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Abstract. We show a lattice-based solution for commit-and-prove trans-
parent circuit zero-knowledge (ZK) with polylog-communication, the first
not depending on PCPs.
We start from compressed Σ-protocol theory (CRYPTO 2020), which is
built around basic Σ-protocols for opening an arbitrary linear form on
a long secret vector that is compactly committed to. These protocols
are first compressed using a recursive “folding-technique” adapted from
Bulletproofs, at the expense of logarithmic rounds. Proving in ZK that
the secret vector satisfies a given constraint – captured by a circuit – is
then by (blackbox) reduction to the linear case, via arithmetic secret-
sharing techniques adapted from MPC. Commit-and-prove is also facil-
itated, i.e., when commitment(s) to the secret vector are created ahead
of any circuit-ZK proof. On several platforms (incl. DL) this leads to
logarithmic communication. Non-interactive versions follow from Fiat-
Shamir.
This abstract modular theory strongly suggests that it should some-
how be supported by a lattice-platform as well. However, when going
through the motions and trying to establish low communication (on
a SIS-platform), a certain significant lack in current understanding of
multi-round protocols is exposed.
Namely, as opposed to the DL-case, the basic Σ-protocol in ques-
tion typically has poly-small challenge space. Taking into account the
compression-step – which yields non-constant rounds – and the neces-
sity for parallelization to reduce error, there is no known tight result
that the compound protocol admits an efficient knowledge extractor. We
resolve the state of affairs here by a combination of two novel results
which are fully general and of independent interest. The first gives a
tight analysis of efficient knowledge extraction in case of non-constant
rounds combined with poly-small challenge space, whereas the second
shows that parallel repetition indeed forces rapid decrease of knowledge
error.
Moreover, in our present context, arithmetic secret sharing is not defined
over a large finite field but over a quotient of a number ring and this forces
our careful adaptation of how the linearization techniques are deployed.
We develop our protocols in an abstract framework that is conceptually
simple and can be flexibly instantiated. In particular, the framework
applies to arbitrary rings and norms.
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1 Introduction

Compressed Σ-Protocol Theory [6] is built around basic Σ-protocols for open-
ing an arbitrary linear form on a long secret vector that is compactly committed
to. More precisely, these Σ-protocols allow a prover to prove that a commit-
ted vector x satifies a constraint L(x) = y captured by a linear form L. They
are first compressed using a recursive “folding-technique” adapted from Bullet-
proofs [14, 16]. Compression reduces the communication complexity from linear
down to logarithmic in the dimension of the secret vector x, at the expense of a
logarithmic number of rounds. Proving in ZK that the secret vector satisfies an
arbitrary (non-linear) constraint – captured by an arithmetic circuit – is then
by (blackbox) reduction to the linear case, via arithmetic secret-sharing tech-
niques adapted from MPC. It was shown how to instantiate this theory from
different hardness assumptions, i.e., the Discrete Logarithm (DL), Strong-RSA
and Knowledge-of-Exponent (KEA) assumption. The latter assumption even re-
sults in constant communication, instead of logarithmic. Non-interactive versions
follow from the Fiat-Shamir transform [26].

The starting point is always a compact and homomorphic vector commitment
scheme, i.e., commitments should have size constant (or logarithmic) in the di-
mension of the committed vector. After instantiating such a commitment scheme
from any of the aforementioned hardness assumption, compressed Σ-protocol
theory can be described in an abstract and modular manner. This strongly sug-
gests that the theory should also be supported by a lattice platform. This belief
was further strengthened by the recent lattice-based Bulletproof instantiation
for proving knowledge of a SIS preimage [15].

However, when going through the motions and trying to establish low commu-
nication (on a SIS-platform), a certain significant lack in current understanding
of multi-round protocols and several challenges are exposed.

1.1 Challenges for Lattice Instantiations

As opposed to the DL-case, the lattice-based Σ-protocol typically has polyno-
mially small challenge space. Taking into account the compression-step – which
yields non-constant rounds – there is no known result from which a tight know-
ledge soundness property can be derived. In prior works, this lack in understand-
ing was handled by an alternative non-tight security analysis [14]. Recent works,
while remaining non-tight, have improved the tightness [41, 30, 21, 31, 3].

The situation is further complicated by the necessity for parallelization to
reduce the knowledge error. While parallel repetition of interactive proofs has
been studied extensively in the context of decreasing the soundness error [28, 18,
19], to the best of our knowledge there does not exist a general parallel repetition
theorem for decreasing the knowledge error.

Setting aside the knowledge error issues addressed previously, the main differ-
ence between the lattice setting and the other settings is a norm bound. Instead
of proving knowledge of a preimage for some homomorphism Ψ , we aim to prove
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knowledge of a short pre-image. More precisely, for some homomorphism Ψ , we
aim to construct a protocol for the following relation

RΨ,α = {(P ;x) : P = Ψ(x), ‖x‖ ≤ α}

where (P ;x) ∈ RΨ,α is a pair of a public statement P and a secret witness x.
The DL-based protocols are designed for exactly the same abstract relation, but
without the norm-bound. This minor difference introduces a number of chal-
lenges that have been dealt with in the context of plain Σ-protocols for some
time now. For example, given a preimage x with ‖x‖ ≤ β, a prover is typically
only capable of proving knowledge of a preimage y with ‖y‖ ≤ αβ. The fac-
tor α ≥ 1 is referred to as the soundness slack. In multi-round protocols the
soundness slack accumulates and a more careful analysis is warranted.

Finally, in our present lattice context, committed vectors typically have co-
efficients in the quotient of a number ring R = Z[X]/(f(X)) by a rational prime
(p). However, the structure of the ring Rp may not readily allow for the large
sets with invertible pairwise differences required for Shamir secret sharing.

1.2 Contributions

We show a lattice-based solution for commit-and-prove transparent circuit ZK
with polylogarithmic communication, the first not depending on PCPs.

To this end, we resolve the lack in understanding regarding knowledge sound-
ness by a combination of two novel results which are fully general and of inde-
pendent interest. The first gives a tight analysis of efficient knowledge extraction
in case of non-constant rounds, whereas the second shows that parallel repetition
indeed forces rapid decrease of knowledge error.

By our extractor analysis, we tightly prove that (k1, . . . , kµ)-special soundness
implies knowledge soundness, without imposing any restrictions on the size of
the challenge sets. In a concurrent and independent work this result was deemed
out of reach with current techniques [3]. More concretely, they apply the non-
tight analysis of [21] and derive a knowledge error κ ≤ 8.16 logn/|C|, where
n is the size of the input. By contrast, we provide a tight bound and show
that κ ≤ 2 logn/|C|. This inequality contains a simplified expression and is
therefore non-tight, for the tight bound we refer to Theorem 1. Furthermore,
our result answers an open question regarding knowledge extractors, recently
made explicit [30, Question D.4.], in the affirmative. It is generally applicable to
all aforementioned platforms and therefore improves upon the analyses of [14,
41, 30, 21, 31, 3], directly yielding better parameters for multi-round protocols
such as Bulletproofs. Towards showing that (k1, . . . , kµ)-special soundness tightly
implies knowledge soundness, we observe that for the special case of 2-special
soundness (where this implication is well-known) we can give a very simple proof
that we have not encountered in the literature before. In contrast to standard
proof techniques, our extractor can be modeled by a negative hyper geometric
distribution. This simplification turns out to be generalizable to the multi-round
scenario. Even though the general proof is building on this simplification, its
analysis turns out to be quite involved.
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By the second result, we show that parallel repetition indeed forces a rapid
decrease of knowledge error, explicitly proving a result that is often taken for
granted whereas it actually requires a careful analysis. More precisely, it is
known that parallel repetition decreases the soundness error. However, know-
ledge soundness is a strictly stronger notion than soundness. Nevertheless, by
a careful analysis, we prove that prior results also apply to knowledge sound
protocols and allow for a rapid decrease of knowledge error. The (2, 2)-special
sound signature scheme MQDSS was already presented with a tight knowledge
error analysis [17]. However, their analysis crucially depends on the fact that
this signature scheme has a constant number of rounds and therefore does not
apply to our setting. Our techniques are generic and also apply to this protocol,
indeed yielding exactly the same knowledge error.

Furthermore, we describe a careful adaptation of the arithmetic secret shar-
ing based linearization strategy from [6]. First, the evaluation points of Shamir’s
secret sharing scheme have to be chosen from an exceptional, instead of an ar-
bitrary, subset of the ring Rp, i.e., a subset with invertible differences. In many
practical scenarios this minor adaptation suffices. However, some rings do not
contain “large enough” exceptional subsets. For this reason, we extend the lin-
earization technique to work for small rings Rp by defining the secret sharing
scheme over an appropriately chosen ring extension. Some care is warranted to
prevent dishonest provers from choosing secret elements in the extension ring.

Subsequently, we note that working in a lattice-platform is considerably more
tedious. Traditionally the security analysis depends strongly on various proto-
col design choices. Our approach is less sensitive to these choices. This is very
convenient when considering variations. More precisely, we develop our proto-
cols in an abstract framework that is conceptually simple and can be flexibly
instantiated. In particular, the framework applies to arbitrary rings, challenge
sets and norms. Our framework captures general rejection sampling strategies,
gives precise bounds on the introduced soundness slack and generalizes beyond
factor-2 per-round compression.

