge), due to Bünz et al.
[21]. This polynomial commitment scheme was the first such scheme to achieve
logarithmic size proofs and verification time.

We make several significant improvements to the DARK scheme.

1. Identifying and Bypassing a Gap in DARK: We identify a gap in the
security proof of [21]. We elaborate on this gap in Section 2.2. We emphasize
that we do not know whether this gap can lead to an attack on the DARK
scheme. Nevertheless, we find this gap to be significant and in particular we
do not know how to fix their security proof. We mention that we have been
informed [23] that the same gap was discovered independently by the authors
of [21].

To obtain our polynomial commitment scheme, we therefore make a non-
trivial modification of the DARK scheme and show that this modification
suffices to prove security. Our security proof relies on a new lemma on the
existence of integral inverses for uniformly random rectangular binary ma-
trices, which we prove. Our proof is based on ideas from the mathematical
theory of integer lattices which, to the best of our knowledge, have not been

8 A polynomial IOP is defined similarly to a (public-coin) interactive proof, except that
in every round the prover is allowed to send the truth table of a large polynomial, and
the verifier can query a few points from each polynomial. The notion was proposed
concurrently in [21] and [24]. Essentially the same notion appears also in [38] (called
Probabilistically Checkable Interactive Proof w.r.t. Encoded Provers therein).
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used before in this context.9 See Section 2.3 for details.

2. Improved Assumptions and Simplicity: Setting aside the gap in the
security proof, we also significantly improve the assumptions that the DARK
scheme relies on. The improvement in assumptions stems from a simpler
(and conceptually more appealing) extraction procedure that we describe.
This improvement applies to the two main variants of the DARK scheme. In
more detail:
(a) The first variant of the original DARK scheme uses RSA groups, while

relying on the strong RSA assumption and the adaptive root assumption.
The former assumption, while not new, is relatively strong, whereas the
latter is a new assumption, due to Wesolowski [46], which is not yet well
understood (note that both assumptions are known to hold in the generic
group model [16,27]).

In contrast, when instantiating our scheme in this setting, we only need
to rely on the hardness of factoring (products of safe primes).

(b) In order to obtain an unstructured common random string, Bünz et al.
also give a construction that uses class groups of an imaginary quadratic
field. This construction relies on both the aforementioned adaptive root
assumption (for class groups) and a new assumption that they introduce
on class groups called the 2-strong RSA assumption. The class-group
based construction is also more complex than their construction using
RSA groups.
In contrast, our construction works equally well for both groups and

we can instantiate it using class groups while assuming only the hidden
order assumption (which is weaker than the adaptive root assumption
[15]). See also [1, 43] for a comparison between these assumptions.

3. Small Space Polynomial Commitments: We show that the commit-
ment and evaluation protocols in (our variant of) the DARK scheme can be
implemented in time roughly Õ(2n) (i.e., quasi-linear in the description of
the polynomial) and space poly(n) (i.e., poly-logarithmic in the description),
given (multi-pass) streaming access to the evaluations of the polynomial on
the Boolean hypercube. Crucially, (and in contrast to the scheme of [11]) the
verifier in our evaluation proofs runs in time poly(n). See Section 2.4 for the
ideas underlying our space-efficient implementation.

4. Statistical Proof of Exponentiation over General Groups: We im-
prove and generalize a recent elegant proof-of-exponentiation protocol due to
Pietrzak [37]. In a proof of exponentiation protocol, the goal is for the prover
to convince the verifier that the triplet (g, h, T ) ∈ G × G × N satisfies the

relation h = g2
T

, where G is a group of unknown order.10 Pietrzak constructs

9 We emphasize that we use lattice theory to show that our group based construction
is secure. In particular all of our hardness assumptions are group based.

10 Since the order of G is not known, one cannot simply compute 2T modulo the group
order and then exponentiate.
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such a protocol in which the prover runs in time roughly T and the verifier
runs in time roughly log(T ) (which is exponentially faster than the direct
computation via repeated squaring). Pietrzak uses his protocol to construct
a simple verifiable delay function [14], based on the Time-Lock puzzles of
Rivest, Shamir and Wagner [39].
Pietrzak’s protocol is designed specifically for the group QR+

N of (signed)
quadratic residues modulo an integer N , which is the product of two safe
primes. Pietrzak [37, Section 6.1] points out that the protocol can also be
extended to class groups, but with two caveats. First, this extension is only
computationally sound and second, it requires an additional assumption from
the class group (namely, that it is hard to find elements of small order). This is
in contrast to Pietrzak’s protocol for QR+

N which provides statistical security
and without relying on any assumption. We note that a different protocol, due
to Wesolowski [46], gives a proof of exponentiation over groups in which the
adaptive root assumption holds (which plausibly includes class groups), but
also only achieves computational soundness and requires a (strong) hardness
assumption. Wesolowski’s protocol is used as sub-routine within the DARK
scheme.
As an additional contribution, which we find to be of independent inter-

est, we show a modification of Pietrzak’s protocol that works over general
groups of unknown order (including class groups) while preserving statistical
security and without relying on any assumption. By replacing Wesolowski’s
protocol within the DARK scheme with our new extension, we obtain that
the evaluation proofs for our polynomial commitment are proofs (rather than
arguments) of knowledge.

1.2 Additional Related Works

Polynomial Commitments. Polynomial commitment schemes were introduced by
Kate et al. [32]. As discussed above, such commitments allow one to commit to a
polynomial and later answer evaluation queries while proving consistency with
the commitment.

There are several variants of polynomial commitments include privately
verifiable schemes [32,36], publicly-verifiable schemes with trusted setup [21], and
zero-knowledge schemes [47]. More recently, much focus has been on obtaining
publicly-verifiable schemes without a trusted setup [5, 7, 17, 21, 33, 34, 42, 45,
47, 48]. In all but one prior work, the space complexity of the committer is
proportional to the description size of the polynomial. The only exception is
the aforementioned work of Block et al. [11] who build a commitment scheme
for multilinear polynomials (based on [17, 19]), where the committer’s space
complexity is poly-logarithmic in the description of the polynomial, assuming
that the committer is given multi-pass streaming access to its description. As
mentioned above, a key drawback of their work is that the verification is linear
in the size of the polynomial.

Lastly, we mention that classical works on low degree testing (à la [40]) as well
as more recent works [5, 6, 8] can be used to construct polynomial-commitments
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by Merkle hashing the entire truth table of the polynomial (and using a self-
correction procedure or protocol).

Privately Verifiable Proofs. The question of constructing proof systems in which
the prover is efficient both in terms of time and space was first raised by
Bitansky and Chiesa [10], who constructed a time- and space-efficient (or in
their terminology complexity preserving) interactive argument for any problem
in NP based on fully homomorphic encryption. Holmgren and Rothblum [31]
constructed non-interactive time- and space-efficient arguments for P based on
the (sub-exponential) learning with errors assumption. The protocols of [10, 31]
are privately verifiable, meaning that only a designated verifier (who knows the
randomness used to sampled the verifier messages) is able to verify the proof.

Proofs by Recursive Composition. An alternative approach to publicly verifiable
time- and space-efficient arguments is by recursively composing SNARKs for
NP [9, 44]. Recursive composition requires both the prover and verifier to make
non-black-box usage of an “inner” verifier for a different SNARK, leading to
large computational overhead. Several recent works [18,20, 25] attempt to solve
the inefficiency problems with recursive composition, but at additional expense
to the underlying cryptographic assumptions. In particular, these works rely on
hash functions that are modeled as random oracles in the security proof, despite
being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random
oracle model. Moreover, the practicality of the schemes crucially requires usage
of a novel hash function (e.g., Rescue [2]) with algebraic structure designed to
maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

We also mention a recent work of Ephraim et al. [28] which uses recursive
composition to address the related question of implementing the prover in small
depth (i.e., parallel time).

