Certified Everlasting Zero-Knowledge Proof for \mathbf{QMA}

Taiga Hiroka¹, Tomoyuki Morimae¹, Ryo Nishimaki², and Takashi Yamakawa^{2,1}

Yukawa Institute for Theoretical Physics, Kyoto University, Japan
NTT Corporation, Tokyo, Japan

Abstract. In known constructions of classical zero-knowledge protocols for NP, either zero-knowledge or soundness holds only against computationally bounded adversaries. Indeed, achieving both statistical zero-knowledge and statistical soundness at the same time with classical verifier is impossible for NP unless the polynomial-time hierarchy collapses, and it is also believed to be impossible even with a quantum verifier. In this work, we introduce a novel compromise, which we call the certified everlasting zero-knowledge proof for QMA. It is a computational zero-knowledge proof for QMA, but the verifier issues a classical certificate that shows that the verifier has deleted its quantum information. If the certificate is valid, even an unbounded malicious verifier can no longer learn anything beyond the validity of the statement.

We construct a certified everlasting zero-knowledge proof for QMA. For the construction, we introduce a new quantum cryptographic primitive, which we call commitment with statistical binding and certified everlasting hiding, where the hiding property becomes statistical once the receiver has issued a valid certificate that shows that the receiver has deleted the committed information. We construct commitment with statistical binding and certified everlasting hiding from quantum encryption with certified deletion by Broadbent and Islam [TCC 2020] (in a black-box way), and then combine it with the quantum sigma-protocol for QMA by Broadbent and Grilo [FOCS 2020] to construct the certified everlasting zero-knowledge proof for QMA. Our constructions are secure in the quantum random oracle model. Commitment with statistical binding and certified everlasting hiding itself is of independent interest, and there will be many other useful applications beyond zero-knowledge.

1 Introduction

1.1 Background

Zero-knowledge [GMR89], which roughly states that the verifier cannot learn anything beyond the validity of the statement, is one of the most important concepts in cryptography and computer science. The study of zero-knowledge has a long history in classical cryptography, and recently there have been many results in quantum cryptography. In known constructions of classical zero-knowledge protocols for **NP**, either zero-knowledge or soundness holds only against computationally bounded adversaries. Indeed, achieving both statistical zero-knowledge

and statistical soundness at the same time with classical verifier is impossible for **NP** unless the polynomial-time hierarchy collapses [For87]. It is also believed to be impossible even with a quantum verifier [MW18].

Broadbent and Islam [BI20] recently suggested an idea of the novel compromise: realizing "everlasting zero-knowledge" by using quantum encryption with certified deletion. The everlasting security defined by Unruh [Unr13] states that the protocol remains secure as long as the adversary runs in polynomial-time during the execution of the protocol. Quantum encryption with certified deletion introduced by Broadbent and Islam [BI20] is a new quantum cryptographic primitive where a classical message is encrypted into a quantum ciphertext, and the receiver in possession of a quantum ciphertext can generate a classical certificate that shows that the receiver has deleted the quantum ciphertext. If the certificate is valid, the receiver can no longer decrypt the message even if it receives the secret key. Broadbent and Islam's idea is to use quantum commitment with a similar certified deletion security to encrypt the first message from the prover to the verifier in the standard Σ -protocol. Once the verifier issues the deletion certificate for all commitments that are not opened by the verifier's challenge, even an unbounded verifier can no longer access the committed values of the unopened commitments. They left the formal definition and the construction as future works.

There are many obstacles to realizing their idea. First, their quantum encryption with certified deletion cannot be directly used in a Σ -protocol because it does not have any binding property. Their ciphertext consists of a classical and quantum part. The classical part is $m \oplus u \oplus H(r)$, where m is the plaintext, u and r are random bit strings, and H is a hash function. The quantum part is a random BB84 states whose computational basis states encode r. The decryption key is u and the place of computational basis states that encode r, and therefore it is not binding: by changing u, a different message can be obtained. We therefore need to extend quantum encryption with certified deletion in such a way that the statistical binding property is included.

