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Abstract. Since the first white-box implementation of AES published
twenty years ago, no significant progress has been made in the design of
secure implementations against an attacker with full control of the de-
vice. Designing white-box implementations of existing block ciphers is a
challenging problem, as all proposals have been broken. Only two white-
box design strategies have been published this far: the CEJO frame-
work, which can only be applied to ciphers with small S-boxes, and self-
equivalence encodings, which were only applied to AES.

In this work we propose implicit implementations, a new design of white-
box implementations based on implicit functions, and we show that cur-
rent generic attacks that break CEJO or self-equivalence implementa-
tions are not successful against implicit implementations. The gener-
ation and the security of implicit implementations are related to the
self-equivalences of the non-linear layer of the cipher, and we propose a
new method to obtain self-equivalences based on the CCZ-equivalence.
We implemented this method and many other functionalities in a new
open-source tool BoolCrypt, which we used to obtain for the first time
affine, linear, and even quadratic self-equivalences of the permuted mod-
ular addition. Using the implicit framework and these self-equivalences,
we describe for the first time a practical white-box implementation of a
generic Addition-Rotation-XOR (ARX) cipher, and we provide an open-
source tool to easily generate implicit implementations of ARX ciphers.

Keywords: White-box cryptography · Self-equivalence · Implicit imple-
mentation · ARX

1 Introduction

In some settings, such as digital rights management (DRM) or mobile banking,
an attacker might get full control of the device performing the sensitive cryp-
tographic computations. This extreme case cannot be captured by traditional
black-box cryptography, which considers an attacker with only access to the
input and output behaviour of the cryptographic algorithm, or even grey-box
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cryptography, that assumes some leakage from the device can be extracted from
an attacker with partial access.

This setting was captured into the so-called white-box model by Chow et al.
[13]. In this cryptographic model, it is assumed that the attacker has full control
on the device running the cryptographic algorithm. In other words, the attacker
can observe and even modify all the intermediate values of the cryptographic
computation.

Chow et al. also proposed in this seminal work a design of an implementation
of AES with the ambitious goal of preventing key-extraction attacks without
relying on secure hardware or on the secrecy of the design. The main idea of
this design, later called the CEJO framework, is to represent the cipher as a
network of encoded look-up tables, where each table is composed with random
perturbations or encodings in such a way that the output encoding of one step
cancels the next input encoding. The encodings are small functions such as 4-
bit or 8-bit permutations to avoid huge look-up tables and implementations
with impractical size. To prevent a trivial attack, the first and last encodings
are not cancelled, and due to these external encodings the resulting white-box
implementation is not functionally equivalent to the original cipher.

To avoid external encodings and to keep the input-output behaviour of the
cipher, some industrial white-box implementations rely on the secrecy of their
designs. However, the WhibOx Contest [40] has shown that these white-box
implementations can be broken by automated white-box attacks based on side-
channel analysis and fault attacks [4,10,35]. This work focuses on the white-box
setting proposed by Chow et al. and white-box implementations relying on secret
designs [9] are outside the scope of this paper.

Several CEJO implementations [3, 14, 23, 26, 27, 37, 43] have been proposed,
but all of them have been broken. These attacks exploit some properties of
the underlying cipher (AES in most cases), but efficient generic attacks have
also been proposed to the CEJO framework [3, 17, 29], which can break CEJO
implementations of a wide class of ciphers.

Apart from CEJO implementations only one other type of white-box imple-
mentations, of existing block ciphers and without relying on secret designs, has
been published: self-equivalence implementations [28, 34]. In the latter imple-
mentations, the round functions are protected by affine self-equivalences of the
non-linear layer S, that is, affine permutations (A,B) such that S = B◦S◦A [15].
In other words, each round in a self-equivalence implementation is composed of
the non-linear layer, which is left unprotected, and the encoded affine layer, which
encodes the affine layer containing the round key material with self-equivalences
of the non-linear layer.

Whereas CEJO implementations can only use small encodings, self-equiva-
lence implementations can use large encodings and avoid many of the attacks
to the CEJO framework. Ranea and Preneel showed in [34] that the affine self-
equivalence group of the non-linear layer plays a major role in the security of
self-equivalence and CEJO implementations, and they suggest securing a cipher
with a non-linear layer that is composed of large S-boxes and that has large
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affine self-equivalence group, instead of securing AES which was the focus of
most earlier work.

Unfortunately and apart from the insecure example for AES [28], no other
self-equivalence implementation has been proposed this far. The main difficulty
is finding a suitable non-linear layer. Among the functions used in non-linear
layers, the power function x 7→ xd is one of the few for which a large affine
self-equivalence subgroup3 is known for large bitsizes. However, power functions
are used in block ciphers mostly in small S-boxes, with the exception of some
algebraic ciphers [1].

One of the most important large non-linear permutations used in block ci-
phers is the permuted modular addition, (x, y) 7→ (x⊞y, y), but no previous work
has studied its affine self-equivalences. However, quadratic functions tend to have
many affine self-equivalences, and the modular addition is CCZ-equivalent to a
quadratic function [36]. CCZ-equivalence [12] is an equivalence relation between
functions based on their graphs that preserves many properties such as differ-
ential or linear properties. Thus, the quadratic CCZ-equivalence of the modular
addition suggests its affine self-equivalence group can be very large.

1.1 Contributions

In this work we first address the problem of finding the affine self-equivalence
group of the permuted modular addition. Schulte-Geers obtained in [36] the
differential and linear properties of the modular addition from the differential
and linear properties of its simpler CCZ-equivalent quadratic function. Inspired
by this approach and the relation between the self-equivalences of two CCZ-
equivalent functions, we propose a method to obtain the self-equivalences of
a non-linear function from a low-degree CCZ-equivalent function. Our method
can find affine but also other types of self-equivalences, such as self-equivalences
(A,B) with A being affine and B being quadratic or affine permutations that
map the graph of a function to itself.

We provide a new open-source library BoolCrypt4 that implements the pre-
vious method and many functionalities related to vectorial Boolean functions,
self-equivalences, and functional equations. We dedicated a significant engineer-
ing effort to equip BoolCrypt with plenty of functionalities, a modular structure
and an extensive documentation, so that it can be useful and practical for the
community.

After running BoolCrypt on the permuted modular addition, we obtained
subsets of 3× 22n+2 linear, 3× 22n+8 affine, and 32 × 23n+14 − 3× 22n+8 affine-
quadratic self-equivalences for wordsize n ∈ {4, 5 . . . , 64}. It is worth mentioning
that the self-equivalence results, the tool BoolCrypt and the generic method to

3 The power function F (x) = xd ∈ F2n has at least n(2n−1) linear self-equivalences of

the form (A(x), B(x)) = (ax2i , a−d2n−i

x2n−i

) , where a ̸= 0 and i = 0, 1, . . . , n− 1.
The whole linear self-equivalence group has only been found for some exponents [41].

4 https://github.com/ranea/BoolCrypt

https://github.com/ranea/BoolCrypt
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compute self-equivalences can be of independent interest for other areas apart
from white-box cryptography.

Unfortunately, the self-equivalences that we found are too structured and not
suitable for self-equivalence implementations. Despite the exponential number of
these linear, affine and affine-quadratic self-equivalences, they have a common
sparse shape and low-entropy constant vectors. As a result, the round keys are
not securely hidden in the constant vectors of the encoded affine layers.

Thus, we propose implicit implementations, a new design of white-box im-
plementations that combines large self-equivalences with large affine encodings
to prevent attacks exploiting the structure of the self-equivalences. Implicit im-
plementations represent each round function by a low-degree implicit function
and apply the large encodings on the implicit round functions.

Whereas CEJO implementations can only apply small encodings and self-
equivalence implementations can only use self-equivalence encodings, the main
advantage of implicit implementations is that they can efficiently encode the low-
degree implicit round functions with large affine permutations and even large
non-linear self-equivalences.

We analyse the security of implicit implementations against key-extraction
attacks and show that implicit implementations that use non-linear encodings
or where the non-linear layer of the cipher is not composed of small S-boxes
prevent all known generic key-extraction attacks. We also propose a new generic
attack for the implicit framework that provides insightful requirements for im-
plicit implementations with affine encodings.

Using the implicit framework and the self-equivalences of the permuted mod-
ular addition, we describe an implicit implementation of a generic cipher with
the permuted modular addition as the non-linear layer, which captures the well-
known family of Addition-Rotation-XOR (ARX) ciphers. We analyse the security
of these implicit implementations and provide an open-source tool5 to generate
implicit implementations of ARX ciphers in an automated way.

