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Abstract. We propose a new paradigm for justifying the security of
random oracle-based protocols, which we call the Augmented Random
Oracle Model (AROM). We show that the AROM captures a wide range
of important random oracle impossibility results. Thus a proof in the
AROM implies some resiliency to such impossibilities. We then consider
three ROM transforms which are subject to impossibilities: Fiat-Shamir
(FS), Fujisaki-Okamoto (FO), and Encrypt-with-Hash (EwH). We show
in each case how to obtain security in the AROM by strengthening the
building blocks or modifying the transform.
Along the way, we give a couple other results. We improve the assumptions
needed for the FO and EwH impossibilities from indistinguishability
obfuscation to circularly secure LWE; we argue that our AROM still
captures this improved impossibility. We also demonstrate that there is
no “best possible” hash function, by giving a pair of security properties,
both of which can be instantiated in the standard model separately, which
cannot be simultaneously satisfied by a single hash function.

1 Introduction
The random oracle model (ROM) [BR93] treats a cryptographic hash function as a
random function, and is a crucial tool for analyzing the security of cryptosystems
that otherwise lack a “standard model” security proof. This model captures
most practical cryptographic techniques and attacks involving hash functions.
Constructions with ROM proofs are often far more efficient than their standard-
model counterparts, and numerous applied cryptosystems utilize this model.

Unfortunately, there are numerous examples of ROM failures, schemes that
have been proven secure in the ROM but are insecure when the hash function
is instantiated. Starting with [CGH98], the most problematic such failures are
uninstantiability results, where the protocol is insecure under any instantiation of
the hash function. This makes it challenging to understand the meaning of a ROM
proof, and has lead to significant debate (see e.g. [Gol06, KM15]). Nevertheless,
due to their efficiency, schemes with only ROM proofs remain widely deployed.

This practice is often justified by observing that ROM uninstantiabilities are
typically contrived, deviating from standard cryptographic design. However, there
are also examples of natural uninstantiabilities, even those for design structures
widely used in practice, though this has never lead to actual real-world attacks.
We will discuss several examples later in this work. In light of this state-of-affairs,
it is important to further understand the security of ROM protocols.



Techniques for uninstantiability results. Digging deeper, all known ROM unin-
stantiability results make essential use of non-black-box techniques. They use that
real hash functions have code which can be plugged into tools like proof systems,
fully homomorphic encryption, program obfuscation, etc. Random oracles, by
contrast, cannot be plugged into such tools as they have no code. The ROM
uninstantiabilities therefore embed a trigger that can only be accessed by feeding
the hash function code into such a tool; this trigger completely breaks security.

More generally, even when considering non-black box tools, essentially all
cryptographic techniques use the component systems as black boxes. Even though
non-black box tools take programs as input, the programs themselves only treat
the component as a black box. The application of these tools does not care about
the actual code of components, other than the fact that it has code in the first
place. Of course, the implementation of the non-black-box tool will operate on
the actual code at the gate or instruction level, but the tool abstracts all this
away. The application of the tool only cares that the code exists.

1.1 Augmented Random Oracles
In this work, with the goal of eliminating uninstantiability results, we propose
a new paradigm for studying ROM constructions that we call the Augmented
Random Oracle Model (AROM). In addition to a random oracle O, we add a
second oracle M , which will model the various non-black-box tools that ROM
impossibilities may try to employ. Like O, M will be a function sampled from a
distribution1. However, to model tools that can be applied to the code of concrete
hash function (which is now an oracle), we will haveM be oracle aided, meaning it
can make queries to O. Making queries is the only way M can learn information
from O. Looking ahead, we will often have M take as input programs that
themselves query O; M can then evaluate such programs by making queries to O.
In this way, we can treat O as having code—namely the instruction to make a
query—while still representing O as an oracle, thus capturing the aforementioned
non-black-box techniques within our idealized model.

Asharov and Segev [AS15] consider a similar model, but for an entirely
different purpose. They propose a model for indistinguishability obfuscation (iO),
where M obfuscates programs that can make queries to O. Such M accepts
obfuscate queries, which take as input the description of an (oracle-aided)
program PO, and outputs a string P̃ , derived via a private random permutation.
M also accepts evaluate queries, which take P̃ and an input x, and compute
PO(x). Note that M must make queries to O in order to implement evaluate
queries. The authors argue that this model captures many of the techniques for
using iO. [AS15] use this model to reason about the limits of iO.

As this oracle captures many techniques based on iO, setting M in this way
would capture many uninstantiability results based on iO, such as [BFM15]
1 Once M is sampled, it is fixed an immutable, keeping no state. Though M is stateless,
it can still implement potentially stateful cryptographic objects, by having any state
be an explicit input and output of M . Modeling M as stateless reflects the real world,
where the specification of a cryptographic primitive does not change over time.
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as discussed below. However, we do not want to commit to a single tool. This
is for several reasons. The Asharov-Segev model, for example, makes specific
choices, such as the fact that M does not apply to programs that themselves
can make M queries, or that M operates on oracle-aided circuits as opposed
to Turing machines. There are also many other non-black-box tools such as
proof systems, garbled circuits, fully homomorphic encryption, etc. Asharov and
Segev specifically mention the case of NIZKs, as many iO applications involve
NIZKs but are not captured in their model. Worse, new non-black-box tools may
arise, necessitating new models. We therefore allow M to be any oracle, which
automatically captures any tool of this nature and any modeling that may arise.
In this sense, we can think of M adversarially. We will make one important
restriction, however: M can only make a polynomial number of queries to O,
corresponding to the tool being efficient.

On the other hand, we do not want to rely these black-box tools when
designing cryptosystems. First, they are computationally expensive. Moreover,
sinceM is essentially adversarial, we do not want to have to assume any particular
structure ofM ;M could always output 0. We will therefore insist that the system
we design, and hence also the security game, only makes queries to O but not
M . Thus we only consider constructions that make sense in the plain random
oracle model, but we hope that the new model will better capture their security.
A visualization of the plain and augmented models are given in Figure 1.
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Fig. 1: The plain ROM (L) vs the Augmented ROM (R).

So far, the AROM appears rather useless: by having the adversary simulate
M for itself, the AROM collapses to the standard ROM. We will now see an
important setting where the AROM is meaningful.

AROM for Transforms. In a ROM transform, a building block Π (or potentially
multiple building blocks) is transformed into a different cryptosystem Γ using
a random oracle. We note ROM transforms are widespread, and even schemes
that appear to be direct constructions can often be phrased as transforms
from appropriate abstractions. Examples include RSA (trapdoor permutations)
or Diffie-Hellman (cryptographic groups). Moreover, uninstantiability results
such as [CGH98] are most often phrased as transforms from the appropriate
building blocks (e.g. CS proofs [Mic94] and signatures in the case of [CGH98]).
In fact, phrasing a construction as a transform is generally the preferred way to
model constructions, as it allows for utilizing abstractions, resulting in a better
conceptual understanding of the results and more general security proofs.
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Well-known uninstantiabilities for ROM transforms include Fiat-Shamir
(FS) [FS87] as proved by [GK03], and Encrypt-with-Hash (EwH) [BBO07] and
Fujisaki-Okamoto (FO) [FO99], as shown by [BFM15]. These ROM failures for
transforms are notable for being for natural and even widely deployed.

For transforms, the picture in Figure 1 changes. Recall that a transform must
result in a secure Γ , regardless of the instantiation of the building block Π, as
long as Π satisfies the prescribed security property. Since the security of the
transform quantifies over all Π, we can think of Π itself as adversarial. ROM
transform uninstantiabilities work exactly by designing a contrived Π that makes
the transform fail. In the plain ROM, this gives Figure 2 (L). In the AROM, the
transform still only queries O, but now Π may use M to employ non-black box
techniques. Therefore, Π makes queries to M , as in Figure 2 (R).

Cryptosystem/
Security	GameAdversary

O
Building	
Block

Cryptosystem/
Security	GameAdversary

OM Building	
Block

Fig. 2: Plain ROM transforms (L) vs Augmented ROM transforms
(R). Some authors model the building block as having access to O
while others do not; in Section 1.4 we argue that the best modeling
would give access to O, and so we adopt this convention in the AROM.

Now we see that the AROM is not trivially equivalent to the ROM. Concretely,
the security of the building block may rely on the fact that M is sampled from
a distribution. For example, the M above for implementing iO is only secure
because the obfuscator utilizes a private random permutation. In order to maintain
security, this permutation must be hidden from the adversary. Therefore, there
is no way for the adversary to simulate the M on its own. Indeed, we will
argue that the AROM captures all existing uninstantiability results for ROM
transforms, by having M model the appropriate non-black box techniques. This
does not mean that the AROM is not subject to uninstantiability results, since it
is equivalent to the ROM for direct constructions. More generally, one can take
any uninstantiability result, even for transforms, and instantiate the building
blocks with particular constructions from the literature, arriving at a direct ROM
uninstantiability result, which would then also be an AROM uninstantiability.