Multi-Prover Proofs. Block et al. [11] gave the first publicly-verifiable time-
and space-efficient arguments for NP but as noted above (and in contrast to
Theorem 1.1), the verification time is linear in the computation. Bitansky and
Chiesa [10], as well as Blumberg et al. [13], construct time- and space-efficient
multi-prover interactive proof, that is, soundness only holds under the assumption
that the provers do not collude. Justifying this assumption in practice seems
difficult and indeed multi-prover interactive proofs are usually only used as
building blocks toward more complex systems.

1.3 Organization

We give overviews of our proof techniques in Section 2. Preliminaries are in
Section 3. In Section 4 we formally state our results and in Section 5 we describe
our polynomial commitment scheme. The rest of the technical sections are deferred
to the full version [12].
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2 Technical Overview

We start, in Section 2.1 with an exposition of (a variant of) the DARK polynomial
commitment scheme of [21]. Then, in Section 2.2 we describe a gap in their security
proof. In Section 2.3 we show how to modify their protocol in order to resolve
this gap (and simultaneously simplify the extraction procedure and relax the
cryptographic assumptions). Then, in Section 2.4 we describe our small space
implementation and lastly, in Section 2.5 we describe our improved proof of
exponentiation protocol.

2.1 Overview of the DARK Scheme

We start with an overview of the DARK polynomial commitment scheme. The
main scheme constructed in [21] was for univariate polynomials. However, for
our applications it will be more useful to consider a variant of their scheme
for (multi-variate) multilinear polynomials.11 We emphasize that the gap in the
security proof (to be discussed shortly) also applies to the original DARK scheme.

DARK Commitments: Encoding Polynomials by Large Integers. Let F = Fp be a
finite field of prime order p. Recall that a multilinear polynomial P : Fn → F can
be specified by its evaluations on the Boolean hypercube. Thus, in order to commit
to the polynomial P , we will look at the sequence of values (P (b))b∈{0,1}n . In
order to commit to this sequence Bünz et al. construct a large integer Z(P ) that
encodes it, by looking at this sequence as a base q representation of an integer,
for some q ≫ p. That is, Z(P ) =

∑︁
b∈{0,1}n qb · P (b), where b is interpreted as

an integer in the natural way.
The commitment to the polynomial P is simply c = gZ(P ), where g is a

random element of the hidden-order group G specified as part of the CRS. We
say that the integer Z is consistent with the multilinear polynomial P if, looking
at the base q representation of Z, and reducing each digit modulo p, we get
the sequence (P (b))b∈{0,1}n . Observe that since q ≫ p, there are many integers
Z that are consistent with a given polynomial P (where one of these integers
is Z(P )). Nevertheless, the commitment is binding since finding two different
integers that are consistent with the same commitment reveals a multiple of the
order of g, which we assumed is computationally infeasible.

We will rely on the fact that this commitment scheme is homomorphic, in the
following sense: given integers Z1 and Z2 that are consistent with the polynomial
P1 and P2, and have sufficiently small digits in their base q representation, it
holds that Z1 + Z2 is consistent with the polynomial P1 + P2 (mod p). This is
also true for scalar multiplication: if α is sufficiently small then αZ1 is consistent
with α · P1 (mod p). However, the assumption that the digits are small is crucial
for the homomorphisms to work, and jumping ahead, this will be the source of
the gap in the proof.

11 It is worth mentioning that [21] also present a variant of their scheme for multi-variate
polynomials. This variant is somewhat different from the one described here and is
obtained via a reduction to the univariate case.
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Evaluation Proofs. Suppose that the committer wants to prove that P (ζ) = γ, for
some ζ = (ζ1, . . . , ζn) ∈ Fn and γ ∈ F. More precisely, we will show an interactive
protocol that is a proof of knowledge of an integer Z that is consistent with a
polynomial P such that that C = gZ and P (ζ) = γ.

Let P0, P1 : Fn−1 → F be the (n− 1)-variate polynomials defined as P0(·) =
P (0, ·) and P1(·) = P (1, ·). The prover first generates these two polynomials,
and the corresponding commitments c0 = gZ(P0) and c1 = gZ(P1). Also, let
γ0 = P0(ζ2, . . . , ζn) and γ1 = P1(ζ2, . . . , ζn). As its first message, the prover
sends (c0, c1, γ0, γ1). The verifier now checks that:

1. γ = ζ1 · γ1 + (1 − ζ1) · γ0. This equation should indeed hold since P (ζ) =
ζ1 · P1(ζ2, . . . , ζn) + (1− ζ1) · P0(ζ2, . . . , ζn).

2. The verifier also checks that c0 · (c1)q
N/2

= c, where N := 2n. This should
hold since

c0 · (c1)q
N/2

= gZ(P0) · gq
N/2·Z(P1) = gZ(P0)+qN/2·Z(P1) = gZ(P ),

where the last equality follows from the fact that

Z(P0) + qN/2 · Z(P1) =
∑︂

b∈{0,1}n−1

qb · P0(b) + qN/2 ·
∑︂

b∈{0,1}n−1

qb · P1(b)

=
∑︂

b∈{0,1}n
qb · P (b) = Z(P ),

where the arithmetic is over the integers and we leverage the homomorphic

properties of the commitment. Note that actually computing the value (c1)
qN/2

is too expensive for the verifier.12 Thus, rather than computing it directly,
this value is supplied by the prover who then proves its correctness using
Wesolowski’s [46] proof of exponentiation protocol.

Observe that we have replaced the single claim that we had about the
tuple (c, ζ, γ) with two separate claims (c0, ζ

′, γ0) and (c1, ζ
′, γ1), where ζ′ =

(ζ2, . . . , ζn), on (n− 1)-variate polynomials so that if the original claim were true
then the two resulting claims are true, whereas if the original claim is false then
intuitively, at least one of the new claims is false.

Since we cannot afford to recurse on both claims, the next idea is to combine
them into a single claim, using a random linear combination. In more detail, the
verifier chooses a random coefficient13 α ∈ F and sends this coefficient to the
prover. Consider now a new commitment

c′ = c0 · (c1)α = gZ(P0)+α·Z(P1). (1)

12 Computing this value directly by exponentiation takes time roughly N = 2n (using
the standard repeated squaring trick) whereas we seek poly(n) time verification. Note
that since the group’s order is not known, one cannot first compute qN/2 modulo the
group order, and only then exponentiate.

13 Looking ahead, it actually makes more sense to choose α from {0, . . . , 2λ − 1} where
λ is a statistical security parameter (independent of the field size). We ignore this
here and simply follow the presentation in [21].
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At first glance, c′ looks like a commitment to the (multilinear) polynomial
P ′(·) = P0(·) + α · P1(·). This is not exactly true since the operations in the
exponent in Eq. (1) are over the integers rather than over the field Fp. Nevertheless,
it is indeed the case that when interacting with the honest prover, c′ = gZ , for
an integer Z that is consistent with P ′. The verifier would therefore like to check
that c′ = gZ such that Z is consistent with a polynomial P ′ such that P ′(ζ′) = γ′,
where γ′ ≡ γ0 + α · γ1 (mod p).

The parties have therefore reduced the instance (c, ζ, γ) to (c′, ζ′, γ′), of
smaller dimension (since the new instance corresponds to a polynomial on n− 1
variables). At the bottom of the recursion (i.e., when the number of variables is
0), the parties are in the following situation - both hold a commitment C0 ∈ G
and a value γ0 ∈ Fp and the claim is that C0 = gZ0 such that Z0 = γ0 (mod p).
This can be checked by having the prover send Z0 and the verifier explicitly
checking that this value is consistent with γ0 (and with C0).

