
Multi-theorem Designated-Verifier NIZK for QMA

Abstract. We present a designated-verifier non-interactive zero-knowledge ar-
gument system for QMA with multi-theorem security under the Learning with
Errors Assumption. All previous such protocols for QMA are only single-theorem
secure. We also relax the setup assumption required in previous works. We prove
security in the malicious designated-verifier (MDV-NIZK) model (Quach, Roth-
blum, and Wichs, EUROCRYPT 2019), where the setup consists of a mutually
trusted random string and an untrusted verifier public key.
Our main technical contribution is a general compiler that given a NIZK for NP
and a quantum sigma protocol for QMA generates an MDV-NIZK protocol for
QMA.

1 Introduction

Zero-knowledge protocols allow to prove statements without revealing anything but the
mere fact that they are true. Since their introduction by Goldwasser, Micali, and Rackoff
[GMR89] they have had a profound impact on modern cryptography and theoretical
computer science at large. While standard zero-knowledge protocols are interactive,
Blum, Feldman, and Micali [BFM19] introduced the concept of a non-interactive zero-
knowledge (NIZK) protocol, which consists of a single message sent by the prover to
the verifier. NIZK protocols cannot exist in the plain model (i.e. a language with such a
NIZK protocol can be decided by an efficient algorithm) but can be realized with a pre-
computed setup. The point of the setup is that it can be computed instance-independently
and usually, the setup is executed by a trusted third party that generates and publishes a
string of bits and sometimes trapdoors are handed to the prover or verifier (or both).

Although existing zero-knowledge protocols for NP cover an array of diverse tasks
and in particular, under standard computational assumptions it is known how to construct
NIZK protocols for NP [CCH+19, PS19, BKM20], far less is known about the class
QMA, the quantum generalization of NP. This knowledge gap between NP and QMA,
which is present in both interactive and non-interactive zero-knowledge protocols, stems
from the fact that many of the techniques that work for constructing protocols for NP,
implicitly rely on the assumption that information in the system is classical. Accordingly,
these techniques fail when this assumption no longer holds.

The first gap between classical and quantum NIZK protocols is that of setup re-
quirements, that is, how much trust and resources the setup needs. The standard setup
in NIZK is called the common reference string (CRS) model, where the trusted party
samples a classical string from some specified distribution and publishes it. If the refer-
ence string is simply uniformly random then the setup is in the common random string
model, which is considered to require minimal trust in the NIZK setting. While NIZK
arguments for NP are known to exist in the common random string model under LWE
[CCH+19, PS19], in current QMA constructions the setup is comprised at least of a
common reference string sampled by the trusted party, and an additional public and
secret verification keys (pvk, svk) where pvk is published along with the CRS and svk
is kept by the verifier, such that either:

– pvk is a quantum state that needs to stay coherent while waiting for the proof by the
prover, or

– The pair (pvk, svk) can be sampled only by the trusted party and not the verifier.

Aside from the above, a more elementary missing part in current NIZK protocols for
QMA ismulti-theorem security, which provides themain efficiency advantage to aNIZK
protocol over an interactive protocol. Multi-theorem security considers the reusability
of the setup, that is, once the setup is computed, any prover can send a proof by a single
message repeatedly for many different statements and there is no need to re-compute the
setup for every new proof sent, and in relation to the above QMA setups: once the CRS
and public verification key are published, they are reusable.

Given the gap of knowledge in NIZK techniques between NP and QMA, improving
the power of NIZKs for QMA and specifically constructing a reusable non-interactive

zero-knowledge protocol for QMA seem as a natural cryptographic goal which we
explore in this work.

1.1 Results

Under the Learning with Errors (LWE) assumption [Reg09] we resolve the above ques-
tion. Specifically, we construct a multi-theorem-secure NIZK argument for QMA in the
malicious designated-verifier model, which is the following:

1. The trusted party samples only a common random string crs.
2. Given crs, any verifier can sample a pair of classical public and secret verification

keys (pvk, svk), in particular it is possible that the published pvk is maliciously-
generated.

Given crs and pvk, any prover can repeatedly give a non-interactive zero-knowledge
proof by a single quantummessage |π〉. The MDV-NIZKmodel is introduced by Quach,
Rothblum, and Wichs in [QRW19] and has the same minimal trust requirements as the
common random string model (but is privately verifiable).

Theorem 1 (informal). Assuming that LWE is hard for polynomial-time quantum algo-
rithms, there exists a reusable, non-interactive computational zero-knowledge argument
system for QMA in the malicious designated-verifier model.

Main Technical Contribution: General Sigma Protocol MDV-NIZK Compilation.
Technically, we deviate from previous NIZK constructions for QMA and aim for a
simple and classical technique which is post-quantum (i.e. preserves security also for
quantum protocols). Specifically, our main contribution is showing how given a NIZK
for NP it is possible to compile a quantum sigma protocol into a reusable MDV-NIZK
protocol. Further details are given in the technical overview below.

1.2 Technical Overview

We next describe our construction of a multi-theorem-secure MDV-NIZK protocol for
QMA. For a discussion about the possibility of constructing a NIZK protocol for QMA
in the CRS model see subsection 1.3, and for an overview of NIZK models and previous
work on NIZK for QMA see subsection 1.3.

As we are aiming for a classical (quantum-secure) technique we currently restrict
our attention to a purely-classical question: Given any sigma protocol (Σ.P, Σ.V),
generically compile it into a multi-theorem-secureMDV-NIZKwhile assumingminimal
properties of the protocol1. We will start with considering classical sigma protocols and
later see what changes should take place in order for the technique to work for quantum
protocols.
From a Sigma Protocol to a Single-Theorem-Secure MDV-NIZK. A sigma protocol
is a 3-message public-coin proof system (with some mild zero knowledge properties),

1In particular, we do not assume that the message α is classical.

2

where the 3 messages are denoted by α, β and γ (i.e. β is a random string and is called
"the challenge string"). Our first step is to construct a MDV-NIZK protocol with only
single-theorem security out of a sigma protocol and is very simple.

In a sigma protocol, since the verifier’s message β is a random string it is independent
of any other information, additionally, our second need from it is that it stays hidden
(until after the prover sends its first message α). The verifier can compute its public
verification key, which is computed instance-independently, as a function of β: The
public verification key pvk is an FHE-encrypted random challenge β and the secret
verification key svk is the FHE decryption key and the challenge string,

pvk = FHE.Encfhek(β), svk = (β, fhek) .

Given the public verification key pvk, the 1-message proof procedure for x ∈ L goes as
follows:

– P computes the first sigma protocol message α← Σ.P(x,w), where w ∈ RL(x).
– P computes γ the last protocol message under the encryption, that is, P performs

the homomorphic evaluation ĉtP ← FHE.Eval(Σ.P3,FHE.Encfhek(β)).
– As the proof, P sends α out in the open and γ under the encryption, that is, the proof
is π = (α, ĉtP).

In order for the proof to stay zero-knowledge, the homomorphic evaluation needs to be
circuit-private. The verification algorithm is straightforward: Given svk, an instance x
and a proof π = (α, ĉtP), the verifier decrypts ĉtP to get γ, and accepts iff the sigma
protocol verifier accepts Σ.V(x, α, β, γ) = 1.
Is the Above Protocol Multi-Theorem-Secure? While it is intuitively clear that the
described construction is secure for a single use of the setup (that is, the above should,
with some modifications, yield a single-theorem-secure MDV-NIZK) it is provably
not multi-theorem-secure. Sigma protocols are usually parallel repetitions of 3-message
zero-knowledge protocols, for example, consider the sigma protocol which is the parallel
repetition of the zero-knowledge protocol for Graph Hamiltonicity [Blu86], which is as
follows: Given a Hamiltonian cycle C in a graph G = (V,E), the prover samples a
random permutation ϕ : V → V of the vertices and commits to the permuted graph
ϕ(G)2. The verifier then sends a random bit b, and the prover answers accordingly:

– If b = 0 it is considered as a validity check, and the prover opens all commitments
and sends ϕ. The verifier accepts if indeed the committed graph is ϕ(G).

– If b = 1 it is considered as the cycle check, and the prover opens commitments only
for the subgraph ϕ(C). The verifier accepts if the opening shows a Hamiltonian
cycle.

If the sigma protocol used in the above MDV-NIZK construction is the parallel repe-
tition of the zero-knowledge protocol for Hamiltonicity3, then there is a polynomial-time

2That is, the prover commits to all of the cells in the adjacency matrix that represents the
graph ϕ(G).

3We take the Hamiltonicity protocol only as a concrete easy example and in fact any other
sigma protocol can take the role of this protocol in our context of attacking the soundness.

3

malicious prover P∗ that given multiple access to the verifier’s verdict function V(svk, ·)
using the same public/secret verification key pair, can decode the encrypted challenge
string β (which is polynomially-many random bits, each bit is for the i-th parallel
repetition of the zero-knowledge protocol) and consequently break the soundness.

P∗ takes a Hamiltonian graph G and a Hamiltonian cycle C in it, and will decode
the entire β = (b1, b2, · · · , bk) bit-by-bit: To decode bi, P∗ will honestly execute the
zero-knowledge protocol prover’s algorithm for all indices but index i (that is, for all
j 6= i, it will honestly compute Com(ϕj(G)) and under the encryption, the opening of
either the entire graph and the permutation of just the cycle ϕj(C)), for which it is going
to operate as follows. P∗ will guess that bi = 0 and send a commitment to a permutation
of the graph out in the open and under the encryption act as if bi = 0 regardless of the
actual value of bi. By the verifier’s acceptance or rejection it will know whether the bit
was 0 or 1. After decoding β the prover can now use this information to "prove" that any
graph G is Hamiltonian.

From Single-Theorem to Multi-Theorem Security. In the above attack the prover
heavily relied on a specific operation: It uses a yes-instance (in the above case, a
Hamiltonian graph G), in order to decode the random challenge β and then goes on to
use the knowledge of β to give a false proof for a no-instance (again, in the above, a non
Hamiltonian graph G∗).

Crucially, P∗ does not know how to decode β when the graph is not Hamiltonian.
More specifically, in the above we decode β bit-by-bit rather than all at once, and this
ability comes from the fact that G is Hamiltonian and the zero-knowledge protocol is
complete, thus P∗ can be sure that if it honestly executes the zero-knowledge protocol
for all indices but i, the only index that can make the proof get rejected is i. In this
isolation, checking whether the challenge bit bi is 0 or 1 becomes easy. However, if the
graph is not Hamiltonian then the prover cannot know which index made the proof get
rejected because all k indices are prone to rejection. Formally, by the soundness of the
sigma protocol, we know that the answer from the verdict function of the verifier in this
case will always be a rejection for any polynomial (or even sub-exponential) number of
queries, with overwhelming probability. This means in particular that the prover cannot
decode anything through the oracle access to the verdict function.