Designing white-box implementations of existing ciphers is currently the most
challenging problem in white-box cryptography. Since the first white-box imple-
mentation of AES published twenty years ago [13], no major progress has been
made in the design of white-box implementations; only CEJO implementations
with small encodings and a toy self-equivalence implementation of AES were pro-
posed thus far. In this work we address this challenging problem by proposing
the new design framework of implicit implementations, which not only prevent
all known generic key-extraction attacks but also can be applied to ARX ciphers
for the first time.

Outline. In Sect. 2 the notation and the preliminaries are introduced. Implicit
implementations are presented in Sect. 3, and their security is analysed in Sect. 4.
In Sect. 5 we propose a method to obtain self-equivalences based on a low-degree
CCZ-equivalent function, and we show the results of this method applied to the
permuted modular addition. We then describe an implicit implementation of a

5 https://github.com/ranea/whiteboxarx

https://github.com/ranea/whiteboxarx
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generic ARX cipher in Sect. 6, together with its security analysis and the tool
to generate implicit implementations of ARX ciphers. Section 7 presents the
conclusions and future work.

2 Preliminaries

Let Fn
2 be the vector space with n-bit values. We denote the addition in Fn

2 by
⊕, and the function representing the addition by a constant k by ⊕k : x 7→ x⊕k.
The identity function in Fn

2 is denoted by Idn. Functions from Fn
2 to Fm

2 will be
called (n,m)-bit functions or just n-bit functions if m = n. Given two functions
F and G, their composition is denoted by F ◦ G and their concatenation by
(F,G)(x, y) = (F (x), G(y)).

The degree of an (n,m)-bit function F refers in this paper to the algebraic
degree of F , that is, the maximum polynomial degree of the m multivariate
polynomials uniquely representing the coordinate Boolean functions of F . A
function F is affine if its algebraic degree is 1, and it is linear if, in addition,
F (0) = 0. A non-linear function is a function with algebraic degree greater than
or equal to 2. In particular, functions with algebraic degree 2, 3, and 4 are called
quadratic, cubic and quartic functions respectively.

In this paper, functions are denoted by capital letters (e.g., F,G), elements
of Fn

2 by lowercase letters (e.g., x, y) and sets of functions by calligraphic letters
(e.g., F ,G).

2.1 Implicit Functions, Self-Equivalences and Graph
Automorphisms

In this section we will introduce the three main ingredients of our new design
of white-box implementations: implicit functions, self-equivalences, and graph
automorphisms.

Let F be an n-bit function. A (2n,m)-bit function P is called an implicit
function of F if it satisfies

P (x, y) = 0 ⇐⇒ y = F (x) .

Moreover, the n-bit variable vectors x and y will be called the input and output
variable vectors, respectively.

For example, P (x, y) = y⊕F (x) is an implicit function for any F . An implicit
function can also be defined as a function that implicitly defines the graph of a
function. Let ΓF = {(x, F (x)) : x ∈ Fn

2} be the graph of an n-bit function F .
Then, P is an implicit function of F if and only if ΓF = {(x, y) : P (x, y) = 0}.
The next lemma describes how the composition of functions translates to their
implicit functions and their graphs.

Lemma 1. Let P be a (2n,m)-bit implicit function of an n-bit function F ,
(A,B) be a pair of n-bit permutations, U be a 2n-bit permutation and V be an
m-bit permutation with V (0) = 0.
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(i) P ′ = P ◦ (A,B−1) is an implicit function of F ′ = B ◦ F ◦A.
(ii) V ◦ P is an implicit function of F .
(iii) U(ΓF ) = {U(x, F (x)) : x ∈ Fn

2} is implicitly defined by P ◦ U−1, that is,

U(ΓF ) = {(x′, y′) : (P ◦ U−1)(x′, y′) = 0} .

Proof. The first two statements follows from the definition of P ,(
V ◦P ◦ (A,B−1)

)
(x, y) = 0 ⇐⇒ P (A(x), B−1(y)) = V −1(0) = 0

⇐⇒ B−1(y) = F (A(x)) ⇐⇒ y = B(F (A(x))) ,

and similarly for the last statement,

U(ΓF ) = {U(x, y) : P (x, y) = 0} =

{
(x′, y′) :

(x′, y′) = U(x, y)
P (x, y) = 0

}
. ⊓⊔

In other words, applying a permutation A to the input of F and a permu-
tation B to the output of F corresponds to applying (A,B−1) to the input of
an implicit function of F . Moreover, applying any permutation V with the fixed
point 0 to an implicit function of F leads to another implicit function of F . The
third statement of Lemma 1 shows that applying a permutation U to the points
of the graph of F leads to the set of points defined by an implicit function of F
composed with the inverse of U .

A self-equivalence of a function F is a pair of permutations (A,B) such that
F = B ◦ F ◦ A. If (A,B) is a self-equivalence of F , we say that A (resp. B) is
a right (resp. left) self-equivalence of F . Moreover, if A and B are affine (resp.
linear), we say that (A,B) is an affine (resp. linear) self-equivalence. In this work
we also consider non-linear self-equivalences; if A is affine and B is quadratic we
say that (A,B) is an affine-quadratic self-equivalence.

The set of self-equivalences forms a group with respect to the composition,
and the subsets of affine and linear self-equivalences are subgroups respectively
[19, 25]. Moreover, given a function F and two permutations C and D, the self-
equivalence groups of F and D ◦ F ◦ C are conjugates, that is,(

A,B
)
is a self-equivalence of F ⇐⇒(
C−1 ◦A ◦ C,D ◦B ◦D−1

)
is a self-equivalence of D ◦ F ◦ C .

A graph automorphism6 of F is a permutation U such that ΓF = U(ΓF ). It
is easy to show that the set of graph automorphisms is a group with respect to
the composition, and its restriction to affine permutations is also a subgroup.
The next lemma shows the relation among implicit functions, self-equivalences
and graph automorphisms.

Lemma 2. Let P be an implicit function of F . If (U, V ) is a self-equivalence
of P with V (0) = 0, then U is a graph automorphism of F . Moreover, (A,B)
is a self-equivalence of F if and only if U(x, y) = (A(x), B−1(y)) is a graph
automorphism of F .
6 Self-equivalences are sometimes called automorphisms in the literature, but in this
paper we only use the term automorphism to refer to a graph automorphism.
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Proof. From Lemma 1, we have that P ′ = V ◦ P is an implicit function of F .
Moreover,

0 = (P ′ ◦ U)(x, y) ⇐⇒ 0 = V (0) = V (P (U(x, y)) = P (x, y) ⇐⇒ y = F (x) .

Thus, P ′ ◦ U is an implicit function of F and from Lemma 1, U−1(ΓF ) = ΓF .
Since the set of graph automorphisms is a group, U is also a graph automorphism
of F .

To prove the last statement, let A,B and U be three permutations and let
P be an implicit function of F . For the forward direction, note that if (A,B) is
a self-equivalence of F , then

(P ◦ (A,B−1))(x, y) = 0 ⇐⇒ y = B(F (A(x))) = F (x) .

In other words, P ◦ (A,B−1) is another implicit function of F . Reasoning as in
the previous case, U = (A,B−1) is a graph automorphism of F . For the other
direction, if U = (A,B−1) is a graph automorphism of F , then P ◦ U−1 and
P ◦ U are implicit functions of F (Lemma 1), which proves

y = F (x) ⇐⇒ (P ◦ (A,B−1))(x, y) = 0 ⇐⇒ y = B(F (A(x))) . ⊓⊔

In other words, the self-equivalences of a function F and some right self-
equivalences of their implicit functions can be embedded in the group of graph
automorphisms of F . In general, the group of graph automorphisms of F contains
more elements, and some of them do not correspond to self-equivalences of F
or self-equivalences of an implicit function of F . The next lemma shows that a
function can have multiple implicit functions; its proof is straightforward from
Lemmas 1 and 2.

Lemma 3. Let P be an implicit function of F . If V is a permutation with
V (0) = 0 and U is a graph automorphism of F , then V ◦ P ◦ U is an implicit
function of F .

2.2 Encoded Implementations

Given an n-bit iterated block cipher, we denote the encryption function for a

fixed key k by Ek = E
(nr)

k(nr) ◦ E
(nr−1)

k(nr−1) ◦ · · · ◦ E
(1)

k(1) , where E
(i)

k(i) denotes the ith

round function and k(i) denotes the ith round key. For ease of notation, we omit
the round-key subscript of the round functions.

CEJO and self-equivalence implementations can be seen as encoded imple-
mentations, a class of white-box implementations based on the notion of encod-
ing.

