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Abstract. General-purpose zero-knowledge proofs for all NP languages
greatly simplify secure protocol design. However, they inherently require
the code of the underlying relation. If the relation contains black-box
calls to a cryptographic function, the code of that function must be
known to use the ZK proof, even if both the relation and the proof re-
quire only black-box access to the function. Rosulek (Crypto’12) shows
that non-trivial proofs for even simple statements, such as membership
in the range of a one-way function, require non-black-box access.

We propose an alternative approach to bypass Rosulek’s impossibility
result. Instead of asking for a ZK proof directly for the given one-way
function f , we seek to construct a new one-way function F given only
black-box access to f , and an associated ZK protocol for proving non-
trivial statements, such as range membership, over its output. We say
that F , along with its proof system, is a proof-based one-way function.
We similarly define proof-based versions of other primitives, specifically
pseudo-random generators and collision-resistant hash functions.

We show how to construct proof-based versions of each of the primi-
tives mentioned above from their ordinary counterparts under mild but
necessary restrictions over the input. More specifically,

– We first show that if the prover entirely chooses the input, then proof-
based pseudo-random generators cannot be constructed from ordinary
ones in a black-box manner, thus establishing that some restrictions
over the input are necessary.

– We next present black-box constructions handling inputs of the form
(x, r) where r is chosen uniformly by the verifier. This is similar to the
restrictions in the widely used Goldreich-Levin theorem. The associ-
ated ZK proofs support range membership over the output as well as
arbitrary predicates over prefixes of the input.

Our results open up the possibility that general-purpose ZK proofs for
relations that require black-box access to the primitives above may be
possible in the future without violating their black-box nature by instan-
tiating them using proof-based primitives instead of ordinary ones.
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Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the United
States Government, DARPA, NSF, or Cisco.
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1 Introduction

Zero-knowledge proofs (ZKPs) are a method to prove that a statement is true
without revealing any additional knowledge [16]. A major achievement in cryp-
tography has been the construction of ZKPs for NP-complete problems [15].
Since every NP relation can be efficiently reduced to any NP-complete relation
[3, 29, 34], this yields a ZKP for all languages in NP. Due to this reason, ZKPs
for NP-complete problems are often called general-purpose proofs. As evidenced
by numerous follow up works, general-purpose proofs have been incredibly useful
to the theory of cryptography.

Early constructions of general-purpose ZKPs required only black-box access
to any one-way function (OWF), i.e., they used the given OWF as an oracle.
A black-box construction of this kind thus depends only on the input/output
behavior of the given cryptographic primitive. In particular, it is independent of
the specific implementation or code of the primitive.

A black-box construction is often preferred over a non-black one due to its
attractive properties. For example, it remains valid even if the primitive/oracle
is based on a physical object such as a noisy-channel or tamper-proof hardware
[43, 4, 11]. Also, its efficiency does not depend on the implementation details of
the primitive, thus establishing that efficiency can be theoretically independent
of the primitive’s code.

Unfortunately, general-purpose proofs are not suitable when seeking a black-
box construction for some desired cryptographic task since they inherently re-
quire the full code of the underlying relation to perform the NP reduction. In
other words, if the relation requires black-box access to a OWF, the code of the
OWF must be known even though neither the ZKP nor the relation needs it.
In fact, this has been the main reason for the non-black-box nature of many
cryptographic constructions that are otherwise optimal. Analogous black-box
constructions often require significant effort and technical innovation, as evi-
denced by the secure computation literature, e.g., [31, 6, 26, 27, 20, 28, 39, 42,
17, 18, 36, 32, 8, 22, 9, 2, 10].

In light of the above situation, it is tempting to imagine a “dream version”
of general-purpose proofs where, if the underlying relation R requires black-box
access to a cryptographic function f , say from a specified class such as the class
of OWFs, then so should the general-purpose ZKP for proving membership in
R. We informally refer to such relations as black-box relations. Such a result, if
possible, would greatly simplify the task of future black-box constructions and
potentially unify the diverse set of techniques that exist in this area.

As one might suspect, this dream version is too good to be true. In his beau-
tiful work, Rosulek [41] rules out ZKPs for proving membership in the range of
a OWF f given as an oracle. More specifically, assuming injective OWFs, Ro-
sulek rules out (even honest-verifier) witness-hiding protocols [7] for the relation
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Rf = {(y, x) | y = f(x)} where f is chosen from the class of all OWFs and
provided as an oracle to the protocol.

In contrast to the negative result for OWFs, a large body of literature con-
structs so-called black-box commit-and-prove protocols [27, 18, 19, 23, 30, 33].
Informally speaking, a commit-and-prove protocol between a committer and a
receiver ensures that at the end of the protocol, the committer is committed to
some hidden value satisfying a pre-defined property. This primitive can be con-
structed with only black-box access to an ordinary commitment scheme which
may originally not support any proofs whatsoever. In many situations, commit-
and-prove protocols serve as a good substitute for ordinary commitments; more-
over, their ability to support proofs over committed values makes them a great
tool for constructing larger black-box protocols.

In hindsight, we can view black-box commit-and-prove protocols as an alter-
native to bypass the aforementioned negative result of [41]. That is, instead of
constructing ZKP directly for every OWF, we ask the following indirect question:

Given only black-box access to a OWF f , can we construct a new OWF
F and a ZKP system ΠF for proving membership in the range of F?

Of course, we can ask for general properties instead of merely range-membership.
The idea is that F can be used as a substitute for f in any computation C(·)

that requires only black-box access to OWFs. More importantly, it gives hope
that general-purpose black-box ZKPs for proving the correctness of computation
C(·) may be possible since the correctness of responses from F can be ensured
using ΠF , all while requiring only black-box access to f . We remark that we do
not obtain such a result for general computations in this work and merely point
out that the existence of (F,ΠF ) may open a path towards it.

We call the pair (F,ΠF ) a proof-based one-way function (PB-OWF). Analo-
gously, we consider proof-based versions of other primitives, specifically pseudo-
random generators (PRGs) and collision-resistant hash functions (CRHFs). Mo-
tivated by the aforementioned possibility of a general-purpose proof system for
black-box cryptographic computations C(·), this paper initiates a study of black-
box constructions of proof-based cryptographic primitives. We obtain a mix of
both negative and positive results as outlined below.

1.1 Our Results

Given the existence of black-box commit-and-prove protocols, it is not unreason-
able to expect that black-box proof-based versions of OWFs, PRGs, and CRHFs
might also exist. Interestingly, the fact that these primitives are deterministic
functions really separates them from commitments. The existence of their proof-
based versions seems to depend on how we view the input, as discussed below.

Negative Results via Black-Box Separation. In common applications of
non-interactive primitives such as OWFs and PRGs, the entire input is usually
controlled by the evaluator of these functions. We show that proof-based PRGs
where the input (i.e., the seed) is entirely chosen by the evaluator cannot be
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constructed in a black-box manner from an (ordinary) OWF chosen from the
class of all OWFs. Since PRGs can be constructed in a fully-black-box manner
from OWFs [14, 24, 21], this separates proof-based PRGs from ordinary PRGs.

More specifically, black-box construction of a proof-based PRG from (ordi-
nary) OWFs consists of a deterministic and efficient oracle algorithm G(·), along

with an efficient protocol, Π
(·)
G = 〈P (·), V (·)〉, of two interactive oracle machines.1

For every OWF f , algorithm Gf should be a PRG, and protocol Πf = 〈P f , V f 〉
should be a ZKP system for the relation RfG = {(y, x) | s.t. y = Gf (x)}. Then, we
show that a fully-black-box reduction [25, 40] from proof-based PRGs to ordinary
OWFs does not exist if the prover chooses the entire seed.

The range-membership relation Rf = {(y, x) | y = f(x)} ruled out in [41] is a

special case of the aforementioned relation RfG = {(y, x) | s.t. y = Gf (x)}. In our

terminology, Rosulek rules out a special type of proof-based OWF (F (·),Π
(·)
F )

where F is just a “delegate” for the oracle OWF; i.e., it returns the oracle’s
response when queried on the given input. This is captured in [41] by formally
defining the notion of functionally-black-box (FBB) protocols. In contrast, the
relation we consider can make polynomially many queries to the oracle on arbi-
trary inputs and compute over the responses to produce the output. We extend
the notion of FBB protocols to formally capture these extensions.

In part due to these differences and our overall goals, our negative result is
incomparable to that of Rosulek’s. While Rosulek rules out black-box proofs for
range-membership for OWFs assuming injective OWFs, ours is only a black-box
separation, albeit without any additional assumptions. A black-box separation
is the best one can hope for in our setting since non-black-box constructions of
proof-based OWFs that use the code of the oracle trivially exist.

Positive Results. We next investigate whether mild restrictions on the inputs
can help bypass the black-box separation result. One option is to consider mod-
ifications along the lines of the Goldreich-Levin (GL) hardcore predicate [14],
where one considers a OWF F constructed from any given OWF f on inputs of
the form (x, r). This makes it possible to show that predicate hc(x, r) := ⊕i(xi·ri)
is hardcore for the modified function F (x, r) := r‖f(x) even though a hardcore
predicate for arbitrary OWFs is still unknown. These changes to the function
and the input do not seem to significantly affect the applicability of their result.

We adopt a similar approach to construct proof-based primitives. Continuing
with OWFs as example, we seek to construct a proof-based OWF F (·) which can
be instantiated with only black-box access to any OWF f , and takes inputs of
the form (x, r). As in the GL setting, x will act as the “main input” chosen
by the evaluator/prover, and r will be publicly accessible from the output of
F f (x, r). However, in a crucial difference, r will be chosen by the verifier during

the execution of ZKP Πf
F . There are no other restrictions on any of the objects.