Our fix to the first protocol is based on the above observation: If we could make the
random challenge β change with the instance at hand it seems that the decoding attack
is neutralized, because even if the prover decodes βG the challenge for a Hamiltonian
graph G, it doesn’t have information about βG∗ the challenge of some non Hamiltonian
G∗. Since the instance x is in particular a classical string we can make the challenge
change with the instance: The public verification key will not be an encrypted challenge
β but instead will be a secret key prfk of a pseudorandom function PRF. The prover will
compute α out in the open as before but the homomorphic evaluation changes: under
the encryption, P will compute the challenge string as the PRF’s output on the instance
βx = PRF.Fprfk(x), and then compute γ for the challenge βx.

Extraction by Non-interactive Zero Knowledge for NP. Up to this point we only
came close to constructing a provably-secure MDV-NIZK. Indeed, we didn’t even use
any NIZK tools yet for NP, and in order to prove the security of our construction we
need knowledge extraction from both the prover and verifier.

4

To prove soundness, our thought process is roughly the following: We know that
the prover computes γ obliviously under the FHE, more precisely, it homomorphically
evaluates the circuitCx,r that computes βx = PRF.Fprfk(x) and then given βx computes
γ. The part of the circuit Cx,r that computes γ from βx is the "non-trivial" part of the
circuit and is determined by a secret string r (which is the information that the honest
sigma protocol prover uses in order to compute γ, this information is the randomness
of the prover and possibly the witness). If we could extract r from a prover (e.g. by
the prover giving a proof of knowledge on the non-trivial part of the circuit Cx,r) that
successfully cheats in the NIZK protocol then we could get a successfully cheating
prover for the sigma protocol and thus prove security. To see this, note that by the hiding
of the FHE and by the pseudorandomness of the PRF, even if as the public verification
key we send an encryption of 0 instead of an encryption of the PRF secret key, the
string r still needs to yield a circuit Cx,r that does well in generating a satisfying γ for
a now-truly-random challenge β.

On the zero knowledge side we also need extraction; we recall a basic property of
a sigma protocol: if the sigma protocol simulator knows the challenge string β before
sending the first message α then it can simulate a view that is indistinguishable from
the real interaction with the honest prover. This means that the information we want to
extract from the malicious verifier is the secret PRF key prfk that in particular holds the
information for obtaining βx.

We solve both extraction tasks by a combination of a two-sided NP NIZK and a
public-key encryption scheme with pseudorandom public keys. Given the existence of a
PKE scheme (PKE.Gen,PKE.Enc,PKE.Dec)with pseudorandom public keys of length
`we take the common random string of our protocol to be (1) the common random string
of an NP NIZK (NIZK.Setup,NIZK.P,NIZK.V) protocol which we denote with crs,
concatenated with (2) a random string of length `whichwe denote with ek (for extraction
key).

We will let each of the parties encrypt, using PKE.Encek(·), the secrets that we
want to extract and then use the NIZK to prove consistency between the content of the
PKE encryption and the protocol computations. More precisely, as part of its 1-message
proof, the prover will give a proof πP that the string r encrypted using the PKE yields
the (canonical) circuitCx,r that it used for the (circuit-private) homomorphic evaluation
that generated γ, and the verifier, as part of its public verification key, will give a proof
πV that the PRF key prfk that is encrypted using the PKE is the same key encrypted
with the FHE. Note that the information that the parties encrypt using a random string
instead of a real PKE key stays secure due to the fact that a real key is indistinguishable
from a random string, and thus an adversary that manages to break the PKE when it
uses a random string as the public key can break the pseudorandomness property of the
public keys.

When wanting to extract information (either in the soundness reduction or in the
zero-knowledge simulation), we will sample ek using the PKE key-generation algorithm
(ek, sk) ← PKE.Gen, and since the public keys are pseudorandom the change in key
distribution won’t be felt by either of the parties. At that point the parties encrypt their
secrets and prove they do so using the NIZK, and the extractor can just use the PKE
decryption PKE.Decsk(·) to obtain the secrets.

5

Compiling Quantum Protocols.Our technique so far is entirely classical and compiles
classical sigma protocols. We now ask whether it works to compile quantum sigma
protocols. This can be answered in turn by answering the following question: what
properties of the sigma protocol exactly did we use in order for the MDV-NIZK protocol
to work?

It can be verified that even if we don’t assume nothing on the sigma protocol that we
compile, every action in the MDV-NIZK protocol except the homomorphic evaluation
of the circuit Cx,r can stay exactly the same. Regarding the homomorphic evaluation,
the issue that we have is the following: In order to still be able to extract the information
r of the circuit Cx,r from the prover, the computation that takes βx and outputs γ needs
to be a classical circuit. This is not necessarily the case in a quantum protocol. For
example, in the quantum zero-knowledge protocol for QMA of [BJSW16] (which is also
the basis for the quantum NIZK protocol of [CVZ19]), in order to generate γ given α, β,
first a quantum Clifford operation that is chosen with respect to β needs to be executed
on α, followed by a measurement. Then, the prover proves in ZK that the classical string
obtained by the measurement satisfies some properties4. With this goal in mind, we
identify a different quantum protocol that in fact does satisfy the property that γ can be
computed by an entirely classical circuit.

We consider the Consistency of Local Density Matrices (CLDM) problem [Liu06],
which is a QMA problem with some special properties. In [BG19] Broadbent and Grilo
show that CLDM is QMA-complete and how to construct a very simple quantum zero-
knowledge protocol for it. The [BG19] zero-knowledge protocol for CLDM is as follows:
Given a quantum witness |w〉, the protocol starts with the prover sending a quantum
one-time pad encryption of |w〉 as the message α. More precisely, for a length-l witness
it samples classical random pads a, b← {0, 1}l, applies⊗

i∈[l]

(
Xai · Zbi

)
· |w〉 ,

and then sends as α the transformed quantum state and classical commitments to the
QOTP keys a, b. For a random challenge β, the prover response γ is an opening to part
of the state. We find the CLDM problem and specifically the zero-knowledge protocol
for it especially attractive for our purposes as γ is only a function of the randomness of
the prover and the challenge β, which in particular means that the circuit Cx,r can stay
classical in our setting.

Finally, by using the sigma protocol yielded by the parallel repetition of the zero-
knowledge protocol from [BG19] we obtain a clean and simple non-interactive computa-
tional zero-knowledge argument system for the class QMA in the malicious designated-
verifier model:

1. Common Random String: (crs, ek).
2. Public andSecretVerificationKeys:prfk← PRF.Gen(1λ), fhek← FHE.Gen(1λ),

pvk =
(
FHE.Encfhek(prfk), PKE.Encek(prfk), πV

)
, svk =

(
prfk, fhek

)
.

4in that protocol it is also needed that the verifier itself makes the Clifford operation and
measurement, which makes the protocol more challenging to use for a NIZK protocol.

6

For any prover that wishes to give a proof for an instance x ∈ Lyes, it executes the
following:

– Proof: If πV is valid, P computes α← Ξ.P(|w〉; r) and sends

|π〉 =
(
α, FHE.Eval(Cx,r,FHE.Enc(prfk)), PKE.Encek(r), πP

)
.

1.3 Related Work

In this section we discuss the main challenges in the construction of non-interactive
zero-knowledge protocols for QMA (specifically in the CRS model) and the previous
works on QMA NIZKs.

Can we Build a NIZK protocol for QMA in the CRS model? In short, the answer
to the above question is that we don’t know, and this section does not aim to answer it.
This section is intended to give some evidence to why constructing a NIZK for QMA
in the CRS model seem to require a different set of techniques from what we currently
have for NP. In what follows we will start with briefly recalling how NIZKs for NP are
constructed and then understand why current approaches fail in the setting of quantum
proofs.
NP, Fiat-Shamir andCorrelation Intractability. In order to construct a non-interactive
zero-knowledge protocol for NP under standard assumptions, the construction starts with
a sigma protocol (Σ.P, Σ.V). To make the protocol non-interactive, the Fiat-Shamir
transform is applied: By assuming public oracle access to a random function F , the
prover applies it to α and treat its (random-string) output F (α) as the challenge string β.
It then computes γ and sends all of this information to the verifier, who makes sure that
β was rightfully generated β = F (α), and that the sigma protocol verifierΣ.V(α, β, γ)
accepts. Since we don’t know how to construct a cryptographic primitive that acts as a
publicly-computable random function, the above protocol is secure only in the random
oracle model, that is, only if we directly assume public access to such random function
F .

In order to prove the security of the NIZK protocol in the standard model (with
access to a common reference string rather than a random oracle), the final part of the
construction involves swapping the random function F with a new, special hash function
H - this general technique of swapping F with a special hash function H is usually
called the Correlation Intractability (CI) paradigm [CGH04]. The properties of the hash
functionH or the meaning of correlation intractability are less relevant to this overview,
but it is suffices to say that under the LWE assumption it is known how to construct a
hash functionH that can be swapped with F in the FS transform and where the protocol
can be proven secure [CCH+19, PS19].
Can we use Known Classical NIZK Techniques for Quantum Protocols? There are
two known routes for getting a quantum-secure NIZK for NP in the CRS model, the
first is through the FS transform and CI (which also uses only standard assumptions,
described above) and the second is through the hidden bitsmodel and indistinguishability
obfuscation. It is natural to ask whether we can use these techniques for QMA (the

7

question of whether the FS transform can be used for quantum protocols was asked as
one of the open questions in section 1.4 of [BG19]).

We first review the ability to use the FS transform (and in particular correlation
intractability) for QMA and explain why there is an issue with the no-cloning theorem.
In the quantum setting, sigma protocols (Ξ.P, Ξ.V) [BG19, BJSW16] are quite the
same but with the main difference that the first message α is quantum (and of course,
the prover takes as input a quantum witness |w〉 rather than classical). Recall that when
we use the FS transform on a sigma protocol in order to generate a NIZK, for the
protocol to be complete, when the parties act honestly then the verifier needs to verify
that the random function F yields the challenge, that is F (α) = β. This means that
now F needs to be a quantum transformation such that for x ∈ Lyes and an honestly
generated α← Ξ.P(|w〉), F (α) is always the same classical string (with overwhelming
probability). Also, for the protocol to be sound we need that the entire output of F
will be the chellenge β and it cannot be the case for example that the output F (α) will
contain one register with the classical string β and another register with some quantum
state |ψ〉. Now, denote by s the classical string s.t. F (α) = s, and we have a generating
circuit for the quantum witness: |w〉 = Ξ.P†(·) · F † · |s〉, where the inverse versions of
F and Ξ.P are purified. This seems to violate the no-cloning theorem in the following
manner: the prover gets a copy of the witness and can generate a generating circuit for
the witness state, this circuit can be used to generate arbitrarily many copies of the state.
Finally, because we can always consider a trivial language with a dummy witness, and
take the quantum witness to be some unclonable state (for example, a pseudorandom
quantum state) we get a contradiction to the no-cloning theorem.

