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Abstract. The cryptographic sponge is a popular method for hash func-
tion design. The construction is in the ideal permutation model proven
to be indifferentiable from a random oracle up to the birthday bound in
the capacity of the sponge. This result in particular implies that, as long
as the attack complexity does not exceed this bound, the sponge con-
struction achieves a comparable level of collision, preimage, and second
preimage resistance as a random oracle. We investigate these state-of-
the-art bounds in detail, and observe that while the collision and second
preimage security bounds are tight, the preimage bound is not tight. We
derive an improved and tight preimage security bound for the crypto-
graphic sponge construction.
The result has direct implications for various lightweight cryptographic
hash functions. For example, the NIST Lightweight Cryptography final-
ist Ascon-Hash does not generically achieve 2128 preimage security as
claimed, but even 2192 preimage security. Comparable improvements are
obtained for the modes of Spongent, PHOTON, ACE, Subterranean 2.0,
and QUARK, among others.
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1 Introduction

The sponge construction of Bertoni et al. [9] is a popular approach for crypto-
graphic hashing. At a high level, the sponge operates on a state of size b bits,
which is split into an inner part of size c bits (the capacity) and an outer part
of size r bits (the rate), where b = c + r. The sponge consists of an absorbing
phase and a squeezing phase. In the absorbing phase, data is compressed into
the state r bits at a time, interleaved with an evaluation of a b-bit permutation
P. In the squeezing phase, a digest is extracted from the state r bits at a time,
again interleaved with an evaluation of P. A slight relaxation of this approach,
introduced by the developers of PHOTON [18], is to squeeze at a slightly larger
rate r′ ≥ r. Throughout this work, we will in fact consider this generalized de-
scription of the sponge, as depicted in Fig. 1, but we will stick to calling it the
“sponge”.

The sponge found quick adoption right after its introduction, and its popu-
larity is ever-increasing. Most notably, the eventual winner of the NIST SHA-3
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competition [22], Keccak [11], relies on the sponge methodology. It was quickly
acknowledged that the sponge was particularly well-suited for lightweight hash-
ing, see, e.g., QUARK [3], Spongent [12], and PHOTON [18], and in the ongoing
NIST Lightweight Cryptography competition [23], no less than 22 submissions
(including 5 finalists) offer hashing via the sponge construction or a derivative
thereof.

Two causes for this quick adoption were the conceptual simplicity of the
sponge, and its ability to offer variable output length digests (later, functions
that facilitate this were dubbed extendable output functions (XOFs) [22]). An-
other main cause was that the developers [10] proved security of the sponge
construction in the indifferentiability framework [13, 20]. In a bit more detail,
the authors proved that if P is assumed to be a random permutation, no ad-
versary with an attack complexity less than 2c/2 can differentiate the sponge
construction from a random oracle. (For the PHOTON construction with larger
squeezing rate r′ ≥ r, a comparable bound was proven by Naito and Ohta [21].)
The result, in words, implies that the sponge “behaves” like a random oracle and
that it can be used in (most) applications that were proven secure in the random
oracle model. This result also implies that, assuming that the query complexity
is at most 2c/2, finding collisions, preimages, or second preimages for the sponge
is not easier than for a random oracle. Andreeva et al. [2, Appendix A] made
this implication explicit and demonstrated that for a sponge construction that
outputs a digest of (fixed length) n bits, finding collisions requires at least

q ≈ min{2c/2, 2n/2} (1)

work, and finding preimages or second preimages requires at least

q ≈ min{2c/2, 2n} (2)

work (see also Section 3.1). These bounds have directly influenced the parame-
ter choices of many sponge-based hash designs. Most notably, the SHA-3 hash
function family consists of four functions: SHA3-n where n ∈ {224, 256, 384, 512}
defines the output size. Each of these four functions has its capacity c equal to
twice the digest length n (see also Table 1).

It was clear from the start that the indifferentiability bound of Bertoni et
al. [10] was tight. As a matter of fact, in around 2c/2 work, an adversary can
find inner collisions, i.e., different sponge evaluations that collide on the c-bit
inner part, and it can use these inner collisions to form a full collision for the
sponge and this way distinguish it from random. Likewise, the collision security
bound of (1) is tight, as a collision for a sponge with fixed n-bit output can
be obtained either by finding a c-bit inner collision or an n-bit output collision.
Finally, for second preimage resistance, tightness of the bound of (2) can be
argued in a comparable way. Clearly, one approach the adversary can take to
find a second preimage is an exhaustive search in 2n work. Alternatively, given
the first preimage, the attacker can recompute the sponge on input of this first
preimage to determine the final state value before squeezing. Then, it computes
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the sponge forward from the initial value 0b and backward from the state value
before squeezing in order to find a collision on the c-bit inner part.

For preimage security, the situation is different, and it appears that for cer-
tain values c and n, the bound of (2) is not tight. This is mainly caused by
the fact that, unlike for second preimage security, the final state before squeez-
ing cannot always be easily found. Already in the original introduction of the
sponge construction in 2007, it was claimed that a preimage attack can only be
found in max{2n−r′ , 2c/2} work [9, Section 5.3], where we recall that c is the
capacity during absorbing and r′ the rate during squeezing (in the original pro-
posal, r′ = r). In 2011, both the developers of PHOTON and Spongent made a
comparable claim regarding the preimage security of their construction [12, 18].
We discuss this generic attack in detail in Section 3.2. Here, we also elaborate a
bit more on the generic collision and second preimage attacks, noting that they
are de facto simplifications of the preimage attack. Unfortunately, proving tight
preimage security of this level has remained an open problem since.