Some remarks are in order.

1 Note that the protocol is allowed to depend on G(·) but not on the oracle which may
be arbitrarily chosen later. The same holds for the relation RfG introduced next.
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1. In light of our black-box separation result, it is essential to let the verifier
choose r since no other restrictions are present. This means that the compu-
tation of y = F f (x, r) must be performed during the proof. We formalize this

by modeling Πf
F as a secure two-party computation protocol for evaluating the

functionality that on inputs x and r from relevant parties, returns y. The ZK
property is captured by requiring simulation-based security against malicious
receivers; for soundness we only require that the honest verifier, with high
probability, does not output a y∗ that is not in the range. This is effectively
a black-box ZKP for the relation RfF (r) = {(y, x) | s.t. y = F f (x, r)}.2

2. The verifier must choose r from an unpredictable distribution such as the
uniform distribution over sufficiently long strings, since otherwise, the sound-
ness would be impossible as a cheating prover can simply guess r, bringing
us back to the setting of the separation result.

3. Since r may be maliciously chosen by the verifier to violate the one-way
property of F f , we require that for every string r, the function defined by
F f (·, r) is one-way as long as f is one-way.

We follow the same approach for formally defining proof-based versions of PRGs
and CRHFs. Having settled on a satisfactory definition, we present black-box
constructions of the proof-based versions of OWFs (for range membership), as
well as PRGs and CRHFs, directly from their ordinary counterparts.

Theorem 1 (Informal). There is a fully black-box construction of proof-based
primitive as described above for range-membership and two-party inputs of the
form (x, r), assuming that primitive exists, where primitive ∈ {OWF,PRG,CRHF}.

At first glance, one may wonder whether black-box commit-and-prove proto-
cols already yield proof-based OWFs. That is, the commit phase of such protocols
can be viewed as a one-way function over the input (x, r) where x is the value
to be committed and r is the randomness, the output y is the transcript of the
commit-phase, and the proof-phase plays the role of associated ZKP. This ap-
proach does not really work since the commit-and-prove protocols merely bind
the prover to a well-defined value x. They do not guarantee that w.h.p. every
accepting transcript has a valid “preimage” (x, r) that maps to it. In contrast,
the soundness of range-membership proofs of proof-based OWFs requires that
w.h.p. a preimage must exist for the output accepted by the honest verifier. At
a technical level, the black-box commit-and-prove protocols are based on cut-
and-choose techniques that can only guarantee that the accepted value is close
to an honestly generated value, which is insufficient to guarantee a preimage.

Extensions. We show that it is possible to construct a slightly more general
proof-system than merely range-membership for each of our proof-based primi-
tives. Continuing with the OWF example, we can construct a black-box proof-
based OWF F f such that for any predicate φ, the verifier learns a value y with

2 For now, we only focus on range-membership proofs. The definitional approach is
consistent with the commit-and-prove literature, although there are important dif-
ferences since we are dealing with deterministic primitives.
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the guarantee that there exists an input (x, r) such that: (1) y = F f (x, r) where
r is chosen uniformly by the honest receiver, (2) x = α‖x′, and (3) φ(α) = 1.
That is, we can support any predicate (in fact, computation of any function)
over a prefix of the preimage of the output. The ZKP system here depends on
the code of φ but not that of f as before.

This extension is motivated by similar results for commit-and-prove which are
quite useful in constructing larger black-box protocols [18, 30]. We achieve this by
presenting a new construction which combines our ideas for range-membership
with the “MPC-in-the-head” technique [27].

Due to space constraints, these extensions are formally described in the full
version [35].

2 Technical Overview

2.1 Black-Box Separation

We first present a very brief overview of our black-box separation. A detailed
overview is given in Sec. 4.2 after setting up necessary notation and definitions.

Let us first recall how Rosulek [41] rules out FBB constructions of honest-
verifier witness-hiding (HVWH) protocols for the range-membership of OWFs,
assuming injective OWFs exist.

The proof starts by assuming that such protocols exist. In particular, when
instantiated with an injective OWF f , the protocol (P f , V f ) is HVWH for Rf =
{(y, x) | s.t. y = f(x)}. Since f is injective, for a pair (x∗, y∗ = f(x∗)) remapping
f(x∗) to a value different from y∗ will give us a new OWF f ′ whose range does
not contain y∗ anymore. Moreover, the verifier accepts in 〈P f (x∗, y∗), V f

′
(y∗)〉

with roughly the same probability as in 〈P f (x∗, y∗), V f (y∗)〉. This is because
the only opportunity to distinguish these two executions is when the verifier
queries its oracle on x∗; but this happens with negligible probability because of
the HVWH property of the protocol. However, this contradicts the soundness:
V ’s oracle now becomes f ′, and @x s.t. (y∗, x) ∈ Rf ′ .

It is unclear how to reuse the above technique to rule out PB-OWFs. As
mentioned earlier, there are no restrictions on how the F (·) part behaves. In
particular, it is not guaranteed that F f is injective even if f is injective. Thus,
“carving out” a value from the range of f may not affect the range of F f .

To derive the desired contradiction, we take a fundamentally different ap-
proach to construct f ′. We first define a set QEasy, which consists of only the
queries made by the receiver with “high” probability during the (honest) execu-
tion 〈Sf (x∗, y∗), Rf (y∗)〉. We then define f ′ by maintaining the same behavior
as f on QEasy, and re-sampling all the remaining points uniformly at random.
Note that the receiver will still accept with “high” probability even if we change
its oracle to f ′, because f ′ and f only differ at the points that are queried with
“low” probability (i.e., the points outside QEasy). Now, the only thing left is to
show that y∗ is not in the range of F f

′
. Unfortunately, due to the generality of

F (·), we do not know how to do that.
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However, if we switch our focus to a PB-PRG Gf (instead of PB-OWF F f ),
we can prove the following lemma which helps separate PB-PRGs from OWFs:

Lemma 1 (Informal). If we start with a y∗ in the range of Gf , y∗ is still
in the range of Gf

′
with probability 0.5 ± negl(λ), where G(·) is a PRG when

instantiated with any OWF f as its oracle.

Let us show the intuition behind Lem. 1. Assume the lemma is false. In
the pseudo-randomness game for Gf , we show how to identify the case y∗ ∈
Range(Gf ) correctly, with probability noticeably better than 0.5, thus contra-
dicting pseudo-randomness. To do that, the adversary simply estimates the prob-
ability that y∗ ∈ Range(Gf

′
). We will show that, if this probability is noticeably

far from 0.5, Pr
[
y∗ ∈ Range(Gf )

]
is also noticeably far from 0.5.

Doing this successfully requires the adversary to know QEasy, which it does
not. However, the adversary can run the HVZK simulator many times to get
an estimate Q̃Easy for the real QEasy. We will show that Q̃Easy suffices for our
proof. Note also that the adversary needs to perform exponential work when
computing the probability that y∗ ∈ Range(Gf

′
), even if it knows the set Q̃Easy.

However, it only makes polynomially many oracle queries (when executing the
HVZK simulator), which suffices for proving the fully-black-box separation.

2.2 Proof-Based One-Way Functions (and PRGs)

Let us start by considering the following basic construction for PB-OWF (F f ,Πf
F )

over inputs of the form (x, r). The construction is based on “cut-and-choose” tech-
niques where, the sender queries the oracle f on “blocks” of x, and the receiver
checks a size-t random subset (defined by r) of the responses. This method is not
sound since it can only guarantee that the sender’s response is correct on most
but not all blocks. We will handle this issue by introducing a new idea.

Basic Construction. PB-OWF (F f ,Πf
F ) handles inputs of the form (x, r). F f

computes as follows:3

1. Parse x as (x1, . . . , xn).

2. Interpret r as a size-t (t < n) subset of [n], denoted by {b1, . . . , bt} .

3. Output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r, where yi = f(xi) for all i ∈ [n].

On input x to Sf and r to Rf , the execution 〈Sf (x), Rf (r)〉 is as follows:

1. Sf parses x as (x1, . . . , xn), and computes (y1, . . . , yn) via its oracle access to
f (i.e., yi = f(xi)). It sends (y1, . . . , yn) to the receiver.

2. Rf sends its input r to Sf . Same as in F f , the r specifies a size-t subset
{b1, . . . , bt} of [n]. Recall that the honest receiver’s input r is random. In this
case, {b1, . . . , bt} is a random subset of [n].

3. Sf sends (xb1 , . . . , xbt), i.e., the xi’s whose indices are specified by r.

4. Rf checks (via its oracle access to f) if ybi = f(xbi) for all i ∈ [t]. If all the
checks pass, Rf output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r.

3 We use Prover/Verifier and Sender/Receiver interchangeably since our ZKP is cap-
tured by considering a secure computation style definition for two parties.
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Completeness is straightforward; furthermore F f (·, r) is trivially one-way for
every r since t < n and f is a OWF. Let us first consider the honest-verifier
zero-knowledge (HVZK) property of protocol Πf

F .

Recall that the ZK property is defined via the ideal/real paradigm for secure
computation, and requires simulation-security against malicious receivers. Thus,
to prove the HVZK property, we need to show an ideal-world simulator Sim for
the honest receiver. This is easy as the honest receiver will always use the given
input r, which is uniformly distributed. More specifically, Sim works by sampling
a uniform r by itself, sending the r to the ideal functionality, and receiving back
the output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r. With this y, Sim can easily generate
a simulated transcript that is identically distributed to the real one.