However, suppose we have a transform that is fully abstracted, in the sense
that any cryptography being performed is abstracted underneath an appropriate
building block that is input to the transform2. Then we argue that all known

2 We do not attempt formalize full abstracted here, as it appears challenging. Do
information-theoretic objects, such as even a simple XOR, count? We instead leave
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uninstantiability results for random oracles are captured by the AROM, in
the sense that, if fully abstracted, the transform would be correctly labeled as
insecure in the AROM. This is because, for any such result, there will be an
M which can securely provide all the necessary building blocks, but also the
non-black box techniques used, where we replace any time the code of the hash
function is used with the instruction to query O. This includes [CGH98] and
also the uninstantiability for FS [GK03], where M implements CS proofs on
programs that can query O. It also includes the uninstantiability of EwH and
FO [BFM15], where M implements an indistinguishability obfuscator. In fact, for
any known uninstantiability of the random oracle, when fully abstracted, there
is an appropriate M that models the building blocks, resulting in an insecure
protocol in the AROM. See Section 4.3, where we work through the case of EwH.

Thus, for any fully abstracted protocol, security in the AROM demonstrates
immunity to known uninstantiability techniques, and offers the most compelling
evidence known for real-world security. Of course, this does not actually prove
security in the standard model or completely rule out uninstantiability results,
but it implies that brand new techniques would be needed to invalidate security.

1.2 Best Possible Hash Functions?

A quick detour before getting to our results. There have been numerous works
on circumventing ROM impossibilities, or at least making ROM proofs more
believable. Here, we discuss one, initiated by Canetti [Can97], which seeks
to identify and instantiate random oracle security properties using concrete,
usually algebraic, hash functions. Examples include oracle hashing [Can97],
non-malleable point obfuscation [KY18, BMZ19], various forms of correlation
resistance [CCR16, GOR11], and Full Domain Hash [HSW14], to name a few.

A major downside of these results is efficiency. In essentially all cases, the
construction is far less efficient than standard hash functions such as SHA2,
sometimes being entirely impractical. In addition, the computational assumptions
underlying these ROM-free constructions can be quite strong, and it is not clear
if the standard model result is actually “more secure.”

In light of these downsides, a standard-model instantiation of a ROM protocol
may be considered a proof of concept, showing that such an application is likely
to exist. This could be seen as additional justification for the security (or at
least, lack of impossibility) for the more efficient ROM protocol. Implicit in this
interpretation is the following assumption: if a security property holds for some
hash function, then it also holds for a sufficiently well-designed hash function,
perhaps SHA2. That is, SHA2 is a “best possible” hash function, in that any
security property which holds for some hash function will hold for SHA23. This

the notion as a general intuitive property, and we expect that whether or not a given
protocol is fully abstracted will usually be clear. All the transforms we consider in
this work are certainly fully abstracted.

3 There will always be functionalities that SHA2 or other hash functions cannot achieve.
This assumption is only about security properties that apply to any hash function.

5



sounds plausible, even in light of the various ROM impossibility results, as no
poly-time attacks have been found on SHA2 that does not also apply to all hash
functions. We ask, is such an interpretation reasonable?

1.3 Our Results

– In Section 3 we formally define the AROM.
– We then use the EwH transform as a case study to demonstrate the power

of the AROM. In Section 4.3, we explain how the AROM captures the
uninstantiability of EwH, in the sense that the transform is insecure in the
AROM, like in the real world.

– In Section 4.4, we show the EwH uninstantiability result can be generalized to
work under a circular security assumption on LWE, as opposed to needing the
full power of indistinguishability obfuscation. Concretely, our impossibility
uses fully homomorphic encryption and obfuscation for compute-and-compare
programs [GKW17, WZ17]. The improvement also readily adapts to the FO
transform. This further demonstrates the need for a model which captures a
variety of non-black-box tools.

– In Section 4.6, we show that EwH is secure in the AROM, if the underlying
encryption scheme is strengthened to be lossy [BHY09]. Lossy encryption can
still be constructed efficiently from most standard tools. We note that the
security we prove likely cannot be proven secure in the standard model [Wic13],
so some form of idealized model is inherent. Our proof offers the strongest
justification yet for security.

– In the Full Version [Zha22], we additionally study the FO and FS transforma-
tions, demonstrating that both are insecure in the AROM, again capturing
the known uninstantiabilities. For FS, we show that it is sound in the AROM
if the underlying proof has statistical soundness. Like EwH, FS even for
such proofs likely cannot be proven secure in the standard model [BDG+13],
necessitating some idealized model. Our proof offers the strongest justification
yet for security in this case. We note that zero knowledge of plain Fiat-Shamir
cannot be proved, since this would give NIZKs without a CRS. We explore
several ways of obtaining zero knowledge by introducing a CRS.
For FO, we observe that it is not secure in the AROM, even if the underlying
encryption scheme is lossy. We therefore propose (Section 5.1) a new encryp-
tion scheme, which can be seen as a variant of the CCA-secure scheme of
Dolev, Dwork, and Naor [DDN91], but with the zero knowledge proof replaced
by an EwH-style structure. We prove CCA security of our scheme under the
assumed lossiness of the underlying encryption scheme; CCA security is not
known to follow from lossy encryption in the standard model.
Our results for FO and FS are sketched in Sections 5 and 6, with the details
deferred to the Full Version [Zha22].

– In Section 7, we provide a pair of natural security properties for hash functions,
namely auxiliary input one-wayness and something we call anti-lossiness.
These properties can be satisfied by standard-model constructions, and are
both trivially satisfied by random oracles. However, we show that these
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properties cannot both be satisfied simultaneously by any real hash function,
assuming virtual grey box (VGB) obfuscation [BCKP14]. This implies that
SHA2 (or any hash for that matter) cannot be a “best possible” hash.
In the AROM, only one of the two properties—namely anti-lossiness—hold
for O, consistent with the standard model. This gives further support to the
utility of our model, and also indicates that SHA2 (or any hash function
plausibly modeled as a random oracle) is likely not auxiliary input one-way.

1.4 A Classification of ROM Failures

Besides uninstantiability results, there are a number of other known ROM failures.
Here, we broadly organize known ROM failures into five types, and discuss what
they mean and their relevance to the AROM.

Type 1 (∃∃). Here, there exists a specific protocol with a ROM proof and also
a specific hash function H, such that setting O = H makes the protocol insecure.

A well-known example is the length-extension attack when using Merkle-Damgård
as MACs without appropriate padding. Another example is the circularly se-
cure encryption scheme Enc(k,m) = (r,O(k, r)⊕m), which was proven in the
ROM [BRS03], but is insecure when O is replaced with Davies-Meyer [HK07].

For Type 1 failures, the insecurity may point to an issue with the protocol,
the hash, or both. However, we observe that in most cases, the particular hash
function is not indifferentiable [MRH04] from a random oracle (see [CDMP05] for
Merkle-Damgård, [KM07] for Davies-Meyer). Indifferentiability has become an
important consideration for hash functions, and so an indifferentiability failure
should be interpreted as a weakness of the hash function. In particular, using an
indifferentiable hash function seems to solve the problem.

More generally, any Type 1 failure will point to a hash function design
structure that, if avoided, would block the attack. Such a design structure may
then be considered sub-optimal from a security standpoint.

Type 2 (∀∃). Here, for any possible hash function H, there exists a protocol
with a ROM proof such that setting O = H makes the protocol insecure.

Type 2 failures were already pointed out by [BR93]. For a typical example, consider
the Encrypt-with-Hash (EwH) transform Enc′(pk,m) = Enc(pk,m; O(pk,m) )
which converts a randomized public key encryption scheme into a deterministic
one by setting the random coins to O(pk,m) [BBO07]. For any concrete hash
function H, there is an Enc that renders the transform trivially insecure when
O = H: Enc(pk,m; r) checks if r = O(pk,m) and if so outputs m in the clear.

For Type 2 failures, we observe that the ROM security is an artifact of the
ROM modeling: concretely, when [BBO07] prove ROM security, they assume
that Enc cannot make queries to O. But certainly a real-world encryption scheme
may evaluate a given hash function. In fact, since there are a limited number
of standardized hash functions, it is even expected that different components
of a cryptosystem may use the same hash. So a better modeling would allow
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Enc to query O, in which case EwH is trivially insecure in the ROM for the
same reasons as in the standard model. Therefore, Type 2 failures can be seen as
demonstrating an issue with the particular protocol design, but not the random
oracle itself if properly modeled. Instead, it shows that the scheme should never
have been considered to have a ROM proof in the first place.

We observe that our AROM always allows the building block to query O
(since M may implement a query-forwarding functionality), so failures of this sort
are captured by the AROM, in the sense that such protocols will not have AROM
proofs. We note that a tweaked EwH, namely Enc′(pk′,m) = Enc(pk,m; O(s,m) )
for pk′ = (pk, s) and a uniformly random s would be secure in the ROM, even if
Enc can make random oracle queries. The reason, essentially, is that the random
s enforces domain separation, since Enc would almost certainly never evaluate
O on inputs of the form (s,m). Nevertheless, the impossibility of [BFM15] still
applies to the tweaked EwH.

Type 3 (∃∀). Here, there exists a protocol with a ROM proof that is insecure
under any possible instantiation of the hash function.