Second, defining a meaningful notion of "everlasting zero-knowledge proof" itself is non-trivial. In fact, everlasting zero-knowledge proofs for **QMA** or even for **NP** in the sense of Unruh's definition [Unr13] are unlikely to exist. To see this, recall that the definition of quantum statistical zero-knowledge [Wat09,MW18] requires a simulator to simulate the view of a quantum polynomial-time malicious verifier in a statistically indistinguishable manner. Therefore, everlasting zero-knowledge in the sense of Unruh's definition [Unr13] is actually equivalent to quantum statistical zero-knowledge. On the other hand, as already mentioned,

³ We mention that everlasting zero-knowledge arguments, which only satisfy computational soundness, can exist. Indeed, any statistical zero-knowledge argument is an everlasting zero-knowledge argument. One may think that the computational soundness is fine since that ensures everlasting soundness in the sense of Unruh's definition [Unr13]. For practical purposes, this may be true. On the other hand, we believe that it is theoretically interesting to pursue (a kind of) everlasting zero-knowledge without compromising the soundness as is done in this paper.

it is believed that quantum statistical zero-knowledge proofs for \mathbf{NP} do not exist [MW18]. In particular, Menda and Watrous [MW18] constructed an oracle relative to which quantum statistical zero-knowledge proofs for (even a subclass of) \mathbf{NP} do not exist.

However, we notice that this argument does not go through for *certified everlasting zero-knowledge*, where the verifier can issue a classical certificate that shows that the verifier has deleted its information. Once a valid certificate has been issued, even an unbounded malicious verifier can no longer learn anything beyond the validity of the statement. The reason is that certified everlasting zero-knowledge does not imply statistical zero-knowledge since it does not ensure any security against a malicious verifier that refuses to provide a valid certificate of deletion. Therefore, we have the following question.

Is it possible to define and construct a certified everlasting zero-knowledge proof for QMA?

1.2 Our Results

In this work, we define and construct the certified everlasting zero-knowledge proof for **QMA**. This goal is achieved in the following four steps.

- 1. We define a new quantum cryptographic primitive, which we call *commitment with statistical binding and certified everlasting hiding*. In this new commitment scheme, binding is statistical but hiding is computational. However, the hiding property becomes statistical once the receiver has issued a valid certificate that shows that the receiver has deleted the committed information.
- 2. We construct commitment with statistical binding and certified everlasting hiding. We use secret-key quantum encryption with certified deletion as the building block in a black-box way. This construction is secure in the quantum random oracle model [BDF⁺11].
- 3. We define a new notion of zero-knowledge proof, which we call the certified everlasting zero-knowledge proof for QMA. It is a computational zero-knowledge proof for QMA with the following additional property. A verifier can issue a classical certificate that shows that the verifier has deleted its information. If the certificate is valid, even an unbounded malicious verifier can no longer learn anything beyond the validity of the statement.
- 4. We apply commitment with statistical binding and certified everlasting hiding to the quantum Σ -protocol for **QMA** by Broadbent and Grilo [BG20] to construct the certified everlasting zero-knowledge proof for **QMA**.

We have three remarks on our results. First, although our main results are the definition and the construction of the certified everlasting zero-knowledge proof for **QMA**, our commitment with statistical binding and certified everlasting hiding itself is also of independent interest. There will be many other useful applications beyond zero-knowledge. In fact, it is known that binding and hiding cannot be

made statistical at the same time even in the quantum world [LC97,May97], and therefore our new commitment scheme provides a nice compromise.

Second, our new commitment scheme and the new zero-knowledge proof are the first cryptographic applications of symmetric-key quantum encryption with certified deletion. Although certified deletion is conceptually very interesting, there was no concrete construction of cryptographic applications when it was first introduced [BI20]. One reason why the applications are limited is that in cryptography it is not natural to consider the case when the receiver receives the private key later. Hiroka et al. [HMNY21b] recently extended the symmetric-key scheme by Broadbent and Islam [BI20] to a public-key encryption scheme, an attribute-based encryption scheme, and a publicly verifiable scheme, which have opened many applications. However, one disadvantage is that their security is the computational one unlike the symmetric-key scheme [BI20]. Therefore it was open whether there is any cryptographic application of the information-theoretically secure certified deletion scheme. Our results provide the first cryptographic applications of it. Interestingly, the setup of the symmetric-key scheme [BI20], where the receiver does not have the private key in advance, nicely fits into the framework of the Σ -protocol, because the verifier (receiver) in the Σ -protocol does not have the decryption key of the first encrypted message from the prover