ZK Against Malicious Receivers. The above simulation strategy does not
work for malicious receivers, because they may not use the given input r. There-
fore, the simulator needs to somehow extract the candidate input r∗ from the ma-
licious receiver. However, the receiver will not give out its r∗ until the sender/simulator
sends the {yi}i∈[n] values.

We point out that this issue cannot be fixed using standard methods such as
requiring the receiver to commit to r and to open it later. This is because later,
we will introduce a pre-image editing condition, and require that the sender’s
computation of F f be consistent with this editing.

We therefore use a different idea. We modify the protocol to use a black-box
commit-and-prove scheme ΠZKCnP = (BBCom,BBProve) with ZK property. This
scheme has a pair of simulators (Sim1,Sim2) that can be used to simulate the
receiver’s view in the commit phase and the prove phase respectively. Our new
Πf
F is the same as before, except for the following changes:

– In Step 1, instead of sending yi’s as before, the sender commits to them using
BBCom. Formally, the sender sets ν = (y1, . . . , yn) and executes BBCom(ν)
with the receiver.

– In Step 3, the sender sends both {xbi}i∈[n] and the value ν. It then proves
using BBProve that this ν is indeed the value committed in BBCom.

As before, the receiver needs (y1, . . . , yn) to execute Step 4. Now, these values
are contained in ν, and BBProve guarantees that the sender cannot change ν.

With these modifications, we can prove the ZK property for malicious re-
ceivers as follows. The simulator starts by running Sim1 (the commit-phase
simulator) with the malicious receiver R∗f . In this way, the simulator can go
through Step 1 smoothly, without knowing the actual {yi}i∈[n] values. Then, it

will receive the r∗ from R∗f . The simulator sends r∗ to the ideal functionality
and receives back y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r∗. It sends ν = (y1, . . . , yn)
and (xb1 , . . . , xbt) to the receiver. Then, instead of executing BBProve, the sim-
ulator invokes Sim2 to help itself go through the BBProve stage. It is easy to see
that the ν and {xbi}i∈[t] sent by the simulator meet the consistency requirement
in Step 4. Relying on the ZK property of ΠZKCnP, one can formally prove that
the simulation is done properly.
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Soundness and Preimage Editing. As mentioned earlier, the “cut-and-choose”
structure is not sufficient to guarantee the existence of a preimage. To see that,
consider a malicious sender who picks an i∗ ∈ [n] at random, sets yi∗ to some
value not in the range of f , or behaves honestly otherwise. This malicious sender
can still make the honest receiver accept with non-negligible probability, even
if t is as large as n − 1 (the upper bound for t to achieve any non-trivial ZK
property). This is addressed by modifying the construction of F f .

We start by noting that the “cut-and-choose” trick ensures that most of the
yi’s are “good” (i.e., having preimages under f). For example, if t is a constant
fraction of n, then the protocol ensures (except for negligible probability) that at
most k of the yi’s are “bad”, where k is another constant fraction of n. Therefore,
our idea is to extend the range of F f to include all the images y that have ≤ k
bad yi’s. More specifically, our new F f works as follows. On input (x, r), it still
interprets r as {b1, . . . , bt}. But it will parse x as

x = (x1, . . . , xn)‖ (p1, y
′
p1), . . . , (pk, y

′
pk

)︸ ︷︷ ︸
β

,

where the {p1, . . . , pk} form a size-k subset of [n]. The evaluation of F f (x, r)
consists of two cases:

– Non-Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} 6= ∅, then it computes y as
before, ignoring the β part. That is, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r,
where si = yi for all i ∈ [n].

– Editing Case: if {b1, . . . , bt}∩{p1, . . . , pk} = ∅, then at positions specified by
pi’s, it replace ypi with y′pi . Namely, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r,

where si :=

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

Let us explain how this editing technique resolves the soundness issue. Consider
a y∗ learned by the honest receiver with input r. As mentioned before, there
are at most k yi values (among those contained in y∗) that do not have preim-
ages under f . These values can be expressed as {y∗p1 , . . . , y

∗
pk
}, i.e., their indices

are {p1, . . . , pk}. Moreover, this set of bad indices does not overlap with the
{b1, . . . , bt} specified by r; otherwise, the receiver would abort when performing
the checks in Step 4. Therefore, by setting the β part to (p1, y

∗
p1), . . . , (pk, y

∗
pk

),

we will obtain a valid preimage for y∗ under our new F f (·, r).
One may wonder whether a malicious sender can cheat by taking advantage

of the editing case. However, since the honest receiver will use a random r,
the set {b1, . . . , bt} will always overlap with {p1, . . . , pk} (except for negligible
probability). That is, although we prove soundness by relying on the editing
case, it almost never happens in a real execution. So, this will not give malicious
senders any extra power.

We remark that the above preimage-editing idea is compatible with our tech-
nique for achieving (full) ZK. Now, the sender will append (y1, . . . , yn) and β to
the committed value ν. Upon receiving Rf ’s challenge r, the sender computes
s = (s1, . . . , sn) according to the above definition of F f . It sends both s and
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{xb1 , . . . , xbt} to the receivers. Then, it runs BBProve to prove that it does the
editing (or non-editing) honestly. Note that this statement can be expressed as
a predicate on the values s, r, β, and {yi}i∈[n], where the last two are commit-
ted in BBCom(ν). Since it does not involve the code of f , the protocol remains
black-box in f . We provide more details in Sec. 5.2.

Proof-Based PRGs. Following the above paradigm, we also obtain a proof-
based PRG by simply replacing the oracle OWF f with a PRG in the above
PB-OWF construction. We provide a formal treatment in the full version [35].

2.3 Proof-Based Collision-Resistant Hash Functions

Recall that a PB-CRHF consists of a function Hh and a protocol Πh
H such that

for any CRHF h:

– For all r, Hh(·, r) is a CRHF; and

– Πh
H = (Sh, Rh) is protocol satisfying similar completeness, soundness and ZK

properties as for our PB-OWFs, but w.r.t. Hh.

Let us first try to reuse the idea from our PB-OWFs. On input (x, r), the Hh

first parses x as (x1, . . . , xn)‖β, where the β has the same structure as before,
for the purpose of preimage editing. It then generates {yi}i∈[n] where yi = h(xi),
and outputs y = s‖(xb1 , . . . , xbt)‖r, where the value s = (s1, . . . , sn) is computed
by editing {yi} (in the same way as for our PB-OWFs).

Since h is also a OWF, the Hh is surely one-way. However, it is not collision-
resistant. To see that, recall that in the non-editing case, the β part is not
used when computing Hh(x, r). This implies the following collision-finding at-
tack. For a fix r, the adversary first computes y∗ = Hh(x∗, r) with an x∗ whose
β part does not trigger the editing condition. Then, it can easily find many
preimages for y∗ by using different β’s, as long as they do not trigger the edit-
ing condition. Therefore, we need to come up with a new editing method that
does not compromise collision resistance.

To do that, we modify Hh as follows. We sample a public string z and hard-
wire it in Hh. In this way, Hh

z can be viewed as a member of the public-coin
collision-resistant hash family indexed by z, instead of a single CRHF. Then, we
can think of x as containing additionally two strings τ and µ. When evaluating
Hh
z (x, r), we will perform the editing if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅ and α 6= z

and h(τ) = h(z). Moreover, we include the value t = h(β‖τ‖µ) in the output y.
Intuitively, this hash of β in y prevents the adversary from constructing collisions
using a different β.

We now explain how to perform editing in this setting. First, we will include
in x an additional value τ such that τ 6= z and h(τ) = h(z). This allows us
to trigger the editing condition. With z sampled randomly, it is not hard to
see that such a τ exists with overwhelming probability4. We can then set β as

4 This holds if the size of range of h is exponentially larger than its image space. It
is also worth noting that τ does not need to be efficiently computable, because our
soundness proof (or the editing technique) is only an existential argument.
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before to ensure that the (x1, . . . , xn) part is “edited” properly. However, note
that the y∗ here contains additionally a t∗ value. To handle this, we modify the
construction of Hf

z slightly—We require that, when the editing condition is
triggered, Hf

z sets t = µ in its output y. With this change, when performing
editing, we can simply let µ equal the t∗. It is not hard to verify that this editing
technique will lead to a valid preimage for y∗.

Finally, we remark that our real construction uses a Merkle tree for the prefix
(x1, . . . , xn) of x. We only put the Merkle root in y, instead of the element-wise
hash values described above. The soundness can be proved following essentially
the same idea as above, except that we now “edit” the Merkle tree, which is done
by extending the editing ideas to the tree setting. This allows us to compress a
prefix of any length to a fixed-length string, such as 256 bits if using SHA256 for
h. We refer the reader to Sec. 6 for a formal treatment of PB-CRHF.

2.4 Supporting Predicates

We discuss how to extend our constructions using “MPC-in-the-head” to ad-
ditionally guarantee not only that the output learned by the receiver is in the
range of the deterministic primitives, but also that the set of preimages contains
one whose prefix satisfies some predicate φ.

Let us take a fresh look at the PB-OWF construction. It first parses the
input as x = α‖β. The β is for preimage editing; and the α = (x1, . . . , xn) can be
regarded as a form of Encoding the prefix of x, i.e. Enc(α) = (x1, . . . , xn). Then,
it computes yi = f(xi) for all i ∈ [n]. Since this is mainly to introduce hardness
(or one-wayness) to the final output, we can refer to this step as Hardness
Inducing.

