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Abstract. Meet-in-the-middle (MITM) is a general paradigm where in-
ternal states are computed along two independent paths (’forwards’ and
’backwards’) that are then matched. Over time, MITM attacks improved
using more refined techniques and exploiting additional freedoms and
structure, which makes it more involved to find and optimize such at-
tacks. This has led to the use of detailed attack models for generic solvers
to automatically search for improved attacks, notably a MILP model de-
veloped by Bao et al. at EUROCRYPT 2021.
In this paper, we study a simpler MILP modeling combining a greatly
reduced attack representation as input to the generic solver, together
with a theoretical analysis that, for any solution, proves the existence
and complexity of a detailed attack. This modeling allows to find both
classical and quantum attacks on a broad class of cryptographic permuta-
tions. First, Present-like constructions, with the permutations from the
Spongent hash functions: we improve the MITM step in distinguishers
by up to 3 rounds. Second, AES-like designs: despite being much simpler
than Bao et al.’s, our model allows to recover the best previous results.
The only limitation is that we do not use degrees of freedom from the
key schedule. Third, we show that the model can be extended to target
more permutations, like Feistel networks. In this context we give new
Guess-and-determine attacks on reduced Simpira v2 and Sparkle.
Finally, using our model, we find several new quantum preimage and
pseudo-preimage attacks (e.g. Haraka v2, Simpira v2 . . . ) targeting the
same number of rounds as the classical attacks.

Keywords: MITM Attacks · Permutation-based hashing · Preimage attacks ·
Merging algorithms · Quantum cryptanalysis.

1 Introduction

Meet-in-the-middle is a general attack paradigm against cryptographic primi-
tives where internal states are computed along two independent paths (’forwards’
and ’backwards’) that are then matched to produce a complete path solution.
MITM attacks can be traced back to Diffie and Hellman’s time-memory trade-
off on Double-encryption [23]. Since then, they have been successfully applied
over the years on block ciphers and hash functions [26,14,36,37,1,33]. Moreover,
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MITM attacks have been improved using more refined techniques and exploiting
additional freedoms and structure (e.g., using internal state guesses [26], splice-
and-cut [1,33], bicliques [38], 3-subset MITM [14]), which also makes it more
involved to find and optimize such attacks.

An important trend in cryptanalysis is the application of automatic tools
to search for improved attacks. The search of an attack of a certain form is
translated into a search or optimization problem, which is solved using an off-the-
shelf SAT, constraint programming (CP), Mixed Integer Linear Programming
(MILP) solver. Thus the difficulty of finding an attack by hand is replaced by
that of finding a proper modeling of the attack search space into a corresponding
search/optimization problem. This has naturally led to a bottom-up modeling
including low-level attack details, such that any solution directly corresponds to
an instantiation of the attack.

MITM attacks on hash functions. Hash functions are often built from a compres-
sion function, using a simple domain extender such as Merkle-Damgård [41,21].
This compression function, in turn, can be built from a block cipher Ek using
one of the twelve secure PGV modes [43], usually one of the three most com-
mon: Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel
(MP). A preimage attack on the hash function can be reduced to one on the
compression function.

In [44], Sasaki introduced a MITM preimage attack on AES hashing modes
targeting as much as 7 rounds. This attack already integrates advanced tech-
niques such as the initial structure and matching through MixColumns, which
is reviewed later. Bao et al. [3] improved the attacks of [44] by making use
of degrees of freedom from the key-schedule path; that is, allowing a varying
chaining value instead of considering a fixed one. In [4], an MILP framework for
automatic search of MITM attacks was introduced. It applies to all AES-based
hash functions, whose internal state is defined as an array of fixed-size cells and
whose operations mimic the operations of the AES block cipher. This modeling
led to many improved results; in particular, the first 8-round preimage attack
on a hash function using AES-128. Later on, this modeling was improved in [5]
and [25]. The former introduced the technique of guess-and-determine in the
solver, while the latter extended the search to collision attacks and key-recovery
attacks against block ciphers.

Limits of Rule-based Modeling. In AES-based hash functions, internal states are
represented as an array of cells corresponding to the S-Boxes. The MITM attack
can entirely be specified by a certain coloring of these cells (backwards, forwards,
unspecified). Propagation rules can then be defined, which specify the admissible
coloring transitions at each stage of the cipher, while computing the parameters
which give the time and memory complexities of the MITM attack. This is a
bottom-up approach, as the validity of the path is enforced locally.

However, the definition of these rules is quite involved, and the follow-up
works [25,5] added even more rules to capture new techniques. This increases,
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in turn, the complexity of the model, which (as reported in [5]) requires more
human intervention to limit the search space.

Furthermore, the rule-based modeling in [4] is limited to AES-like ciphers.
These primitives have the property that the linear layer is strongly aligned with
the S-Box layer, and all the operations can be defined at cell-level (bytes in the
case of AES), instead at bit-level. Extending the rule-based modeling to other
primitives was one of the main open questions in [4], which would typically
require moving to a bit-level and increasing model complexity. Our goal is to de-
velop a powerful model that is both broadly applicable and significantly simpler
than rule-based models.

Quantum Preimage Attacks. It is well-known that Grover’s quantum search al-
gorithm [30] halves the bits of preimage security that one can expect from a hash
function, e.g., instead of requiring 2128 computations of a 128-bit hash function,
Grover’s search can find a preimage in about 264 evaluations of a quantum cir-
cuit for the function. However, Grover search is only a generic algorithm. There
might exist dedicated quantum attacks that, for a given design, find a preimage
in less time. Such attacks determine the security margin of a hash function in
a post-quantum context, especially for hash-based signature schemes [2]. But
to date, while quantum collision attacks have been significantly studied [34,35],
little is known on quantum preimage attacks.

1.1 Our Contributions

Top-down modeling. In this work we do not follow the detailed bottom-up mod-
eling where any solution directly corresponds to an instantiation of the attack.
Ideally, the modeling should remain simple, and lead to feasible search times,
while at the same time, cover a large space of potential attacks. Hence instead,
we study a simpler top-down modeling paradigm in which we search for a greatly
simplified attack representation excluding many details, for which we are able to
prove the existence of an optimized attack instantiation and its corresponding
complexity (see Lemma 2 and Theorem 1 in Section 4). This has several bene-
fits. First, the abstract representation makes it more generically applicable to a
wide set of designs. Second, it enables analysis of not only classical attacks, but
quantum attacks as well with minor changes. Third, the resulting model input to
the solver is significantly smaller, which typically means it can be solved faster
and thus it is more practical to cover larger primitives and/or more rounds.

MITM preimage attacks. We apply this top-down modeling paradigm to MITM
preimage attacks. Our representation is close to the dedicated solvers introduced
in [16,22], and complementary to the bottom-up modeling developed in [4,25,5].
Instead of defining local rules for the propagation of cell coloring between cells,
we consider a global view of the MITM attack capturing only which cells belong
to the forward and the backward paths, and optimize the attack time complexity
as a function of the cells. This view has two advantages: first, its simplicity.
Second, its genericity, as it is not limited to strongly aligned designs and allows to
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target a larger class than AES-based hashing. In fact, we start with applications
to “Present-like” permutations, and only later, rewrite AES-based primitives
as “Present-like”, using the Super S-Box.

Our approach is so far limited to permutations: we do not use degrees of
freedom of the key-schedule. This restriction makes our tool oblivious to the most
advanced attacks on hashing using AES. However, many recent hash functions,
especially small-range hash functions like Simpira v2 [31] or Haraka v2 [40], or
more generally, Sponge designs like SHA-3, are only based on permutations.

Our modeling also admits a generic translation of classical MITM attacks into
quantum attacks. We find these attacks using our automatic tool, by a mere
change in the optimization goal. In fact, the valid paths for quantum attacks
correspond to classical paths under new memory constraints. When applicable,
our quantum attacks reach the same number of rounds as the classical ones.

Outline and Results. In Section 2, we recall previous results and elaborate on
the definition and modeling of a MITM attack in [4,25,5]. The rest of the pa-
per follows our new approach. We define our cell-coloring representation, and
merging-based MITM attacks, in Section 3. In Section 4, we simplify this rep-
resentation and detail our MILP modeling for classical and quantum attacks.
Next, we demonstrate the versatility of our approach and obtain existing and
new state-of-the-art attacks.