1.1 Tight Preimage Security

We solve this open problem and prove tight preimage security of the sponge
construction. In detail, assuming that the underlying permutation P is random,
we prove that the sponge achieves preimage security up to around

q ≈ min
{

max
{

2n−r
′
, 2c/2

}
, 2n
}

(3)

work, where we recall that n is the digest size, c the capacity of the sponge
(during absorption), and r′ the rate (during squeezing). A detailed bound is given
in Section 4, and the bound tightly matches the generic attack of Section 3.2
(up to constant). The security relies on a careful investigation of what events
are needed to happen in order for a preimage to be found, and subsequently a
detailed computation of the probability of these events to occur.

At a very high level, suppose the attacker aims to obtain a preimage for a
digest Z consisting of ` r′-bit blocks Z1‖ · · · ‖Z`, assuming r′ | n for the sake
of simplicity. We assume, by definition, that the attacker is required to make
all permutation queries that are required for the computation of its eventual
preimage, and in particular, it must definitely obtain a cascaded evaluation of
`−1 permutation queries that correspond to outputs Z1, . . . , Z`. In Fig. 1, these
are the first permutation evaluation after outputting Z1 up to and including
the last permutation evaluation before outputting Z`. As we demonstrate in our
proof, the attacker succeeds in finding such a path only after around q ≈ 2n−r

′

queries.
However, the adversary is not done after just finding such cascade of per-

mutation evaluations: the evaluations must also be reached from 0b through the
absorption of certain message blocks — these message blocks eventually consti-
tute the preimage that the adversary would output. The adversary could succeed
in this in two ways: either the last permutation query before squeezing is made



4 Charlotte Lefevre and Bart Mennink

in forward direction, or it is made in inverse direction. If it is made in forward di-
rection, we have to go one step back in our reasoning, namely to the discussion of
the squeezing cascade, and observe that in this case the cascade of ` permutation
evaluations can only be found in q ≈ 2n queries. If it is in inverse direction, this
particular permutation query can be made for free from the cascade of above
`−1 evaluations, but in order to then connect the cascade to the initial value 0b,
the adversary must necessarily ever find a forward and an inverse permutation
evaluation that collide on the inner part. This, in turn requires approximately
2c/2 work.

In summary, finding a preimage requires either around 2n work, or the max-
imum of 2n−r

′
and 2c/2 work, exactly as expressed in (3). Needless to say, the

actual security analysis, and in particular the derivation of an upper bound on
the probability of finding a matching cascaded permutation evaluation of length
`−1 or `, is much more involved, among others as any permutation query of the
adversary may appear at any position in this cascade.

1.2 Application

For hash functions with a large capacity, e.g., Keccak and eventually the SHA-3
hash function family, the old bound of (2) accurately described the preimage
security. However, with the advent of lightweight cryptography, many sponge
constructions with small permutation size b, small capacity c, and small squeez-
ing rate r′ have appeared. In many of these cases, our bound has immediate
implications as it confirms higher preimage security.

The ISO/IEC standardized Spongent hash function of Bogdanov et al. [12]
and the PHOTON hash function of Guo et al. [18] are two such cases. Spon-
gent consists of five hash functions, all of which are sponges instantiated with
a permutation of size b ∈ {88, 136, 176, 240, 272} bits, a rate of r = r′ = 8 bits
for the smallest two versions and r = r′ = 16 for the larger three, and a ca-
pacity c = b − r. The smallest version outputs n = b = 88 bits whereas the
other versions output n = c bits. The old bound of (2) implied that a preimage
attack required at least 2c/2 work, whereas our new bound (3) implies that a
preimage attack requires at least 2n−r work. For the smallest version of Spon-
gent, this is an improvement from 240 to 280, and for the largest version, this is
an improvement from 2128 to 2240. PHOTON, likewise, consists of five sponge
hash functions (with larger squeezing rate than absorbing rate), instantiated
with a permutation of size b ∈ {100, 144, 196, 256, 288}, corresponding capacities
c ∈ {80, 128, 160, 224, 256}, and with output size n = c. The squeezing rate dif-
fers for the five versions, but also here, a significant gain in the security bound
is achieved: 240 to 264 for the smallest variant and 2128 to 2224 for the largest
variant.

More recently, a notable example is Ascon-Hash, the hash function in the As-
con [17] finalist in the NIST Lightweight Cryptography competition [23]. Ascon-
Hash is a plain sponge construction on top of a b = 320-bit permutation, with a
capacity c = 256 and a rate r′ = 64. It outputs digests of size n = 256 bits, which
are thus generated in four squeezes. In this case, the old bound of (2) implied
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generic preimage security up to 2128 work, whereas our new bound (3) implies
generic preimage security up to 2192 work. A similar effect is achieved for the
modes of other second round and final candidates in the NIST Lightweight Cryp-
tography competition, such as ACE [1], KNOT [25], SKINNY-HASH [6], Subter-
ranean 2.0 [15], the hash proposal of Isap [16], and PHOTON-Beetle [4]. These
sponge-based functions all have their parameters (c, r′, n) satisfying n−r′ > c/2.