Even if we aim to construct a NIZK using the FS transform for QCMA, the subclass
of QMA where the verification algorithm is still quantum but the witness is classical,
the problem is not seemed to be solved. The reason, is that we don’t know how to
construct sigma protocols for QCMA where the first message α is classical, and the
same contradiction to the no-cloning theorem holds.

The second known route of obtaining a quantum-secure NIZK protocol for NP in the
CRS model is through the hidden bits model [FLS99] which is implementable by sub-
exponentially-secure indistinguishability obfuscation [BP15]. In the hidden bits model,
intuitively (and roughly), the trusted party samples as the common reference string
a commitment to a string sampled from some distribution (where by using a trapdoor
permutation, the prover can open the commitments efficiently), and the prover proves that
the instance at hand x ∈ Lyes satisfies some property related to the string underlying
the commitments. Even if we are willing to assume the very strong cryptographic
assumptions which are needed for the realization of this protocol (i.e. sub-exponentially-
secure post-quantum indistinguishability obfuscation), it is currently unknown how
to use the hidden bits model to instantiate non-interactive zero-knowledge quantum
protocols.

Relaxations of the CRS Model and Previous Work The constructions of NIZKs for
NP discussed in subsection 1.3 are implicitly in the CRSmodel, where the setup consists
of a string that is sampled and published by the trusted party, in particular, nor the prover
or verifier hold any trapdoors over the setup. Sometimes when it is unknown how to

8

build a NIZK in the CRS model (or unknown how to minimize the assumptions for
building one) we turn to relaxations of the CRS model. For example, in the designated-
verifier model (DV-NIZK) [PV+06] the trusted party samples, along with the CRS, a
pair of public and secret verification keys (pvk, svk), publishes pvk along with the CRS
and hands svk only to the verifier. Another example is the designated prover model
(DP-NIZK) [KW19], which is analogous to the DV-NIZK model, only that the prover
is the one who gets a secret, now-proof key.

It is a well known fact in the design of NIZKs that when the verifier holds a
secret verification key (e.g. in the DV-NIZK model) then multi-theorem zero knowledge
can be achieved generically by the compiler of [FLS99], but multi-theorem soundness
becomes non-trivial. For example, it is possible (and is sometimes provably the case)
that the prover can decode the verifier’s secret key by having access multiple times to the
verifier’s verdict function, consequently breaking the soundness of the protocol. Indeed,
one example is that until the works of [QRW19, LQR+19], based on [PV+06] it was
only known how to get single-theorem-secure DV-NIZK for NP, and another example is
that this is the current situation with QMA constructions of NIZK protocols.

The QMANIZK protocol of Broadbent and Grilo [BG19] is in the secret parameters
model (i.e. the protocol is both designated-prover and designated-verifier and both parties
get secret keys from the trusted party) but is a proof system and has statistical soundness
rather than the computational soundness we achieve. The protocol of Coladangelo,
Vidick and Zhang [CVZ19] is in a model that is somewhat between the common
reference string model and the DV-NIZK model, where the trusted party samples a
common reference string and the verifier itself samples a pair (pvk, svk) where pvk is
a quantum state. Morimae [Mor20] shows a classical-designated-verifier NIZK proof
system for QMA with a quantum trusted setup. Outside of the standard model, an
additional construction by Alagic, Childs, Grilo and Hung [ACGH19] yields a QMA
NIZK argument in the quantum random oracle model (with additional setup in the secret
parameters model) which is classical-verifier. All of the abovementioned protocols are
not reusable.

There are two main issues with letting the trusted party sample secret keys for any of
the parties: First, the trust requirements of the setup now increase as the party receiving
the secret key should assume that the trusted party handles its secret information securely.
The second issue is that of centralization of computational resources: for example, in
the DV-NIZK model, the trusted party is now responsible for sampling a fresh pair
(pvk, svk) for every new verifier that wishes to use the protocol, which is very different
from the CRS setting where it samples a string and from that point on can terminate.

The malicious designated-verifier (MDV-NIZK) model [QRW19, LQR+19] seeks
to solve the above two problems, which is also the model of our protocol. In the
MDV-NIZK model the trusted party only samples a common random string, and then,
any verifier wishing to use the protocol can sample by itself a pair of classical keys
(pvk, svk) and publish pvk. The protocol then stays secure even if the public key pvk is
maliciously-generated.

9

1.4 Subsequent Work

Subsequently to this work, several related constructions for NIZK protocols for QMA
are shown. Morimae and Yamakawa construct a classically verifiable dual-mode NIZK
for QMA, with quantum preprocessing [MY21]. The result is essentially in the same
model of the protocol of Coladangelo, Vidick and Zhang [CVZ19], that is, the CRS
is published, and then the verifier sends an instance-independent quantum message to
the prover, keeping a classical trapdoor. Given the instance, witness and the verifier’s
quantum message, the prover can perform an efficient quantum procedure and send a
classical message to the verifier which acts as a proof. The improvement of [MY21]
over [CVZ19] is that the protocol is dual-mode and has two modes: (1) a proof (with
statistical soundness) and computational ZK guarantee and (2) an argument (with com-
putational soundness guarantee) and statistical ZK, rather than only an argument mode,
that [CVZ19] enables.

Bartusek, Coladangelo, Khurana and Ma also construct an MDV-NIZK protocol
for QMA [BCKM20], and improve our result in two aspects. First, in order to get
adaptive soundness (over standard soundness) we need to assume the subexponential
(quantum) hardness of LWE, while [BCKM20] only requires assuming the polynomial
(quantum) hardness of LWE. Second, our protocol requires polynomially-many copies
of the quantum witness for the QMA instance x, while the protocol of [BCKM20] is a
single-witness protocol.

Acknowledgments We thank Nir Bitansky and Zvika Brakerski for helpful discussions
during the preparation of this work.

2 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

– A PPT algorithm is a probabilistic polynomial-time Turing machine.
– Let M be a PPT and let x denote the random variable which is the output of
M . Whenver the entropy of the output of M is non-zero, we denote the random
experiment of sampling x with x←M(·). If the entropy of the output ofM is zero
(i.e.M is deterministic), we denote x =M(·).

– We sometimes think about PPT algorithms as polynomial-size uniform families
of circuits, these are equivalent models. A polynomial-size circuit family C is a
sequence of circuits C = {Cλ}λ∈N, such that each circuit Cλ is of polynomial size
λO(1). We say that the family is uniform if there exists a deterministic polynomial-
time algorithmM that on input 1λ outputs Cλ.

– For a PPT algorithm M , we denote by M(x; r) the output of M on input x and
random coins r. For such an algorithm and any input x, we write m ∈ M(x) to
denote the fact thatm is in the support ofM(x; ·).

We follow standard notions from quantum computation.

– A QPT algorithm is a quantum polynomial-time Turing machine.

10

– We sometimes think about QPT algorithms as polynomial-size uniform families of
quantum circuits, these are equivalent models. A polynomial-size quantum circuit
family C is a sequence of quantum circuits C = {Cλ}λ∈N, such that each circuit
Cλ is of polynomial size λO(1). We say that the family is uniform if there exists a
deterministic polynomial-time algorithmM that on input 1λ outputs Cλ.

– An interactive algorithm M , in a two-party setting, has input divided into two
registers and output divided into two registers. For the input, one register Im is
for an input message from the other party, and a second register Ia is an auxiliary
input that acts as an inner state of the party. For the output, one register Om is for a
message to be sent to the other party, and another register Oa is again for auxiliary
output that acts again as an inner state. For a quantum interactive algorithmM , both
input and output registers are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum
circuits with non-uniform quantum advice (i.e. quantum auxiliary input). Formally,
a polynomial-size adversary A∗ = {A∗λ, ρλ}λ∈N, consists of a polynomial-size non-
uniform sequence of quantum circuits {A∗λ}λ∈N, and a sequence of polynomial-size
mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed
without loss of generality that its output message register is always measured in the
computational basis at the end of computation. This assumption is indeed without the
loss of generality, because whenever a quantum state is sent through a classical channel
then qubits decohere and are effectively measured in the computational basis.

Indistinguishability in the Quantum Setting.

– Let f : N→ [0, 1] be a function.
• f is negligible if for every constant c ∈ N there exists N ∈ N such that for all
n > N , f(n) < n−c.

• f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N ,
f(n) ≥ n−c.

• f is overwhelming if it is of the form 1− µ(n), for a negligible function µ.
– Wemay consider random variables over bit strings or over quantum states. This will
be clear from the context.

– For two random variables X and Y supported on quantum states, quantum dis-
tinguisher circuit D with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write
X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

– Twoensembles of randomvariablesX = {Xi}λ∈N,i∈Iλ ,Y = {Yi}λ∈N,i∈Iλ over the
same set of indices I = ·∪λ∈NIλ are said to be computationally indistinguishable,
denoted by X ≈c Y , if for every polynomial-size quantum distinguisher D =
{Dλ, ρλ}λ∈N there exists a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .

11

– The trace distance between two distributions X,Y supported over quantum states,
denoted TD(X,Y), is a generalization of statistical distance to the quantum setting
and represents the maximal distinguishing advantage between two distributions
supported over quantum states, by unbounded quantum algorithms. We thus say
that ensembles X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ , supported over quantum
states, are statistically indistinguishable (and write X ≈s Y), if there exists a
negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

TD(Xi, Yi) ≤ µ(λ) .

In what follows, we introduce the cryptographic tools used in this work. By default,
all algorithms are classical and efficient, and security holds against polynomial-size
non-uniform quantum adversaries with quantum advice.

2.1 Cryptographic Tools

Interactive Proofs and Sigma Protocols We define interactive proof systems and
then proceed to describe sigma protocols, which are a special case of interactive proof
systems. In what follows, we denote by (P,V) a protocol between two parties P and V.
For common input x, we denote by OUTV〈P,V〉(x) the output of V in the protocol. For
honest verifiers, this output will be a single bit indicating acceptance or rejection of the
proof. Malicious quantum verifiers may have arbitrary quantum output.