In Section 5, we study the class of Present-like permutations, which have
the same operations as the block cipher Present: individual S-Boxes, followed
by a linear layer which exchanges bits between pairs of S-Boxes. We improve the
MITM step in the distinguishers on the permutations of the Spongent family.

In Section 6, we study the class of AES-like permutations. With the Super
S-Box, AES itself becomes a small Present-like cipher. We recover previous re-
sults on these permutations and give new quantum preimage attacks on reduced-
round AES, Haraka v2 and Grøstl (these results are summarized in Table 1).

In Section 7, we study an extended class of permutations in which the lin-
ear layer contains XORs. In particular, we study Generalized Feistel Networks
and obtain generic and practical guess-and-determine distinguishers on GFNs,
reduced-round Simpira permutations, and reduced-step Sparkle permutations
(summarized in Tables 3 and 4). The distinguishers on Simpira are converted
into preimage attacks (see Table 1).

Our code is available at: github.com/AndreSchrottenloher/mitm-milp. We
used the MILP solver of the SCIP Optimization Suite [29].

2 Preliminaries

In this section, we describe the families of Present-like, AES-like and Feistel-
like permutations targeted in this paper. We recall MITM problems and the
rule-based framework studied in [44,3,4,25,5]. We choose to focus only on single-
target pseudo-preimage attacks, and refer to [3] for a clear depiction of generic
techniques to convert pseudo-preimage to preimage attacks.

https://github.com/AndreSchrottenloher/mitm-milp
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Table 1. Our new (pseudo)-preimage attacks, with points of comparison to previous
works. QRAQM = quantum-accessible quantum memory. The generic time given can
be higher than the security claims of the design.
|n: A partial preimage attack over n-bits. (Q): Using QRAQM.

Target Type Rounds Time Generic time Memory Source

AES-128 Classical 8 2120 2128 240 [4]
AES-128 Quantum 7 263.34 264 28 (Q) Section 6.1

Haraka-256 v2 Classical 4.5 / 5 2224 2256 232 [4]
Haraka-256 v2 Quantum 4.5 / 5 2115.55 2128 232(Q) Section 6.2
Haraka-512 v2 Classical 5.5 / 5 2240 2256 2128 [4]
Haraka-512 v2 Classical 5.5 / 5 2240 2256 216 Section 6.2
Haraka-512 v2 Quantum 5.5 / 5 2123.34 2128 216(Q) Section 6.2

Haraka-512 v2 |32 Classical 5.5 / 5 216 232 216 Section 6.2
Haraka-512 v2 |64 Classical 5 / 5 232 264 232 Full version [45]

SPHINCS+-Haraka Quantum 3.5 / 5 264.65 285.33 negl. Section 6.2
Grøstl-256 OT Classical 6 / 10 2224 2256 2128 [5]
Grøstl-256 OT Quantum 6 / 10 2123.56 2128 2112(Q) Section 6.3
Grøstl-512 OT Classical 8 / 14 2472 2512 2224 [5]
Grøstl-512 OT Quantum 8 / 14 2255.55 2256 256(Q) Section 6.3

Simpira-2 Classical 5 / 15 2128 2256 negl. Section 7.2
Simpira-2 Quantum 5 / 15 264 2128 negl. Section 7.2
Simpira-4 Classical 9 / 15 2128 2256 negl. Section 7.2
Simpira-4 Quantum 9 / 15 264 2128 negl. Section 7.2

2.1 Families of Designs

Present-like. We name this family after the block cipher Present [13]. It is a
Substitution-Permutation Network (SPN) with an internal state of b = 16 cells
of 4 bits. Its round function applies in order: (1) the round key addition, (2) the
Present S-Box on each cell independently, and (3) the linear layer defined by
the bit-permutation:

P (j) =

{
4b− 1 if j = 4b− 1;

(j · b) mod 4b− 1 otherwise.

That is, the j-th bit of the state after an S-Box layer is moved to the P (j)-th
bit of the state before the next key addition. In particular, each cell at a given
round connects to 4 cells at the next round. Thus, Present is an SPN in the
strict sense that the “permutation” is a permutation of bits. In this paper, we
consider the analysis of Present in the known-key setting (see e.g. [10]), where
the key is fixed, which turns the cipher into a permutation. The Spongent-π
family of permutations1, which are used in the Spongent hash function [11] is
a generalization of the Present design to larger state sizes, with b ranging from
1 This denomination is from [9] . Previously the permutation did not have a name, or

was named “Spongent” by metonymy.
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22 to 192. By abstracting out the S-Box, other designs such as Gimli [8] can be
considered as Present-like.

AES-like. The AES, designed by Daemen and Rijmen [20], is the standardized
version of the candidate Rijndael [19] which was chosen in an open competition
organized by the NIST. It is a block cipher with a state of 16 bytes (128 bits).
The bytes are arranged in a 4 × 4 array, where the byte at position (i, j) is
numbered 4j + i. Each round contains the following operations in order: (1)
AddRoundKey (ARK): the subkey is XORed to the state, (2) SubBytes (SB): the
8-bit S-Box is applied to each byte independently, (3) ShiftRows (SR): the row
number i (starting from 0) is shifted by i bytes left, and (4) MixColumns (MC):
the columns of the state are multiplied by an MDS matrix. Importantly, all these
operations can be defined at byte level (strong alignment).

The class of AES-like designs studied in previous works [4] can then be
defined as follows: the internal state is an array of cells (not necessarily bytes)
and the round function combines ARK, SB, MC and operations that swap cells
(SR, or MIX in Haraka). In general the mixing function must be MDS, though the
extension in [25] does not require this. Since we are interested in permutations,
the ARK layer is replaced by AddConstant (AC).

Feistel-like. We consider permutations based on Generalized Feistel Networks
(GFNs). The state of a GFN is formed of b ≥ 2 branches. We denote branches
by Si. Apart from swapping branches, the basic operation in a GFN is to apply a
round function F on a well-chosen pair (Si, Sj): (Si, Sj) 7→ (Si, Sj⊕F (Si)). Our
main example is the Simpira v2 [31] family of permutations, where the branches
are AES states, and the round functions apply two rounds of AES. This is an
instance of the double-SP structures defined in [15], and a case in which the F
functions are permutations.

More generally, we can extend the class of GFN to Feistel-like permuta-
tions by allowing permutations to be applied in place on branches, and not
only through round functions: Si 7→ Π(Si). This does not make a difference
from our modeling perspective. In particular, the Sparkle family of permuta-
tions [7] adopts such a Feistel-like structure, but with non-linear permutations
on the branches, and linear mixing layers. Though it is not strictly a GFN, our
modeling captures it as well.

2.2 Generic Depiction of MITM Attacks

We consider the MITM attack framework as represented in Figure 1 using the
splice-and-cut and initial structure techniques. The key schedule is ignored due
to our restriction to permutations, and we reason only with the internal states.

The goal of the MITM attack is to find a sequence of internal states which
satisfy a closed computational path: there is a relation between the value before
the first round and the value after the last round. In order to do so, one starts
by separating the path in two chunks (splice-and-cut): the backward chunk ◀
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Fig. 1. MITM attack depiction with the splice-and-cut and initial structure techniques.

and the forward chunk ▶. Both chunks form independent computation paths.
One then finds a partial match between them at some round.

In addition, one usually starts at some initial structure • which fixes some
part of the internal state to constant values. The total complexity depends on
(1) the amount of these global guesses, (2) the degree of freedom of both chunks,
and (3) the amount of matching. All these parameters are completely determined
by the definition of chunks. As an example, we detail the 7-round attack on AES
of Sasaki [44] in the full version of the paper [45].

2.3 Rule-based Modeling and Limits

A MILP model for searching MITM attacks on AES-like designs has been intro-
duced in [4] and further improved in [25,5].

Given the byte-level structure of the design, one fixes a starting round and
an ending round where the matching occurs (all possibilities are enumerated).
Then, each byte is ‘colored’ like in Figure 1. There are four ‘colors’ (backward,
forwards, initial, unknown), which are encoded on two Boolean variables. Only
the ARK (if the key-schedule is used) and MC operations change the colors. A
series of rules is then enforced, as constraints, on the coloring transitions through
these operations. For example, going through MC forwards, one “unknown” byte
in input implies all bytes “unknown” in output; if all bytes are “initial” in input,
then they are all “initial” in output, etc. Other constraints have to be enforced
if we go backwards.