In Table 1, we give a summary of these hash function constructions, and
show how the new preimage security bound improves over the earlier bound.
A more detailed evaluation of our new bound for SHA3-256, Spongent with
n = 256, and Ascon-Hash with n = 256 is given in Section 5. We remark that
in Table 1, we did not include hash functions that are sponge(-like) but squeeze
digests in one round, such as Grindahl [19] and CubeHash [7], as our bound
only improves over the state-of-the-art bound for sponge(-like) constructions
that squeeze their digest in multiple rounds. Likewise, we did not include hash
functions that squeeze digests over multiple rounds but that have a large enough
c such that n− r′ ≤ c/2, such as Gimli [8], ESCH [5], and Xoodyak [14].

2 Preliminaries

2.1 Notation

We use x := y to define x as being equal to y. For b ∈ N, we denote by {0, 1}b the
set of binary strings of size b. Moreover, {0, 1}∗ is defined to be

⋃
b∈N{0, 1}b. For

a b-bit string s and 0 ≤ x ≤ y ≤ b− 1, s[x : y] denotes the substring containing
the bits of s from position x to y. Moreover, innerx(s) := s[b − x : b − 1],

outerx(s) := s[0 : x − 1]. For a finite set S, x
$←− S means that x is sampled

uniformly at random from S. The set Perm(b) denotes the set of permutations
over {0, 1}b. For any P ∈ Perm(b) and i ∈ N∗, P0 denotes the identity function
and Pi is i iterations of P. For n, k ∈ N such that k ≤ n, we use [n]k to denote

the falling factorial of n of depth k, i.e., the product
∏k−1

i=0 (n − i). We remark
that, provided k2 ≤ n, we have

[n]k = nk
k−1∏
i=0

n− i

n

≥ nke
∑k−1

i=0
−i
n−i

≥ nke
∑k−1

i=0
−i

n−k

= nke
−k(k−1)
2(n−k)

≥ nke−1/2

≥ nk

2
, (4)

where the first inequality uses 1 + x ≤ ex applied with x = i
n−i .
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Table 1: Preimage security of the modes of SHA-3 (added for reference only, as
our bound does not improve the state-of-the-art bound) and selected lightweight
hash functions. Security bounds only hold under the assumption that the un-
derlying permutations are ideal.

Scheme
Parameters Security bound

Note
b c r r′ n ` Old (2) New (3)

SHA3-n 1600 448 1152 1152 224 1 2224 2224 SHA-3 standard [22]
1600 512 1088 1088 256 1 2256 2256 (included for reference)
1600 768 832 832 384 1 2384 2384

1600 1024 576 576 512 1 2512 2512

Spongent 88 80 8 8 88 11 240 280 ISO/IEC standard [12]
136 128 8 8 128 16 264 2120

176 160 16 16 160 10 280 2144

240 224 16 16 224 14 2112 2208

272 256 16 16 256 16 2128 2240

PHOTON 100 80 20 16 80 5 240 264 ISO/IEC standard [18]
144 128 16 16 128 8 264 2112

196 160 36 36 160 5 280 2124

256 224 32 32 224 7 2112 2192

288 256 32 32 256 8 2128 2224

U-QUARK 136 128 8 8 128 16 264 2120 [3]
D-QUARK 176 160 16 16 160 10 280 2144

T-QUARK 256 224 32 32 224 7 2112 2192

ACE-Hash 320 256 64 64 256 4 2128 2192 NIST LWC round 2 [1]

KNOT Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2 [25]
384 256 128 128 256 2 2128 2128

384 336 48 192 384 2 2168 2192

512 448 64 256 512 2 2224 2256

SKINNY-tk2-Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2 [6]

Subterranean 2.0 257 248 9 32 256 8 2124 2224 NIST LWC round 2 [15]

Ascon-Hash 320 256 64 64 256 4 2128 2192 NIST LWC finalist [17]

PHOTON-Beetle-Hash 256 224 32 128 256 2 2112 2128 NIST LWC finalist [4]
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2.2 Generalized Sponge Construction

Let b, c, r, c′, r′, n ∈ N with b = c+r = c′+r′. Let P ∈ Perm(b) be a cryptographic
permutation. Let pad be an injective padding function that transforms a message
M of arbitrary length into k blocks of r bits such that the last block is non-
zero. A minimal example is the 10∗-padding that appends M with a one and
(−|M | − 1) mod r zeros. We will restrict our focus to the sponge construction
with a fixed-length output of size n, and we define ` = dn/r′e.

Let M ∈ {0, 1}∗ be an input message. The sponge construction instantiated
with the permutation P, denoted by HP : {0, 1}∗ → {0, 1}n, is now defined as
follows.

– M is first padded into k message blocks using pad : M1‖ · · · ‖Mk ← pad(M);
– Absorbing phase: the state S is initialized as 0b, and at the ith iteration, for

i = 1, . . . , k, the state is updated as S ← P(S ⊕ (Mi‖0c));
– Squeezing phase: at the ith iteration, for i = 1, . . . , `, the outer r′ bits of S

are extracted as Zi ← outerr′(S) and the state is updated as S ← P(S);
– The digest is computed as Z ← (Z1‖ · · · ‖Z`)[0 : n− 1].

The sponge construction is illustrated in Fig. 1.