Definition 1 (Quantum Proof Systems for QMA). Let (P,V) be a quantum protocol
with an honest QPT prover P and an honest QPT verifier V for a problem L ∈ QMA,
satisfying:

1. Statistical Completeness: There is a polynomial k(·) and a negligible function µ(·)
s.t. for any λ ∈ N, x ∈ L ∩ {0, 1}λ, |w〉 ∈ RL(x)5,

Pr[OUTV〈P(|w〉⊗k(λ)),V〉(x) = 1] ≥ 1− µ(λ) .

2. Statistical Soundness: There exists a negligible function µ(·), such that for any
(unbounded) prover P∗, any security parameter λ ∈ N, and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗,V〉(x) = 1] ≤ µ(λ) .

We use the abstraction of Sigma Protocols, which are public-coin three-message
proof systems with a weak zero-knowledge quarantee. We define quantum Sigma Pro-
tocols for gap problems in QMA.

Definition 2 (Quantum Sigma Protocol for QMA). A quantum sigma protocol for
L ∈ QMA is a quantum proof system (Ξ.P, Ξ.V) (as in Definition 1) with 3 messages
and the following syntax.

5For a problem L = (Lyes,Lno) in QMA, for an instance x ∈ Lyes, the set RL(x) is the
(possily infinite) set of quantum witnesses that make the BQP verification machine accept with
some overwhelming probability 1− negl(λ).

12

– α = Ξ.P(|w〉⊗k(λ); r) :Given k(λ) copies of the quantum witnessw ∈ RL(x) and
classical randomness r, the first prover message consists of a quantum message α
generated by a quantum unitary computation Ξ.P.

– β ← Ξ.V(x) : The verifier simply outputs a string of poly(|x|) random bits.
– γ = Ξ.P3(β, r) : Given the verifier’s β and the randomness r, the prover outputs a

response γ by a classical computation Ξ.P3.

The protocol satisfies the following.

Special Zero-Knowledge: There exists a QPT simulator Ξ.Sim such that,{
(α, γ) | r ← U`(λ), α = Ξ.P(|w〉⊗k(λ); r), γ = Ξ.P3(β, r)

}
λ,x,|w〉,β

≈c {(α, γ) | (α, γ)← Ξ.Sim(x, β)}λ,x,|w〉,β ,

where λ ∈ N, x ∈ L∩{0, 1}λ, |w〉 ∈ RL(x), β ∈ {0, 1}poly(λ) and `(λ) is the amount
of randomness needed for the first prover message.

Instantiations. Quantum sigma protocols follow from the parallel repetition of the
3-message quantum zero-knowledge protocols of [BG19] for QMA.

Leveled Fully-Homomorphic Encryption with Circuit Privacy We define a leveled
fully-homomorphic encryption scheme with circuit privacy, that is, for an encryption
ct = FHE.Enc(x) and a circuit C, a C-homomorphically-evaluated ciphertext ĉt =
FHE.Eval(C, ct) reveals nothing on C but C(x).

Definition 3 (Circuit-Private Fully-Homomorphic Encryption). A circuit-private,
leveled fully-homomoprhic encryption scheme (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec)
has the following syntax:

– sk ← FHE.Gen(1λ, 1s(λ)) : a probabilistic algorithm that takes a security param-
eter 1λ and a circuit size bound s(λ) and outputs a secret key sk.

– ct ← FHE.Encsk(x) : a probabilistic algorithm that given the secret key, takes a
string x ∈ {0, 1}∗ and outputs a ciphertext ct.

– ĉt← FHE.Eval(C, ct) : a probabilistic algorithm that takes a (classical) circuit C
and a ciphertext ct and outputs an evaluated ciphertext ĉt.

– x̂ = FHE.Decsk(ĉt) : a deterministic algorithm that takes a ciphertext ĉt and
outputs a string x̂.

The scheme satisfies the following.

– Perfect Correctness: For any polynomial s(·), for any λ ∈ N, size-s(λ) classical
circuit C and input x for C,

Pr

FHE.Decsk(ĉt) = C(x)

∣∣∣∣∣∣
sk← FHE.Gen(1λ, 1s(λ)),
ct← FHE.Encsk(x),
ĉt← FHE.Eval(C, ct)

 = 1 .

13

– Input Privacy: For every polynomial `(·) (and any polynomial s(λ)),{
ct

∣∣∣∣ sk← FHE.Gen(1λ, 1s(λ)),
ct← FHE.Encsk(x0)

}
λ,x0,x1

≈c
{
ct

∣∣∣∣ sk← FHE.Gen(1λ, 1s(λ)),
ct← FHE.Encsk(x1)

}
λ,x0,x1

,

where λ ∈ N and x0, x1 ∈ {0, 1}`(λ).
– Statistical Circuit Privacy: There exist unbounded algorithms, probabilistic Sim

and deterministic Ext such that:
• For every x ∈ {0, 1}∗, ct ∈ FHE.Enc(x), the extractor outputs Ext(ct) = x.
• For any polynomial s(·),

{FHE.Eval(C, ct∗)}λ,C,ct∗ ≈s {Sim(1λ, C(Ext(1λ, ct∗)))}λ,C,ct∗ ,

where λ ∈ N, C is a s(λ)-size circuit, and ct∗ ∈ {0, 1}∗.

The next claim follows directly from the circuit privacy property, and will be used
throughout the analysis.

Claim (Evaluations of Agreeing Circuits are Statistically Close). For any polynomial
s(·),

{FHE.Eval(C0, ct
∗)}λ,C0,C1,ct ≈s {FHE.Eval(C1, ct

∗)}λ,C0,C1,ct ,

where λ ∈ N, C0, C1 are two s(λ)-size functionally-equivalent circuits, and ct∗ ∈
{0, 1}∗.

Instantiations.Circuit-private leveledFHEschemes are knownbased onLWE[OPCPC14,
BD18].

Pseudorandom-keyPublic-keyEncryption Wedefine a public-key encryption scheme
with pseudorandom public keys.

Definition 4 (Pseudorandom-keyPublic-keyEncryption).Apseudorandom-key public-
key encryption scheme (PKE.Gen, PKE.Enc, PKE.Dec) has the following syntax:

– (pk, sk)← PKE.Gen(1λ) : a probabilistic algorithm that takes a security parameter
1λ and outputs a pair of public and secret keys (pk, sk).

– ct ← PKE.Encpk(x) : a probabilistic algorithm that given the public key, takes a
string x ∈ {0, 1}∗ and outputs a ciphertext ct.

– x = PKE.Decsk(ct) : a deterministic algorithm that given the secret key, takes a
ciphertext ct and outputs a string x.

The scheme satisfies the following.

– Statistical Correctness Against Malicious Encryptors: There is a negligible
function negl(·) such that for any λ ∈ N and input x ∈ {0, 1}∗, the follow-
ing perfect correctness holds with probability at least 1 − negl(λ) over sampling
(pk, sk)← PKE.Gen(1λ):

Pr [PKE.Decsk(ct) = x | ct← PKE.Encpk(x)] = 1 .

14

– Public-key Pseudorandomness: For λ ∈ N let `(λ) be the length of the public key
generated by PKE.Gen(1λ), then,{

pk
∣∣ (pk, sk)← PKE.Gen(1λ)

}
λ∈N ≈c

{
U`(λ)

}
λ∈N .

– Encryption Security: For every polynomial l(·),{
(pk, ct)

∣∣∣∣ (pk, sk)← PKE.Gen(1λ),
ct← PKE.Encpk(x0)

}
λ,x0,x1

≈c
{
(pk, ct)

∣∣∣∣ (pk, sk)← PKE.Gen(1λ),
ct← PKE.Encpk(x1)

}
λ,x0,x1

,

where λ ∈ N and x0, x1 ∈ {0, 1}l(λ).

Instantiations. Pseudorandom-key public-key encryption schemes are known based on
LWE [Reg09].

Pseudorandom Function

Definition 5 (Pseudorandom Function (PRF)). A pseudorandom function scheme
(PRF.Gen, PRF.F) has the following syntax:

– sk← PRF.Gen(1λ, 1`(λ)) : a probabilistic algorithm that takes a security parame-
ter 1λ and an output size `(λ) and outputs a secret key sk.

– y = PRF.Fsk(x) : a deterministic algorithm that given the secret key, takes a string
x ∈ {0, 1}∗ and outputs a string y ∈ {0, 1}`(λ).

The scheme satisfies the following property.

– Pseudorandomness:For every quantumpolynomial-size distinguisherD = {Dλ, ρλ}λ∈N
and polynomial `(·) there is a negligible function µ(·) such that for all λ ∈ N,∣∣∣∣ Pr
sk←PRF.Gen(1λ,1`(λ))

[Dλ(ρλ)
PRF.Fsk(·) = 1]− Pr

f←({0,1}`(λ))({0,1}∗)
[Dλ(ρλ)

f(·) = 1]

∣∣∣∣ ≤ µ(λ) .
NIZK Argument for NP in the Common Random String Model We define non-
interactive computational zero-knowledge arguments for NP in the common random
string model, with adaptive multi-theorem security.

Definition 6 (NICZKArgument forNP).Anon-interactive computational zero-knowledge
argument system in the common random string model for a language L ∈ NP consists
of 3 algorithms (NIZK.Setup ,NIZK.P ,NIZK.V) with the following syntax:

– crs← NIZK.Setup(1λ) : A classical algorithm that on input security parameter λ
simply samples a common uniformly random string crs.

– π ← NIZK.P(crs, x, w) : A probabilistic algorithm that on input crs, an instance
x ∈ L and a witness w ∈ RL(x), outputs a proof π.

– NIZK.V(crs, x, π) ∈ {0, 1} :Adeterministic algorithm that on input crs, an instance
x ∈ L and a proof π, outputs a bit.

15

The protocol satisfies the following properties.

– Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr
crs←NIZK.Setup(1λ),
π←NIZK.P(crs,x,w)

[
NIZK.V(crs, x, π) = 1

]
= 1 .

– Adaptive Computational Soundness: For every quantum polynomial-size prover
NIZK.P∗ = {NIZK.P∗λ, ρλ}λ∈N there is a negligible function µ(·) such that for
every security parameter λ ∈ N,

Pr
crs←NIZK.Setup(1λ),

(x,π∗)←NIZK.P∗λ(ρλ,crs)

[
(x /∈ L) ∧

(
1 = NIZK.V(crs, x, π∗)

)]
≤ µ(λ) .