Bounding the Blowup in Coefficients. Note that as the protocol progresses,
the magnitude of the digits in the base q representation of the integers grows.
However, this growth is bounded - in every iteration the main source of growth
is multiplication by α and so the growth is bounded by roughly a factor of p
per iteration. Thus, by setting q ≫ pn we ensure the growth of the coefficients
does not break the homomorphism as the protocol progresses. This suffices for
completeness. For soundness (or rather knowledge soundness), we actually need
a larger bound on q and have the the verifier check in the base of the recursion
that Z0 ⩽ pn. Loosely speaking, this is done so that a cheating prover cannot
use integers with large digits to violate the homomorphism.

2.2 A Gap in the Proof

We need to show that the above scheme is an argument-of-knowledge.14 Loosely
speaking this means that for every polynomial-time prover strategy P there exists
a polynomial-time extractor E so that for every input (c, ζ, γ), if P convinces
V to accept with non-negligible probability, then EP outputs an integer Z such
that g = cZ and Z is consistent with a polynomial P such that P (ζ) = γ.

The extractor works recursively. Let us therefore assume that we have an
extractor for the (n− 1)-variate case and attempt to construct an extractor for
the n-variate case. Thus, we are given a commitment c, a point ζ ∈ Fn a value
γ ∈ F and a prover that convinces the verifier to accept with non-negligible
probability. For sake of this overview however, let us pretend that the prover
succeeds with probability close to 1.

The high-level idea for extraction is as follows. First, let the prover send its
first message which is (c0, c1, γ0, γ1). At this point our extractor continues the

14 We note that [21] only aim to show that the protocol is an argument of knowledge (and
this is inherent to their approach). Jumping ahead we mention that the evaluation
proof in our variant of DARK will actually be a proof of knowledge (i.e., extraction
is guaranteed even wrt computationally unbounded provers).
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interaction with two uniformly random choices of α for the verifier, which we
denote by α̂ and α̃. This defines two claim triplets: (ĉ, ζ′, γ̂) and (c̃, ζ′, γ̃), where:

ĉ = c0 · (c1)α̂ c̃ = c0 · (c1)α̃

γ̂ ≡ γ0 + α̂ · γ1 (mod p) γ̃ ≡ γ0 + α̃ · γ1 (mod p).

Since these two claims correspond to the (n − 1)-variate case, we can now
recursively run our extractor (twice) to obtain integers Ẑ and Z̃ that are consistent
with the respective claims. Namely, Ẑ (resp., Z̃) is consistent with a polynomial

P̂ (resp., P̃ ) such that P̂ (ζ′) = γ̂ (resp., P̃ (ζ′) = γ̃), and gẐ = ĉ (resp., gZ̃ = c̃).
Consider the following linear-system, over the rationals, with unknowns Z0

and Z1.

Ẑ = Z0 + α̂ · Z1 Z̃ = Z0 + α̃ · Z1

Note that since α̂ and α̃ are random, with overwhelming probability this system
has a (unique) solution over the rationals:

Z0 =
α̂ · Z̃ − α̃ · Ẑ

α̂− α̃
Z1 =

Ẑ − Z̃

α̂− α̃
(2)

An immediate difficulty that arises is that this solution may not be integral
(i.e., Z0 and Z1 are not integers). However, Bünz et al. show that finding a
fractional solution violates their hardness assumptions. Thus, (under the foregoing
assumptions) we can safely assume that Z0 and Z1 are integers.

At this point we would like to combine Z0 and Z1 into Z = Z0 + q2
n−1

Z1,
which serves as a valid output for the extractor. A question that arises however
is whether Z0 and Z1 have bounded digits in their base q representation. This is
crucial since, as discussed above, if the digits are large the homomorphism breaks.
Bünz et al. claim that it is indeed the case that Z0 and Z1 have small coefficients
by observing that both the numerators and denominators in Eq. (2) consist of
relatively small integers and so their quotient is small. While the claim that the
quotient itself is small is indeed valid, it does not necessarily mean that the base
q representation of the quotient has small digits. Indeed, as demonstrated by the
following example, this is not necessarily true and is the source of the gap in the
DARK extraction procedure.

Example 2.1. Suppose that q is odd and consider the integers a = q + 1 and
b = 2 (in case q is even a similar example with a = q and b = 2 works). Note
that the base q representation of both only has small digits. However, a/b has a
digit of magnitude (q + 1)/2. Using such large digits breaks the homomorphism
within a couple of steps.

We refer the reader to Lemma 8 in the full version of DARK [22] for the exact
location of the gap in the proof. Specifically, in the third paragraph in that proof,
it is claimed that fL(X) has small entries by the triangle inequality, but this
does not account for the division by ∆α in the definition of fL. This division can
entirely break the claimed bounds on the base q representation of fL.
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2.3 Resolving the Gap

Unfortunately, we do not know how to resolve the gap in the extraction procedure
of [21]. Rather, we show how to modify the scheme and construct an extractor
for our modified scheme.

As our first step, for a reason that will be made clear momentarily, rather
than handling a single claim (c, ζ, γ), we construct an interactive proof that
handles a bundle of λ claims {(ci, ζ, γi)}i∈[λ], using the same evaluation point
ζ ∈ Fn, and where λ is an auxiliary statistical security parameter. These λ claims
do not have to be distinct, so to solve the original problem (c, ζ, γ) we can simply
consider λ copies of it. Thus, our goal is to construct a proof-of-knowledge of
integers Z1, . . . , Zλ that are consistent, respectively, with polynomials P1, . . . , Pλ

so that Pi(ζ) = γi, for every i ∈ [λ].

We follow the divide and conquer approach of [21]. Namely, using a similar
type of interaction we split each one of the λ claims (ci, ζ, γi) into two claims
each on an (n− 1)-variate polynomial. At this point, we have, overall, 2λ claims
on (n− 1)-variate polynomials and we would like to reduce these to just λ claims
so that we can recurse. Denote this set of claims by {(c′i, ζ

′, γ′i)}i∈[2λ] (note that
the indexing intentionally ignores the source for each one of these claims).

Let us first describe how we generate a single claim from these 2λ claims. The
verifier chooses a random subset S ⊆ [2λ] and sends S to the prover. Consider
now the new claim (c̄, ζ′, γ̄), where c̄ =

∏︁
i∈S c′i and γ̄ ≡

∑︁
i∈S γ′i (mod p). If the

original claims were true then with probability 1 the new claim is true, whereas,
intuitively, if at least one of the original claims was false then with probability
1/2 the new claim is false15. We therefore repeat this process λ times to derive
λ claims so that if one of the original claims was false, then, with all but 2−λ

probability, one of the new claims will be false.

To actually make this argument work, we need to construct an extractor. As
suggested above, the extractor can rewind the computation a constant r number
of times to deduce a linear-system, analogous to that of Section 2.2, but now
with r · λ equations and λ variables, where the coefficients are uniformly random
0/1 values.

Similarly to the situation in Section 2.2, it is clear that this linear-system
is full rank (over the rationals) but it is not a priori clear that the solution is
integral, nor that its base q representation has small digits. Nevertheless, we
show that for random Boolean matrices this is indeed the case. This fact, which
turns out to be non-trivial to prove, is summarized in the following lemma:

Lemma 2.2 (Informally Stated, see [12]). If A is uniformly random in
{0, 1}λ×r·λ for r ≥ 5, then with all but 2−Ω(λ) probability A has a right-inverse
B ∈ Zr·λ×λ. Moreover, the inverse matrix B can be found in poly(λ) time and
its entries have bit length at most poly(λ).