The communication complexity of our protocols, when instantiated from the
Module Short Integer Solution (MSIS) assumption and appropriately chosen
rings, is polylogarithmic in the input size. Due to the soundness slack it does not
achieve the logarithmic communication of a DL-based instantiation. Our proto-
cols are transparent, i.e., no trusted setup, and easily ported to the commit-and-
prove paradigm, where commitment(s) to the secret vector have been created
ahead of any circuit-ZK proof. Moreover, various efficiency improvements, devel-
oped for DL-based (compressed) Σ-protocol theory, almost directly carry over
to the lattice-setting.

1.3 Related Work

Circuit ZK with Polylogarithmic Complexity from PCPs. A generic class of (zero-
knowledge) proof systems is based on Probabilistically Checkable Proofs (PCPs).
The security of these protocols only relies on the existence of collision-resistant
hash functions and they achieve polylogarithmic communication complexity.
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However, large concrete costs have long prevented PCP-based protocols from
being deployed in practice. Recent advances have rendered PCP-based protocols
practical [5, 11, 12]. Still, for small problem instances, PCP-based protocols are
often outperformed by other approaches relying on more structured hardness
assumptions. In particular, PCP approaches rely on Merkle-tree commitments
and therefore have an implicit lower bound in the order of a hundred kilobytes,
whereas protocols relying on the compression mechanism such as Bulletproofs
can go down to as much as a few kilobytes. Even though the soundness slack in-
troduced by the compression mechanism is currently somewhat limiting in terms
of concrete efficiency, we expect that on the long run the non-PCP lattice-based
approach will lead to more succinct proofs.

Circuit ZK with Sublinear Complexity from Lattice Assumptions. The first pro-
tocol of this form achieving a sub-linear communication complexity Õ(

√
λn),

where n is the input size and λ the security parameter, was presented in [9]. A
key component of their protocol is a compact commitment scheme. In our lat-
tice instantiation we use exactly the same compact commitment scheme. While
their approach is inherently limited to communication complexity in the order
of Õ(

√
λn), our approach yields the first lattice-based (non-PCP) protocol that

achieves polylogarithmic complexity in the input length. On the other hand, our
approach requires a larger number of rounds. Getting a similar communication-
complexity/round trade-off as [9] by using a larger per-round compression seems
currently out of reach, due to the large soundness slack introduced (which scales
exponentially in the compression factor).

Lattice-based proof of knowledge of SIS preimages. The lattice-based Bulletproof
instantiation of [15] is most similar to our compressed Σ-protocol. However, in
this work the aforementioned knowledge error issues were overlooked. Moreover,
their work only considers proving knowledge of a SIS preimage, i.e., it does
not consider generic arithmetic circuit relations. Furthermore, it is not zero-
knowledge and it is tailored to a specific lattice-instantiation. By contrast, our
protocol is a circuit ZK protocol that can be instantiated from a wide variety
of lattices. For the specific scenario of proving knowledge of a SIS preimage, we
obtain a comparable communication complexity.

1.4 Roadmap

We start by presenting the general result that (k1, . . . , kµ)-special soundness
tightly implies knowledge soundness in Section 3. We first outline a very simple
proof for the special case of 2-special soundness, which is novel to the best of
our knowledge. Subsequently, we show how this proof can be generalized to the
multi-round setting. Using results from [19], we prove that parallel repetition of
multi-round public-coin protocols not only reduces the soundness error, but also
the knowledge error (see Section 4). In Section 5, we give an abstract theory for
lattice-based compressed Σ-protocols. In Section 6, we show how to instantiate
our abstract framework from the Module Short Integer Solution (MSIS) problem.
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We further provide an asymptotic parameter analysis for our instantiation and
comparison with [15]. In Section 7, we briefly explain how to handle non-linear
relations and refer to the full version of this paper [1] for a detailed description of
our techniques. Moreover, in the full version, we discuss a number of extensions
for amortization over many linear forms, reducing the communication complexity
and for obtaining commit-and-prove protocols directly.

2 Preliminaries

We say a function is negligible, if it vanishes faster than any inverse polynomial. If
a function vanishes slower than some inverse polynomial, we say it is noticeable.
For formal definitions and definitions of statistical distance and statistically close
distributions we refer to the full version of this paper [1].

2.1 Interactive Proofs
Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. If (x;w) ∈ R, we say x is a
statement and w is a witness for x. We only consider NP relations, i.e., relations
R for which a witness w can be verified in time poly(|x|) for all (x;w) ∈ R. In
particular it follows that |w| = poly(|x|). The set of statements x that admit
a witness w is denoted by LR, i.e., LR = {x : ∃w s.t. (x;w) ∈ R}. The set of
witnesses for a statement x is denoted by R(x), i.e., R(x) = {w : (x;w) ∈ R}.

In the following we give a brief overview of interactive proof systems. For a
more thorough treatment, we refer to the full version of this paper [1].

An interactive proof Π = (P,V) for relation R is an interactive protocol
between two probabilistic polynomial time machines, a prover P and a verifier
V. Both P and V take as public input a statement x and, additionally, P takes
as private input a witness w ∈ R(x), which is written as Π(x;w) or Input(x;w).
If all of the verifier’s random coins are made public, Π is said to be public-coin.

We say an interactive proof is complete if V accepts after every honest exe-
cution that takes as input a public-private pair (x;w) ∈ R.

An interactive proof is said to be knowledge sound with knowledge error
κ, if from every (potentially dishonest) efficient prover P ∗ that convinces the
verifier with probability ε(x) > κ(|x|), one can efficiently extract a witness w
with (x;w) ∈ R with probability at least ε(x)− κ(|x|).

An interactive proof that is both complete with completeness error γ : N →
[0, 1) and knowledge sound with knowledge error κ < 1− γ is said to be a Proof
or Knowledge (PoK). PoKs for which knowledge soundness only holds under
computational assumptions are also referred to as Arguments of Knowledge.

An interactive protocol Π is said to be special honest verifier zero-knowledge
(SHVZK) if given the challenge by the verifier, one can efficiently simulate ac-
cepting transcripts. If simulation is restricted to non-aborting executions of Π,
we refer to the protocol as non-abort special honest verifier zero knowledge.

A 3-move public-coin protocol is said to be special sound if there exists a
polynomial time algorithm that on input a statement x and two accepting tran-
scripts (a, c, z) and (a, c′, z′), with c 6= c′ and common first message a, outputs
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a witness w ∈ R(x). If the algorithm takes as input k transcripts, with pairwise
distinct challenges and a common first message, the protocol is k-special sound.

A 3-move protocol that is public-coin, complete, k-special sound and SHVZK
is said to be Σ-protocol.

A (k1, . . . , kµ)-tree of transcripts for a (2µ+ 1)-move protocol is a set of K =∏µ
i=1 ki transcripts arranged in a tree structure, such that the nodes in this tree

correspond to the prover’s messages and the edges correspond to the verifier’s
challenges, and that further every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. For a graphic representation we
refer to Figure 1 of the full version of this paper [1].

A (2µ + 1)-move public-coin protocol is (k1, . . . , kµ)-special sound if there
exists an efficient algorithm that on input a (k1, . . . , kµ)-tree of accepting tran-
scripts outputs a witness w ∈ R(x).

2.2 Lattices

A lattice Λ is a discrete additive subgroup of Rm. The lattice Λ is said to be
q-ary if qZm ⊂ Λ ⊂ Zm. Let A ∈ Zk×mq , then Λ⊥q (A) = {x ∈ Zm : Ax = 0
mod q} defines a q-ary lattice in Zm.

We also consider lattices defined over a ring R = Z[X]/f(X), where f(X) is
a monic irreducible polynomial of degree d. Via the coefficient embedding norms
on C-vector spaces extend to vectors of ring elements, i.e., for x = (x1, . . . , xm) ∈
Rm with xi =

∑d
j=1 ai,jX

j−1 ∈ R we define

‖x‖2 = ‖(a1,1, . . . , am,d)‖2, and ‖x‖∞ = max
i,j
|ai,j |.

For a prime q ∈ N, we write Rq = Z[X]/(q, f(X)) = Zq[X]/(f(X)). Let
A ∈ Rk×m, then Λ⊥q (A) = {x ∈ Rm : Ax = 0 mod q} defines a q-ary lattice in
Zdm. Finding a non-zero and short element in a lattice Λ⊥q (A) is referred to as
the Module Short Integer Solution (MSIS) problem [33]. The MSIS problem is
assumed to be a computationally hard problem.

Definition 1 (MSISk,m,β Problem). Let R = Z[X]/f(X) for a monic and
irreducible polynomial f(X) and let q ∈ N be a prime. The MSISk,m,β problem
over Rq is defined as follows. Given a matrix A←R Rk×mq sampled uniformly at
random, find a non-zero vector s ∈ Rm such that As = 0 mod q and ‖s‖2 ≤ β.

Micciancio and Regev [38] showed that a MSIS-algorithm is expected to
output a MSIS solution with norm

‖s‖2 ≥ min
(
q, 22
√
dk log δ log q

)
, (1)

where δ is the root Hermite factor of the lattice reduction algorithm that is used.
In particular, smaller values of δ require better lattice reduction algorithms. In
general, δ ≈ 1.0045 is assumed to achieve 128-bit computational security [4, 25].
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In this work, we will be interested in vectors that are short with respect
to the `∞-norm. For this reason we also consider the following variant of the
MSIS problem, where “shortness” is defined in terms of the `∞-norm. Clearly,
the hardness of MSIS∞k,m,β is implied by the hardness of MSISk,m,√dmβ .

Definition 2 (MSIS∞k,m,β Problem over Rq). Let R = Z[X]/f(X) for a
monic and irreducible polynomial f(X) and let q ∈ N be a prime. The MSIS∞k,m,β
problem over Rq is defined as follows. Given a matrix A ←R Rk×mq sampled
uniformly at random, find a non-zero vector s ∈ Rm such that As = 0 mod q
and ‖s‖∞ ≤ β.