Definition 1 ( [13]). Let F be an (n,m)-bit function and let (I,O) be a pair of
n-bit and m-bit permutations, respectively. The function F = O ◦ F ◦ I is called
an encoded F with input and output encodings I and O, respectively.
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Definition 2 ( [34]). Let Ek = E(nr) ◦ E(nr−1) ◦ · · · ◦ E(1) be the encryption
function of an iterated n-bit block cipher with fixed key k. An encoded (white-box)
implementation of Ek is an encoded Ek composed of encoded round functions,
that is,

Ek = E(nr) ◦ · · · ◦ E(1) = (O(nr) ◦ E(nr) ◦ I(nr)) ◦ · · · ◦ (O(1) ◦ E(1) ◦ I(1)) ,

where the round encodings (I(1), O(1)), (I(2), O(2)), . . . , (I(nr), O(nr)) are n-bit

permutation pairs s.t. I(i+1) =
(
O(i)

)−1
for i = 1, 2, . . . , nr − 1.

In other words, an encoded implementation is the composition of encoded
round functions where the intermediate round encodings are cancelled out. Thus,
Ek can also be written as Ek = O(nr) ◦ Ek ◦ I(1), where the encodings (I(1), O(nr))
are also called the external encodings.

Definition 2 only considers round encodings satisfying the cancellation rule

I(i+1) =
(
O(i)

)−1
. However, in this paper we extend the definition of round en-

codings of an encoded implementation to any n-bit permutations pairs (I(1), O(1)),
(I(2), O(2)), . . . , (I(nr), O(nr)) that satisfy the cancellation rule

E(i+1) ◦ E(i) ◦ E(i−1) = O(i+1) ◦ E(i+1) ◦ E(i) ◦ E(i−1) ◦ I(i−1) (1)

for i = 2, 3, . . . , nr−2. In Sect. 6 we will describe an example of round encodings
satisfying the general cancellation rule given by Eqn. (1) but not the cancellation

rule I(i+1) =
(
O(i)

)−1
.

3 Implicit White-Box Implementations

In this section we present implicit implementations, a new class of white-box im-
plementations of iterated block ciphers. The main idea of implicit implementa-
tions is to represent the high-degree round function of the cipher by a quasilinear
implicit function of low degree.

Definition 3. A (2n,m)-bit implicit function P is quasilinear if for all x ∈ Fn
2

the (n,m)-bit function y 7→ P (x, y) is affine.

Informally, an implicit function is quasilinear if it is affine in the output variable
vector. For any function F , a trivial quasilinear implicit function is P (x, y) = y⊕
F (x). An example of a non-trivial quasilinear implicit function is the quadratic
implicit function P (x, y) = (x(xy+1), y(xy+1)) of the finite field inversion over
F2n , i.e., F (x) = x2n−2.

The quasilinear property is necessary to make the implicit evaluation of F
practical. Since a quasilinear implicit function becomes an affine function when
the input variable vector x is fixed to a constant x0, one can implicitly evaluate
F (x0) by solving the affine system P (x0, y) = 0 for y. Since the affine system
P (x0, y) = 0 has a unique y solution due to the definition of an implicit function,
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a (2n,m)-bit quasilinear implicit function of an n-bit function has at least n
Boolean components (m ≥ n).

With the notions of encoding, implicit and quasilinear function previously
defined, we can now present implicit white-box implementations.

Definition 4. Let Ek = E(nr) ◦ E(nr−1) ◦ · · · ◦ E(1) be the encryption function

of an iterated n-bit block cipher with fixed key k, and let Ek = E(nr) ◦E(nr−1) ◦
· · · ◦ E(1) be an encoded implementation of Ek. An implicit (white-box) imple-
mentation of Ek is a set of quasilinear implicit functions {P (1), P (2), . . . , P (nr)}
where P (i) is an implicit function of E(i).

In other words, an implicit implementation is an alternative representation
of an encoded implementation where the high-degree encoded round functions
are given by low-degree implicit functions.

An implicit implementation is evaluated by implicitly evaluating the encoded
round functions. Thus, given the output x0 of the round i−1, the output y of the
ith round is computed by finding the solution of the affine system P (i)(x0, y) = 0
for y. Note that an implicit implementation has the same input-output behaviour
as its underlying encoded implementation.

The external encodings of an implicit implementation refer to the external
encodings of its underlying encoded implementation. In this we work we focus
on implicit implementations with non-trivial external7 encodings.

The size of an implicit implementation mainly depends on the degree of
the implicit encoded round functions P (i), which are implemented as binary
multivariate polynomials. If the (2n,m)-bit functions P (i) have degree d, each
one has at most

d∑
i=0

(
n

i

)
+ n

d−1∑
i=0

(
n

i

)
coefficients, and thus the size of an implicit implementation is O(nd). The run-
ning time of an implicit implementation is dominated by obtaining each affine
system, by iterating over the monomials, in O(nd) and by solving each affine
system with Gaussian elimination in O(m3).

3.1 Quasilinear Implicit Round Functions

While it is known how to obtain low-degree implicit functions of small S-boxes
[21] and power mappings [7], obtaining a low-degree quasilinear implicit function
of an arbitrary function (if it exists) is a hard problem. We will see how we can
derive a low-degree quasilinear implicit function of the whole round function
from a known low-degree quasilinear implicit function of the non-linear layer.

7 It is worth to mention that all known white-box implementations of existing ciphers
that do not rely on secret designs include external encodings in their designs. While
external encodings impose severe limitations on the applicability of the white-box
implementation, it is currently the only alternative to secret designs.
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Assume the encoded ith round function is of the form

E(i) = O(i) ◦ (L ◦ S ◦ ⊕k(i)) ◦ I(i) ,

where L is an affine permutation also called the linear layer, S is a non-linear
permutation also called the non-linear layer, k(i) is the round key and (I(i), O(i))
are the round encodings with O(i) being affine. Note that this approach to obtain
a quasilinear implicit function of the ith round function applies to all rounds
i = 1, 2, . . . , nr, and thus the affine restriction also applies to the external output
encoding.

The output encoding O(i) needs to be affine for the quasilinear property,
but there is no degree restriction on I(i). The degree of I(i) can be different
from the degree of O(i) if the round encodings satisfy the cancellation rule given
in Eqn. (1) rather than the one from Definition 2. For example, in Sect. 6 we
describe an implicit implementation with quadratic input encodings and affine
output encodings.

Given a known quasilinear implicit function T of S and by applying Lemma 1,

we can obtain a quasilinear implicit function of E(i) as

T ◦ (⊕k(i) , L−1) ◦ (I(i), (O(i))−1) .

Note that the left composition by affine functions and the right composition
by diagonal functions A(x, y) = (A1(x), A2(y))) with A2 affine preserves the
quasilinear property.

Moreover, we can replace the known implicit function of S with a different
implicit function by applying Lemma 3. In particular, if V is a linear permuta-
tion and U is an affine graph automorphism of S that preserves the quasilinear
property (i.e., T ◦ U is quasilinear), then V ◦ T ◦ U is another quasilinear im-
plicit function of S. However, U should not be a right self-equivalence of T to
prevent U from being cancelled. That is, if U is a right self-equivalence of T ,
then V ◦ T ◦ U = V ′ ◦ T for some V ′ affine.

To conclude, given a quasilinear implicit function T of the non-linear layer
S, we can build a quasilinear implicit function P (i) of the encoded round func-

tion E(i) = O(i) ◦ (L ◦ S ◦ ⊕k(i)) ◦ I(i) by sampling a linear permutation V (i)

and a quasilinear-preserving graph automorphism U (i) that is not a right self-
equivalence of T , obtaining

P (i) = V (i) ◦ T ◦ U (i) ◦ (⊕k(i) , L−1) ◦ (I(i), (O(i))−1) . (2)

Figure 1 depicts a representation of E(i) and P (i).
From Eqn. (2) it is easy to see that degree of P (i) only depends on the degree

of T and the degree of the input encoding I(i), since the other functions are
either linear or affine. The function T at least has degree 2 and n components if
S is an n-bit non-linear function. Thus, we can consider affine or quadratic I(i)

to build a practical implicit implementation.
Whereas CEJO or self-equivalence implementations impose severe restric-

tions on the encodings, an implicit implementation can use large affine or quad-
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Fig. 1. An encoded round function E(i) (top) given by the round function (L◦S◦⊕k(i))

and the round encodings (I(i), O(i)), and an implicit function P (i) (bottom) of E(i),
where T is an implicit function of the non-linear layer S, U (i) is a graph automorphism
of S and V (i) is a linear permutation.

ratic encodings and have a practical8 size and running time. As we will see in
the next section, these encodings are the reason why implicit implementations
prevent the white-box attacks that break CEJO or self-equivalence implementa-
tions.

4 Security Analysis

In this section, we analyse the security of implicit implementations against key-
extraction attacks in the white-box model, where it is assumed that the specifi-
cations of the block cipher and the specifications of the implicit implementation
are public, and the attacker is in possession of an implicit implementation but
does not know the encodings or the key.

The security objective to resist key-extraction attacks in the white-box model
was proposed by Chow et al. in their seminar work [13], and properly defined
by Delerablée et al. as the unbreakability security notion [16]. For simplicity, in
this work we will use the informal security objective of key-extraction resistance
from [13], but we refer the reader to [16] for the complete definition of the
unbreakability notion.