– Multi-TheoremAdaptiveComputationalZeroKnowledge:There exists a polynomial-
time simulatorNIZK.Sim such that for every quantum polynomial-size distinguisher
D∗ = {D∗λ, ρλ}λ∈N there is a negligible function µ(·) such that for every security
parameter λ ∈ N,

|Pλ,Real − Pλ,Simulated| ≤ µ(λ) ,

where,

Pλ,Real := Pr
crs←NIZK.Setup(1λ)

[
D∗λ(ρλ, crs)

NIZK.P(crs,·,·) = 1
]
,

Pλ,Simulated := Pr
(c̃rs,td)←NIZK.Sim(1λ)

[
D∗λ(ρλ, c̃rs)

NIZK.Sim(td,·) = 1
]
,

where,
• In every query that D∗ makes to the oracle, it sends a pair (x,w) where
x ∈ L ∩ {0, 1}λ and w ∈ RL(x).
• NIZK.P(crs, ·, ·) is the prover algorithm and NIZK.Sim(·, ·) acts only on its
sampled trapdoor td and on x.

Instantiations.Non-interactive computational zero-knowledge arguments for NP in the
common random string model with both adaptive soundness and zero knowledge are
known based on LWE [CCH+19, PS19].

MaliciousDesignated-VerifierNon-interactiveZero-knowledge forQMA Wedefine
non-interactive zero-knowledge protocols in the malicious designated-verifier model
(MDV-NIZK) for QMA, with adaptive (and non-adaptive) multi-theorem security.

Definition 7 (MDV-NICZK Argument for QMA). A non-interactive computational
zero-knowledge argument system for in the malicious designated-verifier model for a
gap problem (Lyes,Lno) = L ∈ QMA consists of 4 algorithms (Setup ,VSetup ,P
,V) with the following syntax:

– crs← Setup(1λ) : A classical algorithm that on input security parameter λ simply
samples a common uniformly random string crs.

16

– (pvk, svk)← VSetup(crs) : A classical algorithm that on input crs samples a pair
of public and secret verification keys.

– |π〉 ← P(crs, pvk, x, |w〉⊗k(λ)) : A quantum algorithm that on input crs, the public
verification key pvk, an instance x ∈ Lyes and polynomially-many identical copies
of a witness |w〉 ∈ RL(x) (k(·) is some polynomial), outputs a quantum state |π〉.

– V(crs, svk, x, |π〉) ∈ {0, 1} : A quantum algorithm that on input crs, secret verifi-
cation key svk, an instance x ∈ L and a quantum proof |π〉, outputs a bit.

The protocol satisfies the following properties.

– Statistical Completeness: There is a polynomial k(·) and a negligible function
µ(·) s.t. for any λ ∈ N, x ∈ Lyes ∩ {0, 1}λ, |w〉 ∈ RL(x), crs ∈ Setup(1λ),
(pvk, svk) ∈ VSetup(crs),

Pr
|π〉←P(crs,pvk,x,|w〉⊗k(λ))

[
V(crs, svk, x, |π〉) = 1

]
≥ 1− µ(λ) .

– Multi-TheoremAdaptiveComputational Soundness:For every quantumpolynomial-
size prover P∗ = {P∗λ, ρλ}λ∈N there is a negligible function µ(·) such that for every
security parameter λ ∈ N,

Pr
crs←Setup(1λ),

(pvk,svk)←VSetup(crs),

(x,|π∗〉)←P∗λ(ρλ,crs,pvk)
V(crs,svk,·,·)

[
(x ∈ Lno) ∧

(
1 = V(crs, svk, x, |π∗〉)

)]
≤ µ(λ) .

– Multi-Theorem Adaptive Computational Zero Knowledge: There exists a quan-
tum polynomial-time simulator Sim such that for every quantum polynomial-size
distinguisher D∗ = {D∗λ, ρλ}λ∈N there is a negligible function µ(·) such that for
every security parameter λ ∈ N,∣∣∣∣ Pr
crs←Setup(1λ)

[
D∗λ(ρλ, crs)

P(crs,·,·,·) = 1
]
− Pr

(c̃rs,td)←Sim(1λ)

[
D∗λ(ρλ, c̃rs)

Sim(td,·,·) = 1
]∣∣∣∣ ≤ µ(λ) ,

where,
• In every query thatD∗ makes to the oracle, it sends a triplet (pvk∗, x, |w〉⊗k(λ))
where pvk∗ can be arbitrary, x ∈ Lyes ∩ {0, 1}λ and |w〉 ∈ RL(x).

• P(crs, ·, ·, ·) is the prover algorithm and Sim(·, ·) acts only on its sampled
trapdoor td and on pvk∗, x.

We note that the standard (non-adaptive) soundness guarantees the following:

Definition 8 (MDV-NICZKArgument for QMAwith Standard Soundness). A non-
interactive computational zero-knowledge argument system in the malicious designated-
verifier model for a gap problem (Lyes,Lno) = L ∈ QMA has standard non-adaptive
soundness if it satisfies the same properties described in definition 7, with the only change
that instead of satisfying multi-theorem adaptive soundness, it satisfies the following
guarantee:

17

– Multi-Theorem Computational Soundness: For every quantum polynomial-size
prover P∗ = {P∗λ, ρλ}λ∈N and {xλ}λ∈N where ∀λ ∈ N : xλ ∈ Lno, there is a
negligible function µ(·) such that for every security parameter λ ∈ N,

Pr
crs←Setup(1λ),

(pvk,svk)←VSetup(crs),

|π∗〉←P∗λ(ρλ,crs,pvk)
V(crs,svk,·,·)

[
1 = V(crs, svk, x, |π∗〉)

]
≤ µ(λ) .

3 Non-interactive Zero-knowledge Protocol

In this section we describe a non-interactive computational zero-knowledge argument
system in the malicious designated-verifier model for an arbitraryL ∈ QMA, according
to Definition 7.

Ingredients and notation:

– Anon-interactive zero-knowledge argument forNP (NIZK.Setup,NIZK.P,NIZK.V)
in the common random string model.

– A pseudorandom function (PRF.Gen,PRF.F).
– A leveled fully-homomorphic encryption scheme (FHE.Gen, FHE.Enc, FHE.Eval,
FHE.Dec) with circuit privacy.

– A public-key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec) with pseudoran-
dom public keys.

– A 3-message quantum sigma protocol (Ξ.P, Ξ.V) for QMA.

We describe the protocol in Figure 1.
The (statistical) completeness of the protocol follows readily from the perfect com-

pleteness of the NIZK scheme, the perfect correctness of FHE and the statistical com-
pleteness of the quantum sigma protocol (Ξ.P, Ξ.V). We next prove the soundness and
zero knowledge of the protocol.

3.1 Soundness

We prove that the protocol has multi-theorem computational soundness (as in Definition
8). By standard generic compilation and sub-exponential hardness of LWE we extend
our soundness to be adaptive (as in Definition 7).

Proposition 1 (The Protocol has Multi-theorem Computational Soundness). For
every quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N there is a negligible function
µ(·) such that for every security parameter λ ∈ N and x ∈ Lno ∩ {0, 1}λ,

Pr
(crs,ek)←Setup(1λ),(

(ctV,ctrV ,πV),(prfk,fhek)
)
←VSetup(crs,ek),

|π∗〉←P∗λ

(
ρλ,(crs,ek),(ctV,ctrV ,πV)

)V((crs,ek),(prfk,fhek),·,·)
[
1 = V((crs, ek), (prfk, fhek), x, |π∗〉)

]
≤ µ(λ) .

18

Protocol 1

Common Input: An instance x ∈ Lyes ∩ {0, 1}λ, for security parameter λ ∈ N.
P’s private input: Polynomially many identical copies of a witness for x: |w〉⊗k(λ) s.t.
|w〉 ∈ RL(x).

1. Common Random String: Setup samples the common random string of the NP NIZK
argument, crs← NIZK.Setup(1λ) and an additional random string ek← U`(λ) where
`(λ) is the size of a public key generated by PKE.Gen(1λ). Setup publishes (crs, ek)
as the common random string.

2. Public and Secret Verification Keys: VSetup samples public and secret verification
keys:
– Samples prfk← PRF.Gen(1λ), fhek← FHE.Gen(1λ) and encrypts the PRF key

using the FHE encryption, ctV ← FHE.Encfhek(prfk).
– Let rV be the randomness used for PRF.Gen,FHE.Gen,FHE.Enc. VSetup

encrypts ctrV ← PKE.Encek(rV) and computes a NIZK proof πV ←
NIZK.P(crs, (ctV, ctrV , ek)), for the NP statement declaring that the tuple
(ctV, ctrV , ek) is consistent.

a

The key values are: pvk = (ctV, ctrV , πV), svk = (prfk, fhek).
3. Non-interactive Zero-knowledge Proof: Given (crs, ek) and pvk, P first checks that

1 = NIZK.V(crs, (ctV, ctrV , ek), πV) and aborts otherwise.
– P computes the sigma protocol message α = Ξ.P(|w〉⊗k(λ); rΞ), for randomness
rΞ .

– P computes ĉtP ← FHE.Eval(Cx,rΞ , ctV), where Cx,rΞ is the following circuit:
Given input prfk a PRF secret key, Cx,rΞ computes βx = PRF.Fprfk(x), and then
outputs γ = Ξ.P3(βx, rΞ).

– P encrypts ctrΞ ← PKE.Encek(rΞ) and computes a NIZK proof πP ←
NIZK.P(crs, (ĉtP, ctrΞ , ek)), for the NP statement declaring that the tuple
(ĉtP, ctrΞ , ek) is consistent.

b

P sends |π〉 = (α, ĉtP, ctrΞ , πP) to V.
4. Verification: Given (crs, ek), svk and |π〉, V accepts iff all of the following holds:

– 1 = NIZK.V(crs, (ĉtP, ctrΞ , ek), πP).
– Let βx = PRF.Fprfk(x), γ = FHE.Decfhek(ĉtP), then 1 = Ξ.V(x, α, βx, γ).

aFormally, there exist r1, r2 s.t. ctV is generated by usingPRF.Gen,FHE.Gen,FHE.Enc
with randomness r1, and ctrV = PKE.Encek(r1; r2).

bFormally, there exist rΞ , r1, r2 s.t. ĉtP = FHE.Eval(Cx,rΞ , ctV; r1), ctrΞ =
PKE.Encek(rΞ ; r2).

Fig. 1: A non-interactive computational zero-knowledge argument system forL ∈ QMA
in the malicious designated-verifier model.