Finally, note that certified everlasting zero-knowledge and certified everlasting hiding seem to be impossible in the classical world, because a malicious adversary can copy its information. In particular, certified everlasting zero-knowledge against classical verifiers clearly implies honest-verifier statistical zero-knowledge since an honest verifier runs in polynomial-time. Moreover, it is known that $\mathbf{HVSZK} = \mathbf{SZK}$ where \mathbf{HVSZK} and \mathbf{SZK} are languages that have honest-verifier statistical zero-knowledge proofs and (general) statistical zero-knowledge proofs, respectively [GSV98]. Therefore, if certified everlasting zero-knowledge proofs for \mathbf{NP} with classical verification exist, we obtain $\mathbf{NP} \subseteq \mathbf{HVSZK} = \mathbf{SZK}$, which means the collapse of the polynomial-time hierarchy [For87]. Though the above argument only works for protocols in the standard model, no construction of honest-verifier statistical zero-knowledge proofs for \mathbf{NP} is known in the random oracle model either. Our results therefore add novel items to the list of quantum cryptographic primitives that can be achieved only in the quantum world.

1.3 Technical Overview

Certified everlasting zero-knowledge. As explained in Sec. 1.1, everlasting zero-knowledge proofs for \mathbf{NP} (and for \mathbf{QMA}) seem impossible even with quantum verifiers. Therefore, we introduce a relaxed notion of zero-knowledge which we call

⁴ A similar argument does not work for quantum verifiers since the honest-verifier quantum statistical zero-knowledge [Wat02] requires a simulator to simulate honest verifier's internal state *at any point* of the protocol execution. This is not implied by certified everlasting zero-knowledge, which only requires security after generating a valid deletion certificate.

certified everlasting zero-knowledge inspired by quantum encryption with certified deletion introduced by Broadbent and Islam [BI20]. Certified everlasting zero-knowledge ensures security against malicious verifiers that run in polynomial-time during the protocol and provide a valid certificate that sensitive information is "deleted". (For the formal definition, see Sec. 4.1.) The difference from everlasting zero-knowledge is that it does not ensure security against malicious verifiers that do not provide a valid certificate. We believe that this is still a meaningful security notion since if the verifier refuses to provide a valid certificate, the prover may penalize the verifier for cheating.

Quantum commitment with certified everlasting hiding. Our construction of certified everlasting zero-knowledge proofs is based on the idea sketched by Broadbent and Islam [BI20]. (For the details of the construction, see Sec. 4.2.) The idea is to implement a Σ -protocol using a commitment scheme with certified deletion. However, they did not give a construction or definition of commitment with certified deletion. First, we remark that the encryption with certified deletion in [BI20] cannot be directly used as a commitment. A natural way to use their scheme as a commitment scheme is to consider a ciphertext as a commitment. However, since different secret keys decrypt the same ciphertext into different messages, this does not satisfy the binding property as commitment.

A natural (failed) attempt to fix this problem is to add a classical commitment to the secret key of the encryption scheme with certified deletion making use of the fact that the secret key of the encryption with certified deletion in [BI20] is classical. That is, a commitment to a message m consists of

$$(CT = Enc(sk, m), com = Commit(sk))$$

where Enc is the encryption algorithm of the scheme in [BI20], sk is its secret key, and Commit is a statistically binding and computationally hiding classical commitment scheme. This resolves the issue of binding since the secret key is now committed by the classical commitment scheme. On the other hand, we cannot prove a hiding property that is sufficiently strong for achieving certified everlasting zero-knowledge. It is not difficult to see that what we need here is certified everlasting hiding, which ensures that once a receiver generates a valid certificate that it deleted the commitment in a polynomial-time, the hiding property is ensured even if the receiver runs in unbounded-time afterwards. Unfortunately, we observe that the above generic construction seems insufficient for achieving certified everlasting hiding.⁵ The reason is as follows: We want to reduce the certified everlasting hiding to the certified deletion security of Enc. However, the security of Enc can be invoked only if sk is informationtheoretically hidden before the deletion. On the other hand, sk is committed by a statistically binding commitment in the above construction, and thus sk is information-theoretically determined from the commitment. Therefore, we

⁵ One may think that we can just use statistically hiding commitment. However, such a commitment can only satisfy computational binding, which is not sufficient for achieving certified everlasting zero-knowledge *proofs* rather than arguments.

have to somehow delete the information of sk from the commitment in some hybrid game in a security proof. A similar issue was dealt with by Hiroka et al. [HMNY21b] by using receiver non-committing encryption in the context of public key encryption with certified deletion. However, their technique inherently relies on the assumption that an adversary runs in polynomial-time even after the deletion. Therefore, their technique is not applicable in the context of certified everlasting hiding.