Key-extraction resistance or unbreakability is the minimum security goal a
white-box implementation should aim for. In many applications, a white-box

8 We will provide specific numbers for the size of an example of an implicit implemen-
tation in Sect. 6.
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implementation of an encryption function should also prevent an attacker to
obtain the corresponding decryption function. This security notion was formal-
ized as strong white-box security in [6] and as one-wayness in [16]. However,
one-wayness is much stronger than unbreakability, as building a white-box im-
plementation of a block cipher satisfying the one-wayness notion involves turning
the secret-key cipher into a public-key one. Other security notions for white-box
implementations have also been proposed such as weak white-box security [6] or
incompressibility [16], and traceability [16].

Due to the huge difficulty to design a white-box implementation of an exist-
ing cipher, CEJO and self-equivalence implementations [3,14,23,26–28,34,37,43]
only aim at preventing key-extraction attacks and so do implicit implementa-
tions.

White-box implementations of existing block ciphers argue their key-extrac-
tion resistance by showing that all known key-extraction attacks cannot recover
the key from the implementation faster than brute-force search, similar as how
block ciphers argue their security in the black-box model.

4.1 Previous Generic Attacks

In this section we will show that all known generic key-extraction attacks, that
is, key-extraction attacks to white-box implementations that do not exploit spe-
cific properties of the underlying ciphers, cannot recover the key from a generic
implicit implementation if quadratic round input encodings are used or the non-
linear layer is not composed of smaller S-boxes.

Note that showing that implicit implementations prevent all known generic
key-extraction attacks is not sufficient to claim that a specific implicit imple-
mentation of a particular cipher is secure for two reasons. First, since the im-
plicit framework is a new method, previous generic attacks were not designed to
break implicit implementations. Thus, further research on new generic attacks
targeting the implicit framework is needed. Second, for a specific implicit imple-
mentation of a particular cipher one still needs to check key-extraction attacks
exploiting properties of the underlying cipher. Despite these two remarks, the
fact that implicit implementations prevent all known generic key-extraction at-
tacks is noteworthy as all CEJO and self-equivalence implementations have been
broken even with generic attacks.

CEJO attacks. The first generic attack that we will consider is the reduction
subroutine that transforms the encodings of a CEJO implementation to self-
equivalence encodings. This subroutine was proposed in [34] and combines the
three generic CEJO attacks proposed in [3, 17, 29]; showing that the reduction
subroutine does not succeed implies that neither the three generic CEJO attacks
do.

Since the reduction subroutine only requires black-box access to three con-
secutive encoded rounds, it can be applied to an implicit implementation. For
an implicit implementation where the non-linear part of the round encodings
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is composed of mnl-bit functions and the non-linear layer of the underlying ci-
pher is composed of ms-bit S-boxes, the complexity of the reduction subroutine
is roughly O(2max(3mnl,ms)) (Proposition 1 of [34]). For example, the reduction
subroutine is efficient for an implicit implementation of AES (ms = 8) with
affine round encodings. However, the reduction subroutine is not efficient if the
implicit implementation uses non-linear encodings or if the non-linear layer of
the cipher is not composed of small S-boxes.

The CEJO framework cannot implement large non-linear encodings or such
a non-linear layer due to its impractical size; a CEJO implementation requires
roughly O(2max(2mnl,ms)) bits of memory for each round [3]. On the other hand,
the implicit framework can provide practical implementations under these con-
straints; the size of an implicit implementation is exponential in the degree of the
implicit round functions, and not on the bitsize of the encodings or the non-linear
layer. An example of a practical implicit implementation with large non-linear
encodings and where the non-linear layer is composed of a single S-box will be
described in Sect. 6.

Self-equivalence attacks. The generic attack to self-equivalence implementations
proposed in [34] cannot be applied to implicit implementations since it requires
access to encoded affine layers where the round encodings are self-equivalences
of the non-linear layer. However, implicit implementations use random affine
permutations for the round encodings, and the affine layer of the cipher is merged
with the non-linear layer in the implicit round functions. Moreover, this attack
also assumes the non-linear layer is composed of small S-boxes.

Self-equivalence implementations might also be vulnerable if the self-equiv-
alences of the non-linear layer are very structured, such as having the same
coefficient in some monomial terms for all self-equivalences. In this case, some
coefficients in the encoded affine layers might directly leak coefficients from the
round encodings or even bits from the round keys. Self-equivalence implemen-
tations of ciphers where the non-linear layer is the permuted modular addition
exhibit this weakness, since the self-equivalences of the permuted modular ad-
dition have a common sparse shape and low-entropy constant vectors as we will
see in Sect. 5.2. Implicit implementations do not exhibit this weakness since the
round encodings use random and large affine permutations.

Automated white-box attacks. For white-box implementations not relying on ex-
ternal encodings but on secret designs, several automated white-box attacks have
been proposed such as Differential Computational Analysis (DCA) or Differen-
tial Fault Analysis (DFA) [4,10,35]. These attacks easily break CEJO implemen-
tations in a fully automated way, but they assume the external encodings are
the identity functions. The only automated attack successful against non-trivial
external encodings is a DFA attack by Amadori et al. [2] to a CEJO implemen-
tation of AES where the external output encoding is the composition of 8-bit
functions.

Since the implicit framework uses at least large affine permutations for the ex-
ternal encodings, current automated attacks cannot be applied to generic implicit
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implementations. On top of that, these attacks usually target an intermediate
computation where the output is encoded with an small function and depends
on a few key bits. However, in implicit implementations the only computations
are evaluations of polynomials with large inputs and large encodings, and the
outputs of these computations depend on the whole round keys. Finding new
automated attacks to implicit implementations is an interesting challenge that
we leave as future work.

4.2 Reducing Implicit Implementations to Self-Equivalence
Implementations

We have shown that implicit implementations that use non-linear encodings or
where the non-linear layer of the cipher is not composed of small S-boxes are
secure against all known generic key-extraction attacks9. For the rest of this
section, we will describe a new generic attack for implicit implementations.

The crucial step in most generic key-extraction attacks on encoded imple-
mentations is the reduction subroutine, that is, obtaining new encoded rounds
with the same round key material but with simpler encodings [34]. Thus, we
will not describe a complete key-extraction attack but a reduction subroutine
that transforms an implicit implementation to a self-equivalence implementation,
similar to the reduction subroutine from [34].

The reasons to consider a reduction to a self-equivalence implementation are
three-fold. First, we will see that the self-equivalences of the non-linear layer play
an important role in the security of implicit implementations, similar as in self-
equivalence implementations. Second, if an implicit implementation is reduced
to a self-equivalence one, then the generic attack to self-equivalence implementa-
tions [34] can be applied. Third, since a self-equivalence implementation is more
efficient than an implicit one, an implicit implementation that can be reduced
to a self-equivalence one does not provide any advantage.

Note that both CEJO and self-equivalence implementations can be trans-
formed efficiently into an implicit one. First, any CEJO implementation can be
transformed into a self-equivalence one using the techniques from [34]. Second,
a self-equivalence implementation can be transformed into an implicit one sim-
ply by composing the encoded affine layers with the implicit function of the
non-linear layer.

For our reduction subroutine, we will consider an intermediate round of an
implicit implementation. Let E = L ◦S ◦⊕k be an intermediate round function,
E = O ◦ E ◦ I be an encoded function of E, and

P = U ◦ T ◦ V ◦ (⊕k, L
−1) ◦ (I,O−1)

be an implicit function of E, as defined in Eqn. (2). For simplicity, we will drop
the round index i. We will assume that the round key k, the encodings I and O,

9 While not the focus of this work, it is worth mentioning that this type of implicit
implementations with trivial external encodings seems less vulnerable than CEJO
or self-equivalences implementations with trivial external encodings.
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and the functions U and V are unknown to the adversary, but the linear layer
L, the non-linear layer S, the implicit function T of S and the implicit function
P are known.

The first step in most reduction subroutines is to solve a functional equation
involving the round encodings. For an implicit implementation, the adversary
can consider the two following functional equations:

P = Y ◦ T ◦X (3)

E = Y ◦ (L ◦ S) ◦X . (4)

In Eqn. (3), P and T are fully known, X is an unknown permutation with the
same degree as I and Y is an unknown linear permutation. In Eqn. (4), (L◦S) is
fully known, E can only be evaluated implicitly, X is an unknown permutation
with the same degree as I and Y is an unknown affine permutation.