Proof. Let P∗ = {P∗λ, ρλ}λ∈N a polynomial-size quantum prover and let {xλ}λ∈N s.t.
∀λ ∈ N : xλ ∈ Lno ∩ {0, 1}λ. We prove soundness by a hybrid argument, that is,
we consider a series of computationally-indistinguishable hybrid processes with output
over {0, 1}, starting from the output of the verifier (for the prover’s false proof) in the

19

real inteaction, until we get to a distribution where the output of the verifier can be 1
with at most negligible probability. We define the following processes.

– Hyb0 : The output distribution of the verifier in the real interaction, that is, for

(crs, ek)← Setup(1λ) ,
(
(ctV, ctrV , πV), (prfk, fhek)

)
← VSetup(crs, ek) ,

|π∗〉 ← P∗λ
(
ρλ, (crs, ek), (ctV, ctrV , πV)

)V((crs,ek),(prfk,fhek),·,·)
,

the output bit V((crs, ek), (prfk, fhek), x, |π∗〉).
– Hyb1 : This hybrid process is identical to Hyb0, with the exception that ek is
sampled as a public key for the PKE scheme (ek, sk)← PKE.Gen(1λ), rather than
as a random string of the same length. To move to this hybrid we will use the fact
that the public keys of the PKE scheme are pseudorandom.

– Hyb2 : This hybrid process is identical to Hyb1, with the exception that the verifica-
tion algorithm (described in step 4 of the protocol) changes. The new verifier Ṽ still
makes sure that πP is a valid proof for (ĉtP, ctrΞ , ek), but the second check changes
to the following: Let rΞ = PKE.Decsk(ctrΞ), and let γ = Ξ.P3(βx, rΞ). Then Ṽ
accepts if 1 = Ξ.V(x, α, βx, γ). To move to this hybrid we will use the (adaptive)
soundness property of the NP NIZK proof that P∗ provides.

– Hyb3 : This hybrid process is identical to Hyb2, with the exception that when
generating the CRS (crs, ek) and the public verification key pvk = (ctV, ctrV , πV),
(1) the CRS for the NP NIZK is simulated (crs, td)← NIZK.Sim(1λ), (2) the proof
πV is simulated πV ← NIZK.Sim(td, (ctV, ctrV , ek)) rather than generated by the
NP NIZK prover. To move to this hybrid we use the zero-knowledge property of the
NP NIZK proof that V provides.

– Hyb4 : This hybrid process is identical to Hyb3, with the exception that when
generating pvk = (ctV, ctrV , πV), ctrV is just an encryption of a string of zeros (of
the same length) rather than the randomness rV. To move to this hybrid we use the
security of the PKE scheme.

– Hyb5 : This hybrid process is identical to Hyb4, with the exception that when
generating pvk = (ctV, ctrV , πV), ctV is just an encryption of a string of zeros (of
the same length) rather than the FHE encryption of the secret PRF key prfk. To
move to this hybrid we use the security of the FHE scheme.

– Hyb6 : This hybrid process is identical toHyb5, with the exception that the modified
verification algorithm Ṽ from Hyb2 is now going to be a new stateful algorithm Ṽs.
The new verifier Ṽs still makes sure that πP is a valid proof for (ĉtP, ctrΞ , ek), but
the second check changes to the following: It is identical to that of Ṽ, except that βx
is now lazily sampled as a truly random string, that is, every time P∗ sends a query
for some x′, instead of computing βx′ = PRF.Fprfk(x

′), Ṽs samples βx′ a truly
random string of the same length and remembers it for future queries by the prover
(for the same x′). To move to this hybrid we use the pseudorandomnes guarantee of
the PRF.

– Hyb7 :This hybrid process is identical toHyb6, with the exception that the behaviour
of the verification algorithm Ṽs changes in the following way: Consider t the first
time step in the execution of P∗ (in Hyb6) such that with a noticeable probability,
P∗ sends a pair (x′, |π∗〉) such that (1) x′ ∈ Lno and (2) the modified verification

20

algorithm Ṽs accepts - this proof can be sent either as a query to the verification
oracle, or as the final output of P∗ (in that case, t is the last time step of P∗ and
x′ = x).
Now we define Hyb7: the verification algorithm works as in Hyb6 with the one
change that if P∗ sends a query to the verification oracle before its time step t
and this query is for a no-instance x′ ∈ Lno, then we simply return 0 to P∗ as the
verifier’s answer, without computing anything. Note that checkingwhetherx′ ∈ Lno
takes 2O(|x′|) time6, and thus the execution of this hybrid is inefficient. If such time
step t does not exist (i.e. in each of the prover’s time steps, the probability for it to
generate a false proof is only negligible), this process is identical to Hyb6.

We now explainwhy the outputs of each two consecutive hybrids are computationally
indistinguishable7. We will then use the last hybrid process to show that soundness of
the protocol follows from the soundness of the quantum sigma protocol (Ξ.P, Ξ.V).

– Hyb0 ≈c Hyb1 : Follows readily from the pseudorandomness property of the public
keys generated by PKE.Gen(1λ).

– Hyb1 ≈c Hyb2 : Follows from the adaptive soundness of the NIZK protocol for
NP, the statistical correctness of the PKE scheme and the perfect correctness of the
FHE scheme. We explain in more detail: Assume the output bits of Hyb1 and Hyb2
are distinguishable with some noticeable advantage, then by the perfect correctness
of the FHE evaluation, it follows that with a noticeable probability, either (1) there
was an error in the decryption process of the PKE scheme at least once, or (2) P∗
generated a false proof for the NP NIZK scheme at least once. We prove that both
happen with at most negligible probability, and thus the statistical distance between
the output bits of Hyb1 and Hyb2 is at most negligible.
The correctness guarantee of the PKE scheme is that when the public key is sampled
honestly, which is true in our case, then with overwhelming probability over the
randomness of PKE.Gen(1λ), the decryption is perfectly correct, regardless of the
randomness used for the encryption (which in our case is possibly malicious, as it
is chosen by P∗). This implies that with at most negligible probability there is an
error in the decryption process PKE.Decsk(·).
If P∗ manages to give a false proof π∗P for some tuple (ĉtP, ctrΞ , ek) with a no-
ticeable probability ε then we can use it to break the adaptive soundness of the
NP NIZK scheme: We guess the index of the query (to the verification oracle
Ṽ((crs, ek), (prfk, fhek), ·, ·)) where P∗ gives such false proof, and with probability
at least ε · 1t , where t is the (polynomial) running time of P∗, we find such false
proof. This implies that ε has to be at most negligible i.e. P∗ cannot produce a false
proof for the NP NIZK with a noticeable probability.

6We assume that our gap problem L ∈ QMA has exponential-time algorithms that solve it,
that is, for x ∈ L we can decide whether x ∈ Lyes or x ∈ Lno in 2O(|x|) time. It is also enough
for our proof to assume that L is solvable in general exponential time i.e. O(2|x|

c

) time for some
constant c ∈ N.

7the output bits of the hybrids are in fact statistically indistinguishable, because any two distri-
butions over a bit are statistically indistinguishable if they are computationally indistinguishable,
but we won’t care about this in our analysis.

21

– Hyb2 ≈c Hyb3 : Assume toward contradiction that the output bits of Hyb2 and
Hyb3 are distinguishable with some noticeable advantage, we use the prover P∗ in
order to construct a distinguisher D that breaks the zero-knowledge property of the
NPNIZK scheme (it seems that we don’t have to use the fact that the zero knowledge
property of the NP NIZK is adaptive, but we will use it for the convenience of the
proof and because it does not cause an extra cost in computational assumptions).
D will sample (ek, sk)← PKE.Gen(1λ), honestly sample (ctV, ctrV) with random-
ness r, and then get a common random string crs from the NIZK zero knowledge
challenger. D then hands (ctV, ctrV , ek) along with the NP witness r and gets back
either a real proof or a simulated proof. it then proceeds to run the malicious prover
P∗ and at the end, by the verdict of the (modified) verification algorithm Ṽ for
the prover’s proof and instance, distinguishes between whether it got a simulated
proof or a real proof. This follows from the fact that whenever D gets a real proof
(and CRS) then the view of P∗ is exactly its view in Hyb2 and whenever D gets a
simulated proof (and CRS) then the view of P∗ is exactly its view in Hyb3.

– Hyb3 ≈c Hyb4 : Follows readily from the security of the PKE scheme.
– Hyb4 ≈c Hyb5 : Follows readily from the security of the FHE scheme.
– Hyb5 ≈c Hyb6 : Follows readily from the security of the PRF scheme.
– Hyb6 ≈c Hyb7 : Note that by how we defined the time step t it follows that the

change of returning 0 on queries for no-instances before time step t (rather than
actually evaluating the verification algorithm Ṽs) is unnoticeable to the prover P∗.

Now, assume toward contradiction that P∗ succeeds in breaking the soundness with
a noticeable probability in the original execution of the protocol (i.e. in the process
Hyb0), and by the fact Hyb0 ≈c Hyb7 it follows that the verifier accepts the prover’s
false proof with some noticeable probability in the hybrid experiment Hyb7. By the fact
that with some noticeable probability P∗ succeeds in cheating in Hyb7, it follows that a
time step t exists where P∗ sends a pair (x′, |π∗〉) such that x′ ∈ Lno and Ṽs accepts the
proof (this follows because in the last step of P∗’s execution it sends noticeably often a
successful false proof for x ∈ Lno).

Now we consider the execution process of Hyb7 and fix by an averaging argument
the snapshot |ψ〉 of the execution in the exact moment where P∗ sends a pair (x′, |π∗〉)
in its time step t, such that the snapshot maximizes the probability that x′ ∈ Lno and Ṽs
accepts the proof |π∗〉 (as a side note, this snapshot includes (1) all of the randomness
(including setup information) in the processHyb7 untilP∗’s step t, (2) the inner quantum
state of P∗ in step t, and of course a pair (x′, |π∗〉) such that x′ ∈ Lno.). It follows that
the part α and the extracted γ (both obtained from |π∗〉, recall γ is obtained by the
extracted randomness rΞ and the random string βx′) make a quantum sigma protocol
verifier Ξ.V accept the proof for a random challenge β with a noticeable probability.

We now describe a malicious proverΞ.P∗ that breaks the soundness of the quantum
sigma protocol (Ξ.P, Ξ.V), by usingP∗ and the quantum advice |ψ〉 in order to convince
Ξ.V to accept the no-instance x′ ∈ Lno. Ξ.P∗ uses the snapshot |ψ〉 and takes α from
|π∗〉 and sends it as the first sigma protocol message to Ξ.V. Ξ.V returns a random
challenge β, andΞ.P∗ treats this random challenge as the random βx′ for the verification
procedure Ṽs. Ξ.P∗ then derives γ from |π∗〉 (as usual in Ṽs) and sends it to Ξ.V.
Recall that we knowΞ.V accepts the proof with a noticeable probability, and thusΞ.P∗

22

breaks the soundness of the quantum sigma protocol with noticeable probability, in
contradiction.