To overcome the above issue, we rely on random oracles. We modify the above construction as follows:

$$(\mathsf{CT} = \mathsf{Enc}(\mathsf{sk}, m), \mathsf{com} = \mathsf{Commit}(R), H(R) \oplus \mathsf{sk})$$

where R is a sufficiently long random string and H is a hash function modeled as a random oracle whose output length is the same as that of sk. We give an intuition on why the above issue is resolved with this modification. As explained in the previous paragraph, we want to delete the information of sk from the commitment in some hybrid games. By the computational hiding of commitment, a polynomial-time receiver cannot find R from $\mathsf{Commit}(R)$. Therefore, it cannot get any information on H(R) since otherwise we can "extract" R from one of the receiver's queries. This argument can be made rigorous by using the one-way to hiding lemma [Unr15,AHU19]. Importantly, we only have to assume that the receiver runs in polynomial-time before the deletion and do not need to assume anything about the running time after the deletion because we extract R from one of the queries before the deletion. Since sk is masked by H(R), the receiver cannot get any information on sk either. Thus, we can simulate the whole commitment $(\mathsf{CT},\mathsf{com},H(R)\oplus\mathsf{sk})$ without using sk , which resolves the issue and enables us to reduce certified everlasting hiding to certified deletion security of Enc .

We remark that quantum commitments in general cannot satisfy the binding property in the classical sense. Indeed, if a malicious sender generates a superposition of valid commitments on different messages m_0 and m_1 , it can later open to m_0 or m_1 with probability 1/2 for each. Defining a binding property for quantum commitments is non-trivial, and there have been proposed various flavors of definitions in the literature, e.g., [CDMS04,DFS04,DFR+07,Yan20,BB21]. It might be possible to adopt some of those definitions. However, we choose to introduce a new definition, which we call classical-extractor-based binding, tailored to our construction because this is more convenient for our purpose. Classical-extractor-based binding captures the property of our construction that the randomness R is information-theoretically determined by the classical part com = Commit(R) of a commitment, and the decommitment can be done by using the rest part of the commitment and R. In particular, this roughly means that one can extract the committed message with an unbounded-time extractor before the sender decommits. This enables us to prove soundness for our certi-

⁶ For this definition to make sense, we need to require that com = Commit(R) is classical. This can be ensured if the honest receiver measures it as soon as receiving it even if only quantum communication channel is available.

fied everlasting zero-knowledge proofs in essentially the same manner as in the classical case.

The details of the construction and security proofs are explained in Sec. 3.2.

Certified everlasting zero-knowledge proof for QMA. Once we obtain a commitment scheme with certified everlasting hiding, the construction of certified everlasting zero-knowledge proofs is straightforward based on the idea sketched in [BI20]. Though they only considered a construction for NP, we observe that the idea can be naturally extended to a construction for QMA since a "quantum version" of Σ -protocol for QMA called Ξ -protocol is constructed by Broadbent and Grilo [BG20]. Below, we sketch the construction for clarity. Let $A = (A_{\text{yes}}, A_{\text{no}})$ be a promise problem in QMA. [BG20] showed that for any $x \in A_{\text{yes}}$ and any corresponding witness w, it is possible to generate (in a quantum polynomial-time) so-called the local simulatable history state ρ_{hist} from w, which satisfies the following two special properties (for details, see Definition 2.2):

- (LS1) The verification can be done by measuring randomly chosen five qubits of ρ_{hist} .
- (LS2) The classical description of any five-qubit reduced density matrix of ρ_{hist} can be obtained in classical polynomial-time.

With these properties, the quantum Σ -protocol of [BG20] is constructed as follows:

- 1. Commitment phase: The prover randomly chooses $x, z \in \{0, 1\}^n$, and sends $(X^x Z^z \rho_{\mathsf{hist}} Z^z X^x) \otimes \mathsf{com}(x, z)$ to the verifier, where $X^x Z^z := \prod_{i=1}^n X_i^{x_i} Z_i^{z_i}$, n is the number of qubits of ρ_{hist} , and $\mathsf{com}(x, z)$ is a classical commitment of (x, z).
- **2. Challenge phase**: The verifier randomly chooses a subset $S \subset [n]$ of size |S| = 5, and sends it to the prover.
- **3. Response phase**: The prover opens the commitment for $\{x_i, z_i\}_{i \in S}$.
- **4. Verification phase**: The verifier applies $\prod_{i \in S} X_i^{x_i} Z_i^{z_i}$ on the state and measures qubits in S.