When the unknowns X and Y are affine permutations, this type of functional
equations has received multiple names in the literature: the affine equivalence [8],
the Isomorphism of Polynomials (IP) [31] or the affine-substitution-affine (ASA)
[6, 30] problems. Most algorithms to solve affine equivalence problems exploit
the particular structure of the central map. For example: (1) if T is a triangular
function, the structural attack by [42] can solve Eqn. (3) in polynomial time; (2)
for many quadratic T , Gröbner-based attacks have solved Eqn. (3) in polynomial
time [19]; or (3) if S is composed of small ms-bit S-boxes, the algorithm by
Derbez et al. can solve Eqn. (4) in about O(22ms) [17].

When the unknown X is a non-linear permutation, this type of functional
equations has been less studied in the literature, but some efficient algorithms
have been proposed for particular quadratic central maps. Some examples are
attacks on public-key schemes with 2 rounds [32], attacks on the ASASA struc-
ture [30] or attacks based on the decomposition of multivariate polynomials [20].
For the rest of the attack we will assume that I and X are affine permutations
and we will leave the non-linear case for future work.

Obtaining any solution of Eqn. (4) allows the reduction from the implicit
round function into an encoded affine layer. An arbitrary solution of Eqn. (4)
for (X,Y ) is of the form

(A ◦ (⊕k ◦ I), O ◦B) ,

where (A,B) is an affine self-equivalence of L ◦ S. By combining a solution of
that round and of the previous round, one can easily derive an encoded affine
layer of that round. Repeating this process for all rounds leads to a complete
reduction to a self-equivalence implementation.

On the other hand, not all the solutions of Eqn. (3) allow the reduction to
an encoded affine layer. Every solution (X,Y ) of Eqn. (3) is of the form(

A ◦ (U ◦ (⊕k, L
−1) ◦ (I,O−1)), V ◦B

)
,

where (A,B) is an affine self-equivalence of T . If (X,Y ) is a solution with X
diagonal (i.e., X(x, y) = (X1(x), X2(y))) and Y linear, then A ◦ U is diagonal
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and contains a self-equivalence of S by Lemma 2. Therefore, by combining two
solutions of this form for that round and the previous round respectively, an
adversary can easily build an encoded affine layer for that round.

As a result, an implicit implementation with affine encodings must ensure
that no solution of Eqn. (4) can be obtained efficiently. Previously, we showed
that an implicit implementation with affine encodings of a cipher with small S-
boxes is vulnerable to the reduction subroutine of [34]. Similarly, such an implicit
implementation is also vulnerable to this reduction attack as Eqn. (4) can be
solved by the algorithm of Derbez et al. [17].

Moreover, an implicit implementation with affine encodings must also ensure
that no solution (X,Y ) withX diagonal and Y linear of Eqn. (3) can be obtained
efficiently. In particular, if an adversary can obtain efficiently a random solution
(X,Y ), then the adversary can always try all (A,B) and all U until X ′ = U−1 ◦
A−1 ◦X is diagonal and Y ′ = Y ◦B−1 affine; an encoded affine layer can easily
be derived from (X ′, Y ′) afterwards. Thus, the number of affine self-equivalences
(A,B) of T and the number of quasilinear-preserving graph automorphisms U
that are not self-equivalences of T such be large enough to prevent an exhaustive
search.

Our generic reduction subroutine provides insightful requirements for an im-
plicit implementation with affine encodings, but it also leaves several open prob-
lems, such as estimating the complexity to obtain a solution of Eqn. (4) for a
generic implicit implementation or analysing the case where the input encoding
is non-linear. Our generic reduction did not cover either the case where addi-
tional countermeasures are added to the implicit implementation. In particular,
the representation of the implicit round functions as systems of multivariate
Boolean polynomials allows applying countermeasures from multivariate public-
key cryptosystems (MPKC) such as adding extra variables [24], adding or re-
moving equations [33] or adding perturbations [18]. Understanding the security
provided by the implicit framework requires further research, but our generic
reduction subroutine together with the algorithms that we mentioned to solve
Eqns. (3) and (4) can be used as starting point.

In the next section we will describe the self-equivalences of the modular
addition in order to later propose an implicit implementation of a cipher with
modular addition as the non-linear layer.

5 Self-Equivalences of Modular Addition

In this section we describe a new method to compute self-equivalences of a func-
tion from a CCZ-equivalent function of low degree. We applied this method to
the permuted modular addition (x, x′) 7→ (x⊞x′, x′), obtaining for the first time
the self-equivalences of this operation for wordsize n ≤ 64. The permuted mod-
ular addition is frequently used in the non-linear layers of block ciphers, and we
focus on this operation to propose in the next section an implicit implementation
of a cipher using the permuted modular addition. However, our new method is
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of independent interest, and it can also be applied to the non-permuted modular
addition or other functions CCZ-equivalent to low-degree functions.

5.1 Computing Self-Equivalences from a CCZ-Equivalent Function

CCZ-equivalence is an equivalence relation between functions based on their
graphs. It was introduced in [12] by Carlet, Charpin and Zinoviev, and named
after these authors.

Definition 5. A function F is CCZ-equivalent to a function G if the graph of
F can be transformed to the graph of G through an affine permutation, that is,
if there exists an affine permutation LG,F such that ΓF = LG,F (ΓG).

To obtain the self-equivalences of a high-degree function F that is CCZ-
equivalent to a low-degree function G, the core of this method is to compute
a subset of graph automorphisms of G by solving a system of low-degree equa-
tions. Our method exploits the relation between the graph automorphisms of
two CCZ-equivalent functions and the functional equation that characterizes a
graph automorphism, shown in the next two lemmas.

Lemma 4. Let F and G be two CCZ-equivalent functions. Then, the graph auto-
morphism groups of F and G are conjugates, that is, U is a graph automorphism
of F if and only if L−1

G,F ◦ U ◦ LG,F is a graph automorphism of G.

Proof. If U is a graph automorphism of F , then

ΓG = L−1
G,F (ΓF ) = (L−1

G,F ◦ U)(ΓF ) = (L−1
G,F ◦ U ◦ LG,F )(ΓG) ,

which proves the forward direction of the statement. The backward direction
can be proven similarly. ⊓⊔

Lemma 5. Let G be an n-bit function and let U(x, y) = (U1(x, y), U2(x, y)) be
a 2n-bit affine permutation. Then U is a graph automorphism of G if and only
if U satisfies the functional equation

U2 ◦ (Idn, G) = G ◦ U1 ◦ (Idn, G) . (5)

Proof. From Lemma 1, for any permutation U one has

U−1(ΓG) = {(x, y) : U2(x, y) = G(U1(x, y))} .

If U is a graph automorphism, then ΓG = U−1(ΓG). Therefore, x = G(y)
is equivalent to U2(x, y) = G(U1(x, y)). In particular, we have U2(x,G(x)) =
G(U1(x,G(x)) for all x, which proves the forward direction.

If U2(x,G(x)) = G(U1(x,G(x))) for all x, then ΓG = {(x, y) : x = G(y)} is
contained in

{(x, y) : U2(x, y) = G(U1(x, y))} = U−1(ΓG) .

Since U−1 is a permutation, ΓG and U−1(ΓG) have the same cardinality. There-
fore, ΓG = U−1(ΓG), which implies that U is a graph automorphism of G. ⊓⊔
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Our method consists of computing a set U of solutions of the functional
equation given by Eqn. (5) with the additional constraints that U is invert-
ible and that U ′ = LG,F ◦ U ◦ L−1

G,F is diagonal (i.e., U ′(x, y) = (A(x), B(y))).
To reduce the degree of the invertibility constraint, we impose the invertibility
constraint over the diagonal blocks of U ′ instead of over the entire U . After
the set U is obtained, the self-equivalences of F can be extracted from the set
U ′ = {LG,F ◦ U ◦ L−1

G,F : U ∈ U} by applying Lemma 2, that is,

U ′(x, y) = (A(x), B(y)) ∈ U ′ ⇐⇒ (A,B−1) is a self-equivalence of F .

A weaker variant of this method is to compute the affine right self-equiva-
lences U of an implicit function P of G such that U ′ = LG,F ◦U◦L−1

G,F is diagonal.
In this variant, Eqn. (5) is replaced by the functional equation P = V ◦ P ◦ U ,
and a third additional constraint is added to ensure that V (0) = 0 (Lemma 2).
The advantage of this variant is that the degree of the functional equation is
the same as the degree of the implicit function P , while the degree of Eqn. (5)
is upper bounded by 2 × deg(G). However, not all the self-equivalences of F
might be found if the weaker variant is used, since in general not all the graph
automorphisms are right self-equivalences of an implicit function.

To obtain the set U in either of the two variants, we perform in practice
the following three steps. First, we represent the functional equation and the
additional constraints by a system of binary equations, perform Gaussian elimi-
nation on the system of equations, and then find an small set of solutions (e.g.,
220) of the reduced system of equations with a SAT solver. Given the functional
equation LHS = RHS, we build the system of equations by creating the vectorial
Boolean function LHS⊕RHS as a system of multivariate polynomials, and then
adding the equation c = 0 for each monomial coefficient c of LHS⊕RHS; the
invertibility constraint is added to the system of equations using the determinant
expression.