These are the uninstantiability results motivating our AROM. As observed above,
for fully abstracted transforms, no known Type 3 failures apply to the AROM.

Type 4 (Simulation-based). Here, security is defined via a simulator, and in
the ROM the simulator is allowed to program the random oracle.

Examples include non-interactive zero knowledge without a CRS [Pas03] and
non-interactive non-committing encryption [Nie02], both of which exist in the
ROM under this modeling of simulators, but not in the real world. The intuition
for these failures is that, in the standard model, the simulator is usually required
to have extra power relative to the adversary — such as being able to program a
CRS or generate transcript messages out of order — in order to not be trivially
impossible. Since the adversary cannot program the random oracle, allowing the
simulator such programming ability is another form of extra power, allowing it
to circumvent standard-model impossibilities without having to resort to CRS’s
or out-of-order transcript generation. This allows for attainable simulation-based
definitions that are impossible in the standard model.

One problem with Type 4 failures is that the random oracle is baked into
the security definition since the definition must model the simulator’s ability to
program the random oracle. This makes the ROM definition actually distinct from
the standard model definition. Failures of this type are typically easily avoided by
better modeling of the ROM: allow the simulator to make random oracle queries,
and even see the adversary’s queries, but do not allow the simulator to actually
program the random oracle. The resulting definition then closely mirrors the
standard model, and the only options available to give the simulator the needed
extra power are generally the same strategies as in the standard model. For these
reasons, we advocate similar modeling of simulators in the AROM.

Type 5 (Proof impossibilities). Here, it is proved that, for some protocol
with a ROM proof, there cannot be any standard-model proof relative to any
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hash function, at least with respect to certain classes of constructions, proof
strategies, and/or underlying computational assumptions.

A well-known example is Full-Domain Hash (FDH), where [DOP05] show that
there is no proof of security in the standard model that makes fully black box
use of the trapdoor permutation. A wide class of examples of this type are
impossibilities of security proofs relative to “falsifiable” assumptions. Examples
include Fiat-Shamir even when restricted to statistically sound proofs4 [BDG+13],
succinct non-interactive arguments (SNARGs) [GW11], and correlated input
security [Wic13]. We note that correlated input security is in particular implied
by the notion of security we prove in the AROM for EwH.

With Type 5 examples, no actual insecurity is shown, just a barrier to proving
security. It could therefore be that the examples are in fact secure, but just
cannot be demonstrated secure by standard model arguments. An optimistic
interpretation is that such examples are actually demonstrating limits of the usual
paradigm for provable security, with the ROM offering a way to plausibly justify
the security of such protocols. However, in light of Type 3 failures, a pessimistic
interpretation could simply be that Type 5 examples are simply insecure. The
right answer probably lies somewhere between.

Nevertheless, protocol designs subject to Type 5 failures have been confidently
used in practice, such as Fiat-Shamir (not to mention FDH and SNARGs). It is
therefore important to try to justify their security despite such Type 5 failures.
We can therefore view the AROM as offering additional support for the security
of such schemes. This is particularly relevant for our AROM proofs of EwH
and Fiat-Shamir for statistically sound proofs, as a standard-model security
justification is infeasible.

1.5 Discussion: Do we really need another ROM variant?

There have been many attempts to rectify the issues with the ROM, each with
their own advantages as disadvantages. Numerous works remove the random
oracle entirely from a cryptosystem, such as Boneh and Boyen [BB04] for IBE. But
such results typically lose significant efficiency, and sometimes require stronger
assumptions as well. The aforementioned program initiated by Canetti [Can97]
shows how to instantiate certain ROM properties, but likewise results in inefficient
hash functions and often requires strong assumptions. One might be tempted to
use such results as proofs of concept and then just use SHA2 to instead, but our
results on incompatible security properties show that this is unsound in general.

Both programs also suffer from the fact that they cannot bypass certain
limitations of the standard-model, such as the Type 5 ROM failures discussed
above. In order to justify the security of these examples, something is needed
beyond the standard model.

Another approach is to identify a broad class of standard-model security
notions, and posit that a hash function simultaneously satisfies the entire class.
4 The Type 3 counterexample of [GK03] uses computationally sound protocols.
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One example are universal computational extractors (UCEs) [BHK13]. However,
it appears challenging to define a natural broad class of security notions that are
exempted from ROM failures. In particular, the UCE assumption of [BHK13] is
subject to the Type 3 failure from EwH.

This leaves other refinements to the ROM. The non-programmable ROM
(npROM) [Nie02, FLR+10] prevents the reduction from programming O in any
way, but can still allows it to see the adversary’s queries. The hope is that this more
closely captures standard-model hash functions “behaving like” random functions,
since standard-model functions cannot be programmed. A complementary model
due to Ananth and Bhaskar [AB12] is the non-observable ROM (noROM), where
the adversary can adaptively program but cannot observe. They also consider
the intersection of the two models, the nonpROM.

These refinements are intuitively appealing. But there is little theoretical
justification for preferring them over the plain ROM. Type 3 failures also still
apply: the CPA security of EwH [BBO07] can be proven in the nonpROM, and
yet we know the transform is insecure in general5.

Our model, by contrast, is specifically shown to circumvent all known Type 2, 3,
and 4 failures for fully abstracted transforms, and the other failures can be handled
by using a sufficiently well-designed hash function and making optimistic-yet-
plausible assumptions. We thus obtain some of the most compelling justifications
known for several cryptosystems.

2 Preliminaries

2.1 Cryptosystems and games

A cryptosystem is a tuple of stateless deterministic algorithms Π. A specification
for a cryptosystem is a collection G of game/probability pairs (G, p), where G
take a security parameter 1λ as input and outputs a bit b, and p takes a security
parameter 1λ as input and outputs a real number in [0, 1]. Each G interacts with a
cryptosystemΠ and adversaryA. We also assume G indicates whether adversaries
are computationally bounded or unbounded. We will write b← (A ↔ GΠ)(1λ)
to denote the interaction. The advantage of A when interacting with GΠ is a
function of λ defined as AdvA,GΠ (λ) := Pr[1← (A ↔ GΠ)(1λ)]− p(λ). Games
model both security properties and correctness properties.

Many cryptosystems will use random coins, which we model as an explicit
input. Games will be responsible for choosing the random coins. We will often
distinguish random coins from other inputs by separating them with a semicolon,
e.g. Π(x; r). We will write Π(x) to be the distribution Π(x; r) for uniform r. A
function is negligible if it is asymptotically smaller than any inverse polynomial.

Definition 2.1. A cryptosystem Π securely implements a specification G if, for
all (G, p) ∈ G and for all adversaries A, there exists a negligible function negl
such that AdvA,GΠ (λ) ≤ negl(λ).
5 Bellare et al. [BBO07] do not claim either noROM or npROM. Yet the proof in the
CPA case can be verified to work in both models by inspection.
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Transforms. A transform is a method T of compiling a cryptosystem Π se-
curely implementing a specification G into another cryptosystem Γ securely
implementing a specification H. We write Γ = TΠ .

Definition 2.2. A transform T from G to H is secure if, for all Π which securely
implement G, TΠ securely implements H.

Single-stage games. Usually, A is a single adversary that can keep arbitrary state
throughout its interaction with G. We will call these single-stage games. Some
games place restrictions on the state A can keep. We call such games multi-stage.

2.2 Cryptographic Definitions

An ` = `(λ)-source is a distribution is a family of efficiently sampleable distribu-
tions D(1λ) over tuples (x1, . . . , x`, aux).

Definition 2.3 (Unpredictability). A 1-source (x, aux) ← D(1λ) is compu-
tationally (resp. statistically) unpredictable if, for all polynomial time (resp.
unbounded) A, Pr[A(aux) = x : (x, aux)← D(1λ)] is negligible.

An `-source (` > 1) is computationally (resp. statistically) unpredictable (1)
if each marginal distribution (xi, aux) for i ∈ [`] is computationally unpredictable,
and (2) except with negligible probability the xi are all distinct.

Definition 2.4 (Anti-lossiness). A keyed function H : {0, 1}λ × {0, 1}m(λ) →
{0, 1}n(λ) is anti-lossy if, for all sequences (kλ)λ for kλ ∈ {0, 1}λ, the 1-source
(H(kλ, x), aux = {}) where x← {0, 1}m(λ) is statistically unpredictable. In other
words, there are no keys which make H lose too much information.

Definition 2.5 (One-wayness with correlated inputs). A keyed function
H : {0, 1}λ × {0, 1}m(λ) → {0, 1}n(λ) is one-way against correlated inputs if, for
all computationally unpredictable `-sources D and all polynomial-time A,

Pr
[
∃i,H(k, x′) = yi :

k←{0,1}λ
(x1,...,x`,aux)←D

x′←A(k,y1=H(k,x1),...,y`=H(k,x`),aux)

]
< negl(λ) .

That is, given aux and all the yi = H(k, xi), it is intractable to invert any of the
yi. H is one-way against auxiliary input if the above holds only for 1-sources.