2.3 Commitment Schemes

A commitment scheme allows a prover to create a commitment P to an element
x such that the prover can later open P to the committed element x. Informally,
a commitment scheme is required to be binding, i.e., a prover cannot open a com-
mitment P to two different elements x 6= y, and hiding, i.e., the commitment P
does not reveal any information about the committed vector x. A commitment
scheme consists of a setup algorithm, generating the scheme’s public parameters,
and a commitment function Com. The commitment function takes as input an
element x and randomness γ (and public parameters pp) and outputs a commit-
ment P , i.e, Com(x, γ) = P . To open a commitment a prover reveals (x, γ) such
that a verifier can verify that Com(x, γ) = P . The commitment scheme is said
to be homomorphic if the commitment function Com (considered respective to
fixed public parameters) is a group homomorphism.

The primary commitment scheme of interest to us, described in Definition 3,
was already implicit in Ajtai’s seminal work [2]. It allows a prover to commit
to a short vector x ∈ Snη = {y ∈ Rn : ‖y‖∞ ≤ η} by sampling γ ←R Srη
uniformly at random and evaluating the commitment function P = Com(x, γ).
Note that, we consider this commitment scheme for secrets and randomness
bounded in the `∞-norm. We will typically instantiate this commitment scheme
with norm bound η = d(p− 1)/2e for some prime p < q. This allows a prover to
commit to arbitrary vectors in Rnp . The properties of this commitment scheme
are summarized in Lemma 1 and Lemma 2. Note in particular that by Equation 1
it follows that the hardness does not depend on the rank n. It follows that the size
of a commitment is constant in the rankm = n+r; we say that this commitment
scheme is compact.

Definition 3 (Compact Lattice-Based Commitment Scheme [2]). Let
R = Z[X]/f(X) for a monic and irreducible polynomial f(x) ∈ Z[X] of degree
d and let q ∈ N be a prime. Let η ∈ N and let Sη = {x ∈ R : ‖x‖∞ ≤ η}. Then,
the following setup and commitment algorithms define a commitment scheme:

– Setup: A1 ←R Rk×rq , A2 ←R Rk×nq .
– Commit: Com : Snη × Srη → Rkq , (x, γ) 7→ A1γ +A2x mod q.
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Lemma 1 (Hiding). The commitment scheme of Definition 3 is statistically
hiding with statistical security parameter λ, where λ ∈ N is such that r ≥
dk log q+2λ
d log(2η+1) .

Lemma 2 (Binding). The commitment scheme of Definition 3 is binding,
conditioned on the hardness of the MSIS∞k,n+r,2η-problem over Rq.

It is generally hard to construct efficient protocols for proving knowledge of
an opening (x, γ) for a commitment P , i.e., (x, γ) such that Com(x, γ) = P and
‖(x, γ)‖∞ ≤ η. For this reason, we introduce the notion of relaxed openings.

Definition 4 ((β, ζ)-Relaxed Commitment Opening). Let β ∈ N and ζ ∈
R. A (β, ζ)-relaxed opening of a commitment P is a tuple (x, γ) ∈ Rn+r, such
that Com(x, γ) = ζP and ‖(x, γ)‖∞ ≤ β.

Hence, a relaxed opening differs in two ways from a standard commitment
opening. First, a relaxed opening for P contains an approximation factor ζ, such
that the opening gives a short preimage for ζP instead of the commitment P .
Second, the norm-bound β of relaxed openings can be different from the norm
bound η on honestly committed vectors (typically β > η).

As long as it is infeasible to find two distinct relaxed openings (x, γ) and
(x′, γ′) of a commitment P with (x, γ) 6= (x′, γ′), proving knowledge of relaxed
opening is sufficient in most practical scenarios. In this case, we say the com-
mitment scheme is binding with respect to relaxed openings.

Lemma 3 (Binding with respect to (β, ζ)-Relaxed Openings). Let β ∈ N
and ζ ∈ R. The commitment scheme of Definition 3 is binding with respect to
(β, ζ)-relaxed openings, conditioned on the hardness of the MSIS∞k,n+r,2β-problem
over Rq.

3 Multi-Round Special Soundness Tightly Implies
Knowledge Soundness

In this section we prove that a (k1, . . . , kµ)-special sound protocol is knowledge
sound and give a concrete and tight knowledge error. More precisely, we show
the existence of an efficient knowledge extractor. From this it follows that Bullet-
proofs [14, 16] and Compressed Σ-Protocols [6] are Proofs/Arguments of Know-
ledge (PoKs). We are the first to prove a tight bound on the knowledge error. Prior
works mainly relied on the asymptotic extractor analysis of [14]. This asymptotic
analysis results in conservative concrete security estimates. Moreover, the analy-
sis of [14] is restricted to protocols with exponentially large challenge sets. When
the challenge sets are small, such as in lattice based protocols, a refined analysis
is required. Our result solves both problems. It gives tight security guarantees
resulting in optimal concrete parameters for (k1, . . . , kµ)-special sound protocols
and it is applicable to protocols with small challenge sets. The main result of
this section is summarized in Theorem 1.
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Theorem 1 ((k1, . . . , kµ)-Special Soundness implies Knowledge Sound-
ness). Let µ, k1, . . . , kµ ∈ N be such that K =

∏µ
i=1 ki can be upper bounded

by a polynomial. Let (P,V) be a (k1, . . . , kµ)-special sound (2µ + 1)-move in-
teractive protocol for relation R, where V samples each challenge uniformly at
random from a challenge set of size N ≥ maxi(ki). Then (P,V) is knowledge
sound with knowledge error

κ =
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≤
∑µ
i=1(ki − 1)

N
. (2)

First, in Section 3.1, we considers the special case of 2-special soundness
(for which the above implication is well-known). We give a very simple proof
that we have not encountered in literature before. In contrast to standard proof
techniques, this simplification turns out to be generalizable to the multi-round
scenario. Second, in Section 3.2, we prove Theorem 1 in its full generality.

3.1 2-Special Soundness

This section is a warm up in which we present a novel proof for the well-known
result that 2-special soundness implies knowledge soundness. Later we show that
our techniques generalize to prove a similar result for 2µ+1-move protocols that
are (k1, . . . , kµ)-special sound. We make a minor modification to the “collision-
game” defined in [20]. The knowledge extractor essentially plays this game in
order to extract a collision of two accepting transcripts (a, c, z) and (a, c′, z′)
with common first message a. By the special soundness property a witness can be
computed efficiently given this collision. Our modification increases the success
probability of the knowledge extractor of [20] from (ε(x)−κ(|x|))2 to ε(x)−κ(|x|),
where κ(|x|) is the knowledge error and ε(x) the success probability of the prover
for a statement x. In contrast to the extractor of [20], which runs in strict
polynomial time, our extractor runs in expected polynomial time. However, this
is sufficient for proving knowledge soundness.

If the input x is clear from context, we simply write ε to denote ε(x). All
other parameters will implicitly depend on |x| (e.g., we denote κ(|x|) by κ).

A similar result can be found in [29]. However, our approach significantly
simplifies the knowledge extractor and its analysis. For instance, the extractor
of [29] is composed of two algorithms considering different scenarios, whereas this
case distinction is not required in our knowledge extractor. This simplification
will allow for a generalization to the (k1, . . . , kµ)-special sound case.

The collision game. Let us now describe the game. We consider a binary matrix
H ∈ {0, 1}R×N . The R rows correspond to the prover’s randomness and the
N columns correspond to the verifier’s randomness, i.e., the verifier samples a
challenge uniformly at random from a challenge set of size N . An entry of H
equals 1 if and only if the corresponding protocol transcript is accepting.

The idea of the knowledge extractor is to sample elements from H until
two 1-entries in the same row are found. The ij-th entry of H can be obtained
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by executing the prover with fixed randomness corresponding to the i-th row
and verifier’s challenge corresponding to the j-th column, and checking if the
resulting transcript would be accepted. As the prover’s randomness is fixed along
one row, finding two 1-entries in the same row corresponds to two finding two
accepting transcripts (a, c, e) and (a, c′, e′), which by the 2-special soundness
allows to extract a witness. The difference to the knowledge extractor of [29] is
the following:
1. Our knowledge extractor checks one entry of H (for position ij sampled at

random), and aborts if this is not a 1-entry.
2. If the first entry was a 1-entry, our knowledge extractor then samples along

row i without replacement.
More precisely, the knowledge extractor will play the following collision-game.

An entry of H is selected uniformly at random. If this entry equals 1, continue
sampling different elements from this row (without replacement) until a second
1-entry is found or until the row has been exhausted. If the first entry does not
equal 1, the game aborts. The collision game outputs success if and only if two
1-entries in the same row have been found.

In contrast the above collision-game, the collision-game of [20] simply checks
2 random entries of H and outputs success if both of them are 1-entries.

Lemma 4 (Collision-Game). Let H ∈ {0, 1}R×N and let ε denote the frac-
tion of 1-entries in H. The expected number of H-entries queried in the collision-
game defined above is at most 2. Moreover, the success probability of the collision-
game is greater than or equal to ε− 1/N .

Proof. Expected Number of Queries. Let εi be the fraction of 1-entries in
row i. Assuming that the first entry lies in row i and equals 1, the remainder
of the collision game can be modeled by a negative hypergeometric distribution.
Elements from a population of size N−1, containing εiN−1 1-entries, are drawn
(without replacement) until a second 1-entry has been found. The expected
number of draws equals (N − 1 + 1)/(εiN − 1 + 1) = 1/εi if εi > 1/N (see the
full version of this paper [1]). If there is no second 1-entry in the row, then the
number of draws is always equal to N −1. Hence, the expected number of draws
can be upper bounded by 1/εi. The expected number of H-entries queried is
therefore at most

1
R

R∑
i=1

(
1 + εi

1
εi

)
= 2.