At the starting states, there are “initial degrees of freedom” which count
the number of forward and backward bytes. The forward computation path,
respectively backwards, consume these degrees of freedom under an enforcement
of the propagation rules. There must remain enough degrees of freedom at the
ending round, in order to ensure some matching.

This representation captures a large number of possible paths (including the
key-schedule, contrary to this paper). However, there are several downsides. First
of all, the rule-based modeling is complex, and the set of paths depends crucially
on the implementation of the propagation rules. For example, the introduction
of Guess-and-determine in [5] required to add more rules to take into account
this additional technique. The approach so far is bottom-up in the sense that the
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set of possible paths is defined by the local propagation rules. (In contrast, in
this paper we use a global approach, in which the objective function is directly
computed from the coloring. Advanced techniques such as Guess-and-determine
are covered by design and without the need for new rules.)

Second, the above model [4] works only for AES-like designs, and extending it
to bit-oriented ciphers is far from obvious, as stated in [25]. Notably, it becomes
unclear how the S-Box and linear layer will interact. Our model overcomes this
problem, albeit restricted to permutations.

3 Cell-coloring Representation of MITM Attacks

In this section, we define the classes of designs under study, and the class of
merging-based MITM attacks which we are interested in. These attacks have
been previously studied in [16,22] in a very generic setting in combination with
a dedicated search tool. Although the search space is similar, our approach differs
by using MILP instead. The basis of our representation is Present-like designs.
We extend it in two directions: AES-like designs on the one hand, more complex
linear layers on the other hand. These are referred in this work as the “Present-
like setting”, the “AES-like setting” and the “extended setting”.

3.1 Cell-based Representations

Let π = πr−1 ◦ . . . ◦ π0 be an r-round permutation. We consider the application
of π to an initial state s0, and write si the state before round i. Thus sr is the
final state and we have: ∀i ≥ 0, si+1 = πi(si).

For now π is assumed to be a Substitution-Permutation Network (SPN). We
can cut each si into b cells of w bits, denoted as sij where 0 ≤ j ≤ b − 1. Each
round applies individual S-Boxes S to the cells (substitution), then a linear layer
between them (permutation). By abuse of notation, we also name “cell” the pair
xi
j = (sij , S(s

i
j)). Thus cells are 2w-bit words, which can only take 2w values.

The linear layer of round i relates the cells xi
j to the cells xi+1

j . We have now
completely unfolded the equation sr = π(s0), into a system of linear equations
on the cells. So far this view is the same as in [16,22].

Present-like Setting. The archetype of a Present-like design is represented
on Figure 2. Here we have two rounds with 4 cells each, of 4 bits. The linear
layer merely swaps bits. Thus, it can be entirely represented by pairwise linear
relations between the cells. All the information necessary for finding attacks then
holds in a simple directed, weighted graph G = (N,E):

• a node x ∈ N is a cell x with a width parameter wx;
• an edge (x, x′) ∈ E is a linear relation between a cell x at a given round,

and a cell x′ at the next round, with a width wx,x′ (we use purposefully the
same term as for cells).
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Fig. 2. Example of a 4-cell Present-like design.

The width of a cell corresponds to the combined width that a set of edges needs
to have to determine the cell’s value. Hence, the widths of cells and edges are
relative to each other. We set the width of cells to 1, and the width of edges
to a fraction (0.25 in Figure 2). It follows from the Present-like structure that
the combined width of incoming edges, resp., of outgoing edges, is equal to the
width of the cell:

∀x ∈ N,
∑

x′|(x,x′)∈E

wx,x′ =
∑

x′|(x′,x)∈E

wx′,x = wx . (1)

To simplify, we make the following assumption on the S-Boxes similar to the
“heuristic assumption” in Section 4.1 of [16]. It would be true on average if the
S-Boxes were drawn at random, and it is not true for fixed S-Boxes. Our final
complexity estimates rely in fact on a global heuristic, rather than this local one.

Assumption 1 (S-Boxes) Given fixed edges with a combined width u ≤ 1, a
cell x of w bits can take exactly 2w(1−u) values.

AES-like Setting. Our cell-based representation of AES-like designs is different
from the one in previous works like [16,22,4]. These works considered the S-
Boxes as individual cells. Instead, we want to represent AES-like operations in
a way that looks like a Present-like design, with linear relations between pairs
of cells. For this we use the Super S-Box representation.

In the analysis of AES, the Super S-Box consists in considering the MC
operation, followed by SB, as a single, large S-Box of 4 × 8 = 32 bits. In our
representation, the cells are the columns of a given AES-like state, as represented
on Figure 3 (or the rows, if MixColumns were to be replaced by MixRows). In
that case, the MC operation is the one of the previous round, and the SR oper-
ation becomes an exchange of bytes between super-cells: two rounds of AES can
then be represented as in Figure 2. The relative widths of cells and edges are
unchanged; each edge represents a byte, and each cell a column of 32 bits.

Extended Setting. In order to target even more designs, we show how to model
any linear layer for which a bit of xi is obtained by XORing several bits of xi−1.
This allows for example to model the permutation Ascon [24] (though we did
not obtain interesting results on this design). This XOR operation requires the
introduction of new cells:
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SB◦
SR

x0 (round 0)
MC◦
AC

z0 (round 0)
SB◦
SR

x1 (round 1) z1 (round 1)

Fig. 3. 2 rounds of AES, with a single (super-)cell.

• b-branching cells: a cell x of width wx = v, with one incoming edge and b
outgoing edges of width v each;

• b-XOR cells: a cell x of width wx = bv, with b incoming edges and one
outgoing edge of width v each. The inputs are b bits, and the output is the
XOR of them.

These cells allow to keep a graph structure, where the width of a cell still corre-
sponds to a combined width of edges that allows to determine the cell’s value.
In b-branching cells, all edges have the same value, and in b-XOR cells, knowing
b edges allows to deduce the remaining one. The difference with Present-like
designs is that Eq. 1 is not satisfied anymore. In order to separate successive
rounds, three layers for a single round (S-Box, branching, XOR) may be needed.

3.2 Meet-in-the-middle Problems

The goal of a MITM attack is, using the cell-based representation, to find values
for all cells such that a given equation system is satisfied. The starting equa-
tion system encoding sr = π(s0) is trivial, where sr can be computed from s0

and vice-versa. By adding new linear relations between s0 and sr, this becomes
a closed computational path. The relations between s0 and sr can also be en-
coded into the undirected graph of Section 3.1. We mostly consider wrapping
constraints, where we put new edges between cells s0 and sr, and input-output
constraints, where we fix some bits in the s0 and sr to arbitrary constants.

Problem 1 (Meet-in-the-middle problem). Consider a permutation π(s0) = sr.
Then given either uw bits of wrapping constraints L(s0, sr) = 0; or instead ui

bits of input constraints L(s0) = 0 together with uo bits of output constraints
L(sr) = 0, find a pair of states (s0, sr) that satisfy these constraints. (Here each
L is a linear function over F2.)

Given query access (forwards and backwards) to a random permutation, an
adversary must make respectivelyO(2uw) andO

(
2min(ui,uo)

)
queries to solve Prob-

lem 1. These complexities are to be multiplied by the number of requested solu-
tions. This defines the generic difficulty of the problem. Note that for solutions
to exist, uw (resp. ui +uo) cannot exceed the state size of the permutation. The
number of solutions of the problem (in log2) can be computed by:(∑

x∈N

wx −
∑

(x,x′)∈E

wx,x′

)
− ui − uo , (2)

where the sum over all edges includes wrapping constraints (if applicable).
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3.3 Merging-based MITM Attacks

Now that we have defined the cell-based representation, we can move on to the
definition of merging-based attacks. This class of attacks is borrowed from [16,22].
However, while they persue a dedicated bottom-up solver to automatically search
for attacks, we follow a top-down MILP modeling approach. We focus for now
on the basic Present-like setting.

Reduced Lists. Let us consider a set of cells X = (xi
j)(i,j)∈IJX

, i.e., nodes in
the directed graph G = (N,E) that represents the MITM equation system. We
define the reduced list R[X] as the set of all value assignments (vij)(i,j)∈IJX

to
X that satisfy all linear constraints between the cells of X.