Definition 2.6 (Pseudorandomness with correlated inputs). A keyed
function H : {0, 1}λ×{0, 1}m(λ) → {0, 1}n(λ) is pseudorandom against correlated
inputs if, for all computationally unpredictable `-sources and all polynomial-time
A, ∣∣∣∣∣∣Pr

b′ = b :
b←{0,1},k←{0,1}λ
(x1,...,x`,aux)←D

yi,0←H(k,xi),yi,1←{0,1}n(λ)∀i
b′←A(k,y1,b,...,y`,b,aux)

− 1/2

∣∣∣∣∣∣ < negl(λ) .

In other words, the vector of yi = H(k, xi) is pseudorandom, even though the xi
are correlated and aux is given. H is pseudorandom against auxiliary input if
the above holds only for 1-sources.
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Public key encryption (PKE). A PKE scheme is a triple Π = (Gen,Dec,Enc)
such that (pk, sk)← Gen(1λ) = Gen(1λ; r), c← Enc(pk,m) = Enc(pk,m; r) and
m′ ← Dec(sk, c). We require correctness, which insists that for every message m,
Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)← Gen(1λ)] ≥ 1− negl(λ).

Definition 2.7 (CPA and CCA security). A PKE scheme Π is CCA secure
if all polynomial time A have negligible advantage in the following game:

– On input 1λ, the game samples (pk, sk)← Gen(1λ) and sends pk to A.
– A makes CCA queries on ciphertexts c, and receives m← Dec(sk, c).
– At some point, A produces two messages m∗0,m∗1 ∈ {0, 1}∗ of equal length.
– The game samples a random bit b and replies with c∗ ← Enc(pk,m∗b).
– A can continue making CCA queries, as long as c 6= c∗.
– A finally sends a guess b′ for b. The advantage of A is |Pr[b′ = b]− 1/2|.

Π is CPA secure if the above only holds against A that cannot make CCA queries.

Definition 2.8 (Lossy Encryption [BHY09]). A PKE scheme Π is lossy if
there is an additional algorithm pk ← GenLossy(1λ) such that:

– pk ← GenLossy(1λ) is comp. indist. from pk where (pk, sk)← Gen(1λ).
– Let Dm be the distribution (pk,Enc(pk,m)) where pk ← GenLossy(1λ). Then

for any messages m,m′ of the same length, Dm, Dm′ are statistically close.

Definition 2.9 (Fully Homomorphic Encryption). A PKE scheme Π is
fully homomorphic if there is an additional algorithm Eval(pk, c, f) that outputs
ciphertexts, such that for all m and all functions f represented as circuits, the
following hold:

length( Eval(pk,Enc(pk,m), f) ) = length( Enc(pk, f(m)) ), and

Pr
[

Dec(sk, c′) = f(m) :
(pk,sk)←Gen(1λ)
c←Enc(pk,m)
c′←Eval(pk,c,f)

]
≥ 1− negl(λ) .

Deterministic Encryption. A deterministic PKE scheme is plain PKE, except
that Enc is deterministic. Deterministic PKE can only be secure for unpredictable
messages, formalized by PRIV security [BBO07]:

Definition 2.10 (PRIV-CPA and PRIV-CCA). A det. PKE scheme Π is
strongly (resp. weakly 6) PRIV CCA secure if for all computationally (resp.
statistically) unpred. `-sources D, all polynomial time A have negligible advantage
in the following game:

– On input 1λ, the game samples (pk, sk)← Gen(1λ) and sends pk to A.
– It samples (m∗1,0, . . . ,m∗`,0)← D and random distinct m∗1,1, . . . ,m∗`,1.
– It samples a random bit b, and sends c∗1, . . . , c∗` where c∗i ← Enc(pk,m∗i,b).
– A makes CCA queries on c /∈ {c∗1, . . . , c∗`}; it receives m← Dec(sk, c).
– A finally sends guess b′ for b. The advantage of A is |Pr[b′ = b]− 1/2|.

Π is strongly/weakly PRIV-CPA secure if A cannot make CCA queries.
6 The original PRIV notion corresponds to the weak version.
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Obfuscation. An obfuscator Obf(1λ, C) is an efficient randomized function which
maps circuits to circuits7. For correctness, we require that Obf(1λ, C)(x) = C(x)
for all λ, x. We will also consider obfuscators that only work on circuits of a
particular format. We now discuss two notions of security.
Definition 2.11 (VGB [BCKP14]). Obf is VGB secure if, for all polynomial-
time A, all polynomials s, and all inverse polynomials p, there exists a simulator
S that is computationally unbounded but which can only make a polynomial
number of queries, such that for all circuits C of size at most s(λ),
|Pr[1← A(1λ,Obf(1λ, C))]− Pr[1← SC(1λ)]| < p(λ).

VGB obfuscation is not known under standard assumptions, but it appears
plausible that many existing iO constructions satisfy it. Regardless, ruling out
VGB obfuscation appears challenging. As we only use VGB for an impossibility, it
is still meaningful even if none of the existing candidates are secure. A weakening of
VGB obfuscation is indistinguishability obfuscation (iO), which is identical except
that S can also be query unbounded. An equivalent formulation of iO is that the
obfuscations of equivalent programs are computationally indistinguishable.
Definition 2.12 (CC security [GKW17, WZ17]). For a polynomial s, con-
sider the class of binary circuits of the form “Output 1 on input x if and only
if C(x) = y” where y ∈ {0, 1}λ and C has size s. Call this circuit CCC,y(x). An
obfuscator Obf is a compute-and-compare (CC) obfuscator if it is correct for this
class of circuits, and satisfies the following security definition: there exists an
efficient simulator S such that for all C and all efficient A,∣∣∣ Pr

[
1← A(C̃) : y←{0,1}λ

C̃←Obf(1λ,CCC,y)

]
− Pr[1← A(S(1λ, 1s))]

∣∣∣ < negl(λ) .

Thas is, if y is random, the obfuscated program can be simulated without knowing
C or y at all. [GKW17, WZ17] construct CC-secure obfuscation from LWE.

3 The Augmented Random Oracle Model

3.1 The Plain ROM
In the plain ROM, there is a function O : {0, 1}∗ → {0, 1}`, where the output of
O on any input is chosen uniformly at random. All parties can make queries to
O. We call this distribution over oracles O 8.

Complexity Metrics. A query x to O has cost |x|. The query complexity of an
algorithm is the total cost of all its queries. The computational complexity is the
sum of its query complexity and running time. Both the query and computational
complexities of an algorithm can be input-specific. Note the cost must increase
with input size to yield correct query complexity results for variable-length O.
7 We can also consider obfuscators for uniform computational models, but we will not
need to for this work.

8 Note that the choice of ` is arbitrary: one can obtain an O with `-bit outputs from
an O′ with 1-bit outputs by setting O(x)i = O(x||i). One can even obtain O with
infinite outputs in this way. Thus, all random oracles are equivalent.
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Secure cryptosystems in the ROM. Specifications remain oracle-free, but now
the cryptosystem Π and adversary A can query O. We denote the interaction
b← (AO ↔ GΠ

O ). A’s advantage is defined as in the standard model, except that
the probability is over the choice of O ← O. Oracle-free specifications means sim-
ulators in simulation-based definitions cannot program O, departing from [BR93].
This modeling, however, automatically captures Type 4 failures [Nie02, Pas03].

Definition 3.1. An oracle-aided cryptosystem ΠO securely implements a speci-
fication G in the ROM if, for all (G, p) ∈ G and for all oracle-aided adversaries
AO, there is a negligible negl such that AdvAO,GΠO (λ) ≤ negl(λ).

Transforms in the ROM. Transforms in the ROM use random oracles. Often
in the literature, the underlying building block is prevented from making oracle
queries; we will make no such restriction. This models the real world, where the
building blocks could have themselves been built using hash functions.

Definition 3.2. An oracle-aided transform T between from G to H is secure in
the ROM if, for all oracle-aided cryptosystems ΠO which securely implement G
in the ROM, ΓO = TO,Π

O securely implements H in the ROM.

3.2 Augmented Random Oracles
In an augmented random oracle, first a function O ← O is sampled. Additionally,
there is a distribution M over oracle-aided functions from which M ← M is
sampled. O and M are sampled independently. Then, parties are provided with
the oracles O andMO; that is,M ’s own oracle is set to O. Once O,M are sampled,
they are deterministic and stateless. Looking ahead, M will provide one or more
abstract cryptosystems. M can still model stateful cryptosystems by having the
state be an additional input and output. M itself being stateless corresponds to
the typical real-world demand that abstract cryptosystem specifications do not
change over time. Note that the restriction to deterministic M is without loss of
generality, since any random coins can be provided as an additional input.

Query Complexity. We will treat M as outputting both the output, as well as an
arbitrary cost for the query, which may or may not depend on in the input-size
or complexity of answering the query. The query complexity of an algorithm
making queries to M,O will be the total cost of all direct queries, excluding those
M makes to O.

Complexity preserving. M is complexity preserving if the cost it outputs is at
least the query complexity of M when answering that query. In this case, the
query complexity of an algorithm is lower bounded by the total cost of all queries
made to O, including those made by M . There is no cost upper bound.