Success Probability. The collision-game succeeds if the first entry is a 1
that lies in a row containing at least two 1-entries. For 0 ≤ k ≤ N , let δk be the
fraction of rows with exactly k 1-entries. Then the success probability equals

N∑
k=2

k

N
δk =

(
N∑
k=0

k

N
δk

)
− δ1

N
≥ ε− 1/N,

which proves the second part of the lemma.
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a

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2

c1,...,1
µ c

1,...,kµ
µ ck1,...,1

µ c
k1,...,kµ
µ

Fig. 1. We say a (k1, . . . , kµ)-tree as depicted above is a (k1, . . . , kµ)-tree of
1-entries in H, if H(a, c1

1, c
1,1
2 , . . . , c1,...,1

µ ) = H(a, c1
1, c

1,1
2 , . . . , c1,...,2

µ ) = · · · =
H(a, ck1

1 , ck1,k2
2 , . . . , c

k1,...,kµ
µ ) = 1.

From Lemma 4 it immediately follows that 2-special soundness implies know-
ledge soundness with knowledge error 1/N .

Corollary 1. Let (P,V) be a special sound 3-move interactive protocol for rela-
tion R, where V samples each challenge uniformly at random from a challenge set
of size N ≥ k. Then (P,V) is knowledge sound with knowledge error κ = 1/N .

Remark 1. Lemma 4 has a straightforward generalization to the k-special sound-
ness scenario. In this generalization the collision game draws until it has obtained
k, instead of 2, 1-entries in the same row. Hence, it again involves a negative
hypergeometric distribution, but now with different parameters. In this case, the
expected number of queries is at most k and the success probability is greater
than or equal to ε− (k − 1)/N .

3.2 (k1, . . . , kµ)-Special Soundness

In this section, we generalize the collision-game of Section 3.1 to the (k1, . . . , kµ)-
special soundness scenario.

The (k1, . . . , kµ)-collision game. To define the (k1, . . . , kµ)-collision-game, let
H ∈ {0, 1}R×N×···×N be a (µ+1)-dimensional binary matrix. For a ∈ {1, . . . , R}
and c1, . . . , ci ∈ {1, . . . , N}, we let H(a, c1, . . . , ci) ∈ {0, 1}N×···×N be the (µ− i)
dimensional submatrix of H that contains all entries of H for which the first
i+ 1 coordinates are equal to (a, c1, . . . , ci). The first dimension corresponds to

12



the prover’s randomness and the other dimensions correspond to the verifier’s
random choices, i.e., we consider protocols in which the verifier samples all µ
challenges uniformly at random from a challenge set of size N . For a fixed public
input x, we define the matrix H such that H(a, c1, . . . , cµ) = 1 if and only if
a transcript with prover’s randomness a and verifier’s challenges c1, . . . , cµ will
lead to an accepting transcript.

In Section 2, we have defined (k1, . . . , kµ)-trees of accepting transcripts for
(2µ + 1)-move protocols. Similarly, we define (k1, . . . , kµ)-trees of 1-entries in
matrix H. Such trees can be defined recursively as follows. For µ = 0, a tree
of 1-entries is simply a 1-entry in H. For arbitrary µ, a (k1, . . . , kµ)-tree is the
union of k1 (k2, . . . , kµ)-trees in H(a, c1), . . . ,H(a, ck1), respectively, for a fixed
a and pairwise distinct ci. Hence, a (k1, . . . , kµ)-tree of 1-entries in matrix H is
a set of K =

∏µ
i=1 ki 1-entries that are in a (k1, . . . , kµ)-tree structure.

We define Tree to be the algorithm playing the (k1, . . . , kµ)-collision-game.
By playing this game Tree aims to find a (k1, . . . , kµ)-tree of 1-entries in ma-
trix H. The algorithm Tree is defined recursively as follows. On input a ∈
{1, . . . , R} and c1, . . . , cµ ∈ {1, . . . , N}, Treeµ(a, c1, . . . , cµ) successfully outputs
H(a, c1, . . . , cµ) if this entry equals 1 and it aborts otherwise. For 0 ≤ i ≤ µ− 1
and on input a ∈ {1, . . . , R} and c1, . . . , ci ∈ {1, . . . , N}, Treei(a, c1, . . . , ci)
aims to find a (ki+1, . . . , kµ)-tree of 1-entries in matrix H(a, c1, . . . , ci). The al-
gorithm Treei(a, c1, . . . , ci) proceeds by sampling ci+1 ∈ {1, . . . N} uniformly at
random and running Treei+1(a, c1, . . . , ci+1). If this instantiation of Treei+1
aborts the algorithm Treei(a, c1, . . . , ci) aborts. Otherwise it continues sampling
different ci+1’s (i.e., without replacement) until it has found ki+1 (ki+2, . . . , kµ)-
trees of 1-entries or until it has exhausted all possible ci+1’s. In the latter case
Treei(a, c1, . . . , ci) aborts, in the former case Treei(a, c1, . . . , ci) outputs a
(ki+1, . . . , kµ)-tree of 1-entries in matrix H(a, c1, . . . , ci).

The (k1, . . . , kµ)-collision-game samples a ∈ {1, . . . , R} uniformly at random
and runs Tree0(a). If Tree0(a) = ⊥ it aborts and otherwise it outputs a
(k1, . . . , kµ)-tree of 1-entries in H(a). The following lemma gives the expected
run-time and success probability of the tree finding algorithm Tree. For a proof
of the following lemma, we refer to the full version of this paper [1].

Lemma 5 ((k1, . . . , kµ)-Tree Finding Algorithm). Let H ∈
{0, 1}R×N×···×N be a (µ + 1)-dimensional matrix and let ε denote the
fraction of 1-entries in H. The expected number of entries queried by the
(k1, . . . , kµ)-tree finding algorithm Tree defined above is at most K =

∏µ
i=1 ki.

Moreover, Tree successfully outputs a (k1, . . . , kµ)-tree of 1-entries in H with
probability at least

ε−
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≥ ε−
∑µ
i=1(ki − 1)

N
.

A knowledge extractor, with rewindable black-box access to a possible dishon-
est prover P∗, essentially runs this tree finding algorithm to obtain a (k1, . . . , kµ)-
tree of accepting transcripts. It evaluates one protocol interaction with P∗ and

13



recursively rewinds P∗, fixing its internal randomness and following the tree find-
ing strategy of Tree. By the (k1, . . . , kµ)-special soundness property a witness
can then be extracted efficiently from the obtained (k1, . . . , kµ)-tree of accepting
transcripts. Hence, from Lemma 5 it immediately follows that a (k1, . . . , kµ)-
special sound protocol is knowledge sound with knowledge error κ, where

κ =
Nµ −

∏µ
i=1(N − ki + 1)
Nµ

≤
∑µ
i=1(ki − 1)

N
.

The latter inequality follows since we have N ≥ maxi(ki) and thus
∏µ
i=1(N −

ki + 1) ≤ Nµ −Nµ−1∑µ
i=1(ki − 1). This proves Theorem 1.

3.3 Tightness of Our Extraction Analysis

The knowledge error κ of Theorem 1 is optimal, i.e., there exists a dishonest
prover that succeeds in cheating with probability κ. Typically a dishonest prover
can cheat in a k-special sound protocol by guessing a set of k− 1 challenges and
hoping that the verifier selects one of these challenges. The success probability
of this attack is equal to (k − 1)/N , where N is the size of the challenge set.
More generally, a cheating strategy for a (k1, . . . , kµ)-special sound (2µ + 1)-
move protocol goes as follows. For every round i, the cheating prover guesses a
set of ki − 1 challenges. The cheating prover succeeds if there exists a round i
for which the verifier chooses one of the ki− 1 challenges guessed by the prover.
The success probability of this attack is easily seen to be equal to the knowledge
error κ. Hence, this knowledge error is optimal. Alternatively, we observe that
there exist matrices H with ε = κ, i.e., for which the fraction of 1-entries equals
κ, that do not contain a (k1, . . . , kµ)-tree of 1-entries.

Moreover, the tree finding algorithm is optimal in the following sense. The
expected number of H-entries that are queried is exactly equal to the number of
entries in a tree. Hence, we can not hope to find a tree faster than this. Moreover,
taking a closer look at the proof of Lemma 5 shows that the success probability
actually has the following lower bound

f(ε) =

 µ∏
j=1

N

N − kj + 1

 (ε− κ) .

Hence, if ε = 1 the success probability of Tree is at least f(1) = 1, which is
what we would expect.

3.4 A Note on Witness Extended Emulation

Lindell showed that a technical issue arises when using Proofs of Knowledge
as subprotocols in larger cryptographic protocols [34]. To prove security of the
compound protocol, a simulator is typically required to run the extractor of
the PoK. However, the naive simulation approach does not necessarily run in
polynomial time. To this end, Lindell defined the notion of witness-extended
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emulation (WEE), capturing precisely the properties required when using PoKs
as subprotocols. Moreover, he showed that any PoK has WEE, thereby solving
this technical issue for all PoKs at once. Hence, from our extraction analysis it
follows that any (k1, . . . , kµ)-special sound protocol has WEE.

Previously, there was no proof showing that a (k1, . . . , kµ)-special sound pro-
tocol is knowledge sound. For this reason prior works (e.g., [14]) resorted to
proving witness-extended emulation directly. However, these results are non-
tight and only apply to protocols with exponentially large challenge sets.