E.g., we may consider in Figure 2 a reduced list R[x0
0, x

1
0], which contains all

assignments (s00, S(s00)), (s10, S(s10)) such that (S(s00))|1 = (s10)|0 (the second bit of
S(s00) is equal to the first bit of s10). In particular, the list has size |R[x0

0, x
1
0|] = 27.

A reduced list is entirely determined by its defining set of cells. It forms the
set of solutions to a subsystem of equations. Our goal can now be rephrased as
follows: Compute an element from the reduced list of all cells: R[{x|x ∈ N}].
Indeed, by definition, this is a solution to the MITM equation system.

Base Lists. We start with base lists: reduced lists R[{xi
j}] of individual cells.

These are simply the list of all input-outputs through the S-Box: (sij , S(sij)). In
extended mode, base lists for branching and XOR cells are likewise trivial.

Merging Lists. Merging is the fundamental algorithmic operation to construct
bigger lists. It corresponds to the “recursive combinations of solvers” considered
in Section 4.2 of [16], where the “solvers” produce the solutions of a given equation
subsystem: merging the lists corresponds to merging two subsystems.

Lemma 1. Let R[X1] and R[X2] be two reduced lists. From them, the reduced
list R[X1 ∪X2] can be computed in time:

max(|R[X1 ∪X2]|, |R[X1]|, |R[X2]|) . (3)

Proof. Let Y be the set of linear equations of the system whose support is
included in X1 ∪X2, but not in X1 nor X2. Then by definition of reduced lists,
we have: |R[X1 ∪X2]| = |R[X1]| × |R[X2]|/(

∑
L∈Y width(L)).

We separate each linear equation L of Y into its X1-part L1 and its X2-
part L2: the equation becomes L(X) = L1(X1) ⊕ L2(X2) = 0. We compute
L1(X1) for all cell assignments in R[X1], likewise we compute L2(X2) for all cell
assignments in R[X2]. We then sort both lists with respect to these values, and
we look for collisions. The collision pairs are computed efficiently by iterating
over both lists, and give the matching cell assignments of R[X1 ∪X2]. ⊓⊔
Remark 1. The merging operation is the same in the extended setting. In the
AES-like setting, there can be implicit linear relations between cells. This corre-
sponds to matching through MixColumns; we explain how we model this in Sec-
tion 4.3.
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It can be shown by a trivial induction that, if Assumption 1 holds for indi-
vidual cells, then the sizes of all reduced lists are exactly powers of 2. Of course
this is true only on average if we consider S-Boxes drawn at random. In practice,
the S-Boxes are fixed, but the deviation from this average is small.

Definition. A merging-based MITM attack is a merging strategy represented by
a binary tree T , whose nodes are identified by sets of cells X, such that: • the
leaves contain individual cells; • the root contains the set of all cells; • the set
of cells of a given node is the union of the set of cells of its children. Then each
node represents a reduced list. The attack consists in computing the reduced
lists in any order consistent with the tree. By Lemma 1, its time complexity is
given by maxX∈T |R[X]| .

The strategy of [16,22] is an exploration of the merging strategies, starting
from individual cells and computing the complexity of reduced lists until enough
cells are covered. Paths stop when the complexity exceeds the generic one. Thus,
the dedicated solver that they use is also bottom-up, not in the definition of
constraints like [4], but in the way it computes the complexity of possible attacks.

3.4 Global Edges

In all settings (Present, AES, extended), an important extension of merging-
based MITM attacks is the ability to guess globally the value of an edge. We use
global edges in three cases.

Input-Output Constraints. To model input-output constraints, we create wrap-
ping constraints and make these edges global. With this view, we remark that
a MITM problem always has same or lower complexity with a given amount of
wrapping constraints compared to the same amount of input-output constraints.

Reducing the Number of Solutions. In the Present and AES-like setting, it can
be seen that when the system admits more than 1 solution, we can set global
edges of a combined width equal to the quantity of Equation 2. As long as the
width of global edges on a given cell does not exceed 1, there is on average a
solution. (This is not true in the “extended” setting, where global edges can a
priori create inconsistencies in the system and more care is required.)

Reducing the Memory. Global edges allow to reduce the size of intermediate lists
in the merging strategy. We can easily prove that they do not allow to reduce
the time complexity. If we consider a system with α global edges, that admits
a solution with probability 2−α, we can redo any merging strategy by removing
these global edges: the size of lists increases by a factor 2α at most. Since the
time complexity is the maximum of list sizes (multiplied by the loop on global
guesses), it stays the same in both cases.

Global edges correspond to the initial structure in previous works on MITM
attacks. An interesting consequence of this remark is that the initial structure
is actually not necessary to obtain the best time complexity: it suffices to share
its components between the backward and forward paths.
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Fig. 4. 12-round MITM attack on Gimli. The matching edges between the two final
lists are highlighted in cyan.

3.5 Example: Gimli

Before we elaborate on our MILP modeling, we detail a simple example of a
merging-based attack: the state-recovery on 12-round Gimli-Cipher of [27].

Gimli [8] is a cryptographic permutation with 384-bit state divided into 4
cells of 96 bits each. The full permutation has 24 rounds that apply an SP-Box
to each cell individually, and then, every two round, perform a linear layer. The
linear layer is either a small swap (32 bits are exchanged between cell 0 and 1, and
between 2 and 3) or a big swap (32 bits are exchanged between cell 0 and 2, and
between 1 and 3). In the cell-based representation, each cell has width 1, three
input and three output branches of width 1/3 each, as can be seen in Figure 4.
We do not need to consider the details of the SP-Box.

The attack of [27] targets Gimli-Cipher, where Gimli is used in a Duplex
mode. The recovery of the internal state can be reduced to the following problem.
Given the cell-based representation of Figure 4, where a single edge is fixed in
the 4 input and output cells, the goal is to find the list of size 24×32 = 2128

(4/3 cells) of all possible values of the full state, in time less than 2256 (8/3 cells).
The merging strategy is given in Figure 5, where the list sizes are computed in
log2 and relatively to a cell. The time and memory complexities are 2192 (2 cells).

4 Simplification and MILP modeling

In Section 3 we have given a very generic definition of merging-based MITM
attacks. We postulate that this definition contains all structural MITM attacks
on permutations known to date. Unfortunately, this search space is too large for
MILP solvers to be practical. Hence we consider a subset of these attacks, using
only two lists, a forward list and a backward list. We motivate this definition
in Section 4.1 and show how to obtain the list sizes from their cells. Then, we
show in Section 4.2 how to obtain a MITM attack with a complexity determined
by the list sizes. Finally in Section 4.3 we detail the MILP model itself.
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Fig. 5. Merging strategy for the 12-round attack against Gimli-Cipher of [27]. Some
lists are omitted by symmetry.

4.1 A Simpler Definition

In line with the “Meet-in-the-middle” terminology, we consider a merging strat-
egy made of only three reduced lists: a forward list R[XF ], a backward list R[XB ]
and a merged list R[XF ∪XB ].

Forward and Backward Lists. Ultimately, the time complexity of the MITM
attack is computed as a function of the list sizes, so we must define sets XB and
XF in such a way that the list sizes |R[XF ]| and |R[XB ]| are simple functions
of XF and XB respectively. In the generic binary trees, we used the fact that
the size of leaves can be trivially computed (a list with a single cell of width w
contains 2w elements). Here we are simply making these leaves more complex,
so that only two leaves are needed in the end.

Lemma 2. Let X be a set of cells such that: (1) there is at least one round
0 ≤ i ≤ r − 1 such that no cell xi

j belongs to X; (2) for every global linear
constraint connecting cells xi

j1
and xi+1

j2
, then only one of these two cells can be

in X, and always either the one of the lower round number (backward case) or
the upper round number ( forward case). Let ℓ be the quantity:

ℓ =
∑
x∈X

(
wx −

∑
(x,x′)∈E
x′∈X

w(x,x′)

)
−

∑
(x,x′)∈E

x∈X∨x′∈X
(x,x′) is global

w(x,x′) , (4)

then R[X] is of size exactly 2ℓ. In the Present-like / AES-like setting, it can
be constructed in time 2ℓ with negligible memory.
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Here, forward and backward lists follow the same intuition as in standard
MITM attacks, where there are two computational paths going into different
directions. But this direction is only enforced because of global edges.