15 This is not actually precise since there are many polynomials that are consistent with
the c′i’s and so the claim could be true wrt some of these polynomials. This is dealt
with formally by showing knowledge soundness (i.e., constructing an extractor).
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Note that the fact that the inverse matrix B of our linear-system has relatively
small integral coefficients (independent of q) is crucial since it means that our
solution is integral and has small digits in base q.

Our proof of Lemma 2.2 leverages ideas from the theory of integer lattices,
see the full version for details [12]. Having found the desired solution to the
specified linear-system, our extractor can proceed in the extraction similarly
to the extraction in DARK. This concludes the high-level description of our
resolution of the gap in the DARK scheme.

Remark 2.3. Note that our approach not only resolved the gap in the DARK
extraction, but also unconditionally avoided the possibility of the linear-system
having a non-integral solution. This simultaneously simplifies the definitions and
proofs and lets us avoid an undesirable reliance on additional, poorly understood,
cryptographic assumptions.

Remark 2.4. For sake of convenience, we used λ repetitions in our analysis. We
remark however that the number of repetitions here is a statistical security
parameter. Namely, it bounds even a computationaly unbounded adversary’s
success probability by 2−Ω(λ). Thus, in practice it may be best to differentiate
between this parameter and the cryptographic parameter that corresponds to
the size of the group.

2.4 Small Space Implementation

Having resolved the gap in the security proof, we now turn out attention to
implementing the polynomial commitment in small space.

When considering sublinear space algorithms it is important to specify how
the input is given (since the algorithm cannot simply copy the input to its work
tape, see [30] for a comprehensive discussion). For our context, the most natural
choice is for our small space algorithms to be given multi-pass streaming access
to the description of the multilinear polynomial. That is, the evaluations of the
polynomial on the Boolean hypercube are written on the read-only input tape.
The algorithm can process the input tape from left-to-right, or choose to reset
the machine head to the beginning of the tape. The reason that this choice is
natural is that when constructing our argument-system, we will need to apply this
commitment to a transcript of a computation. Such a transcript can be generated
in a (resettable) streaming manner by simply executing the computation.

With that in mind, let us first consider our commitment algorithm. Recall
that we are given as input the stream of values {P (b)}b∈{0,1}n , where P : Fn → F
is a multilinear polynomial and we need to produce the commitment gZ(P ) = gV ,
where

V =
∑︂

b∈{0,1}n
qb · P (b).

Note that we cannot compute V directly and then exponentiate. This is because
even storing V requires 2n bits. Rather, we will leverage the fact that V appears
only in the exponent and compute gV directly.

13



We do so by iterating through b in lexicographic order while maintaining, as
we go along, two variables C and D. We will maintain the invariant that at the

start of the b-th iteration D = gq
b

and C = gV<b , where V<b =
∑︁

b′<b q
b′ · P (b′).

To do so we:

– Initialize C as the group’s identity element and D = g.
– To update C and D from b to b + 1, we set C ← C ·DP (b) and D ← Dq

(using repeated squaring).

It is not hard to see that the invariant is indeed maintained. Given the value of
D in the last iteration, it is easy to generate the commitment gV .

Implementing the evaluation proofs is more subtle. The key challenge here is
that throughout the recursion, the prover needs to deal with the intermediate
polynomials that are defined throughout the recursion, but only has streaming
access to the original base polynomial. Needless to say, we cannot afford to
explicitly store the intermediate polynomials since this would introduce 2Ω(n)

space usage.
Thus, we need, for sake of space efficiency, to open up the recursion and

work directly with our original stream P . At first glance, one would hope that
using the polynomial P we can emulate streaming access to the intermediate
polynomials that we encounter. Unfortunately, we do not know how to do
that. Rather, in order to commit or evaluate some intermediate polynomial
Q, we show that as we process the base polynomial P , each value that we
encounter, has some partial contribution to Q (with coefficients that depend
on the verifier’s random challenges). The crucial observation is that both the
commitment to Q and evaluation are linear and therefore commute. This means
that we do not have to process the partial contributions of each entry of Q in
sequence. Furthermore, we show that the coefficients of these entries in the linear
combination can either be produced individually in small space (when evaluating
the intermediate polynomials) or generated as a stream in small space (when
producing commitments).

2.5 Generalizing Pietrzak’s Proof of Exponentiation Protocol

Our Proof of Exponentiaion (PoE) protocol builds on Pietrzak’s PoE protocol
[37]. We therefore start by recalling his protocol and then proceed to describe
our improvement.

Pietrzak’s PoE protocol. Let G be a group and q ∈ Z. Recall that the prover

wishes to prove that y = xq2
t

for some x, y ∈ G and t ∈ N. As a shorthand, we

will use T = 2t and denote the claim y = xqT by the tuple (x, y, T ) and refer to
this as a claim of size T (because its validity can be easily checked by performing
T repeated squarings). To proceed with the proof, the prover first sends a single

group element µ = xqT/2

, which implicitly defines two sub-claims (x, µ, T/2)
and (µ, y, T/2) of size T/2 each. Note that if (x, y, T ) is true then both claims

(x, µ, T/2) and (µ, y, T/2) must also be true: y = xqT and µ = xqT/2

implies that
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y = µqT/2

. However, intuitively, if (x, y, T ) is false then for any (even maliciously
generated) µ, at least one of the sub-claims must be false. Instead of recursing
on both subclaims, the prover combines the two subclaims into a single claim of
size T/2. The new claim (x′, y′, T/2) is computed by taking a, verifier specified,
random linear combination of the two claims. That is,

x′ = xr · µ and y′ = µr · y,

where r ← Z2λ is sampled by the verifier. It is easy to see that if (x, µ, T/2) and
(µ, y, T/2) are true then (x′, y′, T/2) is also true, and Pietrzak (relying on QR+

N

not having small order subgroups) shows that if one of (x, µ, T/2) or (µ, y, T/2)
is false, then with overwhelming probability, over the choice of r, the claim
(x′, y′, T/2) is false. Now, the prover and verifier recurse on the T/2-sized claim,
halving the size every time and eventually ending up in the base case (T = 1)
where the verifier just needs to check whether y = xq (which can be done in
poly(λ) time).

Our New PoE protocol. As mentioned above the main downside of Pietrzak’s
protocol is that statistical soundness can only be proved for groups where small
order subgroups do not exist. This difficulty arises since we are taking random
linear combinations of group elements rather than field elements. In particular, if
one of the group elements has small order, then the random linear combination
does not have the desired effect.

Our approach for resolving this difficulty is inspired by our resolution for
the gap in the DARK scheme (see Sections 2.2 and 2.3). We will maintain more
instances throughout the interaction and take random subset sums of all of these
instances rather than random linear combinations of two instances. Interestingly,
this simple idea gets us quite a bit of mileage - simplifying the analysis, improving
the assumptions (e.g., in the case of class groups) and generalizing the result to
general groups.

In more detail, rather than handling a single claim (x, y, T ), we will show a
protocol for checking λ claims {(xi, yi, T )}[i∈[λ] all sharing the same exponent
parameter T . Note that the single claim case can be easily reduced to this more
general setting by simply setting x1 = · · · = xλ = x and y1 = · · · = yλ = y.

Analogous to Pietrzak’s protocol, our prover sends the sequence of values

µ = (µ1, . . . , µλ) ∈ Gλ as its first message, where µi = xqT/2

i , for every i ∈ [λ].
This decomposes the λ claims {(xi, yi, T )}i∈[λ] into two sets of λ claims each
{(xi, µi, T/2)}i∈[λ] and {(µi, yi, T/2)}i∈[λ]. It will be convenient however to think
of these as a single set of claims {(zi, wi, T/2)}i∈[2λ]. Note that if the original set
of claims was not true, then no matter what values {µi}i∈[λ] the prover sends, at
least one of the claims in {(zi, wi, T/2)}i∈[2λ] must be false.