4 Decreasing the Knowledge Error of Public-Coin
Interactive Protocols

In this section, we establish a novel parallel repetition theorem showing that the
knowledge error can be decreased by repeating the protocol in parallel.

We want the knowledge error of a PoK to be negligible in the security pa-
rameter. If this is not the case the protocol is typically repeated, say t times.
The verifier of the composed protocol only accepts if all t instances of the basic
protocol are accepted. Ideally, and perhaps intuitively, this approach reduces
the knowledge error from κ down to κt. This is indeed the case if the repeti-
tions are executed sequentially [27]. However, sequential repetition increases the
round complexity. Since the security loss due to the Fiat-Shamir transformation
increases exponentially in the number of rounds [23], this is unacceptable when
considering the non-interactive instantiations of our protocols(see the full ver-
sion of this paper [1]). Further, also in the interactive setting we would like to
avoid the additional round complexity introduced by sequential composition.

For this reason, we aim to repeat the protocol in parallel. We write (Pt,Vt)
for the t-fold parallel repetition of an interactive argument (P,V). However, it
is not true in general that parallel repetition decreases the knowledge error ex-
ponentially. There even exist interactive protocols for which parallel repetition
does not decrease the success probability of a dishonest prover at all [10, 39].
Analyzing parallel repetitions is significantly more complicated than analyzing
sequential repetitions, because a dishonest prover does not have to treat all t par-
allel instances independently, i.e., a message corresponding to a specific instance
may depend on the messages and challenges of the other parallel instances.

If (P,V) is a 2-special sound 3-move protocol, then (Pt,Vt) is 2-special sound
too. It therefore follows that the knowledge error of a 2-special sound protocol
decreases exponentially in the number of parallel repetitions. However, a similar
result does not hold in general, i.e., in general special-soundness is not preserved
by parallel repetition. For example, it is easily seen that the parallel repetition
of a k-special sound protocol for k 6= 2 is not k-special-sound.

Several parallel repetition results, considering multi-round public-coin in-
teractive arguments, have been established [28, 18, 19], showing that parallel
repetition reduces the soundness error. However, “soundness” is a weaker notion
than “knowledge soundness”. Informally the soundness error is the success prob-
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ability of a cheating prover and soundness does not require the existence of a
knowledge extractor.

To the best of our knowledge a parallel repetition result for decreasing the
knowledge error has not been established yet, even though the lattice-based
Bulletproof protocols of [15] implicitly rely on such a parallel repetition result.
In Theorem 3, we show that the knowledge error of a public-coin argument
decreases close to exponentially in the number of parallel repetitions. Our proof
uses the following result from [19]. This theorem shows that, given oracle access
to a (possibly dishonest) prover P∗ that, for statements x, succeeds in convincing
Vt with probability ε(x), a prover P(P∗) that succeeds in convincing V with
probability ≈ ε(x)1/t can be constructed.

Theorem 2 (Theorem 2 of [19]). Let (P,V) be a public-coin interactive
argument for a language L. Let t : N→ N, and let (Pt,Vt) be the t-fold parallel
repetition of (P,V). There exists an oracle machine P(·) such that for every
ξ : N → (0, 1), every δ : {0, 1}∗ → (0, 1), every x ∈ {0, 1}∗, and every PPT
prover P∗, it holds that if

Pr
((
P∗,Vt

)
(x) = 1

)
≥ (1 + ξ(|x|))δ(x)t(|x|)︸ ︷︷ ︸

ε(x):=

,

then
Pr
((

P(P∗),V
)
(x) = 1

)
≥ δ(x).

Furthermore, P(P∗) runs in time poly(|x|, t(|x|), ξ(|x|)−1, ε(x)−1, (1− δ(x))−1).

Theorem 3 now shows that the t-fold parallel repetition of knowledge sound
interactive argument is knowledge sound and that the knowledge error decreases
close to exponential in t. More precisely, the theorem shows that if (P,V) has
knowledge error κ, then (Pt,Vt) has knowledge error κt + ν, for arbitrary no-
ticeable ν. Therefore, by choosing t large enough, we can show that (Pt,Vt)
has knowledge error 1/|x|c for any c ∈ N. Note though that we cannot show
that (Pt,Vt) has negligible knowledge error negl(λ), because the running time
of P(P∗) scales with the inverse success probability of P∗.

While it might seem that this barrier is rather an artifact of the proof tech-
nique of [19] on which we build, it was shown by [22] that Theorem 2 is tight
when considering soundness amplification of protocols in general. More precisely,
based on some cryptographic assumptions they showed that parallel repetition
does not amplify security beyond negligible, meaning that for any negligible func-
tion negl one can find an instantiation that when starting with non-negligible
soundness error, the protocol can always be broken with probability negl(|x|),
no matter how many parallel repetitions one runs.

For a proof of the theorem we refer to the full version of this paper [1].

Theorem 3. Let (P,V) be a public-coin interactive argument for a relation R
that is knowledge sound with knowledge error κ : N → (0, 1). Let t : N → N be
upper bounded by a polynomial. Let ν : N → (0, 1) be an arbitrary noticeable
function. Then, (Pt,Vt) is knowledge sound with knowledge error κ′ = κt + ν.

16



Remark 2. The properties completeness and special honest verifier zero-
knowledge are easily seen to be preserved by parallel repetition, although the
completeness error increases in the number parallel repetitions.

5 A General Framework for Compressed Σ-Protocols
over Lattices

The main pivot of compressed Σ-protocol theory [6] is a basic Σ-protocol for
proving that a committed vector satisfies some linear constraint. Subsequently,
a compression mechanism is applied (recursively) to reduce the communication
complexity from linear down to polylogarithmic in the input size. The composi-
tion of these protocols is referred to as a compressed Σ-protocol. In this section
we present a natural abstraction similar to the one presented in [7, Appendix A]
extended to the lattice setting. This requires a number of non-trivial adaptations
that are explained in the following. Subsequently, we show how to instantiate
this abstraction from a concrete lattice assumption.

In the following we first give an abstraction of the standard Σ-protocol to
the lattice setting and then explain how the compression mechanism extends to
this setting. Note that we give both protocols in a very abstract fashion, with
the goal of allowing to instantiate them from a broad variety of lattice-based
assumptions. Note that our abstraction is not restricted to instantiations based
on lattices, but is tailored to this setting.

5.1 Standard Σ-Protocol

In this section we recall what we will refer to as standard Σ-protocol for proving
knowledge of a preimage of some given module homomorphism Ψ .4 This protocol
can be viewed as the abstraction of the protocol of Schnorr [40] to arbitrary
module homomorphisms, where we have to build in several relaxations in order
to make it compatible with the lattice setting.

First, in the lattice setting the witness is required to be small, we therefore
define a pair (Y ; y) to be in the target relation if Y = Ψ(y) and ‖y‖ ≤ α, for
some α ∈ N. Note that this requires to define a norm in the preimage space,
we therefore in the following restrict to modules with norm. If the preimage
is not required to be small (as, e.g., is the case in the discrete log setting),
one does not have to require a norm on the module and can simply ignore the
corresponding requirements in the protocols. The requirement of the witness y
to have small norm is also where the main difficulty stems from, because one
now has to transform a witness y into a witness x, such that

1. the norm of x is not much larger than y (as otherwise the statement becomes
meaningless), but

2. x still hides y.
4 For an introduction into modules and module homomorphisms we refer to [32].
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In order to ensure the second without a too large knowledge error, the relation
that one can prove knowledge of does not correspond to the target relation R,
but some relaxed relation R′. In this case, we say the protocol is a protocol for
the pair of relations (R,R′), i.e., an honest prover knows a witness for R but
can only prove knowledge of a witness for R′.

In fact, there are two sources introducing “soundness slack”: First, x itself will
in general already have larger norm than y (in order to ensure hiding). Second,
even worse, extracting a witness ỹ from two accepting transcripts, introduces
additional slack. This slack is more difficult to control, as it depends on the
inverse of challenge differences. As challenge differences will not necessarily be
invertible over the underlying ring, we introduce an additional relaxation on the
relation. Namely, for some fixed element ζ (in our examples, we will typically
have that ζ is a power of two) we will consider relations R′, such that (X;x) ∈ R′
if Ψ(x) = ζ ·X and ‖x‖ ≤ β. We refer to ζ as an approximation factor.

More formally, let R = {Rλ}λ∈N be an ensemble of rings, let M =
{Mλ}λ∈N, N = {Nλ}λ∈N be ensembles of R-modules, let Ψ = {Ψλ : Mλ →
Nλ}λ∈N be an ensemble of efficiently computable R-module homomorphisms
and let ζ = {ζλ}λ∈N be an ensemble of approximation factors (i.e., ζλ ∈ Rλ for
all λ). Let further ‖·‖ be a norm on M , let α, β : N→ N with α ≤ β. Then, we
define the relations R(Ψ, α) = {Rλ(Ψ, α)}λ∈N and R(Ψ, β, ζ) = {Rλ(Ψ, β, ζ)}λ∈N
via

Rλ(Ψ, α) =
{

(Y ; y) : y ∈Mλ, Y = Ψλ(y), ‖y‖ ≤ α(λ)
}
,

Rλ(Ψ, β, ζ) =
{

(Y ; y) : y ∈Mλ, ζλ · Y = Ψλ(y), ‖y‖ ≤ β(λ)
}
.