We next use standard complexity leveraging to make the soundness adaptive, that
is, by assuming that the security of our cryptographic primitives is sub-exponential we
prove that the prover cannot choose the no-instance x ∈ Lno adaptively. As mentioned
in the preliminaries, the security of all of our primitives can be based on the hardness
of LWE, and thus based on the sub-exponential hardness of LWE we can get adaptive
soundness.

Proposition 2 (The Protocol has Multi-theorem Adaptive Computational Sound-
ness). Assume there is a constant ε ∈ (0, 1) such that the cryptographic ingridients we
use are secure against O(2λ

ε

)-time quantum algorithms for security paramter λ. Then,
by executing the protocol with security parameter λ := |x| 2ε rather than λ = |x|, for
every quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N there is a negligible function
µ(·) such that for every security parameter λ ∈ N,

Pr
[
(x ∈ Lno) ∧

(
1 = V((crs, ek), (prfk, fhek), x, |π∗〉)

)]
≤ µ(λ) ,

where the probability is above the following experiment:

(crs, ek)← Setup(1λ),
(
(ctV, ctrV , πV), (prfk, fhek)

)
← VSetup(crs, ek),

(x, |π∗〉)← P∗λ
(
ρλ, (crs, ek), (ctV, ctrV , πV)

)V((crs,ek),(prfk,fhek),·,·)
.

Proof. The proof is almost identical to the proof of Proposition 1, with minor technical
changes. Let P∗ = {P∗λ, ρλ}λ∈N a polynomial-size quantum prover in Protocol 1 and as
before, we prove soundness by a hybrid argument by considering almost the same series
of hybrids processes, and the reductions that show the outputs of each consecutive pair
of hybrids are indistinguishable, are also going to be slightly different.

More precisely, consider the exact same hybrids Hyb0, · · · ,Hyb7 from the proof of
Proposition 1, with only the following differences:

– With accordance to the fact thatwe consider adaptive provers, in each hybrid process,
the output of the malicious prover at the end of the execution is a pair (x, |π∗〉) rather
than only a proof |π∗〉.

– The output of each hybrid process is still a bit, but going to be the logical AND of
(1) the verifier accepting the prover’s proof and instance x, and (2) the instance x is
indeed a no-instance x ∈ Lno (note that in the proof for Proposition 1 the output bit
of the hybrids only considers the verdict of the verifier, as the no-instance x ∈ Lno
is already fixed).

We will next claim that the outputs of each pair of consecutive hybrids are computa-
tionally indistinguishable. For this, we will use the fact that given x ∈ L = Lyes ∪Lno,
we can decide whether x ∈ Lno or not in 2O(|x|) time.8 We also use the fact that our

8As noted before, the proof is not sensitive to the fact that the time complexity is 2O(|x|) and
not O(2|x|

c

) time for some constant c ∈ N.

23

primitives are assumed to be secure against sub-exponential time algorithms and we
run the protocol with increased security parameter, more specifically, we assume that
our primitives are secure against O(2λ

ε

)-time algorithms and we use security paramter
λ = |x| 2ε , thus it follows that no O(2λ

ε

) = O(2|x|
2

)-time algorithm can break the
security of the primitives.

In continuance to the above, by the exact same reductions from the proof of Propo-
sition 1 with a single change, we have

Hyb0 ≈c Hyb1 ≈c Hyb2 ≈c Hyb3 ≈c Hyb4 ≈c Hyb5 ≈c Hyb6 ≈c Hyb7 .

The single change that we refer to is the check that the reduction makes when getting
the final output of the prover. In the proof of Proposition 1, the final output of P∗ is a
false proof |π∗〉 for a specific and pre-chosen x, while in our case (the adaptive case)
it is a pair (x, |π∗〉) for an adaptively-chosen x. Instead of checking only the verdict of
V, which can be done in polynomial time, the reduction in our case will also check that
x ∈ Lno, which can be done in time 2O(|x|). This implies that our security reductions
take 2O(|x|) time to execute, but they break primitives with security against O(2|x|

2

)-
time algorithms, which constitutes the needed contradiction. Finally, the algorithmΞ.P∗

that uses P∗ in the process Hyb7 in order to break the soundness of the quantum sigma
protocol is exactly the same as before, and our proof is finished.

As mentioned before, by the fact that the security of the cryptographic ingridients
in our protocol can be based on the hardness of LWE and the security reductions for the
primitives are polynomial-time, we get the following corollary.

Corollary 1. Assume there is a constant ε ∈ (0, 1) such that LWE is hard for O(2n
ε

)-
time quantum algorithms (for LWE secret ofn bits). Then, for every quantum polynomial-
size prover P∗ = {P∗λ, ρλ}λ∈N there is a negligible function µ(·) such that for every
security parameter λ ∈ N,

Pr
[
(x ∈ Lno) ∧

(
1 = V((crs, ek), (prfk, fhek), x, |π∗〉)

)]
≤ µ(λ) ,

where the probability is above the following experiment:

(crs, ek)← Setup(1λ),
(
(ctV, ctrV , πV), (prfk, fhek)

)
← VSetup(crs, ek),

(x, |π∗〉)← P∗λ
(
ρλ, (crs, ek), (ctV, ctrV , πV)

)V((crs,ek),(prfk,fhek),·,·)
.

3.2 Zero Knowledge

We show that the protocol is multi-theorem adaptive computational zero-knowledge9,
which holds even when the trusted setup samples only a common uniformly random

9It would have been enough to show that the protocol is single-theorem adaptive computational
zero-knowledge, and then by the single-to-multi-theorem compiler for NIZKs of [FLS99] get a
MDV-NICZK argument with adaptive multi-theorem security, but for the sake of completeness,
because our construction can be shown to be multi-theorem zero-knowledge without the FLS
compilation and because it does not change the main ideas in the proof, we prove the multi-
theorem case directly.

24

string, and an adversarial polynomial-time (quantum) verifier samples its public verifi-
cation key maliciously.

We next describe the simulator and then prove that the view that it generates is
indistinguishable from the real one, against adaptive distinguishers that choose the
statement to be proven only after seeing the common random string.
Sim(1λ) :

1. CRS Simulation: Given a security parameter λ, the first simulator output is the
simulation of the CRS for the NP NIZK protocol and swapping ekwith a public key
for the PKE scheme, that is, Sim samples:

(crs, td)← NIZK.Sim(1λ) , (ek, sk)← PKE.Gen(1λ) ,

outputs (crs, ek) as the simulated CRS and (td, sk) as the simulator trapdoor.
2. Proof Simulation: Given the trapdoor (td, sk), a (possibly malicious) public veri-

fication key pvk = (ctV, ctrV , πV) and a yes-instance x ∈ Lyes, the simulator does
the following:
(a) Sim checks that πV is a valid proof for the tuple (ctV, ctrV , ek) and also actu-

ally verifies some of the statement itself: It decrypts rV = PKE.Decsk(ctrV) and
checks that ctV is obtained by runningPRF.Gen, fhek← FHE.Gen,FHE.Encfhek
with randomness rV. If the check is not accepted, Sim returns ⊥.

(b) Sim derives prfk from rV, computes βx = PRF.Fprfk(x) and then executes
(α, γ)← Ξ.Sim(x, βx).

(c) Sim performs a circuit-private homomorphic evaluation ĉtP ← FHE.Eval(Cγ , ctV),
where Cγ is the circuit that always outputs γ.

(d) Sim encrypts ctrΞ ← PKE.Encek(0
`), where ` is the length of the randomness

for the prover in the quantum sigma protocol.
(e) Finally, Sim simulates the non-interactive zero-knowledge proof πP, by execut-

ing πP ← NIZK.Sim(td, (ĉtP, ctrΞ , ek)).
Sim outputs (α, ĉtP, ctrΞ , πP).

We now prove that the simulated proofs that the simulator generates are computa-
tionally indistinguishable from the real proofs that the prover generates.

Proposition 3 (TheProtocol isMulti-theoremAdaptiveComputationalZero-knowledge).
For every quantum polynomial-size distinguisher D∗ = {D∗λ, ρλ}λ∈N there is a negligi-
ble function µ(·) such that for every security parameter λ ∈ N,

|Pλ,Real − Pλ,Simulated| ≤ µ(λ) ,

where,

Pλ,Real := Pr
(crs,ek)←Setup(1λ)

[
D∗λ(ρλ, (crs, ek))

P((crs,ek),·,·,·) = 1
]
,

Pλ,Simulated := Pr
((crs,ek),(td,sk))←Sim(1λ)

[
D∗λ(ρλ, (crs, ek))

Sim((td,sk),·,·) = 1
]
,

where in every query that D∗ makes to the oracle, it sends a triplet (pvk∗, x, |w〉⊗k(λ))
such that pvk∗ can be arbitrary, x ∈ Lyes ∩ {0, 1}λ and |w〉 ∈ RL(x).

25

Proof. Let D∗ = {D∗λ, ρλ}λ∈N a polynomial-size quantum distinguisher. We prove
zero knowledge by a hybrid argument, that is, we consider a series of computationally-
indistinguishable hybrid processes with 1-bit outputs, starting from the output of D∗
when getting real proofs, until we get to the output ofD∗ when getting simulated proofs.
We define the following processes.

– Hyb0 : The output of D∗ when getting honestly-generated proofs, that is, it gets
the CRS from (crs, ek) ← Setup(1λ) and the proofs from P∗((crs, ek), ·, ·, ·), as
described in the experiment of PReal.

– Hyb1 : This hybrid process is identical to Hyb0, with the exception that ek is
sampled as a public key for the PKE scheme (ek, sk)← PKE.Gen(1λ), rather than
as a random string of the same length. To move to this hybrid we will use the fact
that the public keys of the PKE scheme are pseudorandom.

– Hyb2 : This hybrid process is identical to Hyb1, with the exception that the prover
adds another validity check, over the one checking the validity of the proof πV:
It decrypts rV = PKE.Decsk(ctrV) and checks that ctV is obtained by running
PRF.Gen, fhek ← FHE.Gen,FHE.Encfhek with randomness rV. To move to this
hybrid we will use the adaptive soundness of the NP NIZK.