Simulatable. M is simulatable if, for any distinguisher D, there is an efficient
but stateful oracle-aided algorithm SO such that D cannot distinguish the oracles
(O,MO) and (O,SO) except with negligible probability. Note that many oracles
are simulatable via lazy sampling, such as random oracles and generic groups.
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Secure cryptosystems in the AROM. Specifications themselves still remain oracle-
free. Cryptosystems Π are allowed to make queries to O and M , which we denote
by ΠO,MO . We denote the interaction b← (AO,MO ↔ GΠ

O,MO ). The advantage
of A is defined similarly to the standard model, except that the probability is
additionally over the choice of O ← O and M ←M.

Definition 3.3. An oracle-aided cryptosystem ΠO,MO securely implements a
specification G in the M-AROM if, for all (G, p) ∈ G and for all oracle-aided
adversaries AO,MO , there exists a negligible function negl such that the advantage
of AO,MO when interacting with GΠO,M

O

is at most negl.

Looking ahead, when actually designing cryptosystems, we generally do not
want Π to make queries to M . This is because M will model non-black-box
techniques, which are generally inefficient in practice. We denote such a protocol
by ΠO. In this case, we can quantify over all M , giving the unquantified AROM.
Here we do make restrictions on M : namely we require M to be complexity
preserving and simulatable.

Definition 3.4. An oracle-aided cryptosystem ΠO (making no queries to M)
securely implements G in the AROM (no quantification by M) if it securely
implements G in theM-ROM for all complexity preserving simulatableM.

Transforms in the ROM. Transforms in the (unquantified) AROM make use of
O, but not M , for the same reasons as for cryptosystems. But we always allow
the input cryptosystems to query M . This will model transform failures, which
design input systems employing non-black-box techniques.

Definition 3.5. An oracle-aided transform TO,Π from G to H is secure in the
AROM if, for all complexity preserving simulatable M, and all oracle-aided
ΠO,MO which securely implement G in the M-AROM, ΓO,MO = TO,Π

O,MO

securely implements H in theM-AROM.

3.3 Some Basic Results

We show that for direct cryptosystems (not transforms), the AROM and ROM
are equivalent for single-stage games:

Theorem 3.6. If all games in G are single stage, then ΠO securely implements
a specification G in the AROM if and only if it securely implements G in the
plain ROM.

An immediate corollary of Theorem 3.6 is that most standard-model properties
one assumes of hash functions hold for O in the AROM; for example:

Corollary 3.7. In the AROM, O is one-way, collision resistant, a pseudorandom
generator, and anti-lossy.
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Note, however, that Theorem 3.6 does not apply to one-wayness against auxiliary
input, since that security definition is not single-stage. As we demonstrate in
Section 7, anti-lossiness and auxiliary input one-wayness are incompatible in the
standard model, and this incompatibility extends to the AROM. As such, O is
not auxiliary input one-way in the AROM. We now prove Theorem 3.6.

Proof. SettingM to always outputs 0, we see that AROM security readily implies
ROM security. In the other direction, consider any oracle distributionM and
adversary A in the AROM. We replaceM with SH , only negligibly affecting the
advantage of A. Now we merge S and A into a single adversary A′ for Π in the
plain ROM. A′ is therefore still an adversary, provided the game is single-stage
since it must remember the state of S. The complexity of A′ is polynomially larger
than the query complexity of A (sinceM is complexity preserving). Therefore,
the overall computational complexity of A′ is only polynomially larger than that
of A in the AROM. Its success probability is negligibly close to that of A. ut

Note that, unlike or cryptosystems, Theorem 3.6 does not hold for transforms
because there is no way to simulate Π’s queries to M .

4 A Case Study: Encrypt-with-Hash

Here, we use the Encrypt-with-Hash (EwH) transform [BBO07] as a case study.
We will see how the uninstantiability result of [BFM15] works, how it the
uninstantiability is captured by the AROM, and how to circumvent it. Along the
way, we will also see how the assumptions necessary to obtain the uninstantiability
can be improved, and how this improvement too is captured by the AROM.

4.1 The (Tweaked) EwH Transform

We first give the Encrypt-with-Hash transform.

Construction 4.1 (Tweaked Encrypt-with-Hash [BBO07]). Let ΠPKE =
(GenPKE,
EncPKE,DecPKE) be a public key encryption scheme. Define ΠEwH = (GenEwH

O,
EncEwH

O,DecEwH
O), where

– GenEwH(1λ): Run (pkPKE, skPKE) ← GenPKE(1λ), sample s ← {0, 1}λ, and
output (pkEwH = (pkPKE, s), skEwH = (skPKE, pkEwH)).

– EncEwH(pkEwH,m) = EncPKE(pkPKE,m; O(s,m) )
– DecEwH(skEwH, c) = DecPKE(skPKE, c).

As discussed in Section 1.4, the original EwH transform did not have s,
replacing O(s,m) with O(pkPKE,m). However, such a construction gives rise to a
much simpler Type 3 failure. The problem is that the original transform is only
secure in the ROM if ΠPKE is not allowed to query O; if we model the random
oracle model as allowing ΠPKE to query O, then the transform is insecure. In
order to avoid that failure, we introduce the tweaked EwH transform given in
Construction 4.1, which is secure in the ROM, even when ΠPKE can query O.

16



4.2 Uninstantiability of EwH

Now we explain the uninstantiability result of [BFM15], and how it can be readily
be captured in the AROM. Let Π′PKE be any public key encryption scheme, G be
a pseudorandom generator, and Obf an obfuscator that is iO secure. [BFM15]
use Π′PKE to build a new secure public key encryption scheme ΠPKE, such that
when ΠPKE is plugged into Construction 4.1, the resulting ΠEwH is insecure, thus
invalidating the transform in the standard model.

Construction 4.2 (EwH Uninstantiability). ΠPKE is constructed as follows:

– Gen = Gen′
– Enc(pkPKE,m; r = (r0, r1) ): Let y = G(r0) and run c′ ← Enc′(pkPKE,m; y).
Then run P̃ ← Obf(1λ, Pm,y; r1) where Pm,y(f) takes as input the code f for
some function, and checks if G(f(m)) = y; if so Pm,y outputs m, otherwise
it outputs ⊥. Finally output c = (c′, P̃ ).

– Dec(sk, c = (c′, P̃ )): run Dec′(sk, c′).

[BFM15] prove the following, paraphrased into our terminology:

Theorem 4.3. If Construction 4.1 is applied to ΠPKE from Construction 4.2,
then the resulting ΠEwH is not weakly CPA-PRIV in the standard model, even
against 1-sources, regardless of the hash function used to instantiate O.

We sketch the proof. When ΠPKE is plugged into Construction 4.1, the resulting
cryptosystem is completely broken when the random oracle O is replaced by
any concrete hash function H. An adversary, given pkEwH = (pkPKE, s) and
(c′, P̃ )← EncEwH(pkEwH,m) = EncPKE(pkPKE,m; H(s,m) ), constructs the code
of the function f(m′) which outputs r0 computed from (r0, r1) ← H(s,m′).
Then it runs P̃ (f). Recall that P̃ is an obfuscation of Pm,G(r0), and Pm,G(r0)(f)
evaluates G(f(m)), which for our f is exactly G(f(m)) = y, P̃ (f) outputs m.

It remains to show that ΠPKE is a secure public key encryption scheme. We
briefly sketch the argument. By pseudorandomness of G, the first step is to replace
y with uniformly random bits. At this point, since the image of G is sparse, y is
outside the image except with negligible probability. In such a case, the function
Pm,y is actually equivalent to the function that outputs ⊥ on all inputs. So by
the security of the obfuscator (namely indistinguishability obfuscation, iO), P̃
can be replaced by an obfuscation of the program that outputs ⊥ everywhere.
At this point, P̃ contains no information about m or y, so m is hidden by the
assumed security of Π′PKE.

4.3 Translation to the AROM

We now explain how the above is readily captured by the AROM. Concretely,
we will prove the following:

Theorem 4.4. For general CPA secure ΠPKE, the (tweaked) EwH is not weakly
CPA-PRIV in the AROM, even when restricting to 1-sources.
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Proof. M will be the combination of three differentM ’s:MPKE which implements
a public key encryption scheme (in order to obtain Π′PKE), MG which implements
a pseudorandom generator (to obtain G), and MObf , which implements an obfus-
cation scheme (in order to obtain iO).

MPKE. Here, we model an ideal public key encryption scheme, following [ZZ20].
Let K,E be random injections. We assume the inverse of an injection outputs ⊥
if evaluated on a point not in the image. MPKE offers three kinds of queries:

– gen queries: takes as input a string sk, and returns pk = K(sk).
– enc queries: takes as input pk,m, r, and returns E(pk,m, r)
– dec queries: takes as input sk, c. Compute d = I−1(c). If d 6= ⊥, then parse
d = (pk,m, r). If pk = K(sk), then return m. Otherwise return ⊥.

Relative to MPKE, a public key encryption scheme Π′PKE unconditionally exists:
Gen′ simply sets sk to be its random coins, and computes and outputs pk = K(sk)
by making a gen query. Then Enc′(pk,m; r) = E(pk,m, r) using an enc query,
and Dec′(sk, c) makes a dec query on sk, c to produce m. As explained by [ZZ20],
the resulting scheme is readily shown to be CPA secure (and much more) against
query-bounded adversaries.