In the following we abstract the notion of rejection sampling [35, 36], which
is used in lattice based cryptography to sample a value, such that
1. the sample algorithm is somewhat norm-preserving, i.e., the norm of the

sampled value is not too much larger than the norm of the witness,
2. adding this value to the witness statistically hides the witness or the rejection

sampling strategy aborts, and, finally,
3. the abort probability is essentially independent of the witness.
Definition 5 (V -Hiding and β-Bounded Sampling). Let R = {Rλ}λ∈N be
an ensemble of rings and let M = {Mλ}λ∈N be an ensemble of R-modules. Let
V = {Vλ}λ∈N be an ensemble of sets with Vλ ⊆ Mλ for all λ. Let (D,F) such
that D is an ensemble of efficiently sampleable distributions D = {Dλ}λ∈N over
M , and F a PPT algorithm. We say (D,F)-is V -hiding, if there exists a PPT
algorithm F ′ such that for each λ ∈ N:
– F on input r ∈Mλ and v ∈ Vλ, outputs r + v or ⊥,
– F ′ on input 1λ, outputs an element z ∈Mλ or ⊥,

such that the output distributions of (D,F) and F ′ are statistically close. More
precisely, there exists a negligible function negl : N → N such that for all λ ∈ N
and for all v ∈ Vλ we have

∆
(
{F(r, v) | r ← Dλ}, {F ′(1λ)}

)
≤ negl(λ),
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where the probability is taken over the randomness of Dλ and the random coins of
F ,F ′. If the distribution of (D,F) and F ′ are equal, we say (D,F)-is perfectly
V -hiding.

Note that by the above considerations we can upper bound the abort probability
of (D,F) by

δ(λ) = Pr[F ′(1λ) = ⊥] + negl(λ),

for all λ ∈ N.
Let further β : N→ N. We say that (D,F) is β-bounded if for all λ ∈ N, v ∈

Vλ and r in the support of Dλ it holds ‖F(r, v)‖ ≤ β(λ) whenever F(r, v) 6= ⊥.

To improve readability, we will in the following omit the security parameter,
and, e.g., simply say “Let R be a ring. . . ”, or “Let α ∈ N. . . ”, even though we
assume all variables to be parametrized by the security parameter.

Before stating the Σ-protocol, we introduce the notion of an ζ-exceptional
subset, which will ensure that the protocol satisfies special soundness.

Definition 6 (ζ-Exceptional Subset). Let R be a ring, ζ ∈ R and C ⊆ R
be a set. We say C is an ζ-exceptional subset of R, if for all pairs of distinct
elements c, c′ ∈ C there exists a non-zero element a ∈ R such that a(c− c′) = ζ.
If C is a 1-exceptional subset of R, we simply say that C is an exceptional subset.

We further need to give bounds on the soundness slack introduced by extrac-
tion. To this end, for ζ-exceptional subsets C ⊂ R we define w(C) and w̄(C, ζ):

w(C) = max
c∈C,x∈R\{0}

‖cx‖
‖x‖

,

w̄(C, ζ) = max
c6=c′∈C,x∈R\{0}

max
a∈R:a(c−c′)=ζ

‖ax‖
‖x‖

.

(3)

The value w(C) gives an upper bound on how much the norm of an element
in R increases when multiplied by an element in C, i.e., w(C) is such that ‖cx‖ ≤
w(C)‖x‖ for all c ∈ C and x ∈ R. Note that if R = Z and with absolute value
| · |, we simply have w(C) = max{|c| : c ∈ C}.

The value w̄(C, 1) gives an upper bound on how much the norm of an element
in R increases when multiplied with the inverse of challenge differences, i.e.,
w̄(C, 1) is such that ‖(c−c′)−1x‖ ≤ w̄(C, 1)‖x‖ for all x ∈ R and distinct c, c′ ∈ C.
In general, the value w̄(C, ζ) gives an upper bound on how much the norm of
an element in R increases when multiplied with an a such that a(c− c′) = ζ for
challenges c 6= c′. Note that w̄(C, ζ) is only well-defined if C is ζ-exceptional.

The maximum over a ∈ R in Equation 3 can be replaced by a minimum,
potentially resulting in tighter norm bounds. More precisely, the extractor can
choose the element a that minimizes ‖ax‖/‖x‖. However, this requires the min-
imum to be efficiently computable. To avoid this additional assumption we take
the maximum over all a. Moreover, in most practical applications R does not
have zero-divisors and a ∈ R is uniquely defined.
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For a module M over R with norm ‖·‖, similarly we define

wM (C) = max
c∈C,x∈M\{0}

‖cx‖
‖x‖

and w̄M (C, ζ) = max
c6=c′∈C,x∈M\{0}

max
a∈R:a(c−c′)=ζ

‖ax‖
‖x‖

.

Note that for M = Rn and ‖·‖ over M defined as `p-norm (for p ∈ N ∪ {∞}),
we have wM (C) = w(C) and w̄M (C, ζ) = w̄(C, ζ).

We now state the standard Σ-protocol Π0 for the pair of relations
(R(Ψ, α), R(Ψ, 2β, ζ)) in Protocol 1. Further, we summarize its properties in The-
orem 4. For a proof we refer to the full version of this paper [1].

Protocol 1 Standard Σ-Protocol Π0 for the pair of relations
(R(Ψ, α), R(Ψ, 2βσ, ζ)), where σ = w̄M (C, ζ). Here, (D,F) is V -hiding and
β-bounded, where V = {cy | y ∈M,‖y‖ ≤ α, c ∈ C}.

Input(Y ; y)
Y = Ψ(y)

Prover Verifier

w ←R D,W = Ψ(w) W−−−−−−−−−−−−−−→
c0 ←R C ⊂ R

c0←−−−−−−−−−−−−−−
If F(w, c0y) = ⊥ :

Abort
Else: x = w + c0y

x−−−−−−−−−−−−−−→ ‖x‖
?
≤ β, Ψ(x) ?= W + c0Y

Theorem 4 (Standard Σ-Protocol). Let R be a ring, let M,N be R-
modules and let Ψ : M → N be an efficiently computable R-module homomor-
phism.

Further, let ζ ∈ R and C ⊂ R be a finite ζ-exceptional subset of R, let
α, β ∈ N and δ ∈ [0, 1), let V = {cy | y ∈M, ‖y‖ ≤ α, c ∈ C} and let (D,F) be a
β-bounded V -hiding distribution with abort probability δ.

Then, the protocol Π0 (as defined in Protocol 1) is a 3-move protocol for
relations (R(Ψ, α), R(Ψ, 2βσ, ζ)) defined via

R(Ψ, α) =
{

(Y ; y) : y ∈M,Y = Ψ(y), ‖y‖ ≤ α
}
,

R(Ψ, 2βσ, ζ) =
{

(Y ; y) : y ∈M, ζ · Y = Ψ(y), ‖y‖ ≤ 2βσ
}
,

where σ = w̄M (C, ζ).
It is complete with completeness error δ, unconditionally 2-special sound and

statistical non-abort special honest verifier zero-knowledge.
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Remark 3. In some settings it is beneficial to introduce another relaxation. For
example, if ζ = 1 (i.e., if challenge difference are invertible), the aforementioned
approach requires inverses of challenge differences to be of small norm. The
following relaxed relation only requires challenge differences, and not necessarily
their inverses, to be of small norm. It introduces an adapted approximation
factor c̄ ∈ C̄ = {c− c′; c, c′ ∈ C, c 6= c′} and is defined as follows

R(Ψ, β, C̄) =
{

(Y ; y, c̄) : y ∈M, c̄ · Y = Ψ(y), ‖y‖ ≤ β, c̄ ∈ C̄
}
.

The approximation factor c̄ is not fixed and part of the secret witness. This
relaxation allows for more efficient Σ-protocols. However, when composed with
other protocols the fact that the approximation factors are not fixed introduces
additional difficulties. These can be handled, but in most settings the required
adjustments negate the benefits of this relaxed relation, we therefore do not
consider it further.

For a generic transformation from non-abort SHVZK to SHVZK (or even
standard zero-knowledge) we refer to the full version of this paper [1].

5.2 Compression Mechanism

Observe that the final message x of protocol Π0 is a witness for statement X :=
W +c0Y , i.e., the final message can be viewed as a trivial proof of knowledge for
X ∈ LR(Ψ,β). In the following, we will present a general view on the compression
mechanism that allows to replace this trivial PoK by a more efficient one, using
Bulletproof’s folding mechanism [14, 16]. This protocol does not need to be
SHVZK, since it is a replacement for the trivial PoK.

Compression function. The Bulletproof folding mechanism relies on an compres-
sion function that allows to compress the witness iteratively. In the following, we
outline the properties the compression function has to satisfy. The main purpose
of giving this abstraction is to improve readability of the protocols. In the full
version of this paper [1], we further give an abstraction generalizing to larger
compression rate and the corresponding compression mechanism.

Definition 7 (Extractable compression function). Let M,M ′ be R-
modules, such that M is of even rank n and M ′ of rank n/2. Let C ⊂ R
be an exceptional subset of R. Let Comp = {Compc : M → M ′ : c ∈ C} and
Φ = {Φc : M ′ → M : c ∈ C}, where Φc is an R-module homomorphism for each
c ∈ C. Then, we say (Comp, Φ) is an extractable compression function for C, if
the following holds: There exist maps πL, πR : M →M , such that for all c ∈ C:

Φc(Compc(x)) = πL(x) + c · x+ c2 · πR(x).