Reducing Claims via Subset Products. We show a simple and general method
for reducing the number of claims. Let us first see how to produce a single new
claim from these 2λ claims. The verifier chooses at random a set S ⊆ [2λ] and
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sends S to the prover. Consider the claim (z′, w′, T/2) where:

z′ =
∏︂
i∈S

zi and w′ =
∏︂
i∈S

wi.

Observe that if all the original claims were true (i.e., wi = zq
T/2

i , for every i ∈ [λ])

then (z′)q
T/2

=
∏︁

i∈S zq
T/2

i =
∏︁

i∈S wi = w′ and so the resulting claim holds. On
the other hand, if even just one of the original claims is false then:

Pr
S

[︂
(z′)q

T/2

= w′
]︂
= Pr

S

[︄∏︂
i∈S

zq
T/2

i =
∏︂
i∈S

wi

]︄
= Pr

S

[︄∏︂
i∈S

ui = 1G

]︄
⩽ 1/2,

where ui = zq
T/2

i · w−1i for every i ∈ [2λ], the group’s identity element is denoted
by 1 and the inequality follows from the simple principle that a random subset
product of a sequence of group elements, not all of which are equal to 1, is equal
to 1 with probability at most 1/2.

To get 2−λ error probability, we simply repeat this process λ times to get a
new sequence of λ claims, each of size T/2. We have thus reduced our λ size T
claims to λ size T/2 claims. We can continue recursing as in Pietrzak’s protocol
until T = 1 in which case the verifier can solve the problem by itself.

Remark 2.5. We remark that our technique introduces a factor of λ overhead in
the communication complexity as compared to Pietrzak’s protocol. This is due
to the fact that the prover has to send λ group elements per round.

Similarly to Remark 2.4, λ is a statistical (rather than computational) security
parameter and relatively small values of λ may suffice. Moreover, we believe
that it is possible to “interpolate” between our approach and that of [37] by
considering the minimal sub-group size of G and using coefficients of suitably
larger magnitude in our choice of the random matrix.

3 Preliminaries

We let “◦” denote the string concatenation operator and let ϵ denote the empty
string; that is, for any string s it holds that s = s ◦ ϵ = ϵ ◦ s.

Let S be a finite, non-empty set. We let x← S denote sampling an element
x uniformly at random from S. For any N ∈ N, we let SN denote the set of all
sequences of length N containing elements of S, and note that S0 := {ϵ}. As

usual, we make the convention that if j > k then
∑︁k

i=j ai = 0 and
∏︁k

i=j ai = 1.
We let Fp denote a finite field of prime cardinality p, and often use lower-case

Greek letters to denote elements of F, e.g., α ∈ F. We use boldface lowercase letters
to denote binary vectors, e.g. b ∈ {0, 1}n. For bit strings b ∈ {0, 1}n, we naturally
associate b with integers in the set {0, 1, . . . , 2n − 1}; i.e., b ≡

∑︁n
i=1 bi · 2i−1. We

assume that b = (bn, . . . , b1), where bn is the most significant bit and b1 is the
least significant bit. For bit string b ∈ {0, 1}n and σ ∈ {0, 1} we let σb (resp., bσ)
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denote the string (σ ◦ b) ∈ {0, 1}n+1
(resp., (b ◦ σ) ∈ {0, 1}n+1

). We use boldface
lowercase to denote F vectors, e.g., α ∈ Fn. For (αn, . . . , α1) = α ∈ Fn, we refer
to αn as the most significant field element and α1 as the least significant field
element. For two equal length vectors u, v, we let u⊙v denote the coordinate-wise
product of u and v. We let uppercase calligraphic letters denote sequences and let
corresponding lowercase letters to denote its elements, e.g., Y = (yb)b∈{0,1}n ∈ FN

is a sequence of N elements in F. Often, for b ∈ {0, 1}n, we let Yb denote the
value yb.

We use upper case letters to denote matrices, e.g., M ∈ Zm×n. For a matrix
M of dimension m × n, we let M(i, ∗) and M(∗, j) denote the ith row and jth

column of M , respectively. For row vector u of length m and column vector v of
length n, we let u ·M and M · v denote the standard matrix-vector product.

Non-standard Notation. We are also interested in matrix-vector “exponents”. Let
G be some group,M ∈ Zm×n, u = (u1, . . . , um) ∈ G1×m, and v = (v1, . . . , vn)

⊤ ∈
Gn×1. We let u ⋆ M and M ⋆ v denote a matrix-vector exponent, defined as

(u ⋆ M)j =

m∏︂
i=1

u
M(i,j)
i (M ⋆ v)i′ =

n∏︂
j′=1

v
M(i′,j′)
j′ ,

for every j ∈ [n] and every i′ ∈ [m]. Note that u ⋆M ∈ G1×n and M ⋆ v ∈ Gm×1.
For vector x ∈ Zn and group element g ∈ G, we abuse notation and define

gx := (gx1 , . . . , gxn). Finally, for k ∈ Z and vector u ∈ Gn, we let uk denote the
vector (uk

1 , . . . , u
k
n) ∈ Gn.

3.1 Multilinear Polynomials

An n-variate polynomial f : Fn → F is multilinear if the individual degree of each
variable in f is at most 1.

Fact 3.1. An multilinear polynomial f : Fn → F (over a finite field F) is
uniquely defined by its evaluations over the Boolean hypercube. Moreover, for
every ζ ∈ Fn it holds that f(ζ) =

∑︁
b∈{0,1}n f(b) ·

∏︁n
i=1 χ(bi, ζi), where χ(b, ζ) =

b · ζ + (1− b) · (1− ζ).

As a short hand, we will often denote
n∏︁

i=1

χ(bi, ζi) by χ(b, ζ) for n = |b| = |ζ|.

Notation for Multilinear Polynomials. Throughout this work, we represent n-
variate, multilinear polynomials f by the N -sized sequence Y containing eval-
uations of f over the Boolean hypercube. That is, Y := (f(b))b∈{0,1}n , and
denote the evaluation of the multilinear polynomial defined by Y on ζ as
ML(Y, ζ) :=

∑︁
b Yb · χ(b, ζ). Furthermore, we also consider the evaluation of a

multilinear polynomial defined by some integer sequence Z ∈ ZN . For any ζ ∈ Fp

for prime p, we define ML(Z, ζ) :=
∑︁

b(Zb mod p) · χ(b, ζ).
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3.2 Groups of Hidden Order

We start by defining the notion of a group sampler.

Definition 3.2 (Group Sampler). A PPT algorithm G is a group sampler
if for every λ ∈ N, G on input 1λ samples a description16 G of a group of size
at most 2λ. As a shorthand, we denote this random process by G← G(1λ), and
by g ← G denote the process of sampling a random group element from G and
assigning it to g.

Furthermore, we say that G is public-coin if the output of G (i.e., the group
description) is a uniformly random string.

Here, we will focus only on group samplers G for which the Hidden Order
Assumption holds, which, informally, requires that it be computationally hard to
find (a multiple of) the order of a random group element of G← G(1λ).

Assumption 3.3 (Hidden Order Assumption). The Hidden Order Assump-
tion holds for G if for every polynomial-size family of circuits A = {Aλ}λ∈N:

Pr
[︁
ga = 1 ∧ a ̸= 0 : G← G(1λ), g ← G, a← Aλ(G, g)

]︁
≤ negl(λ). (3)

Candidates for G. In this work we consider two main candidates for G where the
Hidden Order Assumption is believed to hold:

1. RSA group: the multiplicative group Z∗N of integers modulo a product N =
P ·Q for large random primes P and Q. Here, the Hidden Order Assumption
holds assuming the hardness of factoring N when it is a product of safe primes.
This group can be sampled by choosing random primes and specifying their
product. However, this is private-coin type generation and it is not clear how
to generate the group in a public way (this corresponds to the well-studied
problem of generating hard factoring instances using only public-coins).