Proof. The size of a list is given by the sum of all widths of the cells, minus the
linear constraints between them, minus the globally fixed edges. Since at least
one round is cut, we can reorder the terms and associate all linear constraints
(x, x′) between round i and i+1 to the cell x at round i: we obtain the formula
for ℓ. Let us consider the backward list. We have:

ℓB =
∑
x∈X

(
wx −

∑
(x,x′)∈E
x′∈X

w(x,x′) −
∑

(x,x′)∈E
(x,x′) is global

w(x,x′)

)
, (5)

and we remark that each term is greater than zero: indeed, we cannot have
x′ ∈ X and (x, x′) global at the same time, by assumption, and in the Present-
like setting, we have wx ≥

∑
(x,x′)∈E w(x,x′). This is not true in the extended

setting (due to branching cells), but we can work around this in practice.
One constructs R[X] follows: separate X into Xr−1, . . ., X0, assuming that

no cell is covered at round r. We start at round r−1: we take values for all edges
(x, x′) ∈ E with x ∈ Xr−1 that are not already global. Next, at round r − 2,
we take values for all edges (x, x′) with x ∈ Xr−2 that are neither connected
to x′ ∈ Xr−1, nor global. Each time, the number of bits to guess corresponds
precisely to another term in ℓ. For the forward list, we rewrite ℓ as:

ℓF =
∑
x∈X

(
wx −

∑
(x′,x)∈E
x′∈X

w(x′,x) −
∑

(x′,x)∈E
(x′,x) is global

w(x,x′)

)
, (6)

and we change the direction of the procedure. This is a streaming procedure,
which outputs the list elements without requiring any storage. In both cases, the
list size corresponds exactly to the number of bits that we have to guess. ⊓⊔

Simple Condition of Success. Initially, we required the merging strategy to com-
pute the reduced list of all cells. However, we can stop as soon as all cells can
be deduced from the current list. That is, given a valid sequence of values for the
cells of XF ∪XB , we can deduce all the others without guessing new edges. Since
we are studying a permutation, a sufficient condition (that we enforce) is that
XF ∪ XB covers a complete round. (Intuitively, we dismiss the trivial merging
steps consisting in adding the remaining cells one by one.)

Disjoint Paths. In the Present- and AES-like settings (but not the “extended”
setting), the sets XF and XB can be made disjoint at no loss. Since any inter-
section between XF and XB can either be removed from XF , or from XB , and
in at least one case both list sizes decrease (the merged list remains unchanged).
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4.2 From a Coloring to an Attack

Now we show that to any valid triple of sets XB , XF , XF∪XB , there corresponds
a MITM procedure whose time and memory complexities are determined solely
by the size of the three lists involved. We use ℓB , ℓF , ℓM to denote the log2
of these list sizes, counted relatively to a cell. Our goal is to minimize this
complexity. We assume for simplicity that the merging problem admits a single
solution; it is easy to generalize this to multiple solutions in the classical setting.

Theorem 1. Assume that XB and XF are defined as in Lemma 2, and XF∪XB

covers at least one round completely. let g be the sum of all widths of global
edges. Then there exists a classical and a quantum algorithm solving the MITM
problem with the following complexities in log2, relatively to a cell size. The
classical algorithm has memory complexity mc = min(ℓF , ℓB) and time complex-
ity tc = g +max(ℓF , ℓB , ℓM ). The quantum algorithm has memory mq = mc =
min(ℓF , ℓB) and time complexity tq = g

2 +max
(
min(ℓF , ℓB),

1
2 max(ℓF , ℓB , ℓM )

)
.

Proof (sketch). In the classical setting, both leaf lists can be computed on the
fly, we only need to store one of them (the smallest). The memory complexity
is thus (in log2) min(ℓF , ℓB) and the time complexity g + max(ℓF , ℓB , ℓM ) (we
must repeat the merging for every choice of global edges). One should note that
by the definition of the leaf lists, there is no variance in their size. There can be a
variance in the merged list size, which is usually dismissed in classical analyses.

Given a path for a two-list MITM attack, we can also write down a quantum
algorithm to solve it. In short, this algorithm creates the smallest list (e.g., the
forward one), then performs a Grover search in the merged list for a solution.
We refer to the full version of the paper [45] for technical details. The algorithm
requires quantum-accessible quantum memory (QRAQM). Assuming a single
solution, the quantum time complexity can be bounded by:

2
(π
4
2g/2 + 1

)(
2ℓF +

(π
4

√
2ℓB + 1

)( π√
2
max

(
1,

√
2ℓM

2ℓB

)
+ 6

))
(7)

quantum evaluations of the attacked permutation, for a 1/2 chance of success.
Asymptotically, this formula can be simplified into 2tq , where:

tq =
g

2
+ max

(
min(ℓF , ℓB),

1

2
max(ℓF , ℓB , ℓM )

)
, (8)

which concludes the proof. ⊓⊔

Criterion for a Quantum Attack. By comparing the quantum and classical time
exponents, one can see that quantum attacks require an additional constraint
compared to classical attacks: One can see that a classical MITM procedure
constitutes an attack if tc < t where t is the generic time exponent to solve
the MITM problem; in the quantum setting, this time is reduced by a square-
root factor due to Grover search, so we need tq < t/2. Unsurprisingly, any
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quantum MITM attack turns into a classical attack: tq ≤ t/2 =⇒ tc ≤ t. In the
other direction, if we have a valid classical path, and if the following additional
constraint is satisfied: min(ℓF , ℓB) ≤ 1

2 max(ℓF , ℓB , ℓM ) , then it also gives a
valid quantum attack. This is true in particular when ℓM = 0 and ℓF ≤ 1

2ℓB .

4.3 MILP Modeling

From the analysis above, we can see that we want to solve the problem:

Minimize the complexity formulas of Theorem 1, under the con-
straints on XF and XB given by Lemma 2, and the constraint that
XF ∪XB covers at least one round completely.

Our MILP model essentially uses boolean variables to represent XF and XB ,
continuous variables to represent global edges, and expresses the list sizes ℓF ,
ℓB , and ℓM depending on these variables. This model can be generated from the
weighted graph (N,E) defined in Section 3.

Present-like Setting: Variables. We start with the basic Present-like constraints
and explain afterwards the extensions. For each cell x, we introduce boolean
coloring variables colF [x], colB [x] and colM [x] to represent the sets XF , XB and
XM := XF ∪XB . We have the constraint colM [x] = max(colF [x], colB [x]).

We constrain some round to be absent from XF (resp. XB), it can be chosen
manually or not. For each edge (x, x′), we introduce a variable global[x, x′] which
is 1 if the edge is globally guessed, 0 otherwise. It can be relaxed to a continuous
variable. We constrain XF ∪ XB to cover at least one round entirely (chosen
manually or not). Finally, we impose that for each edge (x, x′):

colF [x] ≤ 1− global[x, x′] colB [x
′] ≤ 1− global[x, x′]

colB [x] ≥ global[x, x′] colF [x
′] ≥ global[x, x′]

Here the two constraints on the first line ensure that the conditions of Lemma 2
are satisfied. The second line is not required, but it simplifies the formula for ℓ
of Lemma 2. Since each global constraints reduces the size of both the forward
and the backward lists, we can introduce a term of global reduction:

g =
∑

(x,x′)∈E

global[x, x′]wx,x′ , (9)

which contains all of their contribution. At this point, we have defined a valid
MITM strategy, and it only remains to compute the list sizes.

List Sizes. The list sizes are computed in log2 and relatively to the width of a cell
(in practice cells may have different widths). For each list, there are two terms
that intervene: the contribution of individual cells and the global reduction. For
the forward list, following Equation 6, we define the variables:

contribF [x] ≥ wxcolF (x)−
∑

(x′,x)∈E

wx′,xcolF (x
′) , (10)
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and we have: ℓF =
(∑

x∈N contribF [x]
)
− g. For the backward list, we define:

contribB [x] ≥ wxcolB(x)−
∑

(x,x′)∈E

wx,x′colB(x
′) (11)

and we have similarly ℓB =
(∑

x∈N contribB [x]
)
− g. For the merged list, we can

go either forwards or backwards, for example:

contribM [x] ≥ wxcolM (x)−
∑

(x,x′)∈E

wx,x′colM (x′), ℓM =
∑
x∈N

contribM [x]− g .

