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Abstract. In many occasions, the knowledge error κ of an interactive
proof is not small enough, and thus needs to be reduced. This can be done
generically by repeating the interactive proof in parallel. While there
have been many works studying the effect of parallel repetition on the
soundness error of interactive proofs and arguments, the effect of parallel
repetition on the knowledge error has largely remained unstudied. Only
recently it was shown that the t-fold parallel repetition of any interactive
protocol reduces the knowledge error from κ down to κt + ν for any non-
negligible term ν. This generic result is suboptimal in that it does not
give the knowledge error κt that one would expect for typical protocols,
and, worse, the knowledge error remains non-negligible.
In this work we show that indeed the t-fold parallel repetition of any
(k1, . . . , kµ)-special-sound multi-round public-coin interactive proof op-
timally reduces the knowledge error from κ down to κt. At the core of
our results is an alternative, in some sense more fine-grained, measure of
quality of a dishonest prover than its success probability, for which we
show that it characterizes when knowledge extraction is possible. This
new measure then turns out to be very convenient when it comes to
analyzing the parallel repetition of such interactive proofs.
While parallel repetition reduces the knowledge error, it is easily seen
to increase the completeness error. For this reason, we generalize our
result to the case of s-out-of-t threshold parallel repetition, where the
verifier accepts if s out of t of the parallel instances are accepting. An
appropriately chosen threshold s allows both the knowledge error and
completeness error to be reduced simultaneously.

Keywords: Proofs of Knowledge, Knowledge Soundness, Special-Soundness,
Knowledge Extractor, Parallel Repetition, Threshold Parallel Repetition.

1 Introduction

1.1 Background

Proofs of Knowledge. Proofs of Knowledge (PoKs) are essential building
blocks in many cryptographic primitives. They allow a prover P to convince a



verifier V that it knows a (secret) string w ∈ {0, 1}∗, called a witness, satisfying
some public constraint. Typically a prover wishes to do this either in (honest-
verifier) zero-knowledge, i.e., without revealing any information about the witness
w beyond the veracity of the claim, or with communication costs smaller than the
size of the witness w. Both these requirements prevent the prover from simply
revealing the witness w.

A key property of PoKs is knowledge soundness. Informally, a protocol is
said to be knowledge sound if a dishonest prover that does not know the secret
witness can only succeed in convincing a verifier with some small probability κ
called the knowledge error. This is formalized by requiring the existence of an
efficient extractor so that for any dishonest prover that succeeds with probability
ϵ > κ, the extractor outputs a witness w with probability at least ϵ− κ, up to a
multiplicative polynomial loss (in the security parameter), when given black-box
access to the prover [16].

Typical 3-round public-coin protocols satisfy the conceptually simpler notion
called special-soundness. A 3-round protocol is said to be special-sound if there
exists an efficient algorithm that given two valid prover-verifier conversations
(transcripts) (a, c, z) and (a, c′, z′), with common first message a and distinct
second messages (challenges) c 6= c′, outputs a witness w. More generally, a 3-
round protocol is called k-special-sound if the algorithm requires k transcripts,
instead of 2, to compute w. If k is polynomial in the size of the input x, the
property k-special-soundness tightly implies the standard notion of knowledge
soundness by a generic reduction, with κ = (k − 1)/N , where N is the number
of challenges [20, 3].

In recent years, multi-round PoKs have gained a lot of attention [8, 10, 22,
11, 1, 9, 2, 3, 4]. The notion of k-special-soundness, which is tailored to 3-
round protocols, extends quite naturally to (k1, . . . , kµ)-special-soundness for
(2µ+1)-round protocols (see Definition 7 for the formal definition). Many of the
considered multi-round protocols satisfy this multi-round version of the special-
soundness property. Surprisingly, only recently it was shown that also this gen-
eralization tightly implies knowledge soundness [3].

Parallel Repetition. In certain occasions, the knowledge error κ of a “basic”
PoK (and thereby the cheating probability of a dishonest prover) is not small
enough, and thus needs to be reduced. This is particularly the case for lattice-
based PoKs, where typically challenge sets are only of polynomial size resulting
in non-negligible knowledge errors [21, 5]. Reducing the knowledge error can be
done generically by repeating the PoK. Indeed, repeating a PoK t times sequen-
tially, i.e., one after the other, is known to reduce the knowledge error from κ
down to κt [16]. However, this approach also increases the number of commu-
nication rounds by a factor t. This is often undesirable, and sometimes even
insufficient, e.g., because the security loss of the Fiat-Shamir transformation,
transforming interactive into non-interactive protocols, is oftentimes exponen-
tial in the number of rounds.
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Therefore, it is much more attractive to try to reduce the knowledge error
by parallel repetition. In the case of special-sound protocols, i.e., k-special-sound
protocols with k = 2, such a parallel repetition is easy to analyze: the t-fold par-
allel repetition of a special-sound protocol with challenge space of cardinality N
is again special-sound protocol, but now with a challenge space of size N t, and
so knowledge-soundness with κ = 1/N t follows immediately from the generic
reduction. Unfortunately, this reasoning does not extend to k-special-sound pro-
tocols with k > 2: even though we still have that the t-fold parallel repetition of
a k-special-sound protocol is k′-special-sound, but now with k′ = (k − 1)t + 1,
this large increase in the special-soundness parameter renders the extractor, ob-
tained via the generic reduction, inefficient. More precisely, the run-time of a
k′-special-sound protocol scales linearly in k′, and therefore exponentially in t
for k′ = (k−1)t +1, unless k = 2. In case of multi-round protocols, it is not even
clear that the t-fold parallel repetition of a (k1, . . . , kµ)-special-sound (2µ + 1)-
round protocol satisfies any meaningful notion of special-soundness.

Somewhat surprisingly, so far the only way to analyze the knowledge er-
ror κ of the parallel repetition of k-special-sound protocols with k > 2, or
of (k1, . . . , kµ)-special-sound multi-round protocols, is by means of subopti-
mal generic parallel-repetition results — or by considering weaker notions of
knowledge soundness (see the discussion below). Concretely, based on a re-
sult from [13], it was recently shown that the t-fold parallel repetition of any
public-coin PoK reduces the knowledge error from κ down to κt + ν for any
non-negligible term ν [3]. This generic result is suboptimal in that, when ap-
plied to a k-special-sound protocol for instance, it does not give the knowledge
error κt that one expects (and that one should get when k = 2), and, worse, the
knowledge error remains non-negligible.

Even though this generic parallel-repetition result was shown to be tight, in
that there are protocols for which parallel repetition does not allow the know-
ledge error to be reduced down to a negligible function, we can well hope for a
stronger result for certain classes of protocols. In particular, it is not too absurd
to expect strong parallel repetition for k-special-sound protocols, and possibly
for (k1, . . . , kµ)-special-sound protocols in the multi-round case. Here, as usual
in the general context of parallel repetition, the term “strong” means that the
figure of merit κ, here the knowledge error, drops from κ to κt under a t-fold
parallel repetition.

Other Notions of a PoK. Due to the difficulty in proving the original defi-
nition in certain contexts, it has become quite customary to consider modified
and/or relaxed notions of a PoK that make it then feasible to obtain positive
or stronger results; it is then typically argued that the considered notion is still
meaningful and useful (in the considered context).

For example, many works on multi-round protocols consider the weaker no-
tion of witness-extended emulation rather than the standard notion of knowledge
soundness [8, 10]. In the context of quantum security, the knowledge extractor
is typically allowed to have success probability (ϵ − κ)c (up to a multiplicative
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polynomial loss) for an arbitrary constant c, instead of ϵ− κ [25]. Moreover, re-
cently, tighter security guarantees for discrete logarithm based Σ-protocols were
obtained under a relaxed notion of knowledge soundness in which the knowledge
extractor is not only given black-box access to the (possibly dishonest) prover
P∗, but is also given the success probability ϵ of P∗ as input [24]. Finally, some
works even allow the the extractor to depend arbitrarily on the prover P∗ [14].

In our work here, we instead insist on the original standard definition of a
PoK, and we aim for strong parallel-repetition results nevertheless.

1.2 Contributions

In short, we show a strong parallel repetition theorem for the knowledge error
of (k1, . . . , kµ)-special-sound (2µ + 1)-round protocols, for k1, . . . , kµ such that
their product K = k1 · · · kµ is polynomial in the size of the input statement.4
This in particular implies strong parallel repetition for k-special-sound protocols
for arbitrary polynomial k.5 Strong parallel repetition means that if the original
protocol has knowledge error κ then the t-fold parallel repetition has knowledge
error κt, which is optimal, matching the success probability of a dishonest prover
that attacks each instance in the parallel repetition independently (and thus
succeeds with independent probability κ in each instance).

We also consider a threshold parallel repetition, where the verifier accepts as
soon as s out of the t parallel repetitions succeed, and we show also here that
the knowledge error is what one would expect, matching the attack where the
dishonest prover cheats in each of the t instances independently and hopes that
he is successful in at least s of them.