0b

r

c

M1

P · · · P

Y0

Mk

P

Y1X1

r′

c′

Z1

P

Y2

Z2

P · · · P

Z`

Y`

Fig. 1: Generalized sponge construction as described in Section 2.2. The values
Yi and Xi will be used in the proof in Section 4.

2.3 Security Model

An adversary A is a probabilistic algorithm. It has oracle access to a permutation
P sampled uniformly at random. A is computationally restricted only by its
number of evaluations of P and P−1, that we denote by q. We summarize all
queries made by A in a query history Q, an ordered list of tuples of the form
(X,Y, d) ∈ {0, 1}b × {0, 1}b × {fwd, inv}, where P(X) = Y and where d denotes
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the query direction. We denote by Qi the query history containing only the first
i queries. Without loss of generality, we can assume that the adversary never
makes a query that it already made before.

Preimage Resistance. We focus on everywhere preimage resistance [24]. In
this model, we consider any image Z ∈ {0, 1}n of length n and consider the
adversary A that can query P and has as goal to eventually output a message
M such that HP(M) = Z. We require that the query history of A contains all
evaluations of P required for the computation of HP(M).

Definition 1. Let b, n, q ∈ N, consider the sponge construction H of Section 2.2.
For any adversary A, we define its everywhere preimage advantage as

Advepre
H (A) = max

Z∈{0,1}n
Pr
(
P $←− Perm(b), M ← AP(Z) : HP(M) = Z

)
.

We define by Advepre
H (q) the supremum advantage over all adversaries making

at most q queries.

3 State-of-the-Art Generic Security Results

We will discuss the best known security lower bound in Section 3.1 and the best
known generic attack in Section 3.2.

3.1 Security Lower Bound

Maurer et al. [20] introduced the indifferentiability framework as an extension of
the notion of indistinguishability. The notion was tailored towards hash functions
by Coron et al. [13]. One says that a hash function H based on an ideal permu-
tation P is indifferentiable from a random oracle R if there exists a simulator
S (based on the random oracle) such that (HP ,P) is hard to distinguish from
(R,SR). Denote by Advindif

H (q) the indifferentiability of H against any attacker
with total complexity q (the number of primitive evaluations in (HP ,P)).

Bertoni et al. [10] proved that the sponge is indifferentiable from a random

oracle up to bound Advindif
H (q) ≤ q(q+1)

2c+1 . Naito and Ohta [21] proved that for
the PHOTON construction, indifferentiability holds with a bound of the form

O
(

q
2c/2

+ q

2c′

)
(refer to [21] for the details).

Indifferentiability of a hash function H from a random oracle R in words
means that the hash function “behaves” like a random oracle. In the context of
preimage resistance, this means that [2, Appendix A]

Advepre
H (q) ≤ Advindif

H (q) + Advepre
R (q) ,

where we are slightly abusing notation for the latter term: to be precise, for
Advepre

R (q) we consider the adversary to have query access to the random oracle
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R and its goal is to output a message M such that R(M) = Z for the predeter-
mined Z. Clearly, Advepre

R (q) = q/2n, and we thus obtain the state-of-the-art
bound for preimage resistance of the sponge:

Advepre
H (q) ≤ q(q + 1)

2c+1
+

q

2n
. (5)

Note that this is the bound that supports the complexity estimation given in (2):
generically finding a preimage for HP requires at least min{2c/2, 2n} evaluations.
A comparable reasoning applies to the second preimage and collision resistance
bounds.

3.2 Security Upper Bound

The best known attack, however, does not meet the first term of (5). In this
section, we describe the best known preimage attack against the sponge con-
struction. The attack de facto resembles the generic exhaustive preimage search
attack and the attack that the sponge developers described in [9].

Let Z ∈ {0, 1}n be any given image. W.l.o.g., we assume the minimal padding
of Section 2.2. We make a case distinction depending on the values c, n. As we
will focus on tightness up to constant, we will sometimes ignore the fact that
any sponge evaluation of a message M of length k costs k + ` permutation calls,
and simply count any such evaluation as 1 query.

– Case n ≤ c/2. The adversary fixes a message M and queries it to the con-
struction. The query satisfies HP(M) = Z with probability around 1/2n.
After q ≈ 2n attempts, the adversary has with high probability found a
preimage M .

– Case c/2 < n. The attack consists of two sequential parts.

• First, the adversary fixes a state value Y1 such that Z1 = outerr′(Y1).
It queries Y2 = P(Y1), Y3 = P2(Y1), . . . , Y` = P`−1(Y1). The queries
satisfy

Zi =

{
outerr′(Yi) for i = 2, . . . , `− 1 ,

outern−(`−1)r′(Yi) for i = ` ,

with probability approximately(
1

2r′

)`−2

· 1

2n−(`−1)r′
=

1

2n−r′
.

After q ≈ 2n−r
′

attempts, the adversary has found a state value Y1 such
that ` squeezes result in Z.

• Starting from 0b, it computes Y→0 := P(M1‖0c) for q different values
M1. Starting from the value Y1 found in the first part of the attack, it
computes Y←0 := P−1(P−1(Y1)⊕(M3‖0c)) for q different non-zero values



10 Charlotte Lefevre and Bart Mennink

M3. If q ≈ 2c/2, there will with high probability be two values M1, M3

such that

innerc(Y
→
0 ⊕ Y←0 ) = 0c .