2. Class group: the class group of an of imaginary quadratic order. Here, the
Hidden Order Assumption (in fact, even much stronger assumptions) are
believed to hold (see, e.g., [21, 46]). The main feature of such class groups is
that there is a way to sample the group description using only public-coins.
These are, to the best of our knowledge, the only known public-coin hidden
order groups. We refer the reader to [21] for details.

3.3 Interactive Games and Proof Systems

Definition 3.4 (Merlin-Arthur Games). Let r be a positive integer.
An MA[2r] game (or just an MA game17 if r is unspecified) is a tuple G =

(1r, 1ℓ,W ), where ℓ ∈ Z+ and W ⊆ {0, 1}∗ is a set, called the win predicate, that

16 The group description includes a poly(λ) description of the identity element, and
poly(λ) size circuits checking membership in the group, equality, performing the
group operation and generating a random element in the group.

17 MA stands for Merlin-Arthur proofs [3] (differing from Arthur-Merlin proofs in that
the prover (Merlin) sends the first message).
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is represented as a boolean circuit. The integer r is called the number of rounds
of G and {0, 1}ℓ is called the challenge space.

If G = (1r, 1ℓ,W ) is an MA[2r] game and P : {0, 1}∗ → {0, 1}∗ is a function,
then the value of G with respect to P is denoted and defined as

v[P ](G)def= Pr
β1,...,βr←{0,1}ℓ

[︁
(α1, β1, . . . , αr, βr

)︁
∈W

]︁
,

where each αi denotes P (β1, . . . , βi−1). The value of G, denoted v(G), is supP
{︁
v[P ](G)

}︁
.

Definition 3.5 (Game Transcripts). If G =
(︁
1r, 1ℓ,W ) is an MA[2r] game,

then a transcript for G is a tuple τ = (α1, β1, . . . , αr, βr) with each βi ∈ {0, 1}ℓ
and αi ∈ {0, 1}∗. If τ is contained in W , then it is said to be an accepting
transcript for G. If for a function P : {0, 1}∗ → {0, 1}∗, αi = P (β1, . . . , βi−1)
for each i ∈ [r], then τ is said to be consistent with P . If τ is both an accepting
transcript for G and consistent with P , we say simply that τ is an accepting
transcript for (P,G).

Definition 3.6 (MA Verifiers). For a function r : Z+ → Z+ and a language
L, an MA[2r] verifier for L is a polynomial-time algorithm V , where:

– V maps any string x ∈ {0, 1}∗ to an MA
[︁
2r(|x|)

]︁
game.18

– The completeness of V is a function c : Z+ → [0, 1], defined as

c(n)
def
= min

x∈L∩{0,1}n
v
(︁
V (x)

)︁
.

– The soundness error of V is a function s : Z+ → [0, 1], defined as

s(n)
def
= max

x∈{0,1}n\L
v
(︁
V (x)

)︁
.

Definition 3.7 (Witness-Extended Emulation (cf. [35])). An MA verifier
V has (statistical) witness-extended ϵ(·)-emulation with respect to a relation R
if there exists an expected polynomial-time oracle algorithm E such that for all
P : {0, 1}∗ → {0, 1}∗ and all x ∈ {0, 1}∗, if we sample (τ, w)← EP (x), then:

– τ is distributed uniformly at random on the set of all possible transcripts
between V (x) and P .

– With all but ϵ(|x|) probability, if τ is an accepting transcript for V (x) then
(x,w) ∈ R.

Definition 3.8. An MA verifier V has statistical witness-extended emulation
with respect to a relation R if it has statistical witness-extended ϵ-emulation (as
per Definition 3.7) for some negligible function ϵ.

18 In particular, this definition implies there is a polynomial in n that bounds the length
of any accepting transcript for V (x) when x ∈ {0, 1}n.
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3.4 Multilinear Polynomial Commitment

Polynomial commitment schemes, introduced by Kate et al. [32] and generalized
in [19, 21, 41, 45], are a cryptographic primitive that allows one to commit to
a polynomial of bounded degree and later provably reveal evaluations of the
committed polynomial. Since we consider only multilinear polynomials, we tailor
our definition to them.

Convention. In defining the syntax of various protocols, we use the following
convention for any list of arguments or returned tuple (a, b, c; d, e) – variables
listed before semicolon are known both to the prover and verifier whereas the
ones after are only known to the prover. In this case, a, b, c are public whereas
d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 3.9 (Multilinear Polynomial Commitment Scheme). A multi-
linear polynomial commitment scheme is a tuple of protocols (Setup,Com, isValid,Eval)
such that

1. pp ← Setup(1λ, p, 1n): takes as input the security parameter λ ∈ N and
outputs public parameter pp that allows to support n-variate multilinear
polynomials over F = Fp for some prime p.

2. (C; d)← Com(pp,Y): takes as input public parameters pp and a description
of a multilinear polynomial Y = (yb)b∈{0,1}n and outputs a commitment C
and a (secret) decommitment d.

3. b← isValid(pp, C,Y, d): takes as input pp, a commitment C, a description of
the multilinear polynomial Y and a decommitment d, and returns a decision
bit b ∈ {0, 1}.

4. Eval(pp, C, ζ, γ;Y, d): is a public-coin interactive proof system (P, V ) for the
relation:

Rml =
{︂
(pp, C, ζ, γ;Y, d) : isValid(pp, C,Y, d) = 1 ∧ γ = ML(Y, ζ)

}︂
, (4)

where V is an MA verifier (as per Definition 3.6) where P is the honest
strategy for V . Note that the verifier in this proof-system gets as input the
public parameters pp, commitment C, evaluation point ζ ∈ Fn and claimed
evaluation γ ∈ F, and the prover additionally receives the full description of
the polynomial Y and the decommitment d.

We require the following three properties from the scheme (Setup,Com, isValid,Eval):

1. Perfect Correctness: for all primes p, λ ∈ N, n ∈ N and all Y ∈ F2n

p and
ζ ∈ Fn

p ,

Pr

[︃
1 = Eval(pp, C,Z, γ;Y, d) : pp← Setup(1λ, p, 1n),

(C; d)← Com(pp,Y), γ = ML(Y, ζ)

]︃
= 1 .
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2. Computational Binding: for every polynomial-sized family of circuits
A = {Aλ}λ∈N the following holds

Pr

⎡⎢⎢⎣(︁b0 = b1 = 1
)︁
∧
(︁
Y0 ̸= Y1

)︁
:

pp← Setup(1λ, p, 1N )
(C,Y0,Y1, d0, d1)← Aλ(pp)
b0 ← isValid(pp, C,Y0, d0)
b1 ← isValid(pp, C,Y1, d1)

⎤⎥⎥⎦ ≤ negl(λ) .

3. Witness-Extended Emulation: For Eval = (P, V ), V has (statistical)
witness-extended emulation for the relation Rml (defined in Equation (4)).

Remark 3.10. We note that our definition of polynomial commitment scheme
is stronger than the ones used in the literature (see, e.g., [5, 7, 11, 21, 33, 34, 42,
45, 47, 48]), in that we require Eval to have statistical soundness (rather than
computational). As a result we show soundness for every pair (x, pp).

A key ingredient in our efficient argument-systems is polynomial commitments
that can be generated in a time and space efficient way. We call such polynomial
commitments streamable.