Our results directly apply to the typical computational version of special
soundness as well, where there exists an efficient algorithm that either computes
a witness from sufficiently many transcripts or provides a solution to a com-
putational problem that is assumed to be hard (like producing a commitment
along with two distinct openings) from sufficiently many transcripts. Indeed,
such a protocol can simply be cast as an ordinary “unconditional” special-sound
protocol for proving knowledge of: a witness w or a solution to the considered
computational problem, and then our results readily apply.

1.3 Highlevel Approach

The starting point of our (threshold) parallel-repetition results is the following
observation, considering (a single execution of) a k-special-sound protocol. The
default measure of quality of a dishonest prover P∗ is its success probability
4 The (k1, . . . , kµ)-special-soundness property states that there exists an efficient al-

gorithm (i.e., polynomial in the input size) that, on input a set of K = k1 · · · kµ

accepting protocol transcripts (with certain properties), outputs a secret witness.
Therefore, this property is only useful when K is polynomial.

5 For didactical reasons, we actually first treat the case of k-special-sound protocols,
i.e., µ = 1, and then consider the more general case of multi-round protocols.
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ϵ = ϵ(P∗). For instance, if ϵ is below the knowledge error κ then in general
we cannot expect the extraction of a witness w to work. However, the crucial
observation is that for a given dishonest prover P∗, its success probability ϵ does
actually not characterize (very well) whether extraction is possible or not. For
instance, fixing P∗’s first message, if P∗ then answers correctly with probability ϵ
(and fails to do so with probability 1−ϵ) independently for each possible choice of
the challenge (where the randomness is over P ∗’s randomness used for computing
the response), then extraction is still possible even when ϵ < κ (yet noticeable):
simply try sufficiently many times for k distinct challenges, and after an expected
number of k/ϵ trials, we have k correct responses to distinct challenges, from
which a witness can then be computed.

At the core of our results is a novel (and somewhat peculiar in its design)
knowledge extractor for k-special-sound protocols, whose success probability can
be expressed in terms of an alternative, in some sense more fine-grained, measure
of quality of P∗. In more detail, in the context of a k-special-sound 3-round
protocol, we define δk(P∗) to be the minimal success probability of P∗ when up to
k−1 challenges are removed from the challenge space (minimized over the choice
of the removed challenges).6 We then show (Lemma 2) existence of an extractor
E that successfully extracts a witness from any P∗ with probability δk(P∗)/k. A
simple calculation also shows that δk(P∗) ≥ ϵ(P∗)− (k− 1)/N , confirming that
a k-special-sound 3-round protocol has knowledge error κ = (k−1)/N . However,
the crucial aspect is that this new measure δk(P∗) turns out to be convenient to
work with when it comes to parallel repetition.

Indeed, to obtain our parallel-repetition result for 3-round protocols, we first
observe that a dishonest prover P∗ against a t-fold parallel repetition naturally
gives rise to t dishonest provers P∗

1 , . . . ,P∗
t against a single invocation: P∗

i simply
mimics P∗’s behavior in the i-th invocation in the parallel repetition. Thus,
ϵ(P∗

i ) is then the probability that the i-th invocation in the parallel repetition is
accepted. However, the core observation is that it is more convenient to consider
the measure δk(P∗

i ) instead. Indeed, by basic probability theory we can show
(Lemma 3) that δk(P∗

1 ) + · · · + δk(P∗
t ) ≥ ϵ(P∗) − κt. This in turn immediately

gives us a lower bound of (ϵ(P∗)−κt)/t on the success probability of the natural
way to try to extract a witness from P∗, which is by means of running the
above extractor E for the single invocation case with each of the P∗

i ’s separately,
each run of E succeeding with probability δk(P∗

i ) by the property of E . Using
a slightly more careful argument than upper bounding the sum of the δk(P∗

i )’s
by t ·maxi δk(P∗

i ) shows a success probability of actually (ϵ(P∗)− κt)/2. Either
way, this proves our strong parallel-repetition result for 3-round protocols.

In order to prove the corresponding strong parallel-repetition result for gen-
eral (k1, . . . , kµ)-special-sound multi-round protocols, we follow the very same
blueprint as above, but use an appropriately adjusted definition of δk1,...,kµ

(P∗)
as the minimal success probability of P∗ when, in every challenge round i, up

6 This definition is well motivated: by k-special soundness, P∗ can potentially prepare
correct responses for up to k − 1 challenges, so the interesting measure is the success
probability when he gets another challenge, one for which he is not prepared.
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to ki− 1 challenges are removed from the challenge space. First constructing an
extractor E for a single invocation by an appropriate recursive application of the
extractor for the 3-round case, and then following the above line of reasoning to
deal with the parallel repetition, we eventually obtain the existence of an extrac-
tor for the t-fold parallel repetition of any (k1, . . . , kµ)-special-sound protocol.
The extractor requires an expected number of at most t · 2µ ·K ≤ t ·K2 queries
to P∗ and succeeds with probability at least (ϵ− κt) /(2K), where K = k1 · · · kµ

and κ is the knowledge error of a single invocation of the protocol. Therefore,
we prove that the t-fold parallel repetition has knowledge error κt.

1.4 Related Work

Reducing the Soundness Error (and Why Knowledge Soundness is Dif-
ferent). A related question is that of reducing the (ordinary) soundness error
of an interactive proof (or argument) by parallel repetition. It is well known that
the t-fold parallel repetition (Pt,Vt) of an interactive proof (i.e., not argument)
(P,V) reduces the soundness error from σ down to σt [15]. Namely, it is rela-
tively easy to reduce an arbitrary prover against the t-fold parallel repetition,
and which has success probability ϵ, into a computationally unbounded prover
that successfully attacks a single instantiation with probability at least ϵ1/t.

The situation is trickier for interactive arguments, where the prover is re-
quired to be efficient and thus this reduction no longer works. Various parallel
repetition theorems for interactive arguments have been established [7, 23, 18, 19,
12, 13]. As before, these results reduce an arbitrary prover P∗

t against the t-fold
parallel repetition, and which has success probability ϵ, into a prover P∗ = RP∗

t

attacking a single invocation of the interactive argument (P,V), but now with P∗

being efficient — well, a subtle issue is that in these parallel repetition theorems
there is an unavoidable trade-off between the success probability and the run-
time of P∗. For instance, the reduction in [12] results in a prover P∗ with success
probability ϵ1/t · (1− ξ) and run-time polynomial in 1/ξ for arbitrary ξ > 0.

Such a trade off is fine in the context of the soundness error of interactive
arguments (or proofs). Indeed, a reduction as above implies that if in a single
invocation of the argument (or proof) any dishonest prover has bounded success
probability, then a t-fold parallel repetition has exponentially small soundness
error. Namely, arguing by contradiction, assuming a prover P∗

t against the t-
fold parallel repetition with a too good success probability, by suitable choice
of parameters the prover P∗

t can then be turned into a prover P∗ = RP∗
t that

violates the bound on the success probability of a single invocation.
However, this trade-off between success probability and run time is a subtle

but serious obstacle when considering the knowledge soundness of interactive
proofs or arguments. Recall that, by standard definition [16], there much exist a
single efficient extractor that works for all provers, and that must have a success
probability that scales proportional to ϵ − κ for all provers (see Definition 4).
But then, the naive approach of constructing the knowledge extractor Et for
the parallel repetition, which is by running the knowledge extractor E for the
single invocation on the prover that is obtained by the generic reduction, i.e.,
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setting EP∗
t

t := E(RP∗
t ), runs into problems since the reduction R, and thus the

extractor Et, depends on certain parameters, like the desired success probability
of P∗ = RP∗

t , violating the definition.
One possible “solution” is to weaken the standard definition of a proof of

knowedge and to allow the extractor to depend on certain parameters; for in-
stance, the parallel repetition result for predictable arguments of knowledge pre-
sented in [14] follows this approach and allows the extractor to arbitrarily depend
on the prover. Another approach, as taken in [3], is to consider Et as above but
then for a fixed choice of the reduction R, e.g., for a fixed choice of ξ in the
context of [12] discussed above. However, since the extractor needs to be effi-
cient, ξ must be chosen to be non-negligible then, resulting in a prover P∗ with
success probability bounded away from 1 by a non-negligible amount, which in
turn results in a non-negligible knowledge error. Indeed, [3] shows that parallel
repetition reduces the knowledge error from κ down to κt + ν for an arbitrary
but fixed non-negligible term ν.

As a consequence, in this work here where we do not want to weaken the
definition of a proof of knowledge, but still wish to obtain strong parallel rep-
etition results, i.e., show that the knowledge error κ drops exponentially as κt

under parallel repetition, we cannot use the above generic reduction results but
need to prove strong parallel repetition (for the considered class of protocols)
from scratch.

The Case t = 1. The starting point of our parallel-repetition result is a
new knowledge extractor for a single invocation of (k1, . . . , kµ)-special-sound
protocols; we briefly compare this extractor with other knowledge extractors
proposed for such protocols.