Let M2 := outerr(Y→0 ⊕Y←0 ). Define the preimage as the unique message
M such that pad(M) = M1‖M2‖M3. We remark that if r ≤ c/2 one will
need multiple message blocks for both the forward and the inverse part in
order to make q ≈ 2c/2 evaluations, but the attack works in a comparable
way.

In total, in this case the attack requires q ≈ 2n−r
′
+ 2c/2 evaluations.

In general, the attack thus has a complexity of around

q ≈ min{2n−r
′
+ 2c/2, 2n}

evaluations. We remark that the generic second preimage attack, as sketched in
Section 1, is basically a simplification of above preimage attack, where in the case
of c/2 < n, the attacker does not need to perform the first part of the attack but
can rather compute Y1 in a constant number of permutation evaluations from
the first preimage. The generic collision attack, also as sketched in Section 1, in
turn differs from this second preimage attack in the sense that for n/2 ≤ c/2
the attacker can perform exhaustive collision search in around 2n/2 evaluations
(instead of 2n).

4 Improved Preimage Resistance Lower Bound

In the following theorem, we state our main result.

Theorem 1. Let b, c, r, c′, r′, n, q ∈ N with b = c+ r = c′+ r′, and let ` :=
⌈
n
r′

⌉
.

If q ≤ 2c
′−1/3 and (`−1)2 ≤ 2b the sponge construction H of Section 2.2 satisfies

the following bound:

Advepre
H (q) ≤ 4q

2n
+ min

{
4`q

2n−r′
,
q(q + 1)

2c

}
. (6)

The proof is given in the remainder of this section. We note that the bound
indeed matches the generic attack of Section 3.2 up to constant. In Section 5,
we will evaluate the bound of Theorem 1 more closely, and compare it with the
generic attack of Section 3.2 and the state-of-the-art bound of Section 3.1.

4.1 Setup

Let Z ∈ {0, 1}n be any image, and write Z = Z1‖Z2‖ · · · ‖Z`, where |Zi| = r′

for i ∈ {1, . . . , `− 1} and |Z`| = s ≤ r′. Consider any adversary A as defined in
Section 2.3. To represent its knowledge from the query history, we use a graph
representation as done for example in [10, 21]. Initially, the graph contains the
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nodes {0, 1}b, which represent all possible internal states of the sponge. For each
query (X,Y, d) ∈ Q with d ∈ {fwd, inv}, and for any M ∈ {0, 1}r, the edge

Y ′
M−→Y is added, where Y ′ := X ⊕ (M‖0c). Note that in the squeezing phase,

such edge must appear for a zero-block message. In this case, the label is omitted.
Let Zi be defined as follows:

Zi :=

{
{Yi ∈ {0, 1}b | outerr′(Yi) = Zi} , for i ∈ {1, . . . , `− 1} ,
{Yi ∈ {0, 1}b | outers(Yi) = Zi} , for i = ` .

Then, the goal of A is to find a preimage of Z, which implies the following event
PRE(Q):

PRE(Q) :Q defines a path 0b
M1−−→ · · · Mk−1−−−−→ Y0

Mk−−→ Y1 −−→ · · · −−→ Y`

such that Yi ∈ Zi for i = 1, . . . , ` .

We refer to Fig. 1 for a depiction of these parameters. In the case of the
minimal injective padding presented in Section 2.2, finding a preimage corre-
sponds to PRE(Q) with the restriction that the last message block is not zero.
In such case, the preimage found by A is the unique message M such that
pad(M) = M1‖ · · · ‖Mk.

4.2 Logic

We separate the event PRE(Q) as the disjoint union of the following two events:

PREFWD(Q) : PRE(Q) with the restriction that the query

linking Y0 and Y1 must be made in forward direction ,

PREINV(Q) : PRE(Q) with the restriction that the query

linking Y0 and Y1 must be made in inverse direction .

Clearly,

PRE(Q) ⇐⇒ PREFWD(Q) ∨ PREINV(Q) . (7)

We will consider dedicated trigger points for PREFWD(Q) and PREINV(Q). Let
S = {Y1 | Pi−1(Y1) ∈ Zi for all i ∈ {1, . . . , `}} ⊆ Z1. We define the set Sfwd

and the multiset Sinv as follows:

Sfwd = {P−1(Y1) | Y1 ∈ S} ,
Sinv = {Y1,P(Y1), . . . ,P`−1(Y1) | Y1 ∈ S} .

Intuitively, Sinv includes all the nodes Y1, . . . , Y` appearing in paths which set
PRE(Q) if discovered, while Sfwd captures all values X1 from which such path
Y1 → · · · → Y` starts. Looking ahead, Sfwd includes the set of trigger points
for PREFWD(Q), and Sinv, as a multiset, includes the set of trigger points for
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PREINV(Q). These trigger points can be repeated in Sinv when some values Zi

are colliding. (Based on this, we will typically simply refer to Sinv as a set.) We
now introduce the following three events:

BADFWD(Q) : ∃(X,Y, fwd) ∈ Q such that X ∈ Sfwd ,

BADINV(Q) : ∃(X,Y, fwd) ∈ Q such that X ∈ Sinv or

∃(X,Y, inv) ∈ Q such that Y ∈ Sinv ,
INNER(Q) : ∃(X,Y, fwd), (X ′, Y ′, inv) ∈ Q ∪ {(, 0b, fwd)}

such that innerc(Y ) = innerc(X
′) .