Second, we extract a set of candidate affine relations involving the monomial
coefficients of U (seen as system of multivariate polynomials) from the small set
of solutions previously obtained. For example, if the sum of two coefficients ui

and uj is always 0 in all the solutions, we include the candidate affine relation
ui+uj = 0. We call them candidate relations since they are satisfied for the small
set of solutions but they might not be satisfied by the whole solution set. To find
out whether a candidate relation R = 0 is satisfied by the whole solution set,
we add the complementary relation R = 1 to the reduced system of equations
previously obtained, and we check whether this new system is unsatisfiable with
a SAT solver. If the system is unsatisfiable, then the relation R = 0 is satisfied
by the whole solution set. We repeat this process for all candidate relations,
obtaining a list of affine relations satisfied by the whole solution set.

Third, we build the final system of equations from the reduced system pre-
viously obtained by using the affine relations to fix coefficients of U and remove
variables from the system. We then use a SAT solver to obtain a small number
of solutions (e.g., 220) of the final system. Finally, we create the set U from these
solutions and the affine relations, and we compute the cardinality of U by also
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taking into account the free coefficients of U not appearing in any of the equa-
tions of the final system nor in the affine relations. While further modifications
and optimizations are possible, this practical approach is suitable for functional
equations with sparse and quadratic central maps, such as the CCZ-equivalent
function of the permuted modular addition.

Implementation. We have implemented this method in a new open-source library
BoolCrypt10. Our library is written in Python and uses the library SageMath
[39]. In particular, it relies on the PolyBori package of SageMath to create and
manipulate binary equations, and on the SAT solver CryptoMiniSat [38] to find
the solutions of systems of binary equations. Apart from this method, our library
also provides many functionalities related to vectorial Boolean functions, self-
equivalences and functional equations. We designed BoolCrypt with a modular
structure and we documented it extensively, so that it can be useful and it can
be adapted to future works.

5.2 Self-Equivalences and Graph Automorphisms of the Permuted
Modular Addition

Let ⊞ denote the (2n, n)-bit function representing the modular addition with
wordsize n, i.e., x⊞x′ = x+x′ mod 2n. The modular addition has degree n−1,
but Schulte-Geers proved that it is CCZ-equivalent to a quadratic function [36].

Theorem 1 ( [36]). Let Q(x, x′) be the (2n, n)-bit quadratic function given by

Q(x, x′) = (0, x0x
′
0, x0x

′
0 ⊕ x1x

′
1, . . . , x0x

′
0 ⊕ · · · ⊕ xn−2x

′
n−2) .

Then Q is CCZ-equivalent to ⊞, and Γ⊞ = LQ,⊞(ΓQ) where LQ,⊞ is given by
the block matrix

LQ,⊞ =

Idn 0n Idn
0n Idn Idn
Idn Idn Idn

 .

Let Q′ be the trivial implicit function of Q given by Q′(x, x′, y) = y⊕Q(x, x′).
From Thm. 1 and Lemma 1, it is easy to see that

(Q′ ◦ L−1
Q,⊞)(x, x

′, y) = x⊕ x′ ⊕ y ⊕Q(x⊕ y, x′ ⊕ y) (6)

is a quadratic implicit function of the modular addition.
The modular addition is mostly used in block ciphers in its permuted variant,

S(x, x′) = (x⊞x′, x′), and this latter function is the focus of our work. The next
lemma shows that a right self-equivalence of the permuted modular addition S
is also a left self-equivalence up to the addition of some constants.

Lemma 6. The permutation A is a right self-equivalence of S if and only if
⊕(c1,c0) ◦ A ◦ ⊕(c1,c0) is a left self-equivalence of S, where c0 and c1 denote the
n-bit values (0, 0, . . . , 0) and (1, 1, . . . , 1) respectively.
10 https://github.com/ranea/BoolCrypt

https://github.com/ranea/BoolCrypt
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Proof. The inverse of the permuted modular addition is S−1(x, x′) = (x⊟x′, x′),
where ⊟ = x−x′ mod 2n. Since the modular subtraction ⊟ verifies c1⊕(x⊟y) =
((x⊕ c1)⊞ y) [22], we have the relation S−1 = ⊕(c1,c0) ◦ S ◦ ⊕(c1,c0).

On the other hand, if (A,B) is a self-equivalence of S, then S = B ◦ S ◦ A,
or equivalently S−1 = A−1 ◦ S−1 ◦ B−1. By applying the previous relation and
moving some terms, we have that

S = (⊕(c1,c0) ◦A
−1 ◦ ⊕(c1,c0)) ◦ S ◦ (⊕(c1,c0) ◦B

−1 ◦ ⊕(c1,c0)) .

Since the set of self-equivalences is a group, the inverse of (⊕(c1,c0) ◦ A−1 ◦
⊕(c1,c0)) is also a left self-equivalence of S, which proves the forward direction
of the statement. The other direction can be proven similarly. ⊓⊔

From Eqn. (6) and Thm. 1, it is easy to show that the (2n, 2n)-bit function
x, x′ 7→ (Q(x, x′), x′) is CCZ-equivalent to the permuted modular addition S
and that the following function is a quadratic implicit function of S:

T (x, x′, y, y′) = (x⊕ x′ ⊕ y ⊕Q(x⊕ y, x′ ⊕ y), x′ ⊕ y′) . (7)

Using the CCZ-equivalent quadratic function of the permuted11 modular
addition, we applied our method implemented in BoolCrypt to obtain the affine
and linear self-equivalences for multiple wordsizes n. First, we obtained all the
affine and linear self-equivalences for the wordsizes n ∈ {2, 3, 4, 5}, for which we
could solve Eqn. (5) directly. For n = 2 we obtained 3 × 210 affine and 3 × 28

linear self-equivalences, and for n ∈ {3, 4, 5} we obtained 3 × 22n+8 affine and
3×22n+2 linear self-equivalences, respectively. For verification purposes, we also
ran the affine and linear equivalence algorithms by Biryukov et al. [8], and we
obtained the same number of linear and affine self-equivalences. In Appendix A
we fully describe the affine self-equivalence groups for n = 4.

For n ≥ 6, we could not directly solve Eqn. (5). However, we noticed that
the right (and by Lemma 6 also the left) affine self-equivalences for the small
wordsizes have a common sparse matrix shape:

⋆ ⋆
⋆ 1 ⋆
...

. . .
...

⋆ 1 ⋆
⋆ ⋆ 1 ⋆ ⋆ . . . ⋆ ⋆
⋆ ⋆
⋆ ⋆ 1
...

...
. . .

⋆ ⋆ 1
⋆ ⋆ ⋆ 1


,

11 The self-equivalence group of the permuted modular addition cannot be derived from
that of the modular addition, as the permuted variant contains many non-diagonal
self-equivalences.
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where each of the four blocks denote an n-bit binary matrix, the ⋆ denotes a co-
efficient that can take the value 0 or 1 and empty spaces denote zero coefficients.
In the constant vector of the affine self-equivalences we also noticed a common
shape where one value b was repeated in all but 6 positions:

(

n︷ ︸︸ ︷
⋆ b · · · b ⋆ ⋆ | ⋆ b · · · b ⋆ ⋆ ) .

To make Eqn. (5) easier to solve, we pre-emptively fixed some coefficients of
U to enforce that the resulting self-equivalences have the previous shape. Thus,
we applied our method with wordsizes n ∈ {6, 7, . . . , 64} and we obtained a
subset of affine (resp. linear) self-equivalences with cardinality 3 × 22n+8 (resp.
3× 22n+2). Note that for n = 64 this method takes only a few minutes to obtain
these subsets of self-equivalences. Since the number 3× 22n+8 (resp. 3× 22n+2)
is the cardinality of the whole affine (resp. linear) self-equivalence group for
n ∈ {3, 4, 5} and a lower bound of this cardinality for 6 ≤ n ≤ 64, we conjecture
that the total number of affine (resp. linear) self-equivalences for any wordsize
n ≥ 3 is 3× 22n+8 (resp. 3× 22n+2).

Using our method and our library BoolCrypt, we also obtained affine-quad-
ratic self-equivalences (A,B) of the permuted modular addition, that is, with A
affine and B quadratic. Affine-quadratic self-equivalences can be used for quad-
ratic input encodings and affine output encodings of implicit implementations,
as we will see in the next section. We first computed all affine-quadratic self-
equivalences for the small wordsizes n ∈ {2, 4}. We obtained 19×32×210−3×210

affine-quadratic self-equivalences for n = 2, and 32 × 23n+14 − 3 × 22n+8 for
n = 4. Our method returned solutions including affine and affine-quadratic self-
equivalences, and the factors 3 × 210 and 3 × 22n+8 are the number of affine
self-equivalences in the solutions for n = 2 and n = 4 respectively.