The correctness and the soundness come from the property (LS1), and the zero-knowledge comes from the property (LS2). If the classical commitment scheme used in the above construction is the one with statistical binding and computational hiding, the quantum Σ -protocol is a computational zero-knowledge proof for **QMA**, because the unbounded malicious verifier can open the commitment of $\{x_i, z_i\}_{i \in [n] \setminus S}$, and therefore can obtain the entire ρ_{hist} . If more than five qubits of ρ_{hist} are available to the malicious verifier, the zero-knowledge property no longer holds.

We construct the certified everlasting zero-knowledge proof for **QMA** based on the quantum Σ -protocol. Our idea is to use commitment with certified everlasting hiding and statistical binding for the commitment of (x, z) in the above construction of the quantum Σ -protocol. If the verifier issues a valid deletion certificate for the commitment of $\{x_i, z_i\}_{i \in [n] \setminus S}$, even unbounded malicious verifier can no longer learn $\{x_i, z_i\}_{i \in [n] \setminus S}$, and therefore what it can access is only the five qubits of ρ_{hist} . This gives a proof for certified everlasting zero-knowledge. Using classical-extractor-based binding, the proof of statistical soundness can be done almost in the same way as in [BG20]. Recall that classical-extractor-based binding enables us to extract the committed message with an unbounded-time extractor before the sender decommits. Therefore, we can extract the committed (x,z) from $\mathsf{com}(x,z)$. Since the extraction is done before the challenge phase, the extracted values do not depend on the challenge S. Then, it is easy to reduce the soundness of the scheme to that of the original QMA promise problem A. The details of the construction are explained in Sec. 4.2.

1.4 Related Works

Zero-knowledge for QMA. Zero-knowledge for QMA was first constructed by Broadbent, Ji, Song, and Watrous [BJSW16]. Broadbent and Grilo [BG20] gave an elegant and simpler construction what they call the Ξ -protocol (which is considered as a quantum version of the standard Σ -protocol) by using the local simulatability [GSY19]. Our construction is based on the Ξ -protocol. Bitansky and Shmueli [BS20] gave the first constant round zero-knowledge argument for QMA with negligible soundness error. Brakerski and Yuen [BY20] gave a construction of 3-round delayed-input zero-knowledge proof for QMA where the prover needs to know the statement and witness only for generating its last message. Chardouvelis and Malavolta [CM21] constructed 4-round statistical zero-knowledge arguments for QMA and 2-round zero-knowledge for QMA in the timing model.

Regarding non-interactive zero-knowledge proofs or arguments (NIZK), Kobayashi [Kob03] first studied (statistically sound and zero-knowledge) NIZKs in a model where the prover and verifier share Bell pairs, and gave a complete problem in this setting. It is unlikely that the complete problem contains (even a subclass of) NP [MW18], and thus even a NIZK for all NP languages is unlikely to exist in this model. Chailloux et al. [CCKV08] showed that there exists a (statistically sound and zero-knowledge) NIZK for all languages in QSZK in the help model where a trusted party generates a pure state depending on the statement to be proven and gives copies of the state to both prover and verifier. Recently, there are many constructions of NIZK proofs or arguments for QMA in various kinds of setup models and assumptions [ACGH20,CVZ20,BG20,Shm21,BCKM21,MY21,BM21].

Quantum commitment. It is well-known that statistically binding and hiding commitments are impossible even with quantum communication [LC97,May97]. On the other hand, there is a large body of literature on constructing quantum commitments assuming some computational assumptions, e.g., see the references in the introduction of [Yan20]. Among them, several works showed the possibility of using quantum commitments in constructions of zero-knowledge proofs and arguments [YWLQ15,FUW+20,Yan20,BB21]. However, they only consider replacing classical commitments with quantum commitments in classical constructions while keeping the same functionality and security level as the classical

construction. In particular, none of them considers protocols for **QMA** or properties that are classically impossible to achieve like our notion of the certified everlasting zero-knowledge.