Note that for INNER(Q), the tuple (, 0b, fwd) is explicitly added to cover the
case where the adversary ever makes an inverse query that hits the initial state
0b. Here, the first element of the tuple is irrelevant, and henceforth omitted.

Intuitively, for PREFWD(Q) to be set, the adversary must among others
make a query P(X1) with X1 ∈ Sfwd. Thus, PREFWD(Q) implies BADFWD(Q).
Likewise, for PREINV(Q) to be set, the adversary must ever make a query that
appears in a path Y1 → · · · → Y` in a query direction. In other words, it must
ever query a value in Sinv. Hence, PREINV(Q) implies BADINV(Q). Moreover,
given that PREINV(Q) defines a path starting from 0b that contains an edge
between Y0 and Y1 corresponding to an inverse query, somewhere in this path
from 0b to Y1 there must be a collision between an inverse query and a descendant
of 0b. This means that PREINV(Q) also implies INNER(Q). More formally:

PREFWD(Q) =⇒ BADFWD(Q) , (8)

PREINV(Q) =⇒ BADINV(Q) ∧ INNER(Q) . (9)

From (7) to (9), we logically obtain

PRE(Q) =⇒ BADFWD(Q) ∨ (BADINV(Q) ∧ INNER(Q)) , (10)

and thus

Pr (PRE(Q)) ≤ Pr (BADFWD(Q)) + min {Pr (BADINV(Q)) ,Pr (INNER(Q))} .
(11)

4.3 Probability computation

We upper bound the three probabilities of (11), starting with Pr (INNER(Q))
in Lemma 1, then Pr (BADFWD(Q)) in Lemma 2, and finally Pr (BADINV(Q))
in Lemma 3.

Lemma 1. We have

Pr (INNER(Q)) ≤ q(q + 1)

2c
. (12)
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Proof (Proof of Lemma 1). We index the queries by the query number, i.e., the
ith query is denoted by (Xi, Y i,di). INNER(Q) translates to the fact that either
there is an inner collision between the set of forward and inverse queries, or
that the output of an inverse query inner collides with 0c. More formally, this
implies that there exists i ∈ {1, . . . , q} such that one of the following two events
happens:

HITfwd
i (Q) : (Xi, Y i, fwd) ∈ Q and

innerc(Y
i) ∈ {innerc(X

1), . . . , innerc(X
i−1)} ,

HITinv
i (Q) : (Xi, Y i, inv) ∈ Q and

innerc(X
i) ∈ {innerc(Y

1), . . . , innerc(Y
i−1), innerc(0

c)} .

By basic probability theory,

Pr (INNER(Q)) ≤
q∑

i=1

Pr (INNER(Qi) ∧ ¬INNER(Qi−1))

≤
q∑

i=1

Pr
(
HITfwd

i (Qi) ∨ HITinv
i (Qi)

∣∣∣ ¬INNER(Qi−1)
)
.

For any i, the query is either in forward direction or in inverse direction, so it
can only set one of the two events. The response at the ith query is uniformly
drawn from a set of size at least 2b − q, among which at most i2r elements set
HITfwd

i (Qi) or HITinv
i (Qi). Thus:

Pr
(
HITfwd

i (Qi) ∨ HITinv
i (Qi)

∣∣∣ ¬INNER(Qi−1)
)
≤ i2r

2b − q
.

Then, as q ≤ 2b−1,

Pr (INNER(Q)) ≤
q∑

i=1

2i

2c
≤ q(q + 1)

2c
. ut

Remark 1. We remark that the PHOTON construction [18] in fact differs from
the sponge construction [9] not only in the size of the squeezing blocks (as
explained in Section 1), but also in the absorption of the first message block.
To be precise, the PHOTON construction allows the first message block to be
of size r′′ bits. Extending our analysis, this would only affect the analysis of
Pr (INNER(Q)) in Lemma 1 above. In this case, the event HITinv

i (Q) would be
triggered if innerc(X

i) ∈ {innerc(Y
1), . . . , innerc(Y

i−1)} or if innerc′′(X
i) = 0c

′′
,

where c′′ := b− r′′. This change would eventually result in a bound of the form:

Pr (INNER(Q)) ≤ q(q + 1)

2c
+

q

2c′′
.
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Lemma 2. We have

Pr (BADFWD(Q)) ≤ 4q

2n
. (13)

Proof (Proof of Lemma 2). By basic probability theory,

Pr (BADFWD(Q))

=

2c
′∑

y=1

Pr (BADFWD(Q) | |Sfwd| = y) ·Pr (|Sfwd| = y) . (14)

We start by upper bounding the probability of the conditioned BADFWD(Q)
event for any y = 1, . . . , 2c

′
, which is similar to a guessing game: in order to

win, the adversary must guess X1 ∈ Sfwd with a forward query. We start by
remarking that Sfwd is defined via inverse P-calls, and that the adversary has no
a priori knowledge about those. Thus, one single query P(X) from the adversary
succeeds with probability at most y

2b
. Moreover, one query eliminates at most

one candidate: if the query (X,Y, d) does not set BADFWD(Q), then X can be
removed from the set of candidates values to be in Sinv. If additionally d = inv
and X ∈ Sfwd, the adversary cannot guess this value anymore. Thus, defining
BADFWD(Q0) := ⊥,

Pr (BADFWD(Q) | |Sfwd| = y)

≤
q∑

i=1

Pr (BADFWD(Qi) | |Sfwd| = y ∧ ¬BADFWD(Qi−1))

≤
q∑

i=1

y

2b − i + 1
≤ yq

2b − q
≤ 2

yq

2b
, (15)

where in the last inequality, we used q ≤ 2b−1.