For instance, considering a different notion of knowledge soundness, [1] pro-
posed an extractor for (k1, . . . , kµ)-special-sound protocols that has a strict
polynomial run-time, yet a success probability that degrades exponentially in
K = k1 · · · kµ. Thus, this notion is meaningful only when K is constant in the
input size.

Full fledged and tight knowledge soundness for (k1, . . . , kµ)-special-sound pro-
tocols was only very recently shown in [3]. In that work, in line with the standard
definition [16], the proposed extractor runs in expected polynomial time and suc-
ceeds with probability proportional to ϵ− κ. As shown in Table 1, our extractor
behaves somewhat worse in the (expected) polynomial run time, and also in the
success probability when the newly introduced measure δ is bounded by ϵ − κ;
however, by exploiting the definition of δ, as we show in the technical part, we
can obtain an extractor for a parallel repetition of the considered protocol by run-
ning the extractor individually on each instance of the parallel repetition. Thus,
our extractor is well suited to show the claimed (threshold) parallel-repetition
results. Nevertheless, it remains an interesting problem whether our extractor
can be improved to match up with the extractor from [3] while still giving rise
to our parallel-repetition results.
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Extractor Number of P∗-queries Q Success probability P

[1] Q ≤ K P ≥ (ϵ − κ)K

[3] E[Q] ≤ K P ≥ ϵ − κ

This work E[Q] ≤ 2µ · K ≤ K2 P ≥ 1
K

δ ≥ 1
K

(ϵ − κ)

Table 1. Different knowledge extractors for (k1, . . . , kµ)-special-sound protocols. Here,
ϵ = ϵ(P∗) denotes the success probability of the prover P∗, Ni is size of the i-th
challenge set, κ = 1 −

∏µ

i=1
Ni−ki+1

Ni
is the knowledge error, and K = k1 · · · kµ. The

refined quality measure δ = δ(P∗) will be defined in Section 3 and Section 4.

1.5 Organization of the Paper

In Section 2, we introduce notation and recall standard definitions regarding
interactive proofs. In Section 3, we show the parallel-repetition result for k-
special-sound 3-round protocols: we first construct a new knowledge extractor
for (the single execution of) a k-special-sound protocol, and then handle the
parallel repetition of these protocols in a second step. In Section 4, we gener-
alize the aforementioned results to multi-round protocols. Finally, in Section 5,
we treat the s-out-of-t threshold parallel repetition of (k1, . . . , kµ)-special-sound
protocols.

2 Preliminaries

2.1 Interactive Proofs

Following standard terminology, given a binary relation R ⊆ {0, 1}∗ × {0, 1}∗, a
string w ∈ {0, 1}∗ is called a witness for the statement x ∈ {0, 1}∗ if (x; w) ∈ R.
The set of valid witnesses for a statement x is denoted by R(x), i.e., R(x) =
{w : (x; w) ∈ R}. A statement that admits a witness is said to be a true or
valid statement. The set of true statements is denoted by LR, i.e., LR = {x :
∃w s.t. (x; w) ∈ R}. A binary relation is said to be an NP relation if the validity
of a witness w can be verified in time polynomial in the size |x| of the statement x.
From now on we assume all relations to be NP relations.

An interactive proof for a relation R aims for a prover P to convince a verifier
V that a statement x admits a witness, or even that the prover knows a witness
w ∈ R(x). We recall the following standard definitions.

Definition 1 (Interactive Proof). An interactive proof (P,V) for relation R
is an interactive protocol between two probabilistic machines, a prover P and
a polynomial time verifier V. Both P and V take as public input a statement
x and, additionally, P takes as private input a witness w ∈ R(x), which is
denoted as (P(w),V)(x). As the output of the protocol, V either accepts or rejects.
Accordingly, we say the corresponding transcript (i.e., the set of all messages
exchanged in the protocol execution) is accepting or rejecting.
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An interactive proof (P,V) is complete if the verifier V accepts honest ex-
ecutions with a public-private input pair (x; w) ∈ R with large probability. It
is sound if the verifier rejects false statements x /∈ LR with large probability.
Originally interactive proofs were defined to be complete and sound [17]. By
contrast, we do not require interactive protocols to satisfy these properties by
definition, but consider them as desirable additional security properties.

Definition 2 (Completeness). An interactive proof (P,V) for relation R is
complete with completeness error ρ : {0, 1}∗ → [0, 1] if for every (x; w) ∈ R,

Pr((P(w),V)(x) = reject) ≤ ρ(x) .

If ρ(x) = 0 for all x, (P,V) is said to be perfectly complete.

Definition 3 (Soundness). An interactive proof (P,V) for relation R is sound
with soundness error σ : {0, 1}∗ → [0, 1], if for every x /∈ LR and every prover P∗,

Pr((P∗,V)(x) = accept) ≤ σ(x) .

If an interactive proof is complete and sound, it “merely” allows a prover
to convince a verifier that a statement x is true, i.e., x ∈ LR. It does not
necessarily convince a verifier that the prover “knows” a witness w ∈ R(x).
This stronger property is captured by the notion knowledge soundness. Infor-
mally, an interactive proof (P,V) is knowledge sound if any prover P∗ with
Pr((P∗,V)(x) = accept) large enough is able to compute a witness w ∈ R(x).

Definition 4 (Knowledge Soundness). An interactive proof (P,V) for rela-
tion R is knowledge sound with knowledge error κ : {0, 1}∗ → [0, 1] if there exists
a positive polynomial q and an algorithm E, called a knowledge extractor, with
the following properties: The extractor E, given input x and rewindable oracle
access to a (potentially dishonest) prover P∗, runs in an expected number of
steps that is polynomial in |x| and outputs a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥ ϵ(x,P∗)− κ(x)

q(|x|)
,

where ϵ(x,P∗) := Pr((P∗,V)(x) = accept).

Remark 1. It is straightforward to verify that in order to satisfy Definition 4 it
is sufficient to show that the required property holds for deterministic provers
P∗. Let P∗ be an arbitrary randomized dishonest prover, and let P∗[r] be the
deterministic prover obtained by fixing P∗’s randomness to r. Then ϵ(x,P∗) =
E[ϵ(x,P∗[r])], where E denotes the expectation over the random choice of r.
Furthermore, if EP∗ is declared to run EP∗[r] for a random choice of r then the
same holds for the success probability of the extractor: Pr

(
(x; EP∗(x)) ∈ R

)
=

E
[
Pr
(
(x; EP∗[r](x)) ∈ R

)]
. It follows that in order to satisfy Definition 4 it is

sufficient to show that the required property holds for deterministic provers P∗.
For this reason, we may assume provers to be deterministic, in particular, we
will consider the prover’s first message to be deterministic. This will significantly
simplify our analysis.
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Remark 2. Definition 4 is a static knowledge soundness definition, i.e., dishonest
provers attack a fixed statement x. However, in some scenarios dishonest provers
may choose the statement x adaptively. This would warrant a stronger adaptive
knowledge soundness definition. However, it is easily seen that, for interactive
proofs, static knowledge soundness implies adaptive knowledge soundness [16].
Hence, also in the aforementioned application scenarios Definition 4 is sufficient.

If ϵ(x,P∗) = Pr((P∗,V)(x) = accept) > κ(x), then the success probability
of the knowledge extractor of Definition 4 is positive. Hence, ϵ(x,P∗) > κ(x)
implies that x admits a witness, i.e., x ∈ LR. It therefore follows that knowledge
soundness implies soundness.
Remark 3. Sometimes a slightly weaker definition for knowledge soundness is
used [6, 16, 20]. This weaker definition decouples knowledge soundness from
soundness by only requiring the extractor to run in expected polynomial time on
inputs x ∈ LR, i.e., it does not require the protocol to be sound. It can be shown
that a sound protocol satisfying this weaker version of knowledge soundness is
also knowledge sound in the stronger sense of Definition 4.
Definition 5 (Proof of Knowledge). An interactive proof that is both com-
plete with completeness error ρ(·) and knowledge sound with knowledge error
κ(·) is a Proof of Knowledge (PoK) if there exists a polynomial q such that
1− ρ(x) ≥ κ(x) + 1/q(|x|) for all x.

Let us consider some additional (desirable) properties of proofs of knowledge.
We assume that the prover P sends the first and the last message in any inter-
active proof (P,V). If this is not the case, the interactive proof can be appended
with an empty message. Hence, the number of communication rounds 2µ + 1
is always odd. We also say (P,V) is a (2µ + 1)-round protocol. We will refer
to multi-round protocols as a way of emphasizing that we are not restricting to
3-round protocols.
Definition 6 (Public-Coin). An interactive proof (P,V) is public-coin if all
of V’s random choices are made public.

If a protocol is public-coin, the verifier only needs to send its random choices
to the prover. In this case, V’s messages are also referred to as challenges and
the set from which V samples its messages uniformly at random is called the
challenge set.