(12)
Since we have now expressed the list sizes, we implement the time and memory
complexities using the formulas of Theorem 1, e.g., classically:

memory = min(ℓF , ℓB), time = g +max(ℓF , ℓB , ℓM ) .

The primary optimization goal is the time and the secondary goal is the memory.

Extended Setting. In the extended setting, we must allow a negative contribution
of the cells in each list. We have lower bounds: contribF [x] ≥ wx−

∑
(y,x)∈E wx,y

and contribB [x] ≥ wx−
∑

(x,y)∈E wy,x which can be negative for branching cells.
This is the only required change.

AES-like Setting. So far, our model considers the AES Super S-Box as a com-
pletely unknown function. We make two modifications to allow two techniques.

First, matching through MC. When we know u ≥ 4 bytes in the input and
output of an AES Super S-Box, we can reduce the merged list size by u − 4.
Indeed, these edges are individual S-Boxes, and we can write linear equations
between them using MixColumns. In order to model this, we modify the defi-
nition of colM [x]. We authorize a cell of the merged list to be covered even if
it does not belong to XF ∪XB , as soon as enough input and output edges are
covered. This should not, however, happen at two successive rounds.

Second, optimizing the memory through MC. This is important for reaching
better memory complexities on AES-like designs, but also, better quantum times.
Assume that there exists a cell that belongs to the merged list but not the
forward and backward ones. Assume that there are fi input edges from the
forward list, fo output edges from the forward list, and respectively bi and bo
such edges for the backward list. Recall that each edge here corresponds to an
individual S-Box. Then we can add some shared constraints on these cells and
make these constraints global. Indeed, if we know that: ℓ1(x0, x1, x2, x3, y0) = 0
and ℓ2(x0, x1, x2, x3, y1) = 0, we can create a global constraint ℓ′1(x0, x1, x2) = t
and ℓ′2(y0, y1) = t. Going through MC, we can add up to fi + fo + bi + bo − w
such linear constraints, where w is the cell width in number of edges (4 in the
case of AES). Furthermore, we need to have less such new constraints than fo
and bi respectively: this ensures the existence of a streaming procedure for the
lists and the validity of an adapted version of Lemma 2.
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Practical Improvements. Our code is more optimized than the presentation given
in this section. In particular, we removed the global[x, x′] variables attached to
edges and replaced them by “global reduction” variables attached to each cell.
These variables unify the Present-like and AES-like settings, since they account
both for the global edges and the reduction through MC.

Reducing the Search Space There are several ways to reduce the search space
without affecting the optimality. First, we can prune the graph by removing
cells that do not have both input and output edges (for example in the MITM
attack on Present of Section 5, many cells from the first and last rounds can
be removed). Second, when two cells in the graph have the same forward and
backward connections, their colorings can always be exchanged without changing
the list sizes. This reduces massively the search space size in the case of highly
symmetric AES-like designs, for example Grøstl-256 (see Section 6.3).

5 Application to Present-like Permutations

Gimli. With our tool, we can prove the optimality of the 12-round state-recovery
attack recalled in Section 3.5. Here our 2-list MILP model is not enough, since
the two lists merged at level 1 in the tree span all the rounds. So, contrary to
most of our examples, we used an extension to 4 lists.

Present and Spongent. The current best distinguishers on known-key Present [10]
and reduced-round Spongent-π [47] combine a MITM layer and a truncated dif-
ferential layer. By improving the MITM layer, we improve indirectly the number
of rounds that can be targeted.

In a nutshell, the goal is to construct the list of 256 input states that satisfy a
4-bit input constraint and a 4-bit output constraint, in time less than 260. In [10]
the constraint is put at position 13; for Spongent-π we tried the position 0. We
conjecture that due to the high amount of symmetries in the design, the number
of attacked rounds should remain the same independently of this position.

The MITM layer for [10] reaches 7 rounds, in time 256 and memory 232. The
time is optimal, but we improve the memory to 212. Next, we find an attack with
one more round. The time complexity then rises to 258 (14.5 cells) and the mem-
ory complexity to 243 (10.75 cells). In order to make the optimization converge,
we used the following simplification: we merged pairwise the cells of the middle
rounds. These pairs of cells thus have the same coloration; this simplification
reduces greatly the number of variables, while still allowing interesting results.

Spongent. This strategy was extended in [47] to the Spongent-π permutations,
which are used in the hash function Spongent [11] and the permutation-based
AEAD Elephant [9] (in the “Dumbo” version). Following [47, Table 1], we denote
the number of rounds of both phases (truncated differential and MITM) by r0
and r1 and report them in Table 2, where our new results appear in bold in
the last column. The table contains all state sizes specified in [11,12,9]. Here
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Table 2. Versions of Spongent, results from [47] and our improvements.

State size
(bits)

Rounds
Attacked / full Cells r0 r1 New r0

Present 64 31 / 31 16 7 24 8 (+ 1)
Spongent-88/80/8 88 30 / 45 22 7 23 8 (+ 1)

Spongent-128/128/8 136 43 / 70 34 7 36 8 (+ 1)
Spongent-π[160] 160 80 40 9

Spongent-160/160/16 176 53 / 90 44 7 46 9 (+ 2)
Spongent-160/160/80 240 69 / 120 60 7 62 10 (+ 3)

Spongent-88/176/88 264 77 / 135 66 9 68 10 (+ 1)
Spongent-256/256/16 272 68 / 140 68 9 69 10 (+ 1)
Spongent-224/224/112 336 95 / 170 84 9 86 10 (+ 1)

Spongent-128/256/128 384 109 / 195 96 11 98 11
Spongent-160/320/160 480 132 / 240 120 9 123 12 (+ 3)

Spongent-224/448/224 672 181 / 340 168 9 172 12 (+ 3)
Spongent-256/512/256 768 192 / 385 192 11 194 12 (+ 1)

the notation Spongent-n/c/r refers to [12], where n is the output hash size, c
the capacity and r the rate, while Spongent-π refers to the permutation itself.
The 160-bit version used in Elephant [9] was not studied previously, because
Spongent-π[160] does not appear among the different parameterizations of the
Spongent hash functions.

As in [10], the MITM layer finds all the input-output pairs such that: 4 bits
of an S-Box are fixed in input, and in output, to arbitrary values. The generic
complexity would be 2b−4 evaluations of the permutation. The lowest complexity
possible is 2b−8 since this is the number of solutions. Since the state size becomes
quite large, we do not use our tool as an optimization, but rather as a solver:
we set the minimal complexity 2b−8 as optimization goal and kill the process if
it runs for too long (say, 500 seconds). By our experiments, we expect solutions
to be found quite quickly, if they exist.

6 Application to AES-based Permutations

As remarked above, our model does not include degrees of freedom of the key-
schedule, and some of the previous preimage attacks on AES-like hashing cannot
be recovered. However, all known results on AES-based permutations [3,4,5,25],
except the non-linear computation of neutral words proposed in [5] (see the
example of Grøstl below), can be recovered by our simplified modeling. We only
present new attacks obtained by our tool in this section. In the classical setting,
we improve the attack on Haraka-512 v2 of [4]. In the quantum setting, we give
attacks on reduced-round AES, Haraka and Grøstl.

Note that an AES-like state is an n×m matrix of bytes, which we represent
as m cells with n input and output edges. The SR operation moves individual
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Fig. 6. AES 7-round quantum attack. ◀: backward, ▶: forward, ♦: matching
through MC (new cells in the merged list), ↔: global edges.

bytes between the cells. When the last MC operation is omitted, and round
r − 1 is connected to round 0, then round 0 can actually be bypassed. Indeed,
the columns at the beginning of round 1 (before SB), which correspond to the
cells at round 1 in our representation, can immediately be linked to the columns
at round r − 1 (which correspond to the cells at round r − 1). Though MC has
been removed, we usually keep the last SR operation; this creates a special round
in which bytes are exchanged between pairs of cells only.

6.1 Quantum Attack on 7-round AES

On this example, like the following ones, our attack is a pseudo-preimage attack
that, given a target t, finds x such that x ⊕ AES(x) = t. None of the attacks
known classically can be adapted in the quantum setting (they don’t satisfy the
condition given in Section 4.2), so we use our tool to find a new optimization.
The path is displayed in Figure 6.