Plugging this bound into (14) gives

Pr (BADFWD(Q)) ≤ 2q

2b

2c
′∑

y=1

y ·Pr (|Sfwd| = y)

≤ 2q

2b
E (|Sfwd|) . (16)

It remains to compute E (|Sfwd|) = E (|S|). For any Y ∈ {0, 1}b, define Bernoulli
variable IY as

IY = 1 ⇐⇒ Y ∈ S .
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Note that IY = 0 whenever Y /∈ Z1. We have

E (|S|) = E

 ∑
Y ∈{0,1}b

IY


=
∑

Y ∈Z1

E (IY )

=
∑

Y ∈Z1

Pr (Y ∈ S)

≤
∑

Y ∈Z1

2c
′

2b
2c
′

2b − 1
· · · 2b−s

2b − (`− 2)

=
(2c
′
)`−1 · 2b−s

[2b]`−1

≤ 2
(2c
′
)`−1 · 2b−s

(2b)`−1
,

where the last inequality uses (4). Therefore,

E (|S|) ≤ 2
2b

2n
. (17)

Finally, from (16) and (17), we thus obtain

Pr (BADFWD(Q)) ≤ 4q

2n
, (18)

which completes the proof. ut

Lemma 3. We have

Pr (BADINV(Q)) ≤ 4`q

2n−r′
. (19)

Proof (Proof of Lemma 3). We first note that if ` = 1, |Sinv| = 2c
′ ≤ 2b−n, and

the result will be meaningless as BADINV(Q) can be set with probability 1. We
will henceforth focus on the case ` ≥ 2.

Similar to the proof of Lemma 2, by basic probability we obtain

Pr (BADINV(Q))

=

2c
′∑

y=1

Pr (BADINV(Q) | |Sinv| = `y) ·Pr (|Sinv| = `y) , (20)

where we used that Sinv is a multiset with a size multiple of `. We start by
investigating the conditioned BADINV(Q) event for any y = 1, . . . , 2c

′
, which is
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more involved than BADFWD(Q) studied in Lemma 2. Because of the condition
|Sinv| = `y, there are y paths Y1 → · · · → Y` with Yi ∈ Zi for i = 1, . . . , `. The
adversary wins if it ever queries a value that is on any of these paths. Note that
this is different from the proof of Lemma 2, where the adversary had to guess any
starting point of a path. In the current setting, the attacker learns additional
information of failed attempts. For example, suppose that Z1 6= Z2 and the
adversary makes a forward query P(X) = Y , where X ∈ Z1 and Y ∈ Z2 but
which does not set BADINV(Q). As it does not set BADINV(Q), the adversary
knows that querying P(Y ) (i.e., guessing Y ∈ Z2 as candidate value for a chain)
is fruitless.

To simplify our reasoning, we will be more generous to the adversary, and
for each query input X that the adversary makes, it receives both the forward
evaluation P(X) and the inverse evaluation P−1(X). Stated differently, for the
current game the query direction does not matter, and for each attempt X it
learns P−1(X)→ X → P(X). The adversary wins if this is a proper subpath of
any of the y target paths X1 → Y1 → · · · → Y` → Y`+1, where X1 = P−1(Y1)
and Y`+1 = P(Y`).

1

A visualization of this game is given in Fig. 2 for ` = 4. For this exam-
ple, recall that for i = 1, 2, 3, Zi consists of all values Y ∈ {0, 1}b such that
outerr′(Y ) = Zi, and that Z4 consists of all values Y ∈ {0, 1}b such that
outers(Y ) = Z4. By the conditioned event, there exist y paths through the
sets Z1, . . . ,Z4. In the example, y = 2, hence there are two such paths. The
adversary sets BADINV(Q) if and only if it ever queries one of the at most `y
nodes on these lines (not including the ones on the outer shores {0, 1}b). It is
noteworthy that these paths are disjoint: they never cross the same node in the
same shore.

Now, suppose the adversary makes a query X, it thus results in a path
P−1(X) → X → P(X). The query is considered a failed query if it is not
a proper subpath of any of the y paths. In particular, a failed query either
does not intersect with any of the y paths, or it intersects with one of the y
paths at their very ends. In other words, a query is considered a failed one for
path X1 → Y1 → · · · → Y` → Y`+1 if and only if it intersects with either of
∅, X1, X1 → Y1, Y` → Y`+1, Y`, as illustrated in Fig. 2 (up to symmetry). Any
other intersection of the failed query result with the path is impossible, as e.g.,
depicted in Fig. 2, due to the fact that P is a permutation.

We remark that for 0 ≤ i < j ≤ ` + 1, a query can be successful for one
target path at position i, and failed for another target path at position j at the
same time. In this case, the adversary is nevertheless successful. From this, we
can conclude that any query attempt either is successful or it eliminates at most
3 possible values from further guessing.

In summary, to win, the adversary must make a query in Sinv. This set is of
size at most `y and is a subset of the set

⋃`
i=1 Zi of size at least 2c

′
.2 Since one

1 The usage of parameter X1 in this path, as opposed to Y0, appears illogical at first
sight, but fits the parameter definitions as outlined in Fig. 1.