We recall the notion of (general) special-soundness. It is typically easier to
prove that an interactive proof is special-sound than to prove that it is knowledge
sound. Note that we require special-sound protocols to be public-coin.
Definition 7 (k-out-of-N Special-Soundness). Let k, N ∈ N. A 3-round
public-coin protocol (P,V) for relation R, with challenge set of cardinality N ≥
k, is k-out-of-N special-sound if there exists a polynomial time algorithm that,
on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with
common first message a and pairwise distinct challenges c1, . . . , ck, outputs a
witness w ∈ R(x). We also say (P,V) is k-special-sound and, if k = 2, it is
simply said to be special-sound.
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1

z1,1
2 z1,k2

2 zk1,1
2 zk1,k2

2

z1,1,...,1
µ z

1,1,...,kµ
µ zk1,k2,...,1

µ z
k1,k2,...,kµ
µ

· · ·

· · · · · ·

· · ·

· · ·

· · · · · ·

c1
1 ck1

1

c1,1
2 c1,k2

2 ck1,1
2 ck1,k2

2

Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2µ + 1)-round public-coin protocol [3].

We refer to a 3-round public-coin interactive proof as a Σ-protocol. Note
that often a Σ-protocol is required to be (perfectly) complete, special-sound and
special honest-verifier zero-knowledge (SHVZK) by definition. However, we do
not require a Σ-protocol to have these additional properties.

Definition 8 (Σ-Protocol). A Σ-protocol is a 3-round public-coin interactive
proof.

In order to generalize k-special-soundness to multi-round protocols we intro-
duce the notion of a tree of transcripts. We follow the definition of [3].

Definition 9 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-
tree of transcripts for a (2µ + 1)-round public-coin protocol (P,V) is a set of
K =

∏µ
i=1 ki transcripts arranged in the following tree structure. The nodes

in this tree correspond to the prover’s messages and the edges to the verifier’s
challenges. Every node at depth i has precisely ki children corresponding to ki

pairwise distinct challenges. Every transcript corresponds to exactly one path
from the root node to a leaf node. For a graphical representation we refer to
Figure 1. We refer to the corresponding tree of challenges as a (k1, . . . , kµ)-
tree of challenges. The set of all (k1, . . . , kµ)-trees of challenges is denoted by
Tree(k1, . . . , kµ).

We will also write k = (k1, . . . , kµ) ∈ Nµ and refer to a k-tree of transcripts.

Definition 10 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special-Soundness). Let
k1, . . . , kµ, N1, . . . , Nµ ∈ N. A (2µ + 1)-round public-coin protocol (P,V) for
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relation R, where V samples the i-th challenge from a set of cardinality Ni ≥ ki

for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound if there exists
a polynomial time algorithm that, on input a statement x and a (k1, . . . , kµ)-
tree of accepting transcripts outputs a witness w ∈ R(x). We also say (P,V) is
(k1, . . . , kµ)-special-sound.

It is well known that, for 3-round protocols, k-special-soundness implies
knowledge soundness, but only recently it was shown that more generally, for
public-coin (2µ + 1)-round protocols, (k1, . . . , kµ)-special-soundness tightly im-
plies knowledge soundness [3].

2.2 Geometric Distribution

A random variable B with two possible outcomes, denoted 0 (failure) and 1 (suc-
cess), is said to follow a Bernoulli distribution with parameter p = Pr(B = 1).
Sampling from a Bernoulli distribution is also referred to as running a Bernoulli
trial. The probability distribution of the number X of independent and identical
Bernoulli trials needed to obtain a success is called the geometric distribution
with parameter p = Pr(X = 1). In this case Pr(X = k) = (1 − p)k−1p for all
k ∈ N and we write X ∼ Geo(p). For two independent geometric distributions
we have the following lemma.

Lemma 1. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed.
Then,

Pr(X ≤ Y ) = p

p + q − pq
≥ p

p + q
.

Proof. It holds that

Pr(X ≤ Y ) =
∞∑

x=1
Pr(X = x) Pr(Y ≥ x) =

∞∑
x=1

(1− p)x−1p · (1− q)x−1

= p

1− (1− p)(1− q)

∞∑
x=1

((1− p)(1− q))x−1 (1− (1− p)(1− q))

= p

1− (1− p)(1− q)

∞∑
x=1

Pr(Z = x)

= p

1− (1− p)(1− q)
= p

p + q − pq
≥ p

p + q
,

where Z ∼ Geo(p + q − pq). This completes the proof of the lemma.

3 Parallel Repetition of k-Special-Sound Σ-Protocols

To simplify the exposition, we start with the simpler case of Σ-protocols; the
general case of multi-round protocols will then be treated in the subsequent
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section. Thus, for the remainder of this section, we consider a k-special-sound
public-coin interactive proof (P,V) with challenge set C of cardinality N ≥ k. It
is well known that such an interactive proof is a proof of knowledge with know-
ledge error κ = (k − 1)/N . We write (Pt,Vt) for the t-fold parallel repetition of
(P,V), which runs t instances of (P,V) in parallel and the verifier Vt accepts if
all the parallel instances are accepted. In this section, we prove that (Pt,Vt) is
then again a proof of knowledge, but now with knowledge error κt, which is op-
timal. Thus, we show what is sometimes referred to as strong parallel repetition,
meaning that the figure of merit decreases with power t under parallel repetition.
This is well known to hold for special-sound Σ-protocols, i.e., for k = 2, but was
open for general k.

The standard way to reason about parallel repetition for the special case
k = 2 uses the fact that (Pt,Vt) is ℓ-special-sound with ℓ = (k−1)t +1. However,
this reasoning does not apply in general, because ℓ grows exponentially in t for
k > 2. Instead, our result crucially depends on the fact that (Pt,Vt) is the t-fold
parallel repetition of a k-special-sound protocol (P,V).

In Section 3.1, we first construct a novel (and somewhat peculiar) extraction
algorithm for k-special-sound protocols (P,V), thereby reproving that k-special-
soundness implies knowledge soundness [3]. In Section 3.2, we show how this
extraction algorithm can be used to deduce a strong parallel repetition result
for (Pt,Vt). In Section 4, we then extend our results to multi-round protocols.

On a high level, the crucial ingredient in our analyses is to introduce and
work with a more “fine-grained” notion of success probability of a dishonest
prover, as we introduce it below.

3.1 Knowledge Soundness of a Single Invocation

Consider a dishonest prover P∗ against the considered k-special-sound interac-
tive proof (P,V). The goal of the extractor is to run P∗ and rewind it sufficiently
many times so as to obtain a first message a together with k correct answers
z1, . . . , zk for k pairwise distinct challenges c1, . . . , ck ∈ C. The crucial question
is how often P∗ needs to be rewinded, and thus what is the (expected) running
time of the extractor. Alternatively, towards satisfying Definition 4, we would
like to have an extractor that runs in a fixed (expected) polynomial time, but
may fail with some probability. It is quite clear that in both cases the figure of
merit (i.e., the running time in the former and the success probability in the
latter) depends on the success probability ϵ of P∗; for instance, if ϵ is below the
knowledge error κ then we cannot expect extraction to work in general. However,
a crucial observation is that for a given dishonest prover P∗, its success proba-
bility ϵ does actually not characterize (very well) whether extraction is possible
or not: if in a special-sound Σ-protocol P∗ provides the correct response with
probability ϵ (and fails to do so with probability 1−ϵ) for every possible choice of
the challenge, then extraction is still possible even when ϵ < κ (but not negligi-
ble), simply by trying sufficiently many times for two distinct challenges. Below,
we will identify an alternative, in some sense more fine-grained, “quality mea-
sure” of P∗, and we show that this measure does characterize when extraction is
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possible. This will be helpful when it comes to more complicated settings, like a
parallel repetition, or a multi-round protocol, or, ultimately, a parallel repetition
of a multi-round protocol.

For multiple reasons, we will state and prove our core technical results in a
more abstract language. One reason is that this allows us to focus on the im-
portant aspects; another reason is that we will actually exploit the considered
abstraction, and thus generalization, of the considered problem. In our abstrac-
tion, we consider an arbitrary function V : C ×{0, 1}∗ → {0, 1}, (c, y) 7→ V (c, y),
and we consider an arbitrary (possibly probabilistic) algorithm A that takes as
input an element c ∈ C and outputs a string y ← A(c). The success probability
of A is then naturally defined as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where, here and below, the probability space is defined by means of the random-
ness of A and the random variable C being uniformly random in C. If V is clear
from context, we simply write ϵ(A).

The obvious instantiation of A is given by a deterministic7 dishonest prover
P∗ attacking the considered k-special-sound interactive proof (P,V) on input x.
More precisely, on input c, A runs P∗ sending c as the challenge, and outputs
P∗’s (fixed) first message a and its response z, and the function V is defined
as the verification check that V performs. We point out that this instantiation
gives rise to a deterministic A; however, later on it will be crucial that in our
abstract treatment, A may be an arbitrary randomized algorithm that decides on
its output y in a randomized manner given the input c, and that V is arbitrary.