MG. This is just an expanding random oracle. Namely, MG will just be an
expanding random oracle G, independent of K,E. Expanding random oracles
are trivially pseudorandom generators.

MObf . This is the obfuscation model proposed by Asharov and Segev [AS15],
except extended to allow programs that also query MG. Let I be a random
injection. Then MObf will offer two kinds of queries:

– obfuscate queries: takes as input the description of a program P and random
coins r; it returns P̃ = I(P, r).

– eval queries: takes as input a string P̃ and input x. Compute d← I−1(P̃ ).
If d 6= ⊥, then parse d as P, r and output P (x). Otherwise output ⊥.

Importantly, we will allow the inputs P to obfuscate to be oracle-aided
programs, making queries to G and more importantly to O. During the com-
putation of P (x) in an eval query, MObf will forward queries to G to MG and
queries to O to the random oracle O. We can then have Obf(P ; r) simply make
an obfuscate query on (P, r). It is straightforward that Obf is iO secure for such
oracle-aided programs, and even VGB secure. In fact, it is even virtual black box
(VBB) secure, which is known to be impossible in the standard model. However,
we only need that it is iO. In fact, we could replace MObf with any model that
implements obfuscation, so long as (1) the obfuscator was iO secure, and (2) the
input programs could query G and O.

The final M is just the combination (MPKE,MG,MObf). At this point, the
proof of Theorem 4.4 proceeds almost identically to Section 4.2, with Π′PKE
instantiated by MPKE, G instantiated by MG, and Obf instantiated by MObf . The
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main difference is that we need f to be oracle-aided, making queries to O. In
turn, this means Pm,y must also be oracle-aided, now making queries to both O
and G. Fortunately, MObf acts on such oracle-aided programs. We derive ΠPKE as
in Construction 4.2, and security of ΠPKE, relative to M , follows by an identical
argument relying on the security of Π′PKE,G, and Obf.

The attack is also quite similar. An adversary, given pkEwH = (pkPKE, s)
and (c′, P̃ ) ← EncEwH(pkEwH,m) = EncPKE(pkPKE,m; O(s,m) ), constructs the
(oracle-aided) code of the function f(m′) with s hardcoded, which outputs r0
computed from (r0, r1)← O(s,m′). This f makes queries to O.

Then it computes P̃ (f) by making an eval query on (P, f).MObf will respond
by computing Pm,y(f) where y = G(r0). Pm,y(f) evaluates G(f(m)), which for
our f is exactly y. Since G(f(m)) = y, the eval query outputs m in the clear.
This completes the proof of Theorem 4.4. ut

4.4 An Improved Uninstantiability

Here, we improve the computational assumptions needed for the uninstantiability
of EwH. While a potentially interesting fact on its own, our improvement also
illustrates the need for flexibility in M in order for the AROM to capture a wide
variety of uninstantiability results.

Concretely, we show that it suffices to assume compute-and-compare obfusca-
tion and fully homomorphic encryption, both of which can be instantiated under
circularly-secure LWE.

Construction 4.5 (Impossibility). Let Π = (Gen,Enc,Dec) be any public
key encryption scheme, Πfhe = (Genfhe,Encfhe,Decfhe,Evalfhe) be any FHE scheme,
and Obf a compute-and-compare obfuscator. Let G be a PRG. Define ΠPKE =
(GenPKE,EncPKE,DecPKE) to be the following

– GenPKE(1λ) = Gen(1λ).
– EncPKE(pk,m): choose a random r and compute c← Enc(pk,m; r). Sample

(pkfhe, skfhe) ← Genfhe(1λ) and compute d ← Encfhe(pkfhe,m). Let y0 = G(r)
and y1 be uniformly random. Let b the first bit of m. Finally let P̃ ←
Obf(1λ,CCG(Decfhe(skfhe, · )),yb) 9. Output (c, pkfhe, d, P̃ ).

– DecPKE(sk, (c, pkfhe, d, P̃ ) ): Output Dec(sk, c).

The following theorems prove the uninstantiability result; due to lack of space
we defer the proofs to the Full Version [Zha22].

Theorem 4.6. If Construction 4.1 is applied to ΠPKE from Construction 4.5,
then the resulting ΠEwH is not weakly CPA-PRIV in the standard model, even
against 1-sources, regardless of the hash function used to instantiate O.

Theorem 4.7. If Π is sub-exponentially CPA secure, Πfhe,Obf are polynomially
secure, and G is pseudorandom against sub-exponentially hard computationally
unpredictable sources, then ΠPKE is CPA secure.

9 Recall CCG(Decfhe(skfhe, · )),yb is the program x 7→ G(Decfhe(skfhe, x)) == yb.
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Note that the necessary G can be constructed from sub-exponentially hard LWE,
following ideas from Brakerski and Segev [BS11] and Zhandry [Zha16].

4.5 Other Possible Oracles

Our improved uninstantiability result shows that it is also important to consider
oracles other than MObf , to adequately capture all the non-black-box techniques
that may be used. It is not difficult to come up with oraclesMFHE that implement
fully homomorphic encryption, where the homomorphic operations may include
O gates. This allows the AROM to capture our improved uninstantiability above.
Another limitation of MObf pointed out by Asharov and Segev [AS15] is that
it fails to capture NIZKs, another common tool in constructions using iO. In
the AROM, we can easily create an oracle MNIZK that provides a NIZK proof
functionality for statements that involve queries to O. We can similarly define
oracles for any other non-black box tool applied to circuits that involve O queries,
and even oracles combining all of the above. Thus, as long as the non-black-box
techniques are simply using that the hash function has code that can be run—but
not using any particular features of that code—it seems that all such techniques
are captured by the AROM. Hence, AROM security provides compelling resiliency
to such techniques. This will be the focus of Section 4.6.

Non-examples. There are oracles that are non-examples. Most prominently would
be Simon’s oracle [Sim98], which finds collisions in functions without violating
one-wayness. This oracle makes exponentially-many queries to the random oracle,
thereby learning its entire truth table, and also cannot be efficiently simulated in
any way. More generally, Simon’s oracle is an example of the common “two oracle
trick” in black box separations, where one oracle implements a cryptosystem B,
but another oracle is designed to break any instantiation of C.

4.6 Overcoming ROM Failures for EwH

We now explain how to achieve deterministic encryption in the AROM, despite
known uninstantiability results for EwH working in the AROM.

At first glance, proving security in the AROM appears non-trivial: how
do you reason about any possible oracle M , which may implement arbitrarily
complex functionalities? Imagine, for example, that M directly provides oracles
implementing a cryptosystem Π as in MPKE. But M knows the injections being
used to define the cryptosystem, meaning M itself can internally invert this
injection, learning the secret key for any public key. For a given transform T ,
one could plausibly augment this M with a break functionality, that breaks Π
whenever it is used inside T , but leaves Π as secure when used “honestly.” Any
security proof would have to rule out such a M .

Now, the obvious solution is a reduction: showing that any adversary for
TΠ can be converted into an attacker for Π. Thus, if M provided a mechanism
to break TΠ , it would contradict that Π is secure. This is the approach we
follow. But in the AROM, devising a reduction is nevertheless non-trivial. If the
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reduction could be performed exactly as it would in the standard model, there is
no need to work in the ROM or AROM in the first place. So for the transforms
we consider, the reduction will be making non-trivial use of the random oracle O.
But it also cannot just freely program the random oracle seen by the adversary
as in typical ROM proofs: the reduction must result in an adversary for Π,
which makes queries to M (since that is how Π was constructed) which in turn
makes queries to O. Thus if we try re-programming O, it will be inconsistent
with the “true” O. Since the adversary has indirect access to the true O, this
re-programming could plausibly be detected, causing the adversary to abort.
How do we structure the proof in such a way that this detection is not possible,
regardless of the structure of M?

Looking ahead, our solution will first use the security property of Π to move
to a hybrid; this step is a standard reduction and does not make any particular
use of the random oracle. Then in the hybrid, a statistical property will hold.
This statistical property allows us to establish some security against M itself,
which we then use to carefully program the random oracle, etc.

We now explore how to implement this vague idea in the case of EwH (Con-
struction 4.1) in order to make it secure. In particular, we consider strengthening
Π to being lossy (Definition 2.8). Observe that the uninstantiability of [BFM15]
detailed in Section 4.2 uses a non-lossy public key encryption scheme. Afer all,
the program P̃ is an obfuscation of Pm,y, which has the message m hard-coded.
While m is presumably hidden computationally, m determines the program’s
behavior and therefore is information-theoretically determined by P̃ . Thus, even
if, say, the original encryption scheme Π′PKE were lossy, the resulting scheme in
Construction 4.2 will never be lossy.

We show that this limitation of [BFM15] is inherent: that EwH is weakly CPA-
PRIV in the AROM if using a lossy encryption scheme10. Since the techniques
of [BFM15] are captured by the AROM, we thus show that the techniques cannot
extend to EwH when using lossy encryption. We note that weak CPA-PRIV
implies correlated-input secure one-way functions, which Wichs [Wic13] shows
cannot be proved secure using black-box reductions to any falsifiable assumption.
This means some idealized model is necessary for security of EwH.