Affine-quadratic self-equivalences also share a common shape with several
quadratic and linear terms that vanish. For example, the coefficients of the linear
terms are of the form

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ 1 ⋆ ⋆
...

...
. . .

...
...

⋆ ⋆ 1 ⋆ ⋆
⋆ ⋆ ⋆ 1 ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ 1 ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ 1
...

...
...

...
. . .

⋆ ⋆ ⋆ ⋆ 1
⋆ ⋆ ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆



,
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and the constant vectors contain a repeated value b in all but 7 positions.

(

n︷ ︸︸ ︷
⋆ b · · · b ⋆ ⋆ | ⋆ b · · · b ⋆ ⋆ ⋆ ) .

We used this shape to obtain a subset of affine-quadratic self-equivalences for the
larger wordsizes n ∈ {5, 6, . . . , 64} with cardinality 32×23n+14−3×22n+8. Thus,
we conjecture that the number of affine-quadratic self-equivalences is equal or
greater than 32 × 23n+14 − 3× 22n+8 for any wordsize n ≥ 4.

Finally, we also obtained quasilinear-preserving graph automorphisms U of
the permuted modular addition by adapting the method of Sect. 5.1. In this
case, the diagonal constraint is replaced by the quasilinear constraint over T ◦
U ′, where T is the implicit function defined in Eqn. (7). While in the original
method the invertibility constraint is only applied to the diagonal blocks of U ′,
to sample graph automorphisms the invertibility constraint needs to be applied
to the entire U . Due to this more complex invertibility constraint, for small
wordsizes n ∈ {2, 3, 4} we could find some but not all the quasilinear-preserving
graph automorphisms. For large wordsizes n ∈ {5, 6, . . . , 64}, we could sample
quasilinear-preserving graph automorphisms by finding some solutions without
the invertibility constraint and with some coefficients pre-emptively fixed, and
then searching among the solutions for an invertible function. In our experiments,
invertible solutions were quickly found after checking few solutions.

We noticed that if the invertibility constraint is not included in the system of
equations, many coefficients of U do not appear in any equation. For example,
for the wordsizes 3, 4, 5, 6, 7 and 8, we observed 54, 80, 110, 144, 182 and 244 free
coefficients, respectively, and we found at least 220 solutions for each possible
assignment of the free coefficients, that is, 274, 2100, 2130, 2174, 2212 and 2274 solu-
tions respectively. Moreover, all the quasilinear-preserving graph automorphisms
that we sampled in our experiments were not right self-equivalences of T . Thus,
we conjecture that the number of quasilinear-preserving graph automorphisms
that are not right self-equivalences of T is exponential in the input size of the
permuted modular addition.

As a summary, using the method described in Sect. 5.1 for the permuted
modular addition with wordsize 4 ≤ n ≤ 64, we found affine, linear, and affine-
quadratic self-equivalence subsets with cardinality 3 × 22n+8, 3 × 22n+2 and
32 × 23n+14 − 3 × 22n+8, respectively. We could not obtain a lower bound on
the number of quasilinear-preserving graph automorphisms that are not right
self-equivalences of T , but using our method we can sample this type of graph
automorphisms for wordsizes n ≤ 64.

The motivation behind these self-equivalences and graph automorphisms is
to propose in the next section an implicit implementation of an arbitrary cipher
with the permuted modular addition as the non-linear layer. Since the affine,
linear, and affine-quadratic self-equivalence subsets are large enough, we did not
focus on finding all the self-equivalences and we leave it as an open problem. On
the other hand, finding a lower bound on the number of quasilinear-preserving
graph automorphisms that are not right self-equivalences of T would have been
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useful for the security analysis of the implicit implementation, but we were not
able to obtain this bound and we leave it for future work.

6 An Implicit Implementation of an ARX Cipher

In this section we describe how to build an implementation of a generic iterated
block cipher with an arbitrary affine layer and with the permuted modular ad-
dition as the non-linear layer. Most Addition-Rotation-XOR (ARX) ciphers fall
under this description, and our method is the first white-box design that can be
applied to ARX ciphers.

Let Ek = E(nr) ◦ E(nr−1) ◦ · · · ◦ E(1) be the encryption function of an n-
bit iterated block cipher (n even), and let E(i) = AL(i) ◦ S be its ith round
function where S is the permuted modular addition12 with wordsize n/2 (i.e.,

input bitsize n) and AL(i) is an arbitrary n-bit affine layer containing the i-th
round key k(i).

To build the quasilinear implicit function P (i) of the ith round, we use the
approach described in Sect. 3.1 which defines P (i) as

P (i) = V (i) ◦ T ◦ U (i) ◦
(
Idn, (AL

(i))−1) ◦ (I(i), (O(i))−1
)
,

where V (i) is a linear permutation, T is the quasilinear implicit function of S, U (i)

is a quasilinear-preserving affine graph automorphism of S that does not belong
to the right self-equivalences of T , and (I(i), O(i)) are the round encodings.

In this case, T (x, x′, y, y′) is the quadratic implicit function of the permuted
modular addition, previously defined in Eqn. (7). It is easy to see that T is
quasilinear, as all its quadratic monomials contain an input variable (from the
variable vectors x or x′). For V (i) we sample a random linear permutation, and
we sample a random U (i) with the method described in Sect. 5.2.

For the round encodings, we sample an affine permutation C(i+1) and an
affine-quadratic self-equivalence (A(i), B(i)) of E(i), and we build the round en-
codings as

(I(i), O(i)) =
(
A(i) ◦B(i−1) ◦ (C(i))−1, C(i+1)

)
. (8)

In the first input round encoding (i.e., the external input encoding), for B(0) we
sample a random quadratic permutation.

Since the self-equivalence groups of S and E(i) are conjugates, that is,(
A(i), B(i)

)
is a self-equivalence of S ⇐⇒(
A(i),AL(i) ◦B(i) ◦ (AL(i))−1

)
is a self-equivalence of E(i) ,

we can sample an affine-quadratic self-equivalence of E(i) from the subset of
affine-quadratic self-equivalences of the permuted modular addition obtained

12 For simplicity we restrict the n-bit non-linear layer to contain a single permuted
modular addition with wordsize n/2, but our method can easily be extended to
non-linear layers composed of smaller permuted modular additions.
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in Sect. 5.2. In this construction, the pairs (A(i), B(i)) can also be taken as the
identity functions, and the choice of using affine-quadratic self-equivalences leads
to a trade-off between security and performance that we will discuss later.

Note that the round encodings do not satisfy the cancellation rule I(i+1) ◦
O(i) = Idn from Definition 2 but the cancellation rule given by Eqn. (1), since

E(i) = B(i) ◦ (C(i+1))−1 ◦ C(i+1) ◦ E(i) ◦A(i) .

Figure 2 depicts how the round encodings are cancelled in two consecutive
rounds. The round encodings could also be defined as(

I(i), O(i)
)
=

(
B(i−1) ◦ (C(i))−1, C(i+1) ◦ (B(i))−1

)
, (9)

which satisfy the cancellation rule I(i+1) ◦O(i) = Idn. While both Eqn. (8) and
Eqn. (9) define the same encoded round function, we will use Eqn. (8) where
the output round encoding is affine to preserve the quasilinear property (see
Sect. 3.1).

Fig. 2. Two consecutive encoded rounds, E(i) and E(i+1), with the round encodings
defined by Eqn. (8). Rounded blocks denote affine functions and rectangular blocks
denote non-linear functions.

As a result, we have built an implicit implementation of Ek given by the
quasilinear implicit functions {P (1), P (2), . . . , P (nr)}. Let Ek be the underlying
encoded implementation, whose round encodings are given by Eqn. (8). Note
that Ek is not functionally equivalent to Ek since

Ek =
(
C(nr+1) ◦ (B(nr))−1

)
◦ Ek ◦

(
B(0) ◦ (C(1))−1

)
.

Thus, the implicit implementation is not functionally equivalent to Ek either.

The degree of the implicit round functions P (i) depends on whether affine-
quadratic self-equivalences are used in the round encodings. If they are not used,
the functions P (i) are quadratic. Otherwise, the functions P (i) are quartic, or
cubic if the affine-quadratic self-equivalences are chosen carefully. Higher degree
self-equivalences (e.g., affine-cubic, affine-quartic, etc.) could also be used at the
cost of increasing the degree of the implicit round functions.
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Table 1 shows an upper bound on the memory required by an implicit round
function for different degrees and bitsizes. As shown in the table, implicit imple-
mentations with bitsize n = 64 are quite practical; for bitsize n = 128 implicit
implementations are practical with quadratic or cubic rounds.