To support the proof of a predicate φ, we update the construction with
new Encoding and Hardness Inducing methods. We first secret-share α to
([α]1, . . . , [α]n) using a verifiable secret sharing (VSS) scheme. This can be viewed
as a new encoding method: Enc(α) = VSS(α) = ([α]1, . . . , [α]n).

Next, we commit to these shares using Naor’s commitment [38], which can
be built in black-box from the oracle OWF f . This can be thought of as a new
Hardness Inducing method. Now, the output of F f is of the following form:

F f (x, r) = (Com([α]1), . . . ,Com([α]n))‖([α]b1 , . . . , [α]bt)‖r.

In the protocol Πf
F , we additionally ask the sender to compute the value φ(α)

using the MPC-in-the-head technique. That is, the sender imagines n virtual
parties {Pi}i∈[n], where Pi has [α]i as its input. These n parties then execute a
MPC protocol w.r.t. to the ideal functionality, which recovers α from the VSS
shares, and outputs φ(α) to each party. Let vi denote the view of party i from
the execution. The sender first commits to these views, and then opens some of
them (picked by the receiver) for the receiver to check that the MPC for φ(α)
was performed honestly. In this way, the receiver not only learns φ(α), but also
believes that the sender did not cheat.

Finally, we make a few remarks:
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– To achieve soundness, we also need to apply the preimage editing idea to the
above construction.

– Both the VSS and Com require randomness, which can come from x. That is,
we require that the x is long enough such that it also contains an η part (in
addition to α and β). This η will provide the randomness for VSS and Com.

– The above approach applies directly to the PB-PRG and PB-CRHF construc-
tions to make them support predicates on the α part of the preimage.

3 Preliminaries

Familiarity with basic cryptographic concepts such as ensembles, indistinguisha-
bility, and interactive Turing machines, etc. are assumed; we refer to [12, 13] for
formal treatments of these. We also provide additional preliminaries in the full
version [35].

Notations. We use “\” to denote set difference. That is, for any two sets A and
B, A \ B := {x : (x ∈ A) ∧ (x /∈ B)}. The security parameter is denoted by λ.

Symbols
c
≈,

s
≈ and

i.d.
== are used to denote computational, statistical, and perfect

indistinguishability respectively; and negl(λ) denotes negligible functions of λ.
For a distribution D, x ← D means that x is sampled according to D. Unless
emphasized otherwise, we assume uniform distribution by default. We use y ∈ D
to mean that y is in the support of D. For a set S we overload the notation by
using x ← S to indicate that x is chosen uniformly at random from S. PPT
denotes probabilistic polynomial time.

Let p be a predicate and D1, D2, . . . probability distributions, then the no-
tation Pr

[
x1 ← D1;x2 ← D2; . . . : p(x1, x2, . . .)

]
denotes the probability that

p(x1, x2, . . .) holds after the ordered execution of the probabilistic assignments
x1 ← D1;x2 ← D2; . . .. The notation {x1 ← D1;x2 ← D2; . . . : p(x1, x2, . . .)}
denotes the new probability distribution over {(x1, x2, . . .)}.
Black-Box Zero-Knowledge Commit-and-Prove. We need a zero-knowledge
commit-and-prove protocol ΠZKCnP with the following additional properties:
– it consists of two separate phases: a Commit phase BBCom and a Prove

phase BBProve;
– the Commit phase itself constitutes a statistically-binding commitment scheme;
– for a public predicate φ(·), the Prove phase constitutes a zero-knowledge

argument for the value φ(x), where x is the value committed in BBCom;
– ΠZKCnP can be constructed assuming only black-box access to OWFs.

A formal definition can be found in the full version [35]. There exist constructions
satisfying the above requirements (e.g., [27, 18, 2]).

The “One-Oracle” Separation Technique. We first recall in Def. 1 the
notion of fully-black-box reductions. We say that P cannot be obtained from Q
in a fully-black-box way if there is no fully-black-box reduction from Q to P .

Definition 1 (Fully-Black-Box reductions [40]). There exists a fully-black-
box reduction from a primitive Q to a primitive P , if there exist PPT oracle
machines G and S such that:
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– Correctness: For every (possibly-inefficient) f that implements P , Gf im-
plements Q;

– Security: For every (possibly-inefficient) f that implements P and every
(possibly-inefficient) machine A, if A breaks Gf (w.r.t. Q-security), then SA,f

breaks f (w.r.t. P -security).

A paradigm to rule out fully-black-box constructions is to design an oracle O,
and show that, relative to O, primitive P exists but Q does not. A critical step in
this proof is to construct an oracle machine AO that breaks the security of Q. We
emphasize that A is allowed to be computationally unbounded, as long as it only
makes polynomially-many queries to O (see e.g., [25, 1]). Our fully-black-box
separation results in Sec. 4 will follow this paradigm.

4 The Impossibility Results

4.1 Meta-Functionally Black-Box Constructions

Functionally Black-Box Protocols. To capture MPC protocols that “do not
know” the code of the target function g, Rosulek [41] proposes the following
notion of functionally-black-box protocols.

Definition 2 (Functionally-Black-Box Protocols [41]). Let C be a class
of functions, and let F (·) be an ideal functionality that is an (uninstantiated)
oracle machine. Let A(·) and B(·) be PPT interactive oracle machines. Then,
we say that (A(·), B(·)) is a functionally-black-box (FBB) protocol for FC in a
certain security model if, for all g ∈ C, the protocol (Ag, Bg) is a secure protocol
(in the model in question) for the ideal functionality Fg.

By instantiating C and F (·) properly, Def. 2 could capture black-box con-
structions of many useful cryptographic protocols. For example, let Cowf be the
collection of OWFs. For any g ∈ Cowf, let Fgzk be the functionality that takes
input x from party A, queries its oracle g to obtain y = g(x), and outputs y to
party B. Such an Fgzk is essentially a zero-knowledge argument (of knowledge)
functionality for statements of the form “∃x s.t. g(x) = y”. However, Rosulek
showed that if injective OWFs exist, then it is impossible to have FBB protocols
that implement FCowf

zk with semi-honest security (in the standard MPC setting),
even in the presence of an arbitrary trusted setup. Given the broad application
of ZK proofs, this result is quite discouraging.

Meta-FBB Functionalities. Observe that the above Fgzk functionality simply
collects input x from A, queries its oracle g, and sends g(x) to B. It only plays
the role of a delegate for A and B to interact with the OWF g. Therefore, it is
temping to investigate whether we can circumvent Rosulek’s lower bound by al-
lowing the “delegate” Fzk to perform extra computations, such as preprocessing
x, post-processing g(x), or making multiple queries to the oracle g, etc.

More formally, we want a non-cryptographic and deterministic computation
F (used to capture the aforementioned extra computations), such that C′owf =
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{F g | g ∈ Cowf} is a collection of OWFs. And we hope that there exists a FBB
protocol (Ag, Bg) implementing FF g

zk for all F g ∈ C′owf (we can also denote it as

FC
′
owf

zk ). Note that we require (A(·), B(·)) to access g in a black-box way only; they
can make use the code of F . Since C′owf is also a collection of one-way families,

FC
′
owf

zk can be used as a substitute for FCowf
zk , with the only overhead coming from

the computations represented by F (·). Because F (·) is supposed to contain only

simple non-cryptographic operations, the implementation of FC
′
owf

zk should be as
efficient as that of FCowf

zk . Therefore, if this approach is possible, it will alleviate
the negative implications of Rosulek’s lower bound.

We can also interpret FC
′
owf

zk as a new FBB functionality FCowf
zk [F ], i.e., a new

oracle machine F (·)
zk [F ] to be instantiated with oracle OWFs from the original

collection Cowf. For any g ∈ Cowf, Fgzk[F ] collects the input X from Party A,
evaluates F g(X), and sends y = F g(X) to Party B.

With this interpretation, FC
′
owf

zk is just an instantiation of Def. 2 with F (·) =

F (·)
zk [F ] and C = Cowf. To distinguish with Rosulek’s F (·)

zk functionality. We call

F (·)
zk [F ] the Meta-FBB ZK Functionality. Similarly, one can also extend other

FBB functionalities in [41] (e.g., 2-party secure function evaluation F (·)
sfe, pseudo-

random generator F (·)
prg, where sender A holds the seed and receiver B holds the

key) to the corresponding Meta-FBB version.

4.2 The Main Theorem

In this part, we show that although we relax Rosulek’s FBB notion to the Meta-
FBB one, there still exists strong impossibility result. More specifically, we prove
that, given only black-box access to OWFs, it is impossible to build a PRG that
admits Meta-FBB honest-verifier zero-knowledge protocols.

Definition 3 (Fully-Black-Box PRGs from OWFs). Let C be the collection
of OWFs. A (deterministic) polynomial-time oracle machines G(·) is a fully-
black-box construction of PRG from OWF if there exists a PPT oracle machines
A(·,·) such that:

– Correctness: ∀f ∈ C, Gf is a PRG;

– Security: ∀f ∈ C and every (possibly inefficient) machine M , if M breaks
the pseudo-randomness of Gf , then AM,f breaks the one-wayness of f .

Theorem 2 (Main Theorem). Let C = {f | f is a OWF}. There does not
exist a (deterministic) oracle machine G(·) such that

1. G(·) is a fully-black-box construction of PRG from OWF; and

2. for all f ∈ C, there exists a stand-alone, Meta-FBB, honest-verifier zero-
knowledge argument system Πf = 〈P f , V f 〉 for the functionality Ffzk[G].

Before showing the full proof in Sec. 4.3, let us provide the high-level idea.