Motivated by the k-special-soundness of the considered protocol, given (ora-
cle access to) A the goal will be to find correct responses y1, . . . , yk for k pairwise
distinct challenges c1, . . . , ck ∈ C, i.e., such that V (ci, yi) = 1 for all i. As we
show below, the measure that captures how well this can be done is the worst
case success probability of A for a random challenge when up to but less than k
challenges are removed from the challenge space, formally given by

δV
k (A) := min

S⊂C:|S|<k
Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

More precisely, we argue existence of an extraction algorithm EA with oracle
access to A, that runs in expected polynomial time and succeeds with probability
at least δV

k (A)/k. As before, if V is clear from context, we write δk(A).

Lemma 2 (Extraction Algorithm). Let k ∈ N and C a finite set with car-
dinality N ≥ k, and let V : C ×{0, 1}∗ → {0, 1}. Then, there exists an algorithm
EA so that, given oracle access to any (probabilistic) algorithm A : C → {0, 1}∗,
EA requires an expected number of at most 2k−1 queries to A and, with probabil-
ity at least δV

k (A)/k, it outputs k pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C×{0, 1}∗

with V (ci, yi) = 1 for all i and ci 6= cj for all i 6= j.
7 Recall that, in order to prove knowledge soundness, it is sufficient to consider deter-

ministic provers (Remark 1).
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Proof. The extraction algorithm is defined recursively over k. For this reason,
we add a subscript k and write EA

k for the extraction algorithm that aims to
output k pairs (ci, yi). In this proof, we also make the set D ⊆ C, from which the
extractor samples the challenges ci, explicit by writing EA

k (D). This allows the
extractor to be deployed on subsets D of the full challenge set C, i.e., extractor
EA

k (D) aims to output k pairs (ci, yi) with pairwise distinct challenges ci ∈ D
and V (ci, yi) = 1 for all i. When writing EA

k (D) we will always implicitly assume
that |D| ≥ k. Accordingly, we also write

ϵ(A,D) := Pr
(
V (C,A(C)) = 1

)
,

δk(A,D) := min
S⊆D:|S|<k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

where the probability space is defined by means of the randomness of A and the
random variable C being uniformly random in D ⊆ C. Note that for all k ≥ 1,

δk+1(A,D) ≤ δk(A,D) ≤ δ1(A,D) = ϵ(A,D) .

Let us now define the extraction algorithm. Let D ⊆ C be an arbitrary subset
with cardinality at least k. For k = 1, the extractor EA

1 (D) simply samples a
challenge c1 ∈ D uniformly at random and computes y1 ← A(c1). If V (c1, y1) =
0, it outputs ⊥ and aborts. Otherwise, if V (c1, y1) = 1, it successfully outputs
(c1, y1). This extractor queries A once and it succeeds with probability ϵ(A,D) =
δ1(A,D).

For k > 1, the extractor EA
k (D) first runs the extractor EA

1 (D). If EA
1 (D)

fails, EA
k (D) outputs ⊥ and aborts; otherwise, if EA

1 (D) succeeds to output a pair
(c1, y1), EA

k (D) proceeds as follows. It sets D′ := D \ {c1} and runs EA
k−1(D′).

If EA
k−1(D′) succeeds to output k − 1 pairs (c2, y2), . . . (ck, yk) then EA

k (D) suc-
cessfully outputs the k pairs (c1, y1), (c2, y2), . . . , (ck, yk). On the other hand,
if EA

k−1(D′) fails then EA
k (D) tosses a coin that returns heads with probabil-

ity ϵ(A,D). This coin can be implemented by running EA
1 (D), i.e., sampling a

random challenge c ← D and evaluating V
(
c,A(c)

)
. If the coin returns heads,

EA
k (D) outputs ⊥ and aborts. If the coin returns tails, EA

k (D) runs EA
k−1(D′)

once more and performs the same steps as before. The algorithm proceeds in
this manner until either it has successfully found a k pairs (ci, yi) or until the
coin returns heads.

Let us now analyze the success probability and the expected number of A-
queries of EA

k .
Success Probability. We aim to show that, for all k ∈ N and for all D ⊆ C

with |D| ≥ k, the success probability ∆k(D) of the extractor EA
k (D) satisfies

∆k(D) ≥ δk(A,D)/k .

The analysis goes by induction. Since

∆1(D) = ϵ(A,D) = δ1(A,D)/1 ,

the induction hypothesis is satisfied for the base case k = 1 and all D 6= ∅.
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Let us now consider k > 1 and assume that the induction hypothesis holds
for k′ = k − 1 and all D′ with |D′| ≥ k − 1. We consider arbitrary D ⊆ C
with |D| ≥ k. Then if, in its first step, EA

k (D) successfully runs extractor EA
1 (D)

(outputting a pair (c1, y1) with V (c1, y1) = 1), it starts running two geometric
experiments until one of them finishes. In the first geometric experiment the
extractor aims to find an additional set of k−1 pairs (ci, yi) by running EA

k−1(D′),
where D′ = D \ {c1}. By the induction hypothesis, the parameter p of this
geometric distribution satisfies

p := ∆k−1(D′) ≥ δk−1(A,D′)/(k − 1) ≥ δk(A,D)/(k − 1) .

In the second geometric experiment the extractor tosses a coin that returns heads
with probability

q := ϵ(A,D) .

The second step of the extractor succeeds if the second geometric experiment
does not finish before the first, and so by Lemma 1 this probability is lower
bounded by

Pr
(
Geo(p) ≤ Geo(q)

)
≥ p

p + q

= ∆k−1(D′)
∆k−1(D′) + ϵ(A,D)

≥ δk(A,D)/(k − 1)
δk(A,D)/(k − 1) + ϵ(A,D)

≥ δk(A,D)/(k − 1)
ϵ(A,D)/(k − 1) + ϵ(A,D)

= δk(A,D)
k · ϵ(A,D)

,

where the second inequality follows from the monotonicity of the function x 7→
x

x+q . Since the first step of the extractor succeeds with probability ϵ(A,D), it
follows that EA

k (D) succeeds with probability at least δk(A,D)/k.
Therefore, by induction it follows that for all k and D with |D| ≥ k, the

extractor EA
k (D) succeeds with probability at least δk(A,D)/k. In particular,

the extractor EA
k (C) succeeds with probability at least δk(A)/k, which proves

that this extractor has the desired success probability.
Expected Number of A-Queries. For D ⊆ C with |D| ≥ k, we let Qk(D)

be the expected number of A-queries made by the extractor EA
k (D). We will

prove that Qk(D) ≤ 2k − 1 for all k ∈ N and D ⊆ C with |D| ≥ k. The proof
of this claim goes by induction. First note that, since Q1(D) = 1 for all D 6= ∅,
this claim is clearly satisfied for the base case k = 1.

Let us now consider k > 1 and assume the claim is satisfied for k′ = k − 1.
Let D ⊆ C be arbitrary with |D| ≥ k. Then, EA

k (D) first runs EA
1 (D), which

requires exactly Q1(D) = 1 query. Then with probability ϵ(A,D) it continues to
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the second step. In each iteration of the second step EA
k (D) runs EA

k−1(D′), for
some D′ ⊆ C with |D′| ≥ k−1, and it tosses a coin by running EA

1 (D). Therefore,
each iteration requires an expected number of at most Qk−1(D′) + 1 ≤ 2k − 2
queries. Moreover, the expected number of tosses until the coin returns heads is
1/ϵ(A,D). Hence, the expected number of iterations in the second step of this
extraction algorithm is at most 1/ϵ(A,D). It follows that

Qk(D) ≤ 1 + ϵ(A,D) 1
ϵ(A,D)

(2k − 2) = 2k − 1 ,

which proves the claimed upper bound on the expected number of A-queries and
completes the proof of the lemma.

In the context of a deterministic dishonest prover P∗ attacking a k-special-
sound protocol, we make the following observation. First, by basic probability
theory, for any S ⊆ C with |S| < k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)
Pr
(
C /∈ S

)
≥

Pr
(
V (C,A(C)) = 1)− Pr

(
C ∈ S

)
Pr
(
C /∈ S

) .

(1)

Thus, the extractor EA succeeds with positive probability as soon as ϵ(A) >
Pr
(
C ∈ S

)
for every S ⊆ C with |S| < k. More precisely,

Pr
(
EA succeeds

)
≥ δk(A)

k
≥ ϵ(A)− κ

k(1− κ)
,

where κ = (k − 1)/N .
This observation confirms that k-special-soundness implies knowledge sound-

ness with knowledge error κ (see also [3] for an alternative proof). This result is
summarized as follows.

Theorem 1. Let (P,V) be a k-out-of-N special-sound Σ-protocol. Then (P,V)
is knowledge sound with knowledge error κ = (k − 1)/N .

Note that this is the best we can hope for, since it may be — and for typical
schemes this is the case — that for any S ⊆ C with |S| < k, P∗ can prepare a
first message a for which he can correctly answer any challenge c ∈ S. Thus,
κ = (k− 1)/N is the trivial cheating probability, confirming the tightness of the
theorem.