We further say that (Comp, Φ) is (τ, τ ′)-norm preserving, if for all c ∈ C, x ∈
M, z ∈M ′:

‖Compc(x)‖ ≤ τ · ‖x‖ and ‖Φc(z)‖ ≤ τ ′ · ‖z‖.
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The reason why Φc ◦ Compc has to be of this specific form is to allow ex-
tractability even if the maps πL, πR are not evaluated honestly. More precisely,
let Ψ : M → N . Then, given pairwise distinct c1, c2, c3 ∈ C and z1, z2, z3 ∈ M ′
such that Ψ ◦ Φci(zi) = A+ ciX + c2

iB for i ∈ [3] (for arbitrary A,B ∈ N), it is
possible to extract an x ∈ M with Ψ(x) = X (resulting in 3-special soundness
of the compression mechanism). In the lattice setting it is further crucial that
we can give a meaningful bound on the norm of the extracted x. In the proof of
Theorem 5 we will show that this is indeed the case.

Example 1 (Bulletproof compression function [14, 16]). Let M = Rn and M ′ =
Rn/2. Then, the Bulletproof compression function is obtained as

Compc((xL, xR)) = xL + c · xR,
Φc(z) = (cz, z),

and

πL((xL, xR)) = (0, xL),
πR((xL, xR)) = (xR, 0).

Recall that w(C) = maxc∈C,x∈R\{0} ‖cx‖∞/‖x‖∞. The Bulletproof compres-
sion function is (1 + w(C), w(C))-norm preserving, as for all c ∈ C, x ∈M

‖xL + c · xR‖∞ ≤ ‖x‖∞ + w(C)‖x‖∞,
‖(cz, z)‖∞ ≤ w(C)‖z‖∞,

whenever w(C) ≥ 1 (which will be the case for our instantiations).
Using the Bulletproof compression function with the p-norm ‖·‖p for arbi-

trary p ∈ N ∪ {∞} instead of restricting to the infinity norm, we obtain that
the Bulletproof compression function is (1 +wp(C), 1 +wp(C))-norm preserving,
because in general we can only guarantee

‖(cz, z)‖p ≤ wp(C)‖z‖p + ‖z‖p,

where now wp(C) = maxc∈C,x∈R\{0} ‖cx‖p/‖x‖p.

The idea of the compression mechanism is as follows: First the prover commits
to A = Ψ(πL(x)) and B = Ψ(πR(x)). Next, the verifier sends a challenge c ∈
C. Using the compression mechanism, the prover then compresses x as z =
Compc(x). Now, the verifier can check if indeed Ψ(Φc(z)) = A + cX + c2B. As
Compc(x) is 2-compressing, this strategy reduces communication complexity by
roughly a factor 2. Note that this factor 2 reduction comes at the cost of sending
two elements A,B ∈ N . Hence, in practice the reduction of the communication
cost depends on the size of the R-module N . Finally, by extrability it follows
that the compression mechanism is 3-special sound.

The compression mechanism is graphically displayed in Protocol 2 and its
properties are summarized in Theorem 5. For a formal proof we refer to the full
version of this paper [1].
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Protocol 2 Generic Compression Mechanism Π1 for relations(
R(Ψ, β), R(Ψ, βσ, ζ3)

)
, where σ = 6ττ ′wM (C)2w̄M (C, ζ)3. Recall that (Comp, Φ)

is a (τ, τ ′)-norm preserving extractable compression map, i.e. for all c ∈ C:

Φc(Compc(x)) = πL(x) + cx+ c2πR(x).

Input(X;x)
X = Ψ(x) ∈ N

Prover Verifier

A = Ψ(πL(x))
B = Ψ(πR(x)) A,B−−−−−−−−−−−−−−→

c←R C ⊂ R
c←−−−−−−−−−−−−−−

z = Compc(x)
z−−−−−−−−−−−−−−→ ‖z‖

?
≤ β · τ,

Ψ(Φc(z)) ?= A+ cX + c2B

Theorem 5 (Compression Mechanism). LetM,M ′, N be R-modules, such
that M has even rank n and M ′ has rank n/2 over R, and let Ψ : M →
N be an R-module homomorphism. Further, let ζ ∈ R and let C be a fi-
nite ζ-exceptional subset of R, let (Comp, Φ) be a (τ, τ ′)-norm preserving ex-
tractable compression function for C with projection maps πL, πR, and let σ =
6ττ ′wM (C)2w̄M (C, ζ)3. Then, Π1 as given in Protocol 2 is a 3-move protocol for
relations

(
R(Ψ, β), R(Ψ, βσ, ζ3)

)
which satisfies perfect completeness and uncon-

ditional 3-special soundness.

5.3 Compressed Σ-Protocol

In this setting we build on the previous sections in order to present the com-
pressed Σ-Protocol Πcomp, allowing to reduce complexity to polylogarithmic in
the input length (when choosing a suitable instantiation).

The introduced soundness slack makes concatenating protocols a bit more
involved than in the plain setting. For more details and a formal treatment of
this issue we refer to the full version of this paper [1]. Informally

Πcomp = Π1 � · · · �Π1 �Π0,

for the appropriate instantiations of Π0 and Π1. Recall, that in the composition
Πb �Πa, the final message of protocol Πa is replaced by an execution of Πb.

Building on the composition theorem and the results of the previous sections,
where the compression function is instantiated with the Bulletproof compression
function, we obtain the following corollary.
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Corollary 2 (Generic Compressed Σ-Protocol). Let µ ∈ N. LetM = R2µ

and ‖·‖∞ the infinity norm onM (for some underlying norm on R). Let Ψ : M →
N be an R-module homomorphism, let ζ ∈ R and let C be a finite ζ-exceptional
subset of R. Let α, β ∈ N and δ ∈ [0, 1), let V = {cy | y ∈ M, ‖y‖∞ ≤ α, c ∈ C}
and let (D,F) be a β-bounded V -hiding distribution with abort probability δ.
Then, there exists a (2µ + 3)-move public-coin protocol Πcomp for the pair of
relations (

R(Ψ, α), R(Ψ, 2β · w̄(C, ζ) · σµ, ζ3µ+1)
)
,

where σ = 6 · w(C)3 · (1 + w(C))·w̄(C, ζ)3.
It is complete with completeness error δ, unconditionally (2, 3, . . . , 3)-special

sound and non-abort special honest-verifier zero-knowledge. Moreover, the com-
munication costs are:

– P → V: 2µ+ 1 elements of N and 1 element of R.
– V → P: µ+ 1 elements of C.

In the full version of this paper [1], we outline how the abstract Σ-protocol
theory yields a proof of knowledge with knowledge error κ ≤ (2µ+ 1)/|C|, which
can be decreased to 1/λd for arbitrary constant d ∈ N by applying the parallel
repetition theorem (Theorem 3). Moreover, there we discuss the issues that arise
when applying the Fiat-Shamir transform to our protocol in order to transform it
into a non-interactive PoK. We further give details on how to use our compressed
Σ-protocols non-interactively via the Fiat-Shamir transform.

6 Compressed Σ-Protocols from the MSIS Assumption

The compressed Σ-protocol Πcomp of Corollary 2 is typically instantiated with
Ψ(x, γ) = (Com(x, γ), L(x)) for a commitment scheme Com and a linear form
L, where γ is the commitment randomness. This allows a prover to show that
a committed vector x satisfies a linear constraint. When instantiated with a
compact or compressing commitment scheme, for which the size of a commitment
is at most polylogarithmic in the size of the secret vector, protocolΠcomp achieves
communication complexity polylogarithmic in the input size. In the full version
of this paper [1], we show how to linearize non-linear constraints and thereby
prove that committed vectors satisfy arbitrary non-linear constraints. Therefore
compressed Σ-protocol Πcomp is only required to handle linear instances.

The generalizations of Section 5 were introduced to handle lattice-based com-
mitment schemes. In this section, we instantiate compressed Σ-protocol Πcomp
for the following lattice-based commitment function (Definition 3)

Com : Rn ×Rr → Rkq , (x, γ) 7→ A1γ +A2x mod q.

Recall that, R = Z[X]/f(X) for a monic irreducible polynomial f(X), Rq =
R/(q) for a rational prime q, and A1 ∈ Rk×rq and A2 ∈ Rk×nq are sampled uni-
formly at random in the setup phase. This commitment scheme allows a prover
to commit to “short” ring elements. We use it to commit to secret vectors of

24



Rnp via their unique representation in {x ∈ R : ‖x‖∞ ≤ d(p − 1)/2e}. Subse-
quently, we aim to prove that a committed vector x ∈ Rnp satisfies an Rp-linear
constraint L(x) = y for a linear form L : Rnp → Rp. To this end, we instantiate
protocol Πcomp with α = d(p− 1)/2e for the R-module homomorphism

Ψ : Rn ×Rr → Rkq ×Rp, (x, γ) 7→ (Com(x, γ), L(x) mod p) .

Note that the protocol of Corollary 2 contains an approximation factor ζ3µ+1.
This means that, in the instantiation of this section, a prover claims to know an
exact opening (x, γ) of a commitment P satisfying L(x) = y, but is only capable
of proving knowledge of a relaxed opening (x′, γ′) such that Com(x′, γ′) = ζ3µ+1·
P and L(x) = ζ3µ+1·y ∈ Rp. For this reason, we require the approximation factor
ζ to be invertible in Rp. In this case, a commitment to a vector x′ ∈ Rnp is also
a commitment to the vector x̃ = ζ−3µ−1x′ ∈ Rnp satisfying the linear constraint
L(x̃) = y. Hence, if ζ ∈ R∗p, we derive precisely the desired functionality of
proving that a committed vector satisfies a linear constraint.