Proof Sketch. We start by assuming (for contradiction) that the G(·) and Π(·)

specified in the theorem exist. We will construct a special oracle denoted as
O �QEasy (explained later) such that:
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1. The oracle O�QEasy is one-way. Thus, GO�QEasy

will be a PRG and ΠO�QEasy

will

be the HVZK system for the language L = {Y : ∃X s.t. Y = GO�QEasy

(X)}.
2. There exist a Ÿ /∈ L (the false statement) and a PO�QEasy

(the cheating prover

P with the oracle O �QEasy) that is able to make V O�QEasy

(Ÿ ) accept.

This will give us the desired contradiction as it breaks the soundness of the

protocol ΠO�QEasy

.
Toward the above goal, we first sample two random oracles O, O′, a random

string X, and compute Y = GO(X). Let Q = {(q1,O(q1)), . . . , (qt,O(qt))} denote
the query-answer pairs exchanged between G and its oracle O during computa-

tion Y = GO(X). We now define the oracle O′�Q(q) :=

{
O(q) if (q,O(q)) ∈ Q
O′(q) otherwise

.

It is not hard to verify that Y = GO′�Q(X). By completeness, V will accept
with probability 1 − δc (where δc is the completeness error) in the execution

ExecO
′�Q

X,Y = 〈PO′�Q(X,Y ), V O′�Q(Y )〉.
Note that during ExecO

′�Q
X,Y , the verifier may make queries to its oracle O′ �Q.

We define a set of “easy” queries:

QEasy := {(q,O(q))
∣∣ V queries q with “high” probability during ExecO

′�Q
X,Y }.

Let QHard be the set difference Q \ QEasy. It is not hard to see that Y =

GO′�(QEasy∪QHard)(X). By completeness, V will accepts with probability 1 − δc

in the execution Exec
O′�(QEasy∪QHard)
X,Y .

Now, consider the execution 〈PO′�(QEasy∪QHard)(X,Y ), V O′�QEasy

(Y )〉, which is

identical to Exec
O′�(QEasy∪QHard)
X,Y except that we remove the QHard from the verifier’s

oracle. In this execution, the probability that V accepts will not differ too much

from that in Exec
O′�(QEasy∪QHard)
X,Y , because the queries in QHard are asked by V with

only “low” probability.

We then prove that Y is in the range of GO′�QEasy

(·) with probability at most

0.5 (up to negligible error). But the previous argument says that V O′�QEasy

(Y )
accepts with probability close to 1. It then follows from an averaging argument

that there exists “bad” Ö, Ö′ and Ẍ5 such that Ÿ = GÖ(Ẍ) is not in the range

of GÖ′�Q̈Easy

(·), but V Ö′�Q̈Easy

(Ÿ ) can be convinced with probability close to 1, by

the malicious prover P Ö′�(Q̈Easy∪Q̈Hard)(Ẍ, Ÿ ) (which can be viewed as an oracle

machine PÖ′�Q̈Easy

with non-uniform advice Ẍ, Ÿ , and Q̈Hard). This breaks the

soundness of ΠÖ′�Q̈Easy

, thus completing the proof.

We remark that proving Y is in the range of GO′�QEasy

(·) with probability
≤ 0.5 (up to negligible error) is the most involved part. And this is where the
HVZK property of Π(·) plays an essential role. Roughly, we will show that if
this claim does not hold, then there exists an adversary AO

prg that can break the

5 Note that these values already determine the sets Q̈, Q̈Easy, and Q̈Hard as defined
above.
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pseudo-randomness of GO(·) by making polynomially many oracle queries. As
we will explain later, this reduction requires AO

prg to know the set QEasy w.r.t.
the challenge string Y in the security game of PRG. But note that AO

prg does
not know the preimage X (if Y is indeed in the range), which is necessary to
figure out QEasy. This is where the HVZK simulator comes to our rescue. We
will run the simulator SimO

V (Y ) repeatedly for (polynomially) many times to get

an estimate Q̃Easy for the set QEasy. This Q̃Easy will be good enough to finish our
proof. A more detailed overview of this strategy is provided in Sec. 4.4.

4.3 Proof of Thm. 2

Assume for contradiction that there exists an oracle machine G(·) and a protocol
〈P (·), V (·)〉 such that given the access to any one-way function {fn}n∈N:

1. Gfn : {0, 1}` → {0, 1}`+1 is a PRG (` and n are polynomially related); and

2. Π = 〈P fn , V fn〉 is a semi-honest zero-knowledge argument system for the

Meta-FBB functionality Ffnzk [G].

We first recall the following lemma, which says that the measure-one of
randomly-sampled oracles is one-way.

Lemma 2 (One-Wayness of Random Oracles [25, 44]). Let O = {On}n∈N
be a collection of oracles where each On is chosen uniformly from the space of
functions from {0, 1}n to {0, 1}n. With probability 1 over the choice of O, O is
one-way against unbounded adversaries that make only polynomially many oracle
queries to O.

Let both O = {On}n∈N and O′ = {O′n}n∈N be defined (independently) as
in Lem. 2. It follows from Lem. 2 that, with probability 1, both O and O′is
one-way.

In the following, we show two hybrids. From the second hybrid, we will con-
struct a malicious prover breaking the soundness of Π(·) (with the oracle being
instantiated by a special one-way oracle defined later). This will give us the
desired contradiction, and thus will finish the proof of Thm. 2.

Notations. We first define some notations. For an oracle H and a set of tuples
S = {(q1, a1), . . . , (qt, at)}, we define a new oracle H � S as follows: if q equals
some qi for which there exists a pair (qi, ai) in the set S, the oracle H �S returns
ai; otherwise, it returns H(q). Formally,

H � S(q) =

{
H(q) if q /∈ {q1, . . . , qt}
ai if q = qi ∈ {q1, . . . , qt}

Hybrid H0. This hybrid samplesXn ← {0, 1}`(n), and computes Yn = GOn(Xn).
W.l.o.g., we assume that G on input Xn makes t(n) distinct queries to its oracle
On, where t(n) is a polynomial of n. Let Qn =

{(
q1,On(q1)

)
, . . . ,

(
qt,On(qt)

)}
be the query-answer pairs during the computation Yn = GOn(Xn).
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Let Exec
O′n�Qn

Xn,Yn
= 〈PO′n�Qn(Xn, Yn), V O′n�Qn(Yn)〉 denote the execution where

P proves to V that there exists an Xn such that Yn = GO′n�Qn(Xn). Note
that during this execution, the verifier may query to its oracle O′n � Qn. For
each qi ∈ {0, 1}n, let pi denote the probability that qi is queried by V during

Exec
O′n�Qn

Xn,Yn
. Let QEasy

n defines the set of “easy” queries and their corresponding
answers:

QEasy
n :=

{(
qi,O

′
n �Qn(qi)

) ∣∣ pi ≥ 1

t(n) · n
during Exec

O′n�Qn

Xn,Yn

}
. (1)

Let QHard
n be the set difference Qn \QEasy

n . We remark that Qn and QEasy
n ∪QHard

n

may not be the same, but it must hold that Qn ⊆ QEasy
n ∪QHard

n .

Looking ahead, we will instantiated G(·) and Π(·) with the oracle O′n�(QEasy
n ∪

QHard
n ). Note that G(·) and Π(·) will have the desired property only if they are

instantiated with one-way functions. Therefore, we show in Claim 3 that the
composed oracle O′n � (QEasy

n ∪QHard
n ) is one-way. It is worth noting that the one-

wayness of this composed oracle is independent of the choice of {Xn}, though
the definition of Qn, QEasy

n and QHard
n depends on Xn.

Claim 3. The collection of oracles
{
O′n � (QEasy

n ∪ QHard
n )

}
n∈N defined above is

one-way with probability 1, where the probability is taken over the sampling of
O = {On}n and O′ = {O′n}n, and is independent of the distribution of {Xn}n∈N.

Proof. The query-answer pairs in QEasy
n and QHard

n are of the form
(
q,On(q)

)
or(

q,O′n(q)
)
. Although Xn decides which (q, ∗)6 will be in QEasy

n and QHard
n , the

answer part On(q)’s and O′n(q)’s are uniformly distributed, independent of Xn.
That is, if On and O′n are sampled randomly, then for any Xn ∈ {0, 1}`(n),
O′n � (QEasy

n ∪ QHard
n ) will also be a random oracle. Therefore, for any {Xn}n∈N

where Xn ∈ {0, 1}`(n), the following holds{
O′n � (QEasy

n ∪QHard
n )

}
n∈N

i.d.
== {O′′n}n∈N,

where each O′′n is sampled uniformly from the space of functions from {0, 1}n to
{0, 1}n. Since it follows from Lem. 2 that {O′′n}n∈N is one-way with probability
1, so is

{
O′n � (QEasy

n ∪QHard
n )

}
n∈N.

Claim 3 (together with our assumption) implies that, with probability 1 taken
over the sampling of O and O′:
– GO′n�(Q

Easy
n ∪QHard

n ) : {0, 1}`(n) → {0, 1}`(n)+1 is pseudo-random against all (un-
bounded) adversaries that make polynomially many queries to the oracle
O′n � (QEasy

n ∪QHard
n ); and

– ΠO′n�(Q
Easy
n ∪QHard

n ) is a semi-honest zero-knowledge argument system for the

Meta-FBB functionality FO′n�(Q
Easy
n ∪QHard

n )
zk [G].

6 The symbol “∗” denotes the wildcard that matches any answer to q.
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Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

denote the execution 〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�(Q
Easy
n ∪QHard

n )(Yn)〉.

Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

= 1 denote the event that the verifier accepts at the end

of this execution. Claim 3 and the completeness of ΠO′n�(Q
Easy
n ∪QHard

n ) imply that:

Pr
O,O′

[
For sufficient large n ∈ N, ∀Xn ∈ {0, 1}`(n), Yn = GOn(Xn),

Pr
[
Exec

O′n�(Q
Easy
n ∪QHard

n )

Xn,Yn
= 1
]
≥ 1− δc(n)

]
= 1, (2)

where the inner probability is taken over the random coins of the prover and the

verifier during Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

, and δc(n) is the completeness error.

Hybrid H1. This hybrid is identical to the previous one, except that H1 executes
the protocol

〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉. (3)

(Compared with the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

in H0, the only difference is

that H1 remove QHard
n from the verifier’s oracle.)

As mentioned in the Proof Sketch of Thm. 2, we want to show that the
verifier accepts in Execution 3 with probability close to that in the execution

Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

. This is formalized as Claim 4.

Claim 4. With probability 1 taken over the sampling of O and O′, for sufficiently
large n ∈ N, it holds that ∀Xn ∈ {0, 1}`(n) and Yn = GOn(Xn),

Pr
[
〈PO′n�(Q

Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1

]
≥ Pr

[
Exec

O′n�(Q
Easy
n ∪QHard

n )

Xn,Yn
= 1
]
− 1

n
, (4)

where the probabilities in the above inequality are taken over the random coins
of the prover and the verifier during the corresponding executions.

Proof. First, we remark that the “with probability 1” part in this claim is to
ensure that {O′n �(QEasy

n ∪QHard
n )}n is one-way (see Claim 3). In the following, we

proceed with {O′n � (QEasy
n ∪QHard

n )}n being one-way (so the probabilities below
are not taken over O and O′).

By definition, any query7 q ∈ QHard
n is asked by V during Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

with probability < 1
t(n)·n . Let us denote the following event:

EventNoHard: No q ∈ QHard
n is asked by V in Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

It follows from union bound that

Pr
[
EventNoHard

]
≥ 1− 1

n
, (5)

where the probability is taken over the random coins of P and V in the execution

Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.
Now, we prove Inequality (4). In the following, for succinctness, let

7 Technically, elements in QHard
n are query-answer pairs. From here on, we override the

notation “∈” such that q ∈ QHard
n means that there exists a pair (q, ∗) in QHard

n .
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– Exec0 denote the execution 〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉;

– Exec1 denote the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.

Then, we have (probabilities below are taken over the random coins over P and
V in the corresponding executions):

Pr[Exec1 = 1] ≥ Pr
[
Exec1 = 1

∣∣ EventNoHard] · Pr
[
EventNoHard

]
= Pr

[
Exec0 = 1

∣∣ EventNoHard] · Pr
[
EventNoHard

]
(6)

≥ Pr[Exec0 = 1]− Pr[¬EventNoHard] (7)

≥ Pr[Exec0 = 1]− 1

n
(8)

where Step 6 is due to the fact that Exec1 and Exec0 are identical assuming V
does not make any query q ∈ QHard

n , Step 7 follows from the basic probability
inequality that Pr

[
A
∣∣B] · Pr[B] ≥ Pr[A] − Pr[¬B], and Step 8 follows from

Inequality (5).
This finishes the proof of Claim 4.

Claim 4 indicates that the verifier in Execution 3 accepts with “good” prob-

ability: at least as large as the accepting probability of Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

minus
1/n. Thus, we will have the desired contradiction if the Yn in Execution 3 is a

false statement, i.e. Yn is not in the range of GO′n�Q
Easy
n (i.e. G(·) instantiated by

the verifier’s oracle in Execution 3). This argument is formalized and proved in
Claims 5 and 6, which will eventually finish the proof of Thm. 2.

Claim 5. Let QEasy
n be defined as in Expression (1). For sufficiently large n ∈ N,

the following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n)

)]
≤ 1

2
+ negl(n). (9)

Note that the above probability is taken (additionally) over Xn ← {0, 1}`(n).

Claim 6. If Claim 5 holds, then Thm. 2 holds.

The proof of Claim 5 is quite involved. It constitutes the main technical
challenge of the current proof (of Thm. 2). Thus, we will deal with it in Sec. 4.4.
In the following, we show the proof of Claim 6.

Proof of Claim 6. It follows from Expression (2) and Claim 4 that

Pr
O,O′

[
For sufficient large n ∈ N, ∀Xn ∈ {0, 1}`(n), Yn = GOn (Xn),

Pr
[
〈PO′n�(Q

Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1

]
≥ 1− 1

n
− δc(n)

]
= 1. (10)

Following the same argument as for Claim 3, we can prove the one-wayness
of the oracle {O′n � QEasy

n }n as follows. For each (q,On(q)) ∈ QEasy
n , the On(q)

is a randomly sampled string from {0, 1}n. Therefore, no matter what Xn is,
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O′n �QEasy
n is always a randomly sampled oracle (though QEasy

n is determined by
Xn). It then follows from Lem. 2 that:

Pr
O,O′

[
∀Xn ∈ {0, 1}`(n), {O′n �QEasy

n }n∈N is one-way
]

= 1. (11)

By an averaging argument over Expressions (9) to (11), it follows that there
exists fixed sequences {Ön}n∈N, {Ö′n}n∈N and {Ẍn}n∈N8 such that for sufficiently
large n ∈ N,

– {Ön � Q̈Easy
n }n is one-way; thus, GÖn�Q̈Easy

n is a PRG and ΠÖn�Q̈Easy
n is an HVZK

protocol for the membership of GÖn�Q̈Easy
n ; and

– Ÿn is not in the range of GÖn�Q̈Easy
n ; and

– Pr
[
〈P Ö′n�(Q̈

Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn), V Ö′n�Q̈
Easy
n (Ÿn)〉 = 1

]
≥ 1− 1

n − δc(n), where the

probability is taken over the random coins of P and V .

Note that we can treat P Ö′n�(Q̈
Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn) as an oracle machine PÖ′n�Q̈
Easy
n ,

which has (Q̈Easy
n , Ẍn, Ÿn) as non-uniform advice and makes only polynomially

many queries to its oracle Ö′n � Q̈Easy
n .

Since the completeness error δc(·) is negligible, the above means that PÖ′n�Q̈
Easy
n

(with its non-uniform advice) convinces the verifier with non-negligible proba-
bility on the following false statement:

Ÿn ∈ GÖ′n�Q̈
Easy
n
(
{0, 1}`(n)

)
.

This contradicts the soundness of ΠÖ′n�Q̈
Easy
n .

4.4 The Proof Sketch for Claim 5

Due to space constraints, we will present the formal proof for Claim 5 in the full
version [35]. In this part, we provide an overview of it.

We assume for contradiction that Claim 5 is false and try to break the pseudo-
randomness of GOn . First, observe that if Yn = GOn(Xn) where Xn ← {0, 1}`(n),
then our assumption implies that Yn is in the range of GO′n�Q

Easy
n (·) with proba-

bility noticeably larger than 1/2. Therefore, on an input Yn, if we can efficiently

test if Yn ∈ GO′n�Q
Easy
n

(
{0, 1}`(n)

)
, we should have some advantage in the PRG

game for GOn(·). This strategy has the following potential problems:

1. Without the preimage Xn, we cannot compute the set QEasy
n (see Expres-

sion (1)) using only polynomially many queries to On;

2. If the input Yn /∈ GOn
(
{0, 1}`(n)

)
, the set Qn (thus QEasy

n ) is not even well-
defined, as there is no preimage Xn.

To avoid using Xn, we will run the HVZK simulator to obtain an estimate
of the set QEasy

n in the following way. Recall that QEasy
n contains the “easy”

queries made by the verifier during Exec
O′n�Qn

Xn,Yn
. By the HVZK property of the

8 Note that these values also fix the corresponding {Ÿn}n∈N, {Q̈Easy
n }n∈N and

{Q̈Hard
n }n∈N as in the above.
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protocol ΠO′n�Qn , each query in QEasy
n should be made with similar probability

in the simulated execution Sim
O′n�Qn

V (Yn). Therefore, repeating Sim
O′n�Qn

V (Yn)
(polynomially) many times will give us a good estimate to QEasy

n .
However, without Xn, we cannot figure out the set Qn, which is necessary

if we want to run Sim
O′n�Qn

V (Yn). Fortunately, by a similar argument as that for
Claim 3, we can prove that the oracle {On}n and {O′n �Qn}n are identically dis-
tributed, even given Xn and Yn = GOn(Xn). Therefore, running SimOn

V (Yn) will

be just as good as running Sim
O′n�Qn

V (Yn). Note that this also solves Problem 2,
because the simulator still works when invoked on false statements.

Now, we can construct the PRG distinguisher AOn
prg(Yn) as follows: on input

Yn, AOn
prg(Yn) obtains an estimate Q̃Easy

n to QEasy
n by running SimOn

V (Yn) for poly-
nomially many times. It then samples a random function O′n : {0, 1}n → {0, 1}n,

and outputs 1 if Yn ∈ GO′n�Q̃
Easy
n

(
{0, 1}`(n)

)
; otherwise, it outputs 0. Note that

although sampling O′ requires exponential time, AOn
prg(Yn) only makes polyno-

mially many queries to the oracle On.
If Yn = GOn(Xn) where Xn ← {0, 1}`(n), then by our assumption AOn(Yn)

outputs 1 with probability noticeably larger than 1/2; if Yn ← {0, 1}`(n)+1, then
Yn is independent of On. Moreover, using a similar argument as for Claim 3, we
can prove that Yn is independent of the oracle Q̃Easy

n (thus O′n � Q̃Easy
n ). Since the

function GO′n�Q̃
Easy
n (·) stretch by 1 bit, the random Yn will be in its range with

probability 1/2. This means AOn(Yn) outputs 1 with probability exactly 1/2.
This gives us the desired contradiction.