3.2 Knowledge-Soundness of the Parallel Repetition

When moving to the t-fold parallel repetition (Pt,Vt) of the k-special-sound
public-coin protocol (P,V), we consider an algorithm A that takes as input
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a row (c1, . . . , ct) ∈ Ct of challenges8 and outputs a string y, and the success
probability of A is then defined as

ϵV (A) = Pr
(
V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1

)
,

for some given V : Ct × {0, 1}∗ → {0, 1} and where the Ci are understood to be
independently and uniformly distributed over C.

The obvious instantiation ofA is given by a deterministic prover P ∗ attacking
the considered t-fold parallel repetition (Pt,Vt) of (P,V). More precisely, on
input (c1, . . . , ct), A runs P∗ sending (c1, . . . , ct) as the challenges for the t
repetitions of (P,V), and outputs P∗’s (fixed) first messages (a1, . . . , at) and its
responses (z1, . . . , zt), and the function V is defined as the verification procedure
of Vt, which checks each repetition independently and accepts only if all are
correct.

Such an A naturally induces t algorithms A1, . . . ,At as considered above
in the context of a single execution of a k-special-sound protocol, taking one
challenge as input: on input ci, the algorithm Ai runs y ← A(c1, . . . , ct) with
cj chosen uniformly at random from C for j 6= i, and outputs y along with the
cj ’s for j 6= i. We can thus run the extractor from above on all of the Ai’s
individually, with the hope being that at least one of them succeeds. We know
that for each Ai individually, the extraction succeeds with probability

δV
k (Ai) = min

Si⊂C:|Si|<k
Pr
(
V (Ci,Ai(Ci)) = 1 | Ci /∈ Si

)
, (2)

where V is understood to appropriately reorder its inputs. The following lemma
allows us to bound the probability that at least one of the extractors EAi succeeds
to produce k challenge-response pairs ((c1, . . . , ct), y) that all verify V and for
which the k choices of ci are all distinct for the considered i.

Lemma 3. Let k, t ∈ N and C a finite set with cardinality N ≥ k. Also, let
V : Ct × {0, 1}∗ → {0, 1}, and let A be a (probabilistic) algorithm that takes as
input a vector (c1, . . . , ct) ∈ Ct and outputs a string y ∈ {0, 1}∗. Then

t∑
i=1

δV
k (Ai) ≥

ϵV (A)− κt

1− κ
,

where κ = (k − 1)/N .

Proof. Let Λ denote the event V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1 and, for 1 ≤
i ≤ t, let Si be such that it minimizes Equation 2. Moreover, let Γi denote the
event Ci /∈ Si.

Without loss of generality, we may assume that |Si| = k − 1 for all i. Then,
for all i,

Pr(Γi) = Pr(Ci /∈ Si) = 1− Pr(Ci ∈ Si) = 1− κ .

8 There is no rigorous meaning in the list of challenges forming a row; it is merely that
later we will also consider a column of challenges, which will then play a different
contextual role.
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Moreover, using elementary probability theory,

t∑
i=1

δV
k (Ai) =

t∑
i=1

Pr
(
V (Ci,Ai(Ci)) = 1 | Ci /∈ Si

)
=

t∑
i=1

Pr
(
V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1 | Ci /∈ Si

)
=

t∑
i=1

Pr
(
Λ | Γi

)
=

t∑
i=1

Pr
(
Λ ∧ Γi

)
Pr
(
Γi

) =
t∑

i=1

Pr
(
Λ ∧ Γi

)
1− κ

≥
Pr
(
Λ ∧ ∃ i : Γi

)
1− κ

≥
Pr
(
Λ
)
− Pr

(
¬Γi ∀i

)
1− κ

= ϵV (A)− κt

1− κ
,

which completes the proof.

Lemma 3 readily provides a lower bound on maxi δV
k (Ai) ≥

∑
i δV

k (Ai)/t,
and thus on the success probability of the extractor. However, we can do slightly
better. For this purpose, let ∆ = min

(
1,
∑t

i=1 δV
k (Ai)/k

)
. Then, by the inequal-

ity of the arithmetic and the geometric mean,(
t∏

i=1

(
1− δV

k (Ai)
k

))1/t

≤ 1
t

t∑
i=1

(
1− δV

k (Ai)
k

)
≤ 1− ∆

t
.

Hence, the probability that at least one extractor EAi succeeds equals

1−
t∏

i=1

(
1− δV

k (Ai)/k
)
≥ 1−

(
1− ∆

t

)t

≥ 1− e−∆ ≥ (1− e−1)∆ ≥ 1
2

∆ , (3)

where the third inequality uses that (1 − e−x) ≥ (1 − e−1)x for all 0 ≤ x ≤ 1,
which is easily verified.9 Hence, by Lemma 3, the probability of at least one of
the extractors EAi being successful is at least

∆

2
≥ ϵV (A)− κt

2k(1− κ)
.

From this it follows that the t-fold parallel repetition (Pt,Vt) of a k-special-
sound protocol (P,V) is knowledge sound with knowledge error κt, where κ =
(k − 1)/N is the knowledge error of a single execution of (P,V). This parallel
repetition result for k-special-sound Σ-protocols is formalized in Theorem 2.

Theorem 2 (Parallel Repetition of k-Special-Sound Σ-Protocols). Let
(P,V) be a k-out-of-N special-sound Σ-protocol. Let (Pt,Vt) be the t-fold parallel
repetition of protocol (P,V). Then (Pt,Vt) is knowledge sound with knowledge
error κt for κ = (k − 1)/N .
9 For instance by observing that the two sides are equal for x = 0 and x = 1, and that

the left hand side is a concave function while the right hand side is linear.
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Also here we have that the knowledge error κt matches the trivial cheat-
ing probability, which succeeds if in each instance of the parallel repetition the
challenge falls into a given set of size k − 1.

Remark 4. The above parallel repetition result (and also the generalization
of Section 4), directly generalize to the parallel composition of t different proto-
cols, or to the parallel composition of t different instances of the same protocol.
In this case, the knowledge error will be the product of the individual knowledge
errors.

4 Parallel Repetition of Multi-Round Protocols

We now consider the general case of multi-round protocols. The line of reasoning
is quite similar to that of 3-round protocols, but with an appropriately adjusted
definition of δ. So, for the remainder of this section, we consider a (k1, . . . , kµ)-
special-sound (2µ+1)-round public-coin interactive proof (P,V), where the ver-
ifier samples its j-th challenge uniformly at random from a finite set C[j] for
1 ≤ j ≤ µ. We denote the superscript j with square brackets to distinguish the
set C[j] from the j-fold Cartesian product Cj . Eventually, we want to analyze its
t-fold parallel repetition (Pt,Vt), but again we first consider a single invocation.

4.1 Knowledge Soundness of a Single Invocation

Here, we consider a (possibly randomized) algorithm A that takes as input a
column (c1, . . . , cµ) ∈ C[1] × · · · × C[µ] of challenges and outputs a string y, and
we consider a function

V : C[1] × · · · × C[µ] × {0, 1}∗ → {0, 1} .

The obvious instantiation is a deterministic prover P∗ attacking the con-
sidered protocol. Formally, on input (c1, . . . , cµ), A runs P∗, sending c1 in the
first challenge round, c2 in the second, etc., and eventually A outputs all of P∗’s
messages. Then V : C[1]×· · ·×C[µ]×{0, 1}∗ → {0, 1} captures the verification pro-
cedure of V, i.e., V (c1, . . . , cµ, y) = 1 if and only if the corresponding transcript
is accepting. This instantiation results in a deterministic algorithm A. However,
again, it is crucial that in general A may be probabilistic, i.e., its output y is
not necessarily uniquely determined by its input (c1, . . . , cµ).

Syntactically identical to the previous section, the success probability of A is
defined as

ϵV (A) := Pr
(
V (C,A(C)) = 1

)
,

where here C = (C1, . . . , Cµ) is uniformly random in C[1] × · · · × C[µ]. However,
here the goal of the extractor is slightly different: the goal is to find correct
responses for a k-tree of challenges, where k = (k1, . . . , kµ). Generalizing the
case of ordinary 3-round protocols, the figure of merit here is

δV
k (A) := min

S[1],S[2](·),...,S[µ](·)
Pr

(
Λ

∣∣∣∣∣C1 /∈ S[1] ∧ C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
, (4)
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where Λ denotes the event V (C,A(C)) = 1 and the minimum is over all sets
S[1] ∈ C[1]|<k1 , and over all functions S[2] : C[1] → C[2]|<k2 , S[3] : C[1] × C[2] →
C[3]|<k3 , etc. Here for any set C and k ∈ N, C|<k denotes the set of subsets of C
with cardinality smaller than k.

Indeed, the following lemma shows that there exists an expected polynomial
time extractor EA with oracle access to A that, with probability δV

k (A)/
∏µ

i=1 ki,
succeeds to extract correct responses for a k-tree of challenges. Exploiting the
abstract notation of Lemma 2, the proof of this lemma follows by induction over
the number of challenges µ sent by the verifier.