Details of the Attack. We count the complexities in cells. The attack has 2.75
global guesses, with 0.75 global edges and 2 additional reductions through MC
at round 1. For each of these 2.75 choices, we compute the three lists.

First, the backward ◀ list is of size 0.25. We start by x2
3 which contributes

only to 0.25. We move to x0
0 and x0

2 which are entirely determined by the reduc-
tion through MC of round 1. We deduce x5

0, x
5
2. Second, the forward ▶ list is

of size 1. We start by x2
0, x

2
1, x

2
2, which have only 3− 2 = 1 degree of freedom by

the reduction through MC of round 1. We deduce x3
0, x

3
1, x

3
2. Third, the merged

list is of size ≤ 1. We match through MC at round 4, each cell gives 0.25 degree
of matching, so one would be enough.

This corresponds to an attack of classical time 2120 and memory 28, so equiv-
alent to the attack of [44]. However, using Equation 8, we obtain a quantum time
260, and with the precise formula of Equation 7, we have a time of 263.34 quantum
evaluations of the primitive (Grover search would stand at 264.65).

6.2 New Attacks on Haraka v2

Haraka v2 [40] is a short-input AES-like hash function intended for use within
post-quantum signature schemes based on hash functions, such as SPHINCS+ [2].
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There are two variants: (1) Haraka-256 v2 hashes 256 bits to 256 using a 256-bit
permutation in feed-forward mode: x 7→ π256(x)⊕x; (2) Haraka-512 v2 hashes 512
bits to 256 using a 512-bit permutation with a truncation: x 7→ trunc(π512(x)⊕x).
The internal state of Haraka-256 v2 (resp -512) is the concatenation of 2 (resp. 4)
AES states. The columns of these states are numbered from 0 to 7 (resp. 0 to 15).
Each Haraka round (total 5) applies two AES rounds (AC, SB, SR, MC) individ-
ually on the states, followed by a MIX operation which permutes the columns:

MIX512 : 0, . . . , 15 7→ (3, 11, 7, 15), (8, 0, 12, 4), (9, 1, 13, 5), (2, 10, 6, 14)

MIX256 : 0, . . . , 7 7→ (0, 4, 1, 5), (2, 6, 3, 7)

The truncation trunc extracts the columns (2, 3, 6, 7, 8, 9, 12, 13).

Integration in SPHINCS, SPHINCS+ and Attacks. In [39], Kölbl proposed to
integrate Haraka into SPHINCS. Here both Haraka-256 v2 and Haraka-512 v2
need 256 bits of classical preimage security and 128 bits of quantum preimage
security (see [39], Section 3). In [4], the authors found a classical 4.5-round preim-
age attack on Haraka-256 v2 and a 5.5-round attack (extended by 0.5 round) on
Haraka-512 v2. None of the attacks of [4] apply directly to the post-quantum sig-
nature scheme SPHINCS+ [2], an “alternate” finalist of the NIST post-quantum
standardization process. Here Haraka-512 is used in a Sponge with 256 bits of rate
and 256 bits of capacity. The targeted security level is 128 bits due to a generic
second-preimage attack. We obtain a classical MITM attack on 4.5 rounds of
complexity 2192, and a quantum preimage attack on 3.5 rounds of complexity
264. The details are provided in the full version of the paper [45].

New Quantum Attack on Haraka-256 v2. The attack path of [4] does not meet
our criteria for quantum attacks, since both the forward and backward lists have
size 1 cell, and the total time complexity is 7 cells. However, a reoptimization
allows to reach an attack with 5 global guesses, a forward list of size 2, a back-
ward list of size 1 and a merged list of size 2 (details in the full version of the
paper [45]). By Eq. 7, this gives a quantum time 2115.55 against a generic 2128.

Improved Attack on Haraka-512 v2. The 5.5 round attack of [4] has time com-
plexity 2240 (7.5 cells) and memory complexity 2128 (4 cells). In order to make
our optimization converge faster, we constrain the pattern in the first and last
rounds to contain full active AES states, like in [4]). We obtain the path of Fig-
ure 7, which reduces the memory down to 0.5 cell (216). The main difference with
the framework of [4] is that the matching occurs in several rounds separately.

We first guess 28 bytes •: xa
3 [0, 1, 5, 6, 10, 11, 12, 15], xd

3[10, 11, 12, 15], xa
4 [4−

11], xb
4[0, 1, 2, 3, 12, 13, 14, 15], and we precompute two linear relations between

the first and second columns of zd2 and wd
2 , and one linear relation for each

column between z6 and w6. The total is 46 bytes, i.e., 11.5 cells, of global guesses
(including 8 for free). Then for the forward ▶ list (size 0.5 cells), we start
from wd

2 . We have 4 bytes and two precomputed linear relations, thus 2 bytes
of freedom. We continue to compute until z6. In each column, we have one byte
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Fig. 7. Path of our improved attack on Haraka-512 v2. ◀: backward, ▶: forward, •:
guessed



24 André Schrottenloher and Marc Stevens

Hx0
4 x0

5 x0
6 x0

7

�x1
0 �x1

1 �x1
2 �x1

3 �x1
4 �x1

5 �x1
6 �x1

7

Hx2
0 Nx2

1 Nx2
2 Nx2

3 Nx2
4 Nx2

5 Nx2
6 Nx2

7

Hx3
0 Hx3

1 Nx3
2 Nx3

3 Nx3
4 Nx3

5 Nx3
6 Nx3

7

Hx4
0 �x4

1 �x4
2 �x4

3 �x4
4 �x4

5 �x4
6 �x4

7

Hx5
0 Hx5

1 x5
2 x5

3 x5
4 x5

5 x5
6 x5

7

Fig. 8. Path of the quantum attack on Grøstl-256 OT. ▲: backward, ▼: forward, ♦:
matching through MC (new cells in the merged list), ↔: global edges.

of precomputed linear relation, thus we can deduce all the blue bytes in w6

immediately. We continue until x9. Next, for the backward ◀ list (size 4 cells),
we start from z6. There are 32 red bytes and 16 precomputed linear relations,
thus 16 bytes (4 cells) of freedom. From there we can compute backwards until
w2. We deduce zd2 [0, 7] using the two precomputed relations, and the rest by
direct computation. We compute until wa

10. Finally, a matching of more than 2
bytes occurs between rounds 9 and 10. With these lists, the classical time stays
at 2240. By Equation 7, the quantum time is 2123.34, against 2128 generically.

This attack of large complexity also yields a practical partial preimage at-
tack that finds x such that MC−1(x ⊕ π(x)) has 32 bits to zero, in about 216

evaluations of Haraka-512 v2. We just have to run a single merging step, fix-
ing the global variables. For each choice of forward and backward values in the
merged list, we recompute the initial state x. This x is such that the two cells
MC−1(x ⊕ π(x))a[10, 13] are zero. Since the merged list is of size 216, by enu-
merating it in times 216, we will find an element with 16 more zero bits.

6.3 Quantum Attack on Grøstl OT

The output transformation (OT) of Grøstl-256 [28] is an AES-like permutation
P operating on an 8× 8 matrix of bytes (thus 512 bits in total). The goal is to
find a state x such that trunc256(P (x)⊕ x) = t for some target value t, say zero.
The generic complexity is 2256.

With our tool, we can recover the 6-round attack of [25, Appendix D]. We
can also recover the improved time complexity of [5] (2224, 3.5 cells), but not
its memory complexity, because their procedure for the backward list is more
complex than a streaming procedure. We obtain only a memory 2224.

New Quantum Attack. We do not know if the approach of [5] could lead to a
quantum attack, as they require a memory of size 2128: in the quantum setting,
one cannot afford a precomputation of time 2128 since it already becomes larger
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than the limit given by Grover search. By optimizing for the quantum time
complexity, our tool finds the path of Figure 8. There are 4.25 global guesses
(including 4 free guesses), with 2.5 cells of global linear constraints and 0.25
reduction through MixColumns in each of the 7 green cells at round 4. First,
the forward ▼ list (1.75 cells): we start from x2

0. We deduce immediately the
blue cells at round 3 and 4. Then using the 1.75 cells of precomputed equations
at round 4, we deduce completely x5

0 and x5
1. There remains 6 bytes (0.75 cells)

to guess to obtain x0
4. Second, the backward ▲ list (3.5 cells): we start from

round 3. With the 1.75 precomputed equations and 0.75 guessed values, there
remain 3.5 cells of freedom. We deduce completely the cells at round 2. Finally,
matching: there is 0.75 cell of matching between round 2 and 3 and 1 cell of
matching through MC between round 0 and round 2, so 1.75 in total, which
gives a merged list of size 3.5 cells. By Equation 7, the quantum time is 2123.56,
against 2128 generically.