5 Proof-Based One-Way Functions

5.1 Definition

Definition 4 (Proof-Based OWFs). Let λ ∈ N be the security parameter.
Let a(·), b(·) and c(·) be polynomials. A proof-based one-way function consists
of a function Fλ : {0, 1}a(λ) × {0, 1}b(λ) → {0, 1}c(λ) and a protocol Π = (S,R)
of a pair of PPT machines. We use (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉 to denote the
execution of protocol Π where the security parameter is λ, the inputs to S and R
are x and r respectively, and the outputs of S and R are X and Y respectively.
Let Y = ⊥ denote that R aborts in the execution. The following conditions hold:

– One-Wayness. The function {Fλ}λ is one-way in the following sense:
• Easy to compute: for all λ ∈ N and all (x, r) ∈ {0, 1}a(λ)×{0, 1}b(λ), Fλ(x‖r)

can be computed in polynomial time on λ.

• Hard to invert: for any non-uniform PPT adversary A, there exists a neg-
ligible function negl(·) such that ∀r ∈ {0, 1}b(λ),

Pr
[
x← {0, 1}a(λ), X∗ ← A

(
1λ, Fλ(x‖r)

)
: Fλ(x‖r) = Fλ(X∗)

]
≤ negl(λ),

– Completeness. The protocol Π computes the ideal functionality FF defined
in Fig. 1. Namely, ∀λ ∈ N, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X,Y ) ←
〈S(1λ, x), R(1λ, r)〉, then X = x‖r and Y = Fλ(x‖r).
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Figure 1: Functionality FF for Proof-Based OWFs

The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving
the input x ∈ {0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends
x‖r to S, and F (x‖r) to R.

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗,
there exists a negligible function negl(·) such that

Pr

[
r← {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 6= ⊥ and
@x s.t. Fλ(x‖r) = Y

]
≤ negl(λ),

– Zero-Knowledge. This property is defined by requiring only security against
corrupted R in the ideal-real paradigm for 2PC w.r.t. the ideal functionality
FF in Fig. 1. Concretely, denote by REALΠ,A(z)(1

λ, x, r) the random vari-
able consisting of the output of S and the output of the adversary A con-
trolling R in an execution of Π, where x is the input to S and r to R. Sim-
ilarly, denote by IDEALFF ,Sim(z)(1

λ, x, r) the corresponding output of S and
Sim from the ideal execution.Then there exist a PPT simulator Sim such that
for any PPT adversary A, ∀x ∈ {0, 1}a(λ), ∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,{
REALΠ,A(z)(1

λ, x, r)
}
λ∈N

c
≈
{
IDEALFF ,Sim(z)(1

λ, x, r)
}
λ∈N.

If the constructions of both F and Π makes only black-box access to other prim-
itives, we call this a black-box PB-OWF.

5.2 Our Construction

Following the high-level idea described in Sec. 2.2, we show that PB-OWFs can
be built assuming black-box access to OWFs.

Theorem 7 (Black-Box PB-OWFs from OWFs). There exists a PB-OWF
that satisfies Def. 4 and makes only black-box use of OWFs.

Our construction consists of a one-way function F f (Constr. 1) together with

a protocol Πf
F (Prot. 1). The construction relies on the following building blocks:

– a one-way function f ;
– a zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve).

Such protocols can also be constructed assuming only black-box access to f .

Remark 1 (On the Parameters in Constr. 1). The choice of t(λ) = log2(λ) is
somewhat arbitrary. In fact, any t(λ) = ω(log λ) works as long as (n− k − t) is
some positive polynomial of λ for sufficiently large λ. This is to ensure that we
can prove one-wayness and (1− δ)t is negligible on λ, which is needed when we
prove soundness. We also remark that the role of r is to specify a size-t subset of
[n]. The canonical way of mapping r to a size-t subset of [n] may consume slightly
less randomness than |r| = t log(n). For simplicity, we forgo further discussion
and assume that there is a deterministic bijection between {0, 1}t log(n) and all
size-t subsets of [n]. Similarly, the {p1, . . . , pk} are interpreted as a size-k subset
of [n], though we assign each pi a length of log(n).
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Construction 1: One-Way Function F f

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) =
δn(λ). Let t(λ) = log2(λ) (see Rmk. 1). Assume that f : {0, 1}λ → {0, 1}m(λ) is a
one-way function. On input x ∈ {0, 1}nλ+(log(n)+m)k and r ∈ {0, 1}t log(n), F f parses
them as

x = (x1, . . . , xn)‖(p1, y′p1), . . . , (pk, y
′
pk ), and r = (b1, . . . , bt),

where |xi| = λ, |y′pi | = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t
subset of [n]. F f computes via its oracle access to f(·) the values (y1, . . . , yn), where
yi = f(xi) for all i ∈ [n]. Then, it computes s = (s1, . . . , sn) as follows:
1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then let si := yi for all i ∈ [n].

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

It finally outputs Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

Proof of Security. Due to space constraints, the complete proof for that
(F f ,Πf ) satisfies Def. 4 will appear in the full version [35].

Note that Sec. 2.2 already contains the high-level idea for this proof. The one-
wayness, completeness and ZK property follow from rather standard techniques.
In the following, let us provide more details about the soundness proof.

First, note that the r = {b1, . . . , bt} sent by R in Stage 3 is a size-t ran-
dom subset of [n]. It will overlap with {p1, . . . , pk} with negligible probability.
Therefore, the Editing condition will almost never be triggered during a real
execution of Prot. 1, thus can be safely ignored.

Stages 2 to 5 can be though as the following cut-and-choose procedure: the
sender computes {yi = f(xi)}i∈[n]; then the receiver checks t of them randomly.
This ensures that a malicious S∗ cannot cheat on more than k = δn of the yi’s.
We prove this statement formally in the full version [35], which requires us to
handle extra technicalities due to the commit-and-prove structure and Editing
condition. But this claim implies that a non-aborting Y output by an honest
receiver contains at most k = δn many si’s that does not have a preimage under
f (except for negligible probability). Let us assume w.l.o.g. that there are exactly
k such “no-preimage” si’s, which can be denoted as {sp1 , . . . , spk} (i.e. we denote
the indices of these no-preimage si’s by {p1, . . . , pk}). Then, for each si where
i ∈ [n] \ {p1, . . . , pk}, this si must have (at least) one preimage under f(·). We
denote an arbitrary preimage of such si as f−1(si). In particular, if i is equal to
some bj ∈ {b1, . . . , bt}, the Y already contains the preimage for sbj , which is xbj .

We emphasize that, conditioned on Y 6= ⊥, we have {p1, . . . , pk}∩{b1, . . . , bt} =
∅. To see this, recall that R checks at Stage 5 that ybi = f(xbi) and sbi = ybi for
all bi ∈ {b1, . . . , bt}. If there is a pi falling in the set {b1, . . . , bt}, then spi (= ypi)
does not have a preimage under f(·). Then, R will output Y = ⊥ at Stage 5.

With these observations, we show in the following how to construct x and r
such that F f (x‖r) = Y . At a high-level, we take advantage of Case 2. We will use
the no-preimage spi ’s together with their indices as the (pi, y

′
pi) part in x. We

will set r to the {b1, . . . , bt} contained in Y . Since {b1, . . . , bt}∩{p1, . . . , pk} = ∅,
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Protocol 1: Protocol Πf
F for Our Proof-Based One-Way Function

Let f , m, n, t, and k be as in Constr. 1.

Input: the security parameter 1λ is the common input. Sender S takes x ∈
{0, 1}nλ+(log(n)+m)k as its private input; receiver R takes r ∈ {0, 1}t·log(n) as its
private input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y′p1), . . . , (pk, y
′
pk ), where |xi| = λ for

all i ∈ [n], |y′pj | = m for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S

defines a 2× n matrix M =

[
x1 · · · xn
y1 · · · yn

]
, where yi = f(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to
the value

α := M‖(p1, y′p1), . . . , (pk, y
′
pk ). (12)

3. R sends r to S.
4. S interprets r as a size-t subset (b1, . . . , bt) ⊆ [n]. S then defines Mr =[

xb1 · · · xbt
yb1 · · · ybt

]
, i.e. the columns of M specified by r. S also computes s = (s1, . . . , sn)

in the way specified in Constr. 1. S sends to R the values Mr and s.
5. With Mr, R checks (via its oracle access to f(·)) if f(xbi) = ybi holds for all i ∈ [t];

R also checks if sbi = ybi holds for all i ∈ [t]. If all the checks pass, R proceeds to
next step; otherwise, R halts and outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it
performs Stage 4 honestly. Namely, S proves that the α committed at Stage 2
satisfies the following conditions:

(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and

(b) the Mr does consist of the columns in M specified by r; and

(c) The s = (s1, . . . , sn) satisfies the following conditions:
– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

We remark that these conditions can indeed be expressed a predicate φ on the
α committed at Stage 2. For completeness, we show the formal definition of φ in
Fig. 2. It is also worth noting that predicate φ needs to have the values r and s
hard-wired, which are defined at Stages 3 and 4 respectively. This is why we need
a ΠZKCnP that allows us to defer the definition of the predicate until the Prove
Stage.