Lemma 4 (Multi-Round Extraction Algorithm). Let k = (k1, . . . , kµ) ∈
Nµ, K =

∏µ
i=1 ki, C[1], . . . , C[µ] finite sets C[j] with cardinality Nj ≥ kj, and let

V : C[1] × · · · × C[µ] × {0, 1}∗ → {0, 1}.
Then, there exists an algorithm EA so that, given oracle access to any (proba-

bilistic) algorithm A : C[1]×· · ·×C[µ] → {0, 1}∗, EA requires an expected number
of at most 2µ ·K queries to A and, with probability at least δV

k (A)/K, outputs
K pairs (c1, y1), . . . , (cK , yK) ∈ C[1] × · · · × C[µ] × {0, 1}∗ with V (ci, yi) = 1 for
all i and such that the vectors ci ∈ C[1] × · · · × C[µ] form a k-tree.

Proof. The proof goes by induction on µ. For the base case µ = 1, the lemma
directly follow from Lemma 2. So let us assume the lemma holds for µ′ = µ− 1.

Then, for any c ∈ C[1], let Ac be the algorithm that takes as input a vector
(c2, . . . , cµ) ∈ C[2]×· · ·×C[µ] and runs A(c, c2, . . . , cµ). The function Vc is defined
accordingly, i.e.,

Vc : C[2] × · · · × C[µ] × {0, 1}∗ → {0, 1}, (c2, . . . , cµ, y) 7→ V (c, c2, . . . , cµ, y) .

Moreover, let k′ = (k2, . . . , kµ) ∈ Nµ−1 and K ′ =
∏µ

i=2 ki.
By the induction hypothesis there exists an algorithm EAc

µ−1 that outputs a
set Y = {(c2

i , . . . , cµ
i , yi)}1≤i≤K′ with

V (c, c2
i , . . . , cµ

i , yi) = 1 ∀i and {(c2
i , . . . , cµ

i )}i ∈ Tree(k2, . . . , kµ) .

Moreover, EAc
µ−1 requires an expected number of at most 2µ−1 ·K ′ queries to Ac

(and thus to A) and succeeds with probability at least δVc

k′ (Ac)/K ′. We define
W : C[1] × {0, 1}∗ → {0, 1}, by setting W (c,Y) = 1 if and only if Y is a set
satisfying the above properties.

Now let BA : C[1] → {0, 1}∗ be the algorithm, with oracle access to A, that
takes as input an element c ∈ C[1] and runs EAc

µ−1. By Lemma 2, there exists an
expected polynomial time algorithm EBA

1 , with oracle access to BA, that aims
to output k1 pairs (c1,Y1), . . . , (ck1 ,Yk1) ∈ C[1] × {0, 1}∗ with W (ci,Yi) = 1 for
all i and ci 6= cj for all i 6= j. The extractor EA simply runs EBA

1 . Note that, by
the associativity of the composition of oracle algorithms, EA = EBA

1 = (EB
1 )A is

indeed an algorithm with oracle access to A.
Let us now analyze the success probability and the expected number of A-

queries of the algorithm EBA

1 and therefore of EA.
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Success Probability. Again by Lemma 2, it follows that EBA

1 succeeds with
probability at least

δW
k1

(BA)/k1 = min
S[1]⊂C[1],|S[1]|<k1

Pr
(
W (C,BA(C)) = 1 | C /∈ S[1])

k1

= min
S[1]⊂C[1],|S[1]|<k1

Pr
(
W (C,BA(C)) = 1 ∧ C /∈ S[1])

k1 · Pr(C /∈ S[1])

= min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · Pr

(
W (c,BA(c)) = 1

)
k1 · Pr(C /∈ S[1])

= min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · Pr

(
W (c, EAc

µ−1) = 1
)

k1 · Pr(C /∈ S[1])

≥ min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · δVc

k′ (Ac)
k1 ·K ′ · Pr(C /∈ S[1])

= min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · δVc

k′ (Ac)
K · Pr(C /∈ S[1])

, (5)

where C is uniformly random in C. Now note that

δVc

k′ (Ac) = min
S[2](·),...,S[µ](·)

Pr

(
Λ

∣∣∣∣∣C1 = c ∧ C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
,

where Λ denotes the event V (C,A(C)) = 1. Hence,∑
c/∈S[1]

Pr(C = c) · δVc

k′ (Ac) =

min
S[2](·),...,S[µ](·)

Pr

(
Λ ∧ C1 /∈ S[1]

∣∣∣∣∣C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
.

Plugging this equality into Equation 5, shows that

δW
k1

(BA)/k1 ≥
δV

k (A)
K

,

which shows that EBA

1 has the desired success probability.
Expected Number of A-Queries. By Lemma 2, it follows that EBA

1 re-
quires an expected number of at most 2k1 queries to BA. By the induction
hypothesis it follows that BA requires an expected number of at most 2µ−1 ·K ′

queries to A. Hence, EA = EBA

1 requires an expected number of at most 2µ ·K
queries to A, which completes the proof of the lemma.

Let S[1], S[2](·), . . . , S[µ](·) be the arguments minimizing Equation 4. Further,
let Λ denote the event V (C,A(C)) = 1 and let Γ denote the event

Γ = C1 /∈ S[1] ∧ C2 /∈ S[2](C1) ∧ · · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1) .
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Then, using the same kind of reasoning as in Equation 1, we have

δV
k (A) = Pr(Λ | Γ ) = Pr(Λ ∧ Γ )

Pr(Γ )
≥ Pr(Λ)− Pr(¬Γ )

Pr(Γ )
= ϵV (A)− κ

1− κ
,

where

κ = Pr(¬Γ ) = 1−
µ∏

j=1

Nj − kj + 1
Nj

.

This confirms that a (k1, . . . , kµ)-special-sound protocol is knowledge sound with
knowledge error κ. See [3] for an alternative and the original proof of this state-
ment. This result is formalized as follows.

Theorem 3. Let (P,V) be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound pro-
tocol. Then (P,V) is knowledge sound with knowledge error

κ = 1−
µ∏

j=1

Nj − kj + 1
Nj

.

Once more, κ matches the trivial cheating probability.

4.2 Knowledge-Soundness of the Parallel Repetition

We finally move towards stating and proving our main general parallel repeti-
tion result for multi-round protocols. Thus, consider the t-fold parallel repetition
(Pt,Vt) of the given (k1, . . . , kµ)-special-sound (2µ + 1)-round public-coin inter-
active proof (P,V).

We consider an algorithm A that takes as input a row (c1, . . . , ct) of columns
ci = (c1

i , . . . , cµ
i ) ∈ C[1] × · · · × C[µ] of challenges and outputs a string y. Fur-

thermore, we consider a verification function V , which then defines the success
probability of A as

ϵV (A) = Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Ct) with Ci distributed uniformly and independently over
C[1] × · · · C[µ] for all 1 ≤ i ≤ t.

Again, the obvious instantiation for A is a deterministic dishonest prover P∗

attacking (Pt,Vt). More precisely, on input a row (c1, . . . , ct) of columns, A runs
P∗ sending (c1, . . . , ct) as the challenges, and outputs all of P∗’s messages, and
the function V is defined as the verification check that Vt performs.

Such an A naturally induces t algorithms A1, . . . ,At as considered above in
the context of a single execution of a multi-round protocol, taking one challenge-
column as input and outputting one string: on input ci, the algorithm Ai runs
y ← A(c1, . . . , cµ) with cj chosen uniformly at random from C[1] × · · · × C[µ]

for j 6= i, and outputs y along with the cj ’s for j 6= i. Thus, we can run the
extractor from Lemma 4 on all of the Ai’s individually, with the goal being that
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at least one of them succeeds. For each Ai individually, the extraction succeeds
with probability at least

δV
k (Ai)/K =

min
S

[1]
i

,S
[2]
i

(·),...,S
[µ]
i

(·)
Pr

(
Λi

∣∣∣∣∣C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i ) ∧ · · ·
· · · ∧ Cµ

i /∈ S
[µ]
i (C1

i , . . . , Cµ−1
i )

)
/K ,

(6)

where Λi denotes the event V (Ci,Ai(Ci)) = 1 and V is understood to appro-
priately reorder its inputs and K =

∏µ
i=1 ki. The following lemma allows us to

bound the probability that at least one of the extractors EAi succeeds.

Lemma 5. Let k ∈ Nµ, t ∈ N, C[1], . . . , C[µ] finite sets C[j] with cardinality Nj ≥
kj, V :

(
C[1]×· · ·×C[µ])t×{0, 1}∗ → {0, 1}, and A a (probabilistic) algorithm that

takes as input a row (c1, . . . , ct) of columns ci = (c1
i , . . . , cµ

i ) ∈ C[1] × · · · × C[µ]

and outputs a string y ∈ {0, 1}∗. Then

t∑
i=1

δV
k (Ai) ≥

ϵV (A)− κt

1− κ
,

where

κ = 1−
µ∏

j=1

Nj − kj + 1
Nj

.

Proof. Let Λ denote the event V (C,A(C)) = 1 and, for 1 ≤ i ≤ t, let S
[1]
i

and S
[2]
i (·), . . . , S

[µ]
i (·) be such that they minimize Equation 6. Moreover, let Γi

denote the event

C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i ) ∧ · · · ∧ Cµ
i /∈ S

[µ]
i (C1

i , . . . , Cµ−1
i ) .