Table 1. Upper bound on the size in megabytes (MB) of a (2n, n)-bit implicit round
function P (i) for different degrees and bitsizes n.

Cipher blocksize n Degree of P (i) Size of P (i)

32 2 0.01 MB
32 3 0.09 MB
32 4 0.23 MB
64 2 0.05 MB
64 3 1.42 MB
64 4 6.50 MB
128 2 0.40 MB
128 3 22.50 MB
128 4 193.19 MB

Note that an implementation with multivariate binary polynomials of the
underlying encoded implementation would be infeasible (even without affine-
quadratic self-equivalences) due to its size, since the permuted modular addition
has degree n. A CEJO implementation of the underlying encoded implementa-
tion would also have impractical size as the non-linear layer cannot be written
as the composition of smaller functions. While an implicit implementation in-
troduces a significant overhead in the running time and a severe overhead in the
size as shown in Table 1, the implicit framework is the first method that provides
practical white-box implementations of ARX ciphers.

Security Analysis. Let I be an implicit implementation following the method
described in this section, and let Ek be the underlying block cipher with the
permuted modular addition as the non-linear operation. In Sect. 4.1 we showed
that implicit implementations that use non-linear encodings or where the non-
linear layer of the cipher is not composed of small S-boxes are secure against
all known generic key-extraction attacks. Therefore, if I uses quadratic input
encodings (i.e., affine-quadratic self-equivalences) or the non-linear layer of Ek

is not composed of small permuted modular additions, then known generic key-
extraction attacks cannot extract the key from I. Recall that a self-equivalence
implementation of Ek has the structural weakness mentioned in Sect. 4.1, but
I does not exhibit this weakness due to the large affine permutations Ci in the
round encodings.

For the rest of the analysis, we will restrict I to have affine round encodings
and Ek to have a permuted modular addition with wordsize n/2 as the non-
linear layer. In Sect. 4.2 we also argued that an implicit implementation with
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affine encodings must ensure that no solution of Eqn. (4) and no diagonal-linear
solution of Eqn. (3) can be obtained efficiently.

The central map in Eqn. (4) is the permuted modular addition, a triangular
function with degree n. If an attacker would have access to the coefficients of
Eqn. (4), the attacker could efficiently obtain a solution using the structural
attack by Wolf et al. [42]. This structural attack can solve in polynomial time a
functional equation with affine permutations as unknowns and with a non-linear
(not necessarily quadratic) triangular central map. However, the attack by Wolf
et al. assumes that the coefficients of the functional equation are public. This is
not the case since an attacker only has black-box access to Eqn. (4), that is, the
attacker can only evaluate Eqn. (4) by using the implicit round functions.

Regarding Eqn. (3), using the method of Sect. 5.1 we obtained that 3n ×
211n−4 is a lower bound on the cardinality of the affine self-equivalence group of
T for wordsizes 2 ≤ n ≤ 64. While we were not able to obtain a lower bound
on the number of quasilinear-preserving graph automorphisms U that are not
right self-equivalences of T , the large number of affine self-equivalences (A,B)
of T prevents an attacker from trying all (A,B) and U to transform a random
solution (X,Y ) into (X ′, Y ′) with X diagonal and Y linear.

To conclude, an implicit implementation following the method described in
this section prevents all known generic key-extraction attacks if quadratic input
encodings are used or the non-linear layer of the underlying cipher is given
by a large permuted modular addition. Our new generic attack to the implicit
framework based on Eqns. (3) and (4) was also not able to break an implicit
implementation with affine encodings. This contribution also leaves several open
problems such as the cost of an attack dealing with quadratic input encodings,
whether it is possible to extend the structural attack by Wolf et al. to only
black-box access or even finding new algorithms to solve Eqn. (3) or to obtain a
diagonal-linear solution of Eqn. (4) without trying all (A,B) and U .

Implementation. As mentioned at the beginning of Sect. 4.1, the implicit frame-
work is a novel design which requires further research on new attacks. Rather
than proposing a particular implicit implementation of some ARX cipher, we
provide instead an open-source Python script13 that generates an implicit im-
plementation of any given ARX cipher following the method described in Sect. 6.

Our script can be used for any cipher with the permuted modular addition
as the non-linear layer. Given as input the affine layer of each round, the script
generates the implicit implementation in an automated way. As an example, we
have included an additional script that generates the affine layers of SPECK [5],
but other ciphers based on the permuted modular addition can be easily added.

Moreover, the script provides many options that can be enabled or disabled,
such as the affine-quadratic self-equivalences, the external encodings, an addi-
tional countermeasure based on Bringer et al.’s perturbations [11] or whether to
export the implicit implementation to a Python function or to a C source file.

13 https://github.com/ranea/whiteboxarx

https://github.com/ranea/whiteboxarx
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This script can generate many variants of implicit implementations of any
ARX cipher, and we hope that these many practical examples encourage further
analysis of implicit implementations.

7 Conclusion

Despite the total lack of secure candidates of white-box implementations, many
recent works have focused on attack techniques, but only a few on design strate-
gies. That is why in this work we addressed the challenging problem of designing
white-box implementations of existing ciphers by proposing implicit implemen-
tations. On top of that, we proposed a generic method to obtain self-equivalences
and graph automorphisms, which can be of independent interest together with
BoolCrypt.

While we analysed the resistance of implicit implementations against the ex-
isting generic key-extraction attacks, the implicit framework is a new design that
is very different from previous CEJO or self-equivalence implementations; many
open problems arise when analysing new attacks. Understanding the security of
implicit implementations requires further research, and we encourage the cryp-
tographic community to participate by providing many practical examples with
our script.

On the other hand, in this work we focused on implicit implementations
with external encodings and with the permuted modular addition as the non-
linear layer of the cipher, but future work could explore other non-linear layers
such as large power functions or the security of implicit implementations with-
out external encodings against automated white-box attacks based on grey-box
techniques.
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A Affine Self-Equivalences of the Permuted Modular
Addition with Wordsize 4

Let L(A) and C (A) be the linear part and the constant vector, respectively, of
an affine function A. Any affine self-equivalence (A,B) of the 8-bit permuted
modular addition (wordsize 4) is of the form

L(A) =



c1 + c8 + c9 0 0 0 c1 + c8 0 0 0
d0 + d2 1 0 0 d1 0 0 0
d0 + d2 0 1 0 d1 0 0 0

d1 + c6 + c12 + c15 0 c4 + c7 1 d1 + c6 + c12 c13 c4 + c7 + c16 c5 + 1
c0 + c8 + c9 0 0 0 c0 + c1 + c8 0 0 0
d0 + d2 0 0 0 d1 1 0 0
d0 + d2 0 0 0 d1 0 1 0

d1 + c2 + c12 + c15 0 0 0 d1 + c2 + c6 + c12 c3 + c13 c7 + c16 1


C (A) = (c10+c11, c10c11+c11, c4+d3, c17+c18, c11, c10c11+c11, d3+c14+c16, d4)

T

L(B−1) =



c0 + c1 0 0 0 c1 0 0 0
d0 + d2 1 0 0 d2 + c1c10 0 0 0
d0 + d2 0 1 0 d2 + c1c10 0 0 0

d0 + c2 + c6 0 c4 + c14 + c16 1 c1c10 + c6 c3 d5 + c7 c5 + 1
c0 + c8 + c9 0 0 0 c1 + c9 0 0 0
d0 + d2 0 0 0 d2 + c1c10 1 0 0
d0 + d2 0 0 0 d2 + c1c10 0 1 0

d1 + c2 + c12 + c15 0 0 0 c6 + c15 c3 + c13 c7 + c16 1


C (B−1) = (c10, c10c11+c11, c10c11+c11+d5, c17, c11, c10c11+c11, d3+c14+c16, d4)

T

where the binary coefficients ci and dj satisfy the following constraints

0 = d0 + c0c1 + c0c8 + c0c10 + c0c11 + c1 + c8c10 + c8

0 = d1 + d0 + c1c10

0 = d2 + c1c9 + c1c11 + c9c10 + c9 + 1

0 = d3 + c7 + c10c11 + c11

0 = d4 + c4c7 + c4c14 + c4c16 + c7c14 + c7c16 + d3 + c18

0 = d5 + c4 + c14 + c16

0 = c0c9 + c1c8 + c1 + 1 .

The coefficients dj are just short labels to denote large expressions involving
coefficients ci. Among the 19 ci coefficients, 15 are free variables and (c0, c1, c8, c9)
are restricted by the constraint c0c9 + c1c8 + c1 + 1. This constraint excludes
10 out of the 24 assignments of (c0, c1, c8, c9). Therefore, the number of affine
self-equivalences is 215× (24− 10) = 196 608, which corresponds to 3× 22n+8 for
n = 4.


	Implicit White-Box Implementations:  White-Boxing ARX Ciphers