7. (Receiver’s Output). R outputs Y = (s1, . . . , sn)‖(xb1 , . . . xbt)‖{bi}i∈[t].
8. (Sender’s Output). S outputsX = (x1, . . . , xn)‖(p1, y′p1), . . . , (pk, y

′
pk )‖{bi}i∈[t].

the function F f will put the no-preimage spi ’s at the positions specified by pi’s
(according to Case 2), which will give us Y . Concretely, we set:

x = (x′1, . . . , x
′
n)‖(p1, sp1), . . . , (pk, spk) and r = (b1, . . . , bt),

where x′i’s are defined as follows: ∀i ∈ [n], x′i =


xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

.
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Figure 2: Predicate φλ,m,t,n,k,r,s(·)
Predicate φ has the values (λ,m, t, n, k, r, s) (defined in Prot. 1) hard-wired. On the
input α, φλ,m,t,n,k,r,s(α) = 1 if and only if all of the following hold:

– the α can be parsed as M‖(p1, y′p1), . . . , (pk, y
′
pk ), where M =

[
x1 · · · xn
y1 · · · yn

]
such

that |xj | = λ and |yj | = m ∀j ∈ [n], |pi| = log(n) and |y′pi | = m ∀i ∈ [k]; and
– the values {p1, . . . , pk} form a size-k subset of [n]; and
– the Mr consists of the columns in M specified by r; and
– the s = (s1, . . . , sn) satisfy the following requirement (recall that the {b1, . . . , bt}

are from r):
• if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

• if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

We remark that f−1(si) may not be efficiently computable (indeed, f is a
one-way function). But the above proof only relies on the existence of f−1(si).
Also, we have {p1. . . . , pk}∩{b1, . . . , bt} = ∅. It then follows from the description
in Constr. 1 (in particular, Case 2) that F f (x‖r) = Y .

5.3 Proof-Based Pseudo-Random Generators

We can also define proof-based pseudo-random generators (PB-PRGs) in a sim-
ilar way as for PB-OWFs. It consists of a two-input function Gg(·, ·) and a pro-
tocol Πg

G = (Sg, Rg) such that for any PRG g, Gg(·, r) is a PRG for any choice
of r, and Πg

G satisfies the same completeness, soundness and ZK requirements as
in Def. 4 but w.r.t. Gg.

Our PB-PRG can be constructed by simply replacing the oracle OWF f with
a PRG g in both Constr. 1 and Prot. 1 (our PB-OWF construction). There is
one caveat: the output Y of Constr. 1 contains the preimage xbi for ybi (or sbi).
While this is fine for one-wayness, such a Y will not be pseudo-random, because
an adversary can always learn if Y is in the range of Gg(·, r) by testing whether
ybi = g(xbi). To fix this, in the output Y , we will place xbi in the position where
we originally put ybi (and we can drop the (xb1 , . . . , xbt) part from Y ). We will
show that this modification lead to a valid PB-PRG.

We present the definition, construction, and the security proof for PB-PRGs
in the full version [35].

6 Proof-Based Collision-Resistant Hash Families

We now discuss proof-based collision-resistant hash families (PB-CRHFs). As
mentioned in Sec. 2.3, the definition and construction of PB-CRHF follow the
same template as our PB-OWFs, except that we need to handle the Editing

9 Note that the input to hi should have length 2m. But |Λ| > 2m. This can be handled
using domain-extension techniques, e.g., the Merkle-Damg̊ard transformation [37, 5].
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Construction 2: Collision-Resistant Hash Family Hhi
z

Let m(λ) and n(λ) be polynomials of λ. Assume w.l.o.g. that is n a power of 2
(i.e., n = 2` for some `). Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let
t(λ) = log2(λ) (see also Rmk. 1). Let H′ = {hi}i∈I be a collision-resistant hash
family where hi : {0, 1}2m(λ) → {0, 1}m(λ). Denote its key generation as KGen′.

– Key Generation. On input 1λ, sample a function from H′ by running hi ←
KGen′(1λ); sample a random string z ← {0, 1}m(λ); outputs (i, z) as the hash key.

– Evaluation. On input x ∈ {0, 1}nm+k(log(2n)+m)+3m and r ∈ {0, 1}t log(n), the
evaluation algorithm parses them as:

x = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk )‖τ‖µ, r = (b1, . . . , bt), (13)

where |xi| = |vpi | = m, {pi}i∈[k] is a size-k subset of [2n − 1], and {bi}i∈[t] is a
size-t subset of [n]. The set {bi}i∈[t] specifies t leaves out of all the n leaves.
The algorithm builds a perfect binary tree T that has n leaves, where all the
nodes are dummies. Note that the indices of the nodes in T are well-defined, even
though T now contains only dummy nodes. The evaluation procedure outputs
Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt), which is computed as follows:

1. Non-Editing: If τ = z or hi(τ) 6= hi(z) or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} 6= ∅:
(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaves. For any

other node in T , its content is the hash value under hi on the concatenation
of its left child and right child. Denote the root value as t1.

(b) For i ∈ [t], Pbi is the sibling path of leaf xbi in the above tree T ;

(c) Use hi to hash9the following Λ value to a length-m string denoted as t2:

Λ = (p1, vp1), . . . , (pk, vpk )‖τ‖µ.
2. Editing: if τ 6= z and hi(τ) = hi(z) and Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅:

(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaf positions in
T . Then, fill the tree bottom up, following the rule for Merkle tree (i.e. the
hashing of two children nodes’ contents is the parent node’s content), with
the following exception: for node pi ∈ {p1, . . . , pk}, it fills node pi with the
vpi contained in x, instead of the hash of the children of node pi. Denote
the root value as t1.

(b) For i ∈ [t], Pbi is defined as the sibling path of leaf xbi in the tree T ;

(c) Set t2 = µ (recall that µ is contained in x);

condition differently. Due to space constraints, we only show an overview of our
PB-CRHF here. See the full version [35] for the details.

On the Definition. Our PB-CRHF consists of an oracle machine H(·) and an
oracle protocol Π

(·)
H . As mentioned in Sec. 2.3, the H(·) will be instantiated as

a hash family. That is, given a collision-resistant hash family H′, we first run
its KGen′ to sample a function hi ∈ H′, and then instantiate H(·)’s oracle as hi.
Therefore, Hhi is also a hash family whose KGen simple runs the KGen′ for H′
(and samples a random string z that we will discuss later).

Once H(·) and Π
(·)
H are instantiated with an hi ← KGen′(1λ), we can start

talking about the security. Same as in Def. 4, Hhi takes two inputs x and r.
We require that, for all r, Hhi(·, r) is collision-resistant on its first input. The
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Protocol 2: Protocol Πhi
z for Our PB-CHRF

Let H′, m, n, δ, t and k be as in Constr. 2. Let ΠZKCnP = (BBCom,BBProve)
be a black-box commit-and-prove protocol. For a function defined by (i, z) from
the PB-CRHF in Constr. 2, this protocol proceeds as follows. Both parties take
the security parameter 1λ as the common input. Sender S takes a string x ∈
{0, 1}nm+k(log(n)+m)+3m as private input; receiver R takes a string r ∈ {0, 1}t log(n)
as private input.

1. S parses x as (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk )‖τ‖µ (in the same manner as in
Expression (13)). S build a Merkle tree MT ′h,m(x) using (x1, . . . , xn) as the leaves
(this is identical to Step 1a). Denote the root of this tree as tx.

2. S and R execute BBCom(ν), the Commit stage of ΠZKCnP, where S commits to
the following value

ν := tx‖(p1, . . . , pk). (14)

3. R sends the value r.

4. S parses r as (b1, . . . , bt) where each bi is of length log(n). With the values x and r,
S evaluates the function Hhi

z as per Constr. 2 to compute the following Y , which
it sends to R:

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).
5. R checks if Pbi is Merkle-consistent for all i ∈ [t]. R aborts if any of the check

fails.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that the ν
committed in Stage 2 satisfies the following conditions:

(a) the {p1, . . . , pk} in ν form a size-k subset of [2n− 1], where k = δn; and

(b) the tx contained in τ is equal to t1, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.
7. (Receiver’s Output). R outputs Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).
8. (Sender’s Output). S outputs

X = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk )‖τ‖µ‖(b1, . . . , bt).

protocol Πhi

H satisfies the similar completeness, soundness and ZK requirement
as in Def. 4. We provide a formal definition in the full version [35].

Our Construction. The formal construction is provided in Constr. 2 and
Prot. 2. We follow the high-level idea described in Sec. 2.3 with the following
modifications. Instead of hashing the (x1, . . . , xn) (contained in x) separately,
we build a Merkle tree using them as the leaves. In Constr. 2, Pi denotes the
sibling path from leaf xi to the root; Ind(b1, . . . , bt) denotes the set of indices
of the nodes on path Pb1 , . . . ,Pbt (see the full version [35] for more details). In
Prot. 2, the receiver checks t leaves and their corresponding sibling paths. This
ensures that there are at least (n− k) “good” leaves, in the sense that there are
valid sibling paths from the Merkle root to them. In the Editing case, this will
allow us to perform preimage editing by planting the vpi values on the k “bad”
paths to obtain a (partial) tree consistent with the root t1 contained in Y . Note
that we also hash the Λ in Step 1c. As explained in Sec. 2.3, this is to prevent
the adversary from taking advantage of preimage editing to find collisions.

It is also worth noting that Constr. 2 and Prot. 2 work for an x of fixed length.
But since we hash the {xi}i∈[n] part using a Merkle tree, we can handle x with
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a various-length {xi}i∈[n] part (which dominates the length of x). To maintain
security, we simply include in Y the height of the Merkle tree.

Proof of Security. The security can be proved in a similar manner as for our
PB-OWFs. We provide the formal security proof in the full version [35].
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