Without loss of generality, we may assume that |S[1]
i | = k1 − 1 and S

[j]
i : C[1] ×

· · · × C[j−1] → {S ⊂ C[j] : |S| = kj − 1} for all 2 ≤ j ≤ µ and 1 ≤ i ≤ t. Then,
for all 1 ≤ i ≤ t,

Pr(Γi) =
µ∏

j=1

N − kj + 1
N

= 1− κ .

Moreover, using elementary probability theory,

t∑
i=1

δV
k (Ai) =

t∑
i=1

Pr
(
Λ | Γi

)
=

t∑
i=1

Pr
(
Λ ∧ Γi

)
Pr
(
Γi

) =
t∑

i=1

Pr
(
Λ ∧ Γi

)
1− κ

≥
Pr
(
Λ ∧ ∃ i : Γi

)
1− κ

≥
Pr
(
Λ
)
− Pr

(
¬Γi ∀i

)
1− κ

= ϵV (A)− κt

1− κ
,

which completes the proof.
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As for the parallel repetition of a 3-round protocol, it follows that the prob-
ability of at least one of the extractors EAi being successful is at least

∆

2
≥ ϵV (A)− κt

2K(1− κ)
,

where ∆ = min
(
1,
∑t

i=1 δV
k (Ai)/K

)
and K =

∏µ
i=1 ki. This gives us the follow-

ing strong parallel repetition result for (k1, . . . , kµ)-special-sound protocols.

Theorem 4 (Parallel Repetition for Multi-Round Protocols). Let
(P,V) be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol. Let (Pt,Vt)
be the t-fold parallel repetition of protocol (P,V). Then (Pt,Vt) is knowledge
sound with knowledge error κt, where

κ = 1−
µ∏

j=1

Nj − kj + 1
Nj

,

is the knowledge error of (P,V).

Also here, the knowledge error κt coincides with the trivial cheating
probability

∏
i Pr(¬Γi), which is potentially achievable for (k1, . . . , kµ)-out-of-

(N1, . . . , Nµ) special-sound protocols.

5 Threshold Parallel Repetition

The knowledge error κt of the t-fold parallel repetition (Pt,Vt) of a k-special-
sound protocol (P,V) decreases exponentially with t. However, the completeness
error of (Pt,Vt) equals ρ′ = 1 − (1 − ρ)t, where ρ is the completeness error of
(P,V). Hence, if ρ /∈ {0, 1}, the completeness error of (Pt,Vt) increases quickly
with t. In order to decrease both the knowledge and the completeness error si-
multaneously, we consider a threshold parallel repetition. The s-out-of-t threshold
parallel repetition of an interactive protocol (P,V), denoted by (Ps,t,Vs,t), runs
t instances of (P,V) in parallel and Vs,t accepts if at least s-out-of-t instances
are accepted. In particular, it holds that (Pt,t,Vt,t) = (Pt,Vt). In this section,
we show that if (P,V) is k-special-sound then (Ps,t,Vs,t) is knowledge sound.
We will immediately consider the general case of multi-round protocols.

As in Section 4.2, we consider an algorithm A that takes as input a row
c = (c1, . . . , ct) of columns ci = (c1

i , . . . , cµ
i ) ∈ C[1] × · · · × C[µ] of challenges

and outputs a string y. However, this time we consider t different verification
functions

Vi :
(
C[1] × · · · × C[µ])t × {0, 1}∗ → {0, 1} ,

together with one additional threshold verification function defined as follows:

V (c, y) =


1 if

t∑
i=1

Vi(c, y) ≥ s,

0 otherwise .
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The obvious instantiation for A is a deterministic dishonest prover P∗ at-
tacking (Ps,t,Vs,t). This instantiation defines Vi as the verification that the i-th
instance of V performs. The verification function V then captures the verification
that Vs,t performs.

As before, such A induces t algorithms A1, . . . ,At as considered in the con-
text of a single execution of (P,V), taking one challenge-column as input and
outputting one string: on input ci, the algorithm Ai runs y ← A(c1, . . . , cℓ) with
cj chosen uniformly at random from C[1]×· · ·×C[µ] for j 6= i, and outputs y along
with the cj ’s for j 6= i. For each Ai, we can run the extractor from Lemma 4,
which succeeds with probability at least

δVi

k (Ai)/
µ∏

i=1
ki =

min
S

[1]
i

,S
[2]
i

(·),...,S
[µ]
i

(·)
Pr

(
Λi

∣∣∣∣∣C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i )∧
· · · ∧ Cµ

i /∈ S
[µ]
i (C1

i , . . . , Cµ−1
i )

)/ µ∏
i=1

ki ,

(7)

where Λi denotes the event Vi(Ci,Ai(Ci)) = 1 and Vi is understood to appro-
priately reorder its inputs. The following lemma is a generalization of Lemma 5
and it allows us to bound the probability that at least one of the extractors EAi

succeeds.

Lemma 6. Let k ∈ Nµ, t ∈ N, C[1], . . . , C[µ] finite sets C[j] with cardinality
Nj ≥ kj and A a (probabilistic) algorithm that takes as input a row (c1, . . . , ct)
of columns ci = (c1

i , . . . , cµ
i ) ∈ C[1] × · · · × C[µ] and outputs a string y ∈ {0, 1}∗.

Then
t∑

i=1
δVi

k (Ai) ≥
ϵV (A)− κs,t

1− κ
,

where

κs,t =
t∑

ℓ=s

(
t

ℓ

)
κℓ(1− κ)t−ℓ and κ = 1−

µ∏
j=1

Nj − kj + 1
Nj

.

Note that κs,t is the probability of being successful at least s times when
given t trials, when each trial is successful with independent probability κ.

Proof. For 1 ≤ i ≤ t, let Λi denote the event Vi(C,Ai(C)) = 1 and let S
[1]
i and

S
[2]
i (·) . . . , S

[µ]
i (·) such that they minimize Equation 7. Moreover, let Γi denote

the event

C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i ) ∧ · · · ∧ Cµ
i /∈ S

[µ]
i (C1

i , . . . , Cµ−1
i ) .

Without loss of generality, we may assume that |S[1]
i | = k1 − 1 and S

[j]
i : C[1] ×

· · · C[j−1] → {S ⊂ C[j] : |S| = kj − 1} for all 2 ≤ j ≤ µ and 1 ≤ i ≤ t. Then, for
all 1 ≤ i ≤ t,

Pr(Γi) =
µ∏

j=1

N − kj + 1
N

= 1− κ .

26



Moreover, using elementary probability theory,
t∑

i=1
δVi

k (Ai) =
t∑

i=1
Pr
(
Λi | Γi

)
=

t∑
i=1

Pr
(
Λi ∧ Γi

)
Pr
(
Γi

) =
t∑

i=1

Pr
(
Λi ∧ Γi

)
1− κ

≥
Pr
(
∃ i : Λi ∧ Γi

)
1− κ

≥
Pr
(
|{i : Λi}| ≥ s ∧ |{i : Γi}| ≥ t− s + 1

)
1− κ

≥
Pr
(
|{i : Λi}| ≥ s

)
− Pr

(
|{i : Γi}| ≤ t− s

)
1− κ

≥ ϵV (A)− κs,t

1− κ
.

which completes the proof.

As before (see Equation 3), it follows that the probability of at least one of
the extractors EAi being successful is at least

∆

2
≥ ϵV (A)− κs,t

2K(1− κ)
,

where ∆ = min
(
1,
∑t

i=1 δVi

k (Ai)/K
)

and K =
∏µ

i=1 ki. This gives us the follow-
ing threshold parallel repetition result for (k1, . . . , kµ)-special-sound protocols.

Theorem 5 (Threshold Parallel Repetition Theorem). Let (P,V) be a
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol. Let (Ps,t,Vs,t) be the s-
out-of-t threshold parallel repetition of protocol (P,V). Then (Ps,t,Vs,t) is know-
ledge sound with knowledge error

κs,t =
t∑

ℓ=s

(
t

ℓ

)
κℓ(1− κ)t−ℓ ,

where

κ = 1−
µ∏

j=1

Nj − kj + 1
Nj

,

is the knowledge error of (P,V).

As before, the knowledge error κs,t coincides with the trivial cheating prob-
ability for (Ps,t,Vs,t), confirming the tightness of Theorem 5.

Note that the completeness error of (Ps,t,Vs,t) equals

ρs,t =
s−1∑
ℓ=0

(
t

ℓ

)
ρt−ℓ(1− ρ)ℓ .

Hence, the completeness error ρs,t increases and the knowledge error decreases
κs,t in s. Moreover, it is easily seen that for t large enough and κ · t < s <
(1 − ρ)t the threshold parallel repetition (Ps,t,Vs,t) has a smaller knowledge
and a smaller completeness error than (P,V), i.e., κs,t < κ and ρs,t < ρ. In
contrast to standard parallel repetition, threshold parallel repetition therefore
allows both these errors to be reduced.
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