2 Note that this correctly captures the case i = `, as |Z`| = 2n−s ≥ 2c′ .
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query eliminates at most 3 candidates and this is the only information available
for the adversary, after i − 1 unsuccessful attempts, the ith attempt succeeds
with probability at most `y

2c′−3(i−1) . Thus, defining BADINV(Q0) := ⊥,

Pr (BADINV(Q) | |Sinv| = `y)

=

q∑
i=1

Pr (BADINV(Qi) | |Sinv| = `y ∧ ¬BADINV(Qi−1))

≤
q∑

i=1

`y

2c′ − 3(i− 1)
≤ `yq

2c′ − 3q
≤ 2

`yq

2c′
, (21)

where in the last inequality, we used q ≤ 2c
′−1/3.

Now, it remains to plug the bound into (20). We can copy the analysis of
Lemma 2 verbatim and obtain

Pr (BADINV(Q)) ≤ 2
q

2c′

2c
′∑

y=1

`y ·Pr (|Sinv| = `y)

≤ 2
q

2c′
E (|Sinv|)

≤ 4`q

2n−r′
, (22)

where the last inequality uses |Sinv| = `|S| and (17). This completes the proof.
ut

Remark 2. In the proof of Lemma 3, we bounded the probability that the ith

query is successful by y

2c′−3(i−1) . There is a small loss in this bound due to various

simplifications we had to make. First note that as we provide the adversary both
directions of the queries, we slightly increase its knowledge and thus success
probability. In addition, each query attempt X has its leftmost r′ bits outerr′(X)
fixed, and the adversary thus commits itself to the value Zi and thus to the
position in Fig. 2 the query could occur. However, there is no way to make use
of this property, as in the general case, the values Z1, . . . , Z` may be equal and
the query can nevertheless occur at multiple positions. Finally, in the specific
case where some values Zi are mutually equal, this basically reduces the set of
candidates to be in S, thus also the set of possibly successful values, and possibly
also the amount of information the adversary learns from a failed attempt.

4.4 Conclusion

From (11), Lemma 1, Lemma 2, and Lemma 3, we obtain

Pr (PRE(Q)) ≤ 4q

2n
+ min

{
4`q

2n−r′
,
q(q + 1)

2c

}
, (23)

and this completes the proof of Theorem 1.
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Z1Z1Z1Z1Z1 Z2Z2Z2Z2Z2 Z3Z3Z3Z3Z3 Z4Z4Z4Z4Z4

{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b

failed

failed

successful

impossible

failed

impossible

impossible

Fig. 2: Illustration of the conditioned BADINV(Q) event for ` = 4 and y = 2. To

win, the adversary must guess any node from
⋃4

i=1 Zi on any of the y = 2 dotted
blue paths. A query attempt X is successful if and only if P−1(X)→ X → P(X)
(depicted solid red) is a proper subpath of any of the blue lines. As P is a
permutation, a failed query attempt is either non-overlapping with any of the
dotted blue paths, or it may partially overlap only at the ends of a blue line, the
other cases are impossible and illustrated as such.

5 Conclusion

In this section, we compare our result with the state-of-the-art bound of (5)
(Section 3.1) and the best existing attack. Recall that in Theorem 1, we obtained
the following bound:

Advepre
H (q) ≤ 4q

2n
+ min

{
4`q

2n−r′
,
q(q + 1)

2c

}
.

If ` = 1, our security bound matches the state-of-the-art bound up to a factor
of 4, while if ` > 1, our bound improves the existing state of the art significantly.
In both cases, the bound matches the best known attack outlined in Section 3.2
(up to constant). In the following, we show the improvement with the parameters
used in the modes Ascon-Hash [17] and Spongent [12].

First consider the Ascon-Hash mode with parameters (b, c, r, r′, n) = (320, 256,
64, 64, 256). In this case, ` = n/r′ = 4. In Fig. 3, we compare the state-of-the-
art bound of Section 3.1, our new bound of (6), and the best known attack of
Section 3.2. We observe that our new bound significantly improves the state-
of-the-art bound starting at a very low value of q. In detail, the adversarial
advantage is approximately 1.5 × 10−36 for q ≈ 269 at the intersection point as
shown in Fig. 3b, i.e., at the point where the old bound starts to degenerate but
our new bound stays low.

It is also interesting to consider the largest mode of Spongent, i.e., with
parameters (b, c, r, r′, n) = (272, 256, 16, 16, 256). It has a small rate, and conse-
quently a high value ` = n/r = 16, but the same capacity and output size as
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the ones of Ascon-Hash. A comparison of the old bound, new bound, and best
known attack is given in Fig. 4. Here, the intersection point occurs at q ≈ 223,
with an advantage of approximately 3 × 10−64. Our bound thus improves even
more the state-of-the-art bound to reach a preimage resistance close to 240 bits.

(a) Security bound (b) Close-up of intersection

Fig. 3: Comparison of the state-of-the-art security bound, new security bound,
and best known attack for the Ascon-Hash mode with parameters (b, c, r, r′, n) =
(320, 256, 64, 64, 256).
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(a) Security bound (b) Close-up of intersection

Fig. 4: Comparison of the state-of-the-art security bound, new security bound,
and best known attack for the Spongent mode with parameters (b, c, r, r′, n) =
(272, 256, 16, 16, 256).
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