For 8 rounds of Grøstl-512, there are no symmetries anymore, and the model
becomes quite large. We simplify it by merging the cells in groups of 4. Then,
we use the results as “hints” for the detailed version. We reobtain the time com-
plexity of [5] with a corresponding memory complexity of 2304 (instead of 2224),
and we find a quantum attack detailed in the full version of the paper [45].

7 Applications to Feistel Networks

7.1 GFNs and Simpira

The extended setting that we defined in Section 3 allows to model a large class
of permutations, and in particular, GFNs and Sparkle.

Simpira v2 (simply Simpira in what follows) is a family of permutations pro-
posed in [31]. For each b ≥ 2, Simpira-b is a b-branch GFN where each branch is a
128-bit AES state. (Though in contrast to a GFN, the branches are not swapped
and the round functions are simply applied in place). Simpira-2 is a standard FN,
Simpira-3 a 3-branch type-I GFN in the classification of [48], Simpira-4 a type-II
4-branch GFN, Simpira-6 and Simpira-8 have structures taken from [46]. Each
round function performs 2 complete rounds of AES with a certain round con-
stant; we use Πi to denote them (where i indicates the current round constant).
Examples for Simpira-2, -3 and -4 are depicted in the full version of the paper [45].

For b ≥ 2, we can use any permutation in the family to define a small-range
hash function Gb by feed-forwarding:

Gb :

{
{0, 1}b×128 → {0, 1}256
x 7→ trunc(Simpira-b(x) + x)

(13)

where trunc is the truncation to the first 256 bits. The proposal SPHINCS-
Simpira [32] uses G2 and G4 in SPHINCS+.

The authors of Simpira claim only 128-bit preimage security for the functions
Gb, although the generic classical preimage search would stand at a time 2256.
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Table 3. Distinguishers on Simpira: number of rounds attacked (rounds / total rounds)
by our automatic MITM tool, and by a dedicated GAD approach.

b 2 3 4 6 8

MITM (automatic) Inapplicable 8 / 21 7 / 15 9 / 15 9 / 18
GAD 5 / 15 11 / 21 9 / 15 9 / 15 9 / 18

SPHINCS-Simpira [32] also claims 128-bit quantum preimage security. The quan-
tum security of Simpira was studied in [42], but only regarding collision attacks.
Among the known results on unkeyed GFNs, e.g. a 5-round distinguisher on a
2-branch FN [18] and a 8-round distinguisher on the 4-branch, type-II GFN [17],
we did not find immediate preimage attacks on the Gb.

Results of the Extended Model. By making no structural assumption on the
round functions, our model represents any GFN as a directed graph of 2-XOR
cells (corresponding to round functions) and 2-branching cells. We may add
dummy cells (1-branching cells) to separate clearly the rounds. The round func-
tions do not need to be permutations; the attacks have a complexity at least the
size of one branch, which is the cost of inverting a round function by brute force.

In order to maximize the number of rounds attacked, we consider a full
wrapping constraint. We remove the memory optimization: we look for attacks
of time and memory complexity 2(b−1)w against generic 2bw, where w is the
branch width. Then, we run our tool with a 4-list MILP model. The results are
reported in Table 3.

7.2 Guess-and-determine Attacks on GFNs

We remarked that, with the Simpira-b structures for b ≤ 8, we could attack the
same number of rounds, and more, using much simpler Guess-and-determine
(GAD) attacks. These results are also given in Table 3. The increased number of
rounds is due to the linearity of the XOR, which is not captured by our cell-based
modeling (see Simpira-2 below).

These attacks are partial preimage attacks on the hash functions Gb. We
find x such that Gb(x) = 0128|∗. From there, we have a full preimage of Gb

in classical time 2128 and quantum time 264, still valid if we replace the Πi by
random functions Fi (we can invert the Fi by brute force).

Example: Simpira-2. We explain our strategy with a 5-round attack on Simpira-
2 (see Fig. 16 in the full version of the paper [45]). We index the branches as
follows: first, the initial state is named S0, . . . , Sb−1. Then, each time a new
operation Si ← Si ⊕ F (Sj) is applied, the resulting state is named Sk, with the
current index k (which is then incremented). So we want to solve the following
equation system:

S1 ⊕ S2 = Π1(S0), S2 ⊕ S4 = Π3(S3) S0 ⊕ S3 = Π2(S2)

S0 ⊕ S3 = Π4(S4), S4 ⊕ S6 = Π5(S5), S0 = S5 (wrapping) .
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Table 4. Distinguishers on Sparkle. * The attacks from Table 4.9 in [6], can be
extended by one step when attacking the permutation instead of the AEAD mode.

Target Type Steps Time Generic time Memory Source

Sparkle-256 Classical 5 / 10 296 2128 296 [6] *
Sparkle-384 Classical 5 / 11 2128 2192 2128 [6] *
Sparkle-512 Classical 5 / 12 2192 2256 2160 [6] *
Sparkle-256 Practical 4 / 10 negl. 264 negl. This paper
Sparkle-384 Practical 4 / 11 negl. 264 negl. This paper
Sparkle-512 Practical 5 / 12 < 232 264 negl. This paper

As we can see, there are 6 equations and 7 variables, since we have put a wrapping
constraint on one branch. We can simplify this system by removing all variables
that intervene in a single equation, i.e., S6 and S1. We obtain:

S0 ⊕ S3 = Π2(S2), S2 ⊕ S4 = Π3(S3), S0 ⊕ S3 = Π4(S4) .

From this we obtain the new equation Π4(S4) = Π2(S2), which is not captured
by our cell-based modeling. Guessing S4 (our only degree of freedom) we can
deduce S2, and all the other variables follow. After trying for b = 2, 3, 4, 6, 8, we
found that this expansion of the equation system was only useful for Simpira-2
and Simpira-4. The appropriate internal guesses are found automatically using
another automated tool, which would work for any GFN construction.

7.3 Application to Sparkle

Sparkle is a family of permutations upon which the NIST LWC candidate
Schwaemm / Esch (respectively for AEAD and hashing) [7] is based. We refer
to the submission document [6] for a complete specification of Sparkle, since
we abstract out most of its components.

There exists three variants Sparkle-256, -384 and -512, with respectively b =
4, 6 and 8 branches of 64 bits. One step of Sparkle has the following operations:
(1) an ARX-box (using round constants to disrupt symmetries) is applied to all
branches. (2) a linear function of the b/2 left branches is computed (noted ℓ′

in [6], and L here). (3) each left branch i ≤ b/2 is XORed to branch i+ b/2; the
output of L is also XORed to each branch i + b/2. (4) the b/2 right branches
are swapped following a standard GFN pattern, and then, the groups of left and
right branches are swapped.

Sparkle is not a GFN since the “round function” is actually linear, and
the non-linear functions (the ARX boxes) are computed alongside the branches.
But this makes no difference for our extended representation. We obtain results
similar to Simpira: the MILP solver finds 4-step MITM distinguishers on the 3
variants of the permutation, and these can be simplified and improved with a
GAD strategy. The details are given in the full version of the paper [45].
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Our results are summarized in Table 4. We found a GAD distinguisher of
complexity 1 for 4-step Sparkle-256 and -384, and a practical 5-step distin-
guisher for Sparkle-512, which combines the GAD strategy with SAT solving.
It highlights another limitation of our automatic approach: the ARX boxes are
viewed as random permutations, although solving some ARX equations can be
done practically.

As a comparison, the birthday-differential GAD attacks given in the NIST
submission document [6], which break 4 steps in the authenticated encryption
mode Schwaemm, can also be turned into 5-step distinguishers for the permu-
tation. But they have large complexities, and our distinguishers are the first
practical ones.
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