Definition 3.11 (Streamable Multilinear Polynomial Commitment Scheme).
A streamable multilinear polynomial commitment scheme is a multilinear polyno-
mial commitment scheme (as per Definition 3.9) with the following efficiency
properties for n-variate multilinear polynomials over Fp for some prime p ≤ 2λ:

1. The commitment output by Com is of size n·poly(λ), and assuming multi-pass
streaming access to the description of the polynomial, the commitment can be
implemented in time 2n · poly(n, λ) and space poly(n, λ).

2. The communication complexity of the Eval protocol is n · poly(λ) and the
receiver of Eval runs in time poly(n, λ). Assuming multi-pass streaming access
to the description of the polynomial, the committer of Eval can be implemented
in time 2n · poly(n, λ) and space poly(n, λ).

4 Our Results

In this section we formally state our main results. All analyses, protocols, and
proofs are deferred to the full version [12] (unless otherwise stated).

Time- and Space-efficient Arguments. Our first main result is a time- and
space-efficient public-coin zero-knowledge argument-system.

Theorem 4.1. Assume the existence of a group sampler for which the hidden
order assumptions holds (see Assumption 3.3). Then, there exists a public-coin
zero-knowledge argument-system for any NP relation verifiable by a time T space
S random access machine with the following complexity.

1. The protocol has perfect completeness and neligible soundness error.
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2. The number of rounds is O(log T ).
3. The communication complexity is poly(λ, log T ).
4. The prover runs in time T · poly(λ, log T ) and space S · poly(λ, log T ).
5. The verifier runs in time |x| · poly(λ, log T ), for a given input |x|.

Theorem 4.1 relies on a new polynomial commitment scheme discussed next.

Streamable Polynomial Commitments. The core component of our time- and
space-efficient arguments is a new polynomial commitment scheme for multilin-
ear polynomials where the committer can be implemented in small space and
verification is only poly-logarithmic.

Theorem 4.2. Assume the existence of a group sampler for which the hidden
order assumptions holds. Then, there exists a streamable multilinear polynomial
commitment scheme (Setup,Com, isValid,Eval) (as per Definition 3.11) over finite
field F of prime-order p with the following efficiency guarantees:

1. Com outputs a commitment of size poly(λ) bits, runs in time 2n·poly(n, λ, log(p))
and space n+O(log(p)) + poly(λ), and uses a single pass over the stream;

2. Eval has O(n) rounds and communcation complexity poly(n, λ, log(p));
3. The committer of Eval runs in time 2n · poly(n, λ, log(p)) and space n ·

poly(λ, log(p)), and uses O(n) passes over the stream; and
4. The receiver of Eval runs in time poly(n, λ, log(p)).

We present our scheme in Section 5.

Proof-of-Exponentiation. Our polynomial commitment scheme relies on a new
Proof-of-Exponentiation (PoE) protocol, which may be of independent interest.

For some group G and base q ∈ Z consider the language

LG,q =
{︂
(x, y, t) ∈ G×G× N : xq2

t

= y
}︂
. (5)

Note that this problem can be solved in time roughly 2t (by repeated squaring),
but for some groups it is conjectured to not be solvable in significantly less
time (even when leveraging parallelization). Indeed, an instantiation of this
language using RSA groups underlies the original time-lock puzzle construction
by Rivest, Shamir and Wagner [39]. This problem has also been used recently for
constructing verifiable delay functions (VDFs). We show a extension of a recent
protocol due to Pietrzak [37] that works for general groups.

Theorem 4.3. Let G be a group whose elements have O(log(|G|))-bit descrip-
tions, and whose group operations take time polylog(|G|), and let q ∈ N. There
exists a perfectly correct, statistically sound public-coin interactive-proof for LG,q

with the following efficiency properties for exponent parameter t:

1. The communication complexity is O(tλ2+ tλ log(|G|)) and there are t rounds.
2. The prover runs in time 2t · poly(log(q), log(|G|), λ) and uses space O(λ ·

log(|G|)) + log(t) + log(q) + λ2

3. The verifier runs in time t · poly(log(|G|), log(q), λ).
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5 Multilinear Polynomial Commitment Scheme in Hidden
Order Groups

We describe our commitment scheme (Setup,Com, isValid,Eval) for multilinear
polynomials f : Fn → F over some field F of prime-order p which is specified
as an input to Setup. Throughout the section, we work with the description
Y := (f(b))b∈{0,1}n ∈ F2n of the multilinear polynomial f . First, in Section 5.1
we describe how to encode Y as an integer. Then, in Section 5.2 we describe our
polynomial commitment scheme.

5.1 Encoding Multilinear Polynomials as an Integer

One key portion of our scheme is encoding the sequence Y, which defines our
multilinear polynomial, as an integer. We do so by using a technique first intro-
duced by [21]. Towards this, we first describe an encoding scheme for integer
sequences. For any N = 2n and an odd integer q ∈ N, let Encq : ZN → Z be the
function that encodes a sequence of integers Z ∈ ZN as19

Encq(Z) :=
∑︂

b∈{0,1}n
qb · Zb,

where qb interprets b (an n-bit string) as the naturally corresponding integer
in the set {0, 1, . . . , N − 1}. To decode an integer v ∈ Z, we output its base-q
representation where, for convenience, the base-q digits of v are integers in the
range [−q/2, q/2). We refer to the decoding function as Decq.

Our Encq scheme has two homomorphic properties which we leverage to design
our polynomial commitment. First, Encq(·) is a linear homomorphism over Z; that
is, for any Z,Z ′ ∈ ZN and α, β ∈ Z, it holds that α · Encq(Z) + β · Encq(Z ′) =
Encq(α · Z + β · Z ′). Second, Encq(·) satisfies a restricted form of multiplicative
homomorphism; that is, for any d ∈ N, we have qd · Encq(Z) = Encq((0

d,Z)).

Encoding Bounded Integer Sequences. In fact, looking ahead, we are interested
in encoding only sequences of bounded integers. For some B ∈ R⩾1, we let
Z(B) := {z ∈ Z : − B ⩽ z < B} be the set of integers whose absolute value is
bounded by B. Then, to encode integer sequences in Z(B)N , we consider the
restriction of Encq to the set Z(B)N . Notice that by definition, for any Z ∈ Z(B)N ,
we have that Encq(Z) ∈ Z(B · (qN − 1)/(q − 1)). We remark that while Encq is
not injective over all integer sequences (as integer sequences (1 + q, 0) and (1, 1)
both encode to the integer 1 + q), the restriction of Encq to the set Z(q/2)N is
injective. We capture this in the following fact:

Fact 5.1 ([21, Fact 1]). Let q be any odd integer and let N ∈ N. For any
v ∈ Z(qN/2), there exists a unique sequence Z ∈ Z(q/2)N such that v = Encq(Z).
Furthermore, Z = Decq(v).

19 This encoding is valid for sequences of arbitrary length, but we restrict to powers of
two for convenience.
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Proof. For any sequence Z ∈ Z(q/2)N , by definition of Decq we observe that
Decq(Encq(Z)) = Z. This implies that (restriction of) Encq (to Z(q/2)N ) is
injective. Furthermore, the cardinality of sets Z(qN/2) and Z(q/2)N are equal.
Therefore, for every v ∈ Z(qN/2), Decq(v) is the unique sequence in Z(q/2)N
that encodes to v.

Similar to Encq, Decq also satisfies some homomorphic properties: for integers
z1, z2, we have that Decq(z1 + z2) = Decq(z1) +Decq(z2) as long as z1, z2 encode
sequences whose elements are bounded by q/4. For our security proof, we will
use the following more general statement, which we prove in the full version.