Theorem 4.8. If ΠPKE is lossy, then ΠEwH is weakly CPA-PRIV in the AROM.

Proof. Consider a distribution M over oracles M , and some lossy encryption
scheme ΠPKE = (GenPKE

O,MO

,EncPKE
O,MO

,DecPKE
O,MO

,GenLossyPKE
O,MO

) in
theM-AROM. Let ΠEwH

O,MO

be the result of applying EwH to ΠPKE.
Consider an `-source DO,MO , which we assume to be statistically unpre-

dictable in theM-AROM. Let AO,MO be a CPA-PRIV adversary with advantage
ε. We now define hybrids:

Hybrid 0. Here, A plays the CPA-PRIV game against Γ and D, with b = 0. This
means A receives aux and encryptions of m∗i,0, where (m∗1,0, . . . ,m∗`,0, aux) ←
DO,MO (1λ). Let p0 be the probability A outputs 1.
10 We do not know how to prove CCA-PRIV or strong security for this construction.
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Hybrid 1. Here, we switch pkPKE to be generated by pkPKE ← GenLossyPKE(1λ).
Let p1 be the probability A outputs 1. By the assumed lossiness of ΠPKE in the
M-AROM, we must have |p1 − p0| is negligible.

Hybrid 2. This is identical to Hybrid 1, except that the experiment immediately
aborts if GenLossy or D (when being run by the experiment) ever make a query
O(s,m∗i,b) for some i ∈ [`], b ∈ {0, 1}, or if they make a query to M that triggers
such a query to O. Here, m∗i,1 are sampled as uniformly random distinct messages.
Let p2 be the probability A outputs 1. Notice that GenLossy and D only receive
1λ as input, and so are independent of s. SinceM is complexity preserving and
GenLossy, D are efficient, they can only trigger a polynomial number of queries
each, so the probability of such a query is negligible. Hence |p2 − p1| is negligible.

Observe that in Hybrid 2, the very first queries to O(s,m∗i,0) for any i ∈ [`]
are when running EncEwH(pkEwH,m

∗
i,b) = EncPKE(pkPKE,m

∗
i,0; O(s,m∗i,0) ). Note

that each of the m∗i,0 are distinct, so all such first queries are distinct.

Hybrid 3. This is the same as Hybrid 2, except that the experiment aborts if
there are any queries to O(s,m∗i,b) occurring after those by EncEwH(pkEwH,m

∗
i,0).

Let p3 be the probability A outputs 1. We will prove |p3−p2| is negligible shortly.
In Hybrid 3, since O(s,m∗i,0) is only ever answered once, namely inside

EncEwH(pkEwH,m
∗
i,0), the random coins generated in each call to EncEwH are ran-

dom and independent of the rest of the experiment. Thus, Hybrid 3 is equivalent
to giving A the ciphertexts EncPKE(pkPKE,m

∗
i,0) for fresh random coins.

Hybrid 4. This is the same as Hybrid 3, except that we switch the ciphertexts
given to A to be EncEwH(pkEwH,m

∗
i,1) for uniformly random m∗i,1. Let p4 be the

probability A outputs 1. As in Hybrid 3, the experiment is equivalent to the
ciphertexts being EncPKE(pkPKE,m

∗
i,1) for fresh random coins. By the lossiness of

EncPKE, |p4 − p3| is negligible.
We now prove |p3 − p2| negligible. First, since m∗i,1 are random distinct

messages that are independent of the view of the experiment in Hybrid 2, the
probability of querying on O(s,m∗i,1) is negligible. Now we consider the first
query of the form O(s,m∗i,0) triggered after EncEwH in Hybrid 2. Up until this
point, Hybrids 2, 3, and 4 is statistically close. But in Hybrid 4, prior to any
O(s,m∗i,0) query, the experiment only uses m∗i,1, and not the m∗i,0. Hence, the
m∗i,0 remains statistically independent of the view of the experiment up until this
point. Making a query on m∗i,0 would thus violate the statistical unpredictability
of D, and hence can only occur with negligible probability.

Hybrids 5,6, and 7. These are the same as Hybrids 2,1, and 0, respectively, except
that the messages being encrypted are m∗i,1. Let p5, p6, p7 be the probabilities of
outputting 1. By analogous arguments, we have that |p5 − p4|, |p6 − p5|, |p7 − p6|
are all negligible. Hence |p7−p0| is negligible. But notice that Hybrid 7 is exactly
the CPA-PRIV game with b = 1, and so |p7− p0| = ε is the advantage of A. This
completes the proof. ut
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5 Fujisaki-Okamoto in the AROM

Here, we explore the insecurity of the Fujisaki-Okamoto (FO) transform [FO99]
in the AROM. Recall that FO starts with ΠPKE = (GenPKE,EncPKE,DecPKE) and
ΠSKE = (EncSKE,DecSKE), which are public key and secret key encryption schemes.
Ciphertexts are then

( c := EncPKE(pk, δ; O(0, δ, d) ) , d := EncSKE( O(1, δ) ,m) ) .

Note that, because EncPKE never “sees” d, the Type 2 impossibility of the un-
tweaked EwH does not seem to apply. For simplicity, we therefore stick with the
usual description of FO; we could also define a tweaked version with an s as in
Section 4.1, and everything we say below will still apply.

That FO is insecure for general PKE already follows from [BFM15] following
a similar proof as the EwH setting, and the insecurity readily carries over to the
AROM following a very similar outline as in Section 4.3. In fact, unlike EwH,
FO remains insecure in the AROM, even if ΠPKE is lossy:

Theorem 5.1. For general lossy ΠPKE and even perfectly secure ΠSKE, FO is
not secure in the AROM.

Proof. We start with an oracle MO which contains families of private random
permutations P,Q, and answers the following queries:

– (Gen, 1λ, s): Output (pk = P (s, 0), sk = s).
– (GenLossy, 1λ, s): Output pk = P (s, 1).
– (Enc, pk,m, r): If P−1(pk) = (sk, 0) for some sk, output c = Q(pk,m, r).

Otherwise output c = Q(pk, 0, r).
– (Dec, sk, c): Compute (pk,m, r) = Q−1(c). If pk = P (sk, 0), output m. Oth-

erwise output ⊥.
– (Forward, x): Output O(x).

M clearly can be used to realize a lossy encryption scheme ΠPKE. We instantiate
EncSKE with the one-time pad. Let ΠFO = (GenFO

O,MO

,EncFO
O,MO

,DecFO
O,MO

)
be the result of applying the FO transformation to this lossy encryption scheme.
Under M as is, ΠFO actually will be CCA-secure. We now add two more types of
queries to M , which make use of another private random oracle R.

– (EncRand, pk): Compute (m, r) = R(pk) and output c← EncFO
O,MO

(pk,m; r)
– (Break, pk,m): Compute (m′, r) = R(pk) and (sk, b)← P−1(pk). If m = m′,

output sk.

We claim that the addition of these queries preserves the lossiness of ΠPKE.
Indeed, suppose an adversary is trying to distinguish pk being lossy from regular.
An EncRand query on pk does not help: it is just an encryption of a random
ciphertext under FO, which the adversary could simulate for itself. On the other
hand, suppose it makes a Break query on (pk,m) that causes it to output sk.
Consider the first such query. In this case, the adversary must have been able to
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previously learn the plaintext encrypted in the EncRand query. Since the query
was just a random ciphertext, such an adversary can be turned into an adversary
against the CPA-security for ΠFO in the setting of only Gen, GenLossy, Enc, Dec
queries, which we already know is impossible.

However, these queries clearly allow for for CCA attacks on ΠFO: simply make
an EncRand query on the public key, and then make a CCA query on the resulting
ciphertext. Then feed the result into a Break query, revealing the secret key. ut

The above “attack” is quite general: it is not clear that it used any particular
structure of ΠFO. In the following subsection, we will nevertheless show how to
modify the construction to achieve CCA security. Very roughly, the way we get
around the issue above is by having a public key comprise of several public keys
for ΠPKE. What we will see is that this lets us simulate CCA queries by ourselves.
Then the ability to perform EncRand and Break queries will directly allow us to
break the security of the underlying encryption scheme. Note that our proof will
be much more general, applying to any oracle M .

5.1 Our CCA-secure Construction
Construction 5.2 (CCA-Secure PKE in the AROM). Let ΠPKE =
(GenPKE,EncPKE,DecPKE) and ΠSKE = (EncSKE,DecSKE) be public key and secret
key encryption schemes, respectively. Let ΠSig = (GenSig,SignSig,VerSig) be a
signature scheme. Define ΠCCA = (GenCCA

O,EncCCA
O,DecCCA

O), where
– GenCCA

O(1λ): Let ` be the bit-length of vk generated by GenSig(1λ). For
i ∈ [`], b ∈ {0, 1}, run (pkPKE

(i,b), skPKE
(i,b))← GenPKE(1λ). Output pkCCA =

(pkPKE
(i,b))i,b and skCCA = ((skPKE

(i,b))i,b, pkCCA).
– EncCCA

O(pkCCA,m): Sample (vk, skSig) ← GenSig(1λ). Sample δ ← {0, 1}λ.
Run d ← EncSKE(O(vk, δ) , m), ci ← EncPKE(pkPKE

(i,vki), δ; O(δ, i, d, vk) )
for i ∈ [`]. Finally compute σ ← SignSig(skSig, ((ci)i, d) ). Output c =
(vk, (ci)i, d, σ).