– Hyb3 : This hybrid process is identical to Hyb2, with the exception that we sim-
ulate the NP NIZK proofs, that is, (1) when sampling the NP NIZK common
random string crs from the total CRS (crs, ek), we sample a simulated CRS
(crs, td) ← NIZK.Sim(1λ) instead of crs ← NIZK.Setup(1λ), and (2) every
time we compute an NP NIZK proof πP as part of the QMA NIZK proof |π〉,
we use the NP NIZK simulator πP ← NIZK.Sim(td, (ĉtP, ctrΞ , ek)) rather than
πP ← NIZK.P(crs, (ĉtP, ctrΞ , ek)) (where we executeNIZK.P along with a witness
for the statement). To move to this hybrid we will use the adaptive zero knowledge
property of the NP NIZK.

– Hyb4 : This hybrid process is identical to Hyb3, with the exception that ctrΞ is
an encryption of zeros rather than the randomness for the circuit Cx,rΞ , which is
homomorphically evaluated. To move to this hybrid we will use the security of the
PKE scheme.

– Hyb5 : This hybrid process is identical to Hyb4, with the exception that when
computing the evaluated ciphertext ĉtP, instead of homomorphically evaluating
the circuit Cx,rΞ , we compute Cx,rΞ in the clear and inject the result by circuit-
private evaluation. More precisely, the prover does the following: First, it regularly
computes α = Ξ.P(|w〉⊗k(λ); rΞ), for randomness rΞ . It derives prfk from the
decrypted randomness rV, computes βx = PRF.Fprfk(x), γ = Ξ.P3(βx, rΞ), and
then ĉtP ← FHE.Eval(Cγ , ctV), where Cγ is the circuit that always outputs γ. To
move to this hybrid we will use the circuit-privacy property of the FHE’s evaluation
algorithm.

– Hyb6 : This hybrid process is identical to Hyb5, with the exception that when
computing (α, γ) we use the quantum sigma protocol (special zero-knowledge)
simulator, that is, the prover first computes βx (from prfk which is derived from
rV) and then computes (α, γ) ← Ξ.Sim(x, βx) and as before, α is sent in the
clear and γ is sent through homomorphically evaluating the circuit Cγ on ctV. To
move to this hybrid we will use the special zero knowledge property of the quantum

26

sigma protocol. Note that the actions of the prover in this hybrid process are exactly
the ones of the QMA NIZK simulator Sim and thus Hyb6 is exactly the process
described in the experiment of PSimulated.

We now claim that the outputs of each two consecutive hybrids are computationally
indistinguishable, which will finish our proof.

– Hyb0 ≈s Hyb1 : Follows readily from the pseudorandomness property of the public
keys generated by PKE.Gen(1λ).

– Hyb1 ≈s Hyb2 : Follows from the adaptive soundness of the NIZK protocol for
NP and the statistical correctness of the PKE scheme. We explain in more detail:
First, note that whenever the NP statement that D∗ proves in πV is correct and the
decryption of the PKE is correct, then the output distribution of the proof oracle is
identical between the two hybrid processes, as the additional check that is made in
Hyb2 passes successfully. Also note that whenever the proof πV is invalid, then both
processes output ⊥ and are identical. It follows that the only times that the output
distributions of the proof oracles are not identical is whenever there is an error in
the decryption of the PKE, or the proof πV checks successfully but the statement
is false i.e. whenever D∗ breaks the adaptive soundness of the NP NIZK protocol.
Since both of the above happen with at most negligible probability, it follows that
only with negligible probability the outputs ofHyb1 andHyb2 can be distinguished,
and the statistical closeness between them follows.

– Hyb2 ≈c Hyb3 : Follows readily from the adaptive zero-knowledge property of the
NP NIZK protocol.

– Hyb3 ≈c Hyb4 : Follows from the security of the PKE scheme. Specifically, the
encrypted randomness rΞ for every query is simply a random string (independent of
all other operations in the process) and thus all of these random strings can be chosen
at the beginning of the execution of the process, and thus we fix by an averaging
argument the strings r1Ξ , · · · , r

q
Ξ that maximize the distinguishability of D∗, where

the q is the (polynomial) number of queries that D∗ makes to the proof oracle. It
then follows that if D∗ distinguishes between Hyb3 and Hyb4 then it distinguishes
between encryptions of r1Ξ , · · · , r

q
Ξ and encryptions of zeros, and since the single-

message security of public-key encryption schemes implies many-message security
the indistinguishability Hyb3 ≈c Hyb4 follow.

– Hyb4 ≈s Hyb5 : Follows by a hybrid argument, by the circuit-privacy prop-
erty of the FHE scheme and from the fact that the prover makes the additional
check on the public verification key, which checks that ctV is obtained by running
PRF.Gen, fhek← FHE.Gen,FHE.Encfhek with the extracted randomness rV. More
precisely, let q be the number of queries that D∗ makes to the proof oracle, and for
i ∈ {0, 1, · · · , q} we define Hybi4 as the process that performs the homomorphic
evaluation of Cx,rΞ (rather than computing it in the clear and then injecting the
result, as done in Hyb5) starting from query number i + 1 that D∗ makes, thus
Hyb04 = Hyb4, Hyb

q
4 = Hyb5.

If Hyb4 and Hyb5 are distinguishable then for some i ∈ {0, 1, · · · , q − 1}, Hybi4
and Hybi+1

4 are distinguishable. We fix by an averaging argument a snapshot of the
execution until after the point that D∗ sends the (i+1)-th query to the proof oracle.

27

If the check that the prover makes in the beginning, which includes both checking
the validity of the NP proof πV and also checking the validity of creating ctV from
the extracted randomness rV, fails, then the hybrid processes are the same as the
answer of the proof oracle will be ⊥. In case the check is successful, it follows that
the outputs of the circuitsCx,rΞ andCγ on the input prfk (which is encrypted inside
ctV) are the same, and thus it follows that the distinguisher between the hybrids
Hybi4 and Hybi+1

4 can be used to break the (even statistical) circuit privacy of the
FHE evaluation.

– Hyb5 ≈c Hyb6 : The proof is very similar to the proof for the indistinguishabil-
ity Hyb4 ≈c Hyb5, as the indistinguishability follows by a hybrid argument and
from the special zero knowledge property of the quantum sigma protocol. More
precisely, for i ∈ {0, 1, · · · , q} we define Hybi5 as the process that uses Ξ.P (and
the polynomially-many copies of the quantum witness) in order to generate (α, γ)
(rather than computing it using the simulator) starting from query number i+1 that
D∗ makes, thus Hyb05 = Hyb5, Hyb

q
5 = Hyb6.

If Hyb5 and Hyb6 are distinguishable then for some i ∈ {0, 1, · · · , q − 1}, Hybi5
and Hybi+1

5 are distinguishable. We fix by an averaging argument a snapshot of
the execution until after the point that D∗ sends the (i + 1)-th query to the proof
oracle, this in particular fixes the yes instance x ∈ Lyes, the quantum witness |w〉
and the pseudorandomness βx. It follows that the distinguisher between the hybrids
Hybi5 and Hybi+1

5 can be used to tell the difference between a tuple (α, γ) that was
generated by Ξ.P and a tuple that was generated by Ξ.Sim, in contradiction the
special zero knowledge property of the protocol (Ξ.P, Ξ.V).

References

ACGH19. Gorjan Alagic, AndrewMChilds, Alex BGrilo, and Shih-HanHung. Non-interactive
classical verification of quantum computation. arXiv, pages arXiv–1911, 2019.

BCKM20. James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On
the round complexity of two-party quantum computation. arXiv preprint
arXiv:2011.11212, 2020.

BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-private ot from
lwe. In Theory of Cryptography Conference, pages 370–390. Springer, 2018.

BFM19. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In Providing Sound Foundations for Cryptography: On the Work of
Shafi Goldwasser and Silvio Micali, pages 329–349. 2019.

BG19. Anne Broadbent and Alex B Grilo. Zero-knowledge for qma from locally simulatable
proofs. arXiv preprint arXiv:1911.07782, 2019.

BJSW16. Anne Broadbent, Zhengfeng Ji, Fang Song, and JohnWatrous. Zero-knowledge proof
systems for qma. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 31–40. IEEE, 2016.

BKM20. Zvika Brakerski, Venkata Koppula, and Tamer Mour. Nizk from lpn and trapdoor
hash via correlation intractability for approximable relations. IACR Cryptol. ePrint
Arch., 2020:258, 2020.

Blu86. Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings
of the International Congress of Mathematicians, volume 1, page 2. Citeseer, 1986.

28

BP15. Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In Theory of Cryptography Conference, pages
401–427. Springer, 2015.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N Rothblum, Ron D
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1082–
1090, 2019.

CGH04. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

CVZ19. Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-
knowledge arguments for qma, with preprocessing. arXiv preprint arXiv:1911.07546,
2019.

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on computing, 29(1):1–28, 1999.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

KW19. Sam Kim and David J Wu. Multi-theorem preprocessing nizks from lattices. Journal
of Cryptology, pages 1–84, 2019.

Liu06. Yi-Kai Liu. Consistency of local densitymatrices is qma-complete. InApproximation,
randomization, and combinatorial optimization. algorithms and techniques, pages
438–449. Springer, 2006.

LQR+19. Alex Lombardi, Willy Quach, Ron D Rothblum, Daniel Wichs, and David J Wu.
New constructions of reusable designated-verifier nizks. In Annual International
Cryptology Conference, pages 670–700. Springer, 2019.

Mor20. Tomoyuki Morimae. Information-theoretically-sound non-interactive classical veri-
fication of quantum computing with trusted center. arXiv preprint arXiv:2003.10712,
2020.

MY21. Tomoyuki Morimae and Takashi Yamakawa. Classically verifiable (dual-mode) nizk
for qma with preprocessing. arXiv preprint arXiv:2102.09149, 2021.

OPCPC14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Ma-
liciously circuit-private fhe. In Annual Cryptology Conference, pages 536–553.
Springer, 2014.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from (plain)
learning with errors. In Annual International Cryptology Conference, pages 89–114.
Springer, 2019.

PV+06. Rafael Pass, VinodVaikuntanathan, et al. Construction of a non-malleable encryption
scheme from any semantically secure one. In Annual International Cryptology
Conference, pages 271–289. Springer, 2006.

QRW19. Willy Quach, Ron D Rothblum, and Daniel Wichs. Reusable designated-verifier
nizks for all np from cdh. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 593–621. Springer, 2019.

Reg09. Oded Regev. On lattices, learningwith errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

29

	Multi-theorem Designated-Verifier NIZK for QMA