The lattice instantiation requires a distribution-algorithm pair (D,F) that
is V -hiding, for V = {cy | y ∈ M, ‖y‖∞ ≤ α, c ∈ C}, and β-bounded for some
reasonably small β ∈ N. We let D be a uniform distribution over an appropriate
subset of Rn+r. The following lemma shows that this approach gives the re-
quired properties. The smallest lattice-based signatures take D to be a Gaussian
distribution. Namely, when the secrets have a bounded `2-norm, the Gaussian
distribution results in better protocol parameters. In our scenario this is not the
case; our secrets are bounded in the `∞-norm. Additionally, uniform sampling is
less prone to side-channel attacks. For this reason, the digital signature scheme
Dilithium also deploys a uniform rejection sampling approach [24].

Lemma 6 (Uniform Rejection Sampling). Let R = Z[X]/f(X) for
a monic and irreducible polynomial f(X) ∈ Z[X] of degree d, C ⊂
R and m, η ∈ N. Let ‖z‖∞ be the `∞-norm of the coefficient vector
of z ∈ Rm and let w(C) = maxc∈R,x∈R\{0}‖cx‖∞/‖x‖∞. Let V =
{cx ∈ Rm : c ∈ C ⊂ R, ‖x‖∞ ≤ d(p− 1)/2e}. Let D be the uniform distribution
over {x ∈ Rm : ‖x‖∞ ≤ η} and let

F(r, v) =
{
⊥, if ‖v + r‖∞ > η − w(C) d(p− 1)/2e ,
v + r, otherwise.

Then (D,F) is perfectly V -hiding and (η − w(C) d(p− 1)/2e)-bounded, with abort
probability δ ≤ 1− e−

w(C)pmd
2η+1 .

Proof. Note that, for all v ∈ V , it holds that ‖v‖∞ ≤ w(C) d(p− 1)/2e. Hence,
the abort probability of the probabilistic algorithm {F(r, v) | r ← D} equals

δ = 1−
(

1− 2w(C) d(p− 1)/2e
2η + 1

)md
,

≤ 1− emd log
(

1−w(C)p
2η+1

)
≤ 1− e−

w(C)pmd
2η+1 .
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Now let F ′ be the algorithm that aborts with probability δ and otherwise
outputs a z ∈ {x ∈ Rm : ‖x‖∞ ≤ η − w(C) d(p− 1)/2e} sampled uniformly at
random. Then it is easily seen that {F(r, v) | r ← D} and {F ′} have exactly the
same output distributions, i.e., (D,F) is V -hiding.

Finally, (D,F) is clearly (η − w(C) d(p− 1)/2e)-bounded.

The resulting instantiation of Πcomp, denoted by Λcomp(η), is parameterized
by η ∈ N allowing for a trade-off between the abort probability and communi-
cation complexity of the protocol. Its properties are summarized in Corollary 3.

Corollary 3 (Lattice-Based Compressed Σ-Protocol). Let n, r, µ, η ∈ N
such that n+r = 2µ and let p, q ∈ N be primes. Let R = Z[X]/f(X) for a monic
and irreducible polynomial f(X) ∈ Z[X] of degree d. Let ζ ∈ R such that ζ ∈ R∗p
and let C be a ζ-exceptional subset of R. Let A1 ∈ Rk×rq , A2 ∈ Rk×nq and

Ψ : Rn ×Rr → Rkq ×Rp, (x, γ) 7→ (A1γ +A2x mod q, L(x) mod p) .

Then, there exists a (2µ+ 3)-move public-coin protocol Λcomp(η) for the pair of
relations

R =
{

(P ;x) : P = Ψ(x), ‖x‖∞ ≤ d(p− 1)/2e
}
,

R′ =
{

(P ;x) : ζ3µ+1 · P = Ψ(x), ‖x‖∞ ≤ 2σµw̄(C, ζ)(η − w(C)d(p− 1)/2e)
}
,

where σ = 6 · w(C)3 · (1 + w(C)) · w̄(C, ζ)3 with w(·) and w̄(·) defined as in
Equation 3.

It is unconditionally (2, 3, . . . , 3)-special sound, non-abort special honest-
verifier zero-knowledge and complete with completeness error

δ ≤ 1− e−
w(C)p(n+r)d

2η+1 .

Moreover, the communication costs are:

– P → V: 2µ+ 1 elements of Rkq , 2µ+ 1 elements of Rp and 1 element of R.
– V → P: µ+ 1 elements of C.

Remark 4. Corollary 3 does not require ζ to be invertible in Rp. In particular,
this result is still valid for ζ = 0. However, in this case 0 is a witness for all
statements P ∈ LR′ and thereby the claim that is being proven becomes vacuous.
For this reason, in most practical scenarios we assume that ζ ∈ R∗p.

6.1 Parameters

In this section, we consider compressed Σ-protocol Λcomp(η) defined over the
cyclotomic number ring R = Z[X]/(Xd + 1) with d a power of two and with
challenge set C = {0,±1,±X, . . . ,±Xd−1}. We show that this protocol has com-
munication complexity polylogarithmic in the input size. We only consider the
simplified scenario of proving knowledge of a commitment opening.
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Power-of-two cyclotomic number rings R and their monomial challenge set
C have certain convenient properties. In particular, w(C) = 1 and C is a 2-
exceptional subset of R. More precisely, 2/(c − c′) ∈ R is a polynomial with
coefficients in {−1, 0, 1} for all distinct c, c′ ∈ C [13]. From this it follows that
w̄(C, 2) ≤ d. For a more detailed discussion on optimal challenge sets see [37, 8].

Let us now determine the asymptotic communication complexity. First
note that, by Theorem 1, Λcomp(η) has knowledge error κ ≤ (2 log(n + r) +
1)/(2d + 1) ≤ log(n + r)/d (assuming that log(n + r) < d). For this reason
t = Θ (λ/(log d− log log(n+ r))) parallel repetitions are required, where λ is the
security parameter. Note that, in the analysis of the lattice-based Bulletproof
folding technique it is incorrectly claimed that their protocol achieves O(1/d)
knowledge error [15, p. 20].5 However, similar to our protocol, it achieves a
O(log(n+ r)/d) knowledge error.

Moreover, we assume η = Θ(tdp(n + r)), which by Corollary 3 is enough to
achieve a constant completeness error. From Corollary 3 it now follows that the
extractor outputs a (B, 23µ+1)-relaxed commitment opening, where

B = 2d · (12d3)µ
(
η −

⌈
p− 1

2

⌉)
= Θ(d2tp(n+ r)3+log 3+3 log d).

Hence, the commitment scheme must be instantiated to be binding with respect
to (B, 23µ+1)-relaxed commitment openings, i.e., the MSIS∞k,n+r,2B problem over
Rq must be computationally infeasible (Lemma 3). Recall that commitments are
vectors in Rkq . From the Micciancio-Regev bound (Equation 1) it follows that
this problem is hard if

dk log q ≥ log2(2B
√
n+ r)

4 log δ = Θ

(
log2 d log2 tdp(n+ r)

log δ

)
, (4)

where δ is the root Hermite factor. Note that we derive an additional
√
n+ r

factor because we reduce the MSIS-problem from the `∞-norm to the `2-norm.
When these commitments are considered stand-alone their size is independent
of the input rank n, i.e., they are compact. However, the soundness slack of our
protocols depends (polynomially) on n. Hence, the commitment scheme must be
instantiated such that the bit size dk log q of commitments is polylogarithmic.

By Lemma 1 it now follows that r is polylogarithmic in the input size. To-
gether with Corollary 3 and the fact that t = Θ (λ/(log d− log log(n+ r))), this
shows that the prover has to send

O
(
λ log2 d logn log2 λdpn

log δ(log d− log logn)

)
bits of information to the verifier. Hence, this instantiation of Λcomp(α, η) indeed
achieves communication complexity polylogarithmic in the input size.
5 This was confirmed to us by the authors in personal communication and also ob-
served in [3].
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Remark 5. The lattice based Bulletproof instantiation of [15] considers the case
k = 1 and they derive a communication complexity of O(dλ logn log pn/ log δ)
(using our notation) under the assumption that log q = Θ(log d log pn). However,
to ensure that the underlying commitment scheme is binding they must choose
d = Θ(log q). Moreover, they incorrectly estimate their knowledge error to be
O(1/d) instead of O(logn/d). Taking these two issues into account gives their
protocol a communication complexity of

O
(
λ log2 d logn log2 pn

log δ(log d− log logn)

)
.

The additional factor λd inside the logarithm of our communication com-
plexity can be explained by the fact that, in contrast to [15], our protocol is
zero-knowledge. Besides this factor, our communication complexity is the same.

Remark 6. Because the security loss of the Fiat-Shamir transform is exponen-
tial in the number of rounds, the non-interactive variant of the t-fold parallel
repetition of protocol Λcomp(η) requires a factor O(µ) = O(logn) more parallel
repetitions than the interactive variant. Therefore, the communication complex-
ity of the non-interactive variant is a factor O(logn) larger. This issue has been
overlooked in prior works.

7 Proving Non-Linear Relations

Thus far, we have shown how to prove that committed vectors satisfy linear
constraints. To handle non-linear constraints, we deploy an adaptation of the
strategy from [6] that uses secret sharing to linearize non-linearities.

The techniques from [6] are not directly applicable to the lattice setting,
since their relations and arithmetic secret sharing are defined over a large field.
In our adaptation the arithmetic secret sharing is not defined over a field but
over a quotient of a number ring. This introduces two challenges: (1) the ring
may be small and (2) not all ring elements have a multiplicative inverse. In our
adaptation, these challenges are handled by defining the secret sharing scheme
over an appropriately chosen ring extension. For more details we refer to the full
version of this paper [1].
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