– DecCCA
O(skCCA, c): First run VerSig(vk, ((ci)i, d) , σ); if it rejects immediately

abort and output ⊥. Otherwise run δ ← DecPKE(skPKE
(1,vk1), c1). For each

i > 1, check that ci = EncPKE(pkPKE
(i,vki), δ; O(δ, i, d, vk) ); if any of the

checks fail immediately abort and output ⊥.
Finally, output m← DecSKE(O(vk, δ) , d).

Correctness is immediate from the correctness of the underlying protocols. We
now state the security theorem:
Theorem 5.3. If ΠPKE is lossy, ΠSKE is one-time secure, and ΠSig is strongly
one-time secure, then ΠCCA is CCA secure in the AROM.
Due to lack of space, we defer the proof to the Full Version [Zha22]. The idea is
to change some of the public keys to be lossy, so that the challenge query invokes
only lossy keys but all CCA queries invoke at least one non-lossy key. This allows
us to decrypt all CCA queries, while being able to leverage an argument similar
to Theorem 4.8 for EwH to show that the challenge message remains hidden.
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6 Fiat-Shamir in the AROM

Fiat-Shamir (FS) [FS87] reduces interactive public coin protocols into a single
message. There are two variants: interactive into non-interactive arguments, and
identification protocols into signatures. We will focus on argument systems.

Let P (x,w)↔ V (x) be a proof system for an NP language L, where x is an
instance and w a witness. The system is a sound proof if, for any x /∈ L and
any potentially unbounded cheating prover P ∗(x), P ∗(x)↔ V (x) causes V to
accept with only negligible probability. The system is a sound argument if the
above holds for only computationally efficient P ∗. The system is public coin if
V ’s messages are uniform random strings.

Consider a 3-message public coin proof system, where the prover goes first. Let
(a, c, r) be the three messages. The Fiat-Shamir transform compiles such a system
into a non-interactive proof, by running P (x,w) but where the verifier’s message
c is set to O(s, a), resulting in (a, c = O(s, a), r). Here, s is a common reference
string (CRS), and is needed to enforce domain separation to avoid trivial Type 2
impossibilities if the underlying proof system can query O. The verifier then just
checks the validity of the transcript (a, c, r), and also that c = O(s, a).

Heuristically, one may expect the resulting system to be sound, since the
soundness of P, V relied on the un-predictability of c, which seems to hold when
deriving c from a good hash function. In the ROM, one can prove this intuition, as
shown by [BR93]. Unfortunately, Goldwasser and Kalai [GK03] show that this is
not the case in the standard model for general arguments. Following similar ideas
to the EwH and FO cases, in the Full Version [Zha22], we show the following:

Theorem 6.1. For general arguments, FS is not secure in the AROM.

On the other hand, we show that if the proof system is an actual proof (that is,
it has statistical soundness), then Fiat-Shamir is secure:

Theorem 6.2. FS is secure in the AROM for statistically sound proofs, assum-
ing |s| ≥ |a|+ |r|+ ω(log λ).

The security of FS for proofs has been explicit conjectured by [BLV03], but a
Type 5 impossibility was shown by [BDG+13], showing that FS cannot be proved
in the standard model relative to standard assumptions. Thus, an idealized model
seems inherent in any justification for security. The proof of Theorem 6.2 is given
in the Full Version. The idea is that we can turn any adversary for FS in the
AROM into a computationally unbounded adversary for the underlying proof
system. The proof system adversary will essentially brute force the entire oracles
O andM , and then use this knowledge to undetectably simulate a re-programmed
oracle to the FS adversary.

Remark 6.3. The FS transform is not zero knowledge in the AROM, as the usual
zero knowledge proof requires the simulator to be able to program the random
oracle, which we disallow due to concerns about Type 4 impossibilities. One
option is to use Lindell’s transformation [Lin15], which includes a dual-mode
commitment that provides a trapdoor for simulation. Another simpler option is to
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change the way c is computed to ci = O(i, si, a), where ci is the i-th bit of c, and
the CRS is s = (si)i where each si is |a|+ |r|+ω(log λ) bits. Now zero knowledge
follows from the honest-verifier zero knowledge of (Prov,Ver): first simulate
(a, c, r) for (Prov,Ver), and then choose random si such that ci = O(i, si, a).

Remark 6.4. Our proof above is not amenable to the case of signatures, as we
would need a way to answer signing queries without knowing the witness. This is
usually accomplished via random oracle programming. Our techniques only allow
for programming using an inefficient reduction. But it seems when programming
the oracle to answer signing queries, we need the reduction to remain efficient,
since an inefficient reduction could have brute-forced the signatures by itself. We
therefore leave the signature case as an interesting open question.

7 On Best Possible Hashing

In this section we identify two security properties that are trivially satisfied by
random oracles, and each have standard-model instantiations with different hash
functions. Yet no single hash function can satisfy both properties.

The two properties are anti-lossiness (Definition 2.4) and one-wayness against
auxiliary input (Definition 2.5).

Anti-lossiness. Recall that anti-lossiness asks that there is no hashing key that
makes the function so lossy so as to have predictable outputs when the input
is random. Anti-lossiness is a natural property of hash functions, and is likely
satisfied by efficient hash functions such as SHA2, where we turn SHA2 into a
keyed hash function by simply concatenating the key with the input. After all, the
existence of keys/prefixes that allow the output of SHA2 to be predicted would
be considered a major weakness of the hash function. It is also easy to construct
anti-lossy hash functions information-theoretically, and using public key tools we
can even construct collision resistant anti-lossy functions. For example, for key
k = (g, h), the map (x, y) → gxhy is collision resistant (assuming discrete log)
and anti-lossy. If we treat a random oracle as a keyed function by concatenating
the key to the input, random oracles are also trivially anti-lossy.

One-wayness against auxiliary input. Recall that one-wayness against auxiliary
input requires that the function remains one-way even against all computationally
unpredictable 1-sources. Zhandry [Zha16] constructs such functions under the
assumed exponential hardness of DDH. A random oracle (treating it as keyed
by concatenating the key to the input) also trivially satisfies this notion in the
plain ROM: this is just a simple consequence of random oracles being universal
computational extractors [BHK13].

7.1 Incompatibility of the definitions

Theorem 7.1. Assuming VGB obfuscation, there is no hash function H that is
both anti-lossy and auxiliary input one-way.
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Proof. The proof is closely related to the insecurity auxiliary input DDH, as
shown by [BST16]. Our insight is to identify anti-lossiness as the specific property
off DDH that facilitates the proof [BST16]. Let H be any hash function. Our
distribution D(1λ) samples a uniformly random x. It then lets Px(k, y) be the
program with x hard-coded, which outputs x if and only if H(k, x) = y; otherwise
it outputs 0. D then outputs (x, aux = Obf(1λ, Px) ).

Lemma 7.2. If H is anti-lossy, then D is computationally unpredictable.

Proof. Suppose towards contradiction that there is an adversary A for the
unpredictability of D. In other words, A learns x from Obf(1λ, Px), for a uniform
choice of x. By VGB security, there must therefore be an inefficient but query-
bounded simulator S such that SPx(1λ) outputs x with non-negligible probability.
Consider any query (k, y) that S makes to Px. By statistical unpredictability,
with overwhelming probability H(k, x) 6= y, and so the query response is 0. By a
simple hybrid over all queries, with overwhelming probability the answers to all
queries are 0, in which case the view of S is independent of x. Hence S cannot
output x except with negligible probability, a contradiction. ut

We now finish the proof of Theorem 7.1. If given k, y = H(k, x) and aux, we
can simply run the program aux on k, y; the result is Px(k, y), which outputs x
since y = H(k, x). Hence, H cannot be one-way against the source D. ut

Note that, if H is not anti-lossy, then D may be computationally predictable.
This is exactly what happens with Zhandry’s ELFs. Thus, even though H is not
one-way against D, there is no contradiction since D is not a valid source.

We now explain that Theorem 7.1 easily translates to the AROM:

Theorem 7.3. There is no hash function in the AROM that is both anti-lossy
and auxiliary input one-way.

We sketch the proof due to lack of space. In the AROM, we simply use the
obfuscation oracle MObf from Section 4.3 to implement Obf (MObf is not only
iO, but trivially VGB and even VBB). The rest of the proof of Theorem 7.1 is
readily adapted to use MObf instead of Obf.

By Corollary 3.7, we know that O is anti-lossy in the AROM. Thus, we
conclude O is not auxiliary input one-way in the AROM. We note that this does
not contradict Theorem 3.6, as auxiliary input one-wayness is not single-stage
owing to D and A being isolated adversaries, and hence the AROM and ROM are
not equivalent for this security property. Thus, we see that the AROM appears
to reflect the security of standard hash functions such as SHA2.
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