Claim 5.2. Let ℓ, q,N ∈ N such that q is odd, and let B1, B2 ≥ 1 be such that
B1 ·B2 ≤ q/(2ℓ). Then, for every α1, . . . , αℓ ∈ Z(B1), and integers z1, . . . , zℓ ∈
Z(qN/2) such that Decq(zi) ∈ Z(B2)

N ,

Decq
(︂∑︂

i∈[ℓ]

αi · zi
)︂
=

∑︂
i∈[ℓ]

αi · Decq(zi). (6)

Remark 5.3. Looking ahead, the correctness of our extractor (to show security
for our polynomial commitment scheme) relies crucially on Claim 5.2. The main
issue with [21] is that their extractor relies on a variant of Claim 5.2 (formulated
below) which is false. Lemma 8 in the full version [22] of [21] uses the following
claim to argue correctness of the extracted integer decommitments fL and fR.

Claim 5.4 (False claim implicit in [22, Lemma 8]). For p, q,N ∈ N such
that 2 ≤ p ≤ q where q is odd. For every α ∈ Z(p) and z ∈ Z(qN/2) such that
α | z, Decq(z/α) = Decq(z)/α.

We note that z, z/α ∈ Z(qN/2), by Fact 5.1 Decq(z),Decq(z/α) ∈ Z(q/2)N . But,
Decq(z)/α may not be an integer sequence. Counter-example: for z = 1+q, α = 2,
we have Decq(z) = (1, 1) but Decq(z)/2 is not an integer sequence.

Encoding Y. To encode Y ∈ FN where F is a field of prime-order p, we first define
a lifting function J·K : F→ Z(p/2) in the natural way. That is, for any α ∈ F, we
define JαK to be the unique integer in Z(p/2) such that JαK ≡ αmod p. We then
define Encq(Y) as Encq(Y) :=

∑︁
b∈{0,1}n qb · JYbK.

5.2 Scheme

Our polynomial commitment scheme is parameterized by three components: (a)
the encoding scheme (Encq,Decq) defined in Section 5.1, (b) A group sampler G
for which the Hidden Order Assumption holds (see Section 3.2 for a discussion
on candidates), and (c) a perfectly correct, statistically sound PoE protocol (we
present one such protocol over arbitrary groups the full version). We now present
all algorithms (Setup,Com, isValid,Eval) for the polynomial commitment scheme.
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Setup(1λ, p, 1n): On input security parameter 1λ, a prime p, and the number of
polynomial variables 1n, the algorithm Setup samples group description G ←
G(1λ), samples g ← G, sets q := q(n, p, λ) ∈ N, and outputs public parameters
pp = (q, g,G). We require that q be odd such that q > p · 2n·poly(λ).

Com(pp,Y): On input pp = (q, g,G) output by Setup and sequence Y, Com
computes a commitment to the sequence Y as C = gEncq(Y). The output of Com
is the commitment C and secret decommitment Z = (JYbK)b∈{0,1}n ∈ Z(p/2)N .

isValid(pp, C,Y,Z): On inputs pp = (q, g,G), C output by Com, committed

sequence Y ∈ FN and decommitment Z ∈ ZN for N = 2n, the algorithm isValid
outputs a decision bit. isValid outputs 1 if and only if (1) Z ⊆ Z(q/2)N ; (2)
Y ≡ Zmod p; and (3) C = gEncq(Z). Otherwise, isValid outputs 0.

Eval(pp, C, ζ, γ;Y,Z): On input pp = (q, g,G), C ∈ G, ζ ∈ Fn, γ ∈ F, Y ∈ FN

and Z ∈ ZN for N = 2n, Eval is an interactive protocol (P, V ) for the relation,

Rml =
{︂
(pp, C, ζ, γ;Y,Z) : isValid(pp, C,Y,Z) = 1 ∧ γ = ML(Y, ζ)

}︂
, (7)

where on common input (pp, C, ζ, γ), P tries to convince V that it knows a
committed sequence Y ∈ FN and an integer sequence Z ∈ ZN such that
isValid(pp, C,Y,Z) = 1 and γ is the evaluation of the multilinear polyno-

mial defined by Y at evaluation point ζ = (ζn, . . . , ζ1); that is, γ
?
= ML(Y, ζ).

More specifically, both the committer and receiver in Eval first make λ many
copies of the statement (C, ζ, γ;Z) as (C, ζ,γ;Z), where C = (C, . . . , C) ∈ Gλ,
γ = (γ, . . . , γ) ∈ Fλ, and Z ∈ Zλ×N is a matrix such that Z(i,b) := Zb for every
i ∈ [λ] and b ∈ {0, 1}n. The committer and receiver then run the subroutine
MultiEval, presented in Algorithm 1.

MultiEval is a recursive protocol which given the statement (C, ζ,γ;Z) proves
that γi = ML(Z(i, ∗), ζ) and Ci = Com(Z(i, ∗)) for every i ∈ [λ], where Z(i, ∗) ∈
Z1×N is the ith row of Z. This is done via a divide and conquer approach. Let
Pi : Fn → F be the multilinear polynomial defined by row i of matrix Z for
every i ∈ [λ]. For presentation, we focus on the polynomial P1. To prove that
γ1 = P1(ζ) and C1 = Com(P1) = gEncq(P1), the committer first splits P1 into
it’s “left” and “right” halves, defined by P1,L(·) = P1(·, 0) and P1,R(·, 1). Then
it computes evaluations of these polynomials at the point ζ′ = (ζn, . . . , ζ2) to
obtain γ1,L = P1,L(ζ

′) and γ1,R = P1,R(ζ
′) (Line 5). Similarly, the committer also

computes commitments C1,L = gEncq(P1,L) and C1,R = gEncq(P1,R) (Line 6). The
claims (γ1,L, γ1,R) and (C1,L, C1,R) are then sent to the receiver. If indeed the
committer defined P1,L and P1,R correctly, then γ1 = γ1,L · (1 − ζ1) + γ1,R · ζ1
(Line 8) and C1,L · CqT

1,R = C1 for T = 2n−1. Since checking C1,L · CqT

1,R = C1

directly is too costly to the receiver, the committer and prover run a proof of
exponent protocol PoE to prove that equality holds (Line 9). The committer does
simultaneously this for all polynomials Pi. The receiver then specifies random
linear combinations U ← {0, 1}λ×2λ (Line 10). The committer and receiver then
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obtain a set of λ new evaluations γ′i =
∑︁

j∈[λ] U(i, j)·γj,L+U(i, 2j)·γj,R and λ new

committments C ′i =
∏︁

j∈[λ](Cj,L)
U(i,j) · (Cj,R)

U(i,2j) (Line 11). This also defines

new matrix Z ′ = UL · ZL + UR · ZR (Line 12) for U = [UL∥UR] and Z = [ZL∥ZR].
If the committer is honest, then the polynomial P ′1 defined by the row Z ′(1, ∗)
satisfies γ′1 = P ′1(ζ

′) and C ′1 = gEncq(P
′
1) (and similarly for all other polynomials

P ′i defined by row Z ′(i, ∗)). The committer and receiver recurse via the above λ-
to-2λ-to-λ reduction until the matrix Z is a single column; at this point, Z is sent
to the receiver. The receiver checks (Line 3) if the entries of Z are appropriately
bounded, if the final vector γ ≡ Z(mod p), and if C = gZ = (gZ1 , . . . , gZλ).

Remark 5.5. For simplicity of presentation, we let the (computational) security
parameter λc given as input to Setup to be equal to the statistical security
parameter λs given to Eval. However, they may be set differently: λc needs to be set
so that 2λ

ϵ
c is larger than the running time of the adversary (generally, λc = 2048

for RSA groups to have security against 280 time adversaries). However, λs needs
to set so that the success probability of the adversary (we want to tolerate) is
upperbounded by 2−Ω(λs), in fact, even relatively small values of λs would be
sufficient for security, and offer qualitatively more efficient implementations.
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