2 Preliminaries

2.1 Notations

Here we introduce basic notations we will use. In this paper, $x \leftarrow X$ denotes selecting an element from a finite set X uniformly at random, and $y \leftarrow A(x)$ denotes assigning to y the output of a probabilistic or deterministic algorithm A on an input x. When we explicitly show that A uses randomness r, we write $y \leftarrow A(x;r)$. When D is a distribution, $x \leftarrow D$ denotes sampling an element from D. Let [n] be the set $\{1,\ldots,n\}$. Let λ be a security parameter, and $y \coloneqq z$ denotes that y is set, defined, or substituted by z. For a bit string $s \in \{0,1\}^n$, s_i denotes the i-th bit of s. QPT stands for quantum polynomial time. PPT stands for (classical) probabilistic polynomial time. For a subset $S \subseteq W$ of a set W, \overline{S} is the complement of S, i.e., $\overline{S} \coloneqq W \setminus S$. A function $f : \mathbb{N} \to \mathbb{R}$ is a negligible function if for any constant c, there exists $\lambda_0 \in \mathbb{N}$ such that for any $\lambda > \lambda_0$, $f(\lambda) < \lambda^{-c}$. We write $f(\lambda) \le \mathsf{negl}(\lambda)$ to denote $f(\lambda)$ being a negligible function.

2.2 Quantum Computation

We assume the familiarity with basics of quantum computation, and use standard notations. Let us denote $\mathcal Q$ be the state space of a single qubit. I is the two-dimensional identity operator. For simplicity, we often write $I^{\otimes n}$ as I for any n when the dimension of the identity operator is clear from the context. For any single-qubit operator O, O_i means an operator that applies O on the i-th qubit and applies I on all other qubits. X and Z are the Pauli X and Z operators, respectively. For any n-bit strings $x \coloneqq (x_1, x_2, \cdots, x_n) \in \{0, 1\}^n$ and $z \coloneqq (z_1, z_2, \cdots, z_n) \in \{0, 1\}^n$, $X^x \coloneqq \prod_{i \in [n]} X_i^{x_i}$ and $Z^z \coloneqq \prod_{i \in [n]} Z_i^{z_i}$. For any subset S, Tr_S means the trace over all qubits in S. For any quantum state ρ and a bit string $s \in \{0, 1\}^n$, $\rho \otimes s$ means $\rho \otimes |s\rangle\langle s|$. The trace distance between two states ρ and σ is given by $\frac{1}{2}\|\rho - \sigma\|_{\operatorname{tr}}$, where $\|A\|_{\operatorname{tr}} \coloneqq \operatorname{Tr} \sqrt{A^\dagger A}$ is the trace norm. If $\frac{1}{2}\|\rho - \sigma\|_{\operatorname{tr}} \le \epsilon$, we say that ρ and σ are statistically indistinguishable.

Let C_0 and C_1 be quantum channels from p qubits to q qubits, where p and q are polynomials. We say that they are computationally indistinguishable, and denote it by $C_0 \approx_c C_1$ if there exists a negligible function negl such that $|\Pr[D((C_0 \otimes I)(\sigma)) = 1] - \Pr[D((C_1 \otimes I)(\sigma)) = 1]| \leq \mathsf{negl}(\lambda)$ for any polynomial k, any (p+k)-qubit state σ , and any polynomial-size quantum circuit D acting on q+k qubits. We say that C_0 and C_1 are statistically indistinguishable, and denote it by $C_0 \approx_s C_1$, if D is an unbounded algorithm.

Lemma 2.1 (Quantum Rewinding Lemma [Wat09]). Let Q be a quantum circuit that acts on an n-qubit state $|\psi\rangle$ and an m-qubit auxiliary state $|0^m\rangle$.

Let $p(\psi) := ||(\langle 0| \otimes I)Q(|\psi\rangle \otimes |0^m\rangle)||^2$ and $|\phi(\psi)\rangle := \frac{1}{\sqrt{p(\psi)}}(\langle 0| \otimes I)Q(|\psi\rangle \otimes |0^m\rangle)$. Let $p_0, q \in (0, 1)$ and $\epsilon \in (0, \frac{1}{2})$ such that $|p(\psi) - q| < \epsilon$, $p_0(1 - p_0) < q(1 - q)$, and $p_0 < p(\psi)$. Then there is a quantum circuit R of size at most $O\left(\frac{\log\left(\frac{1}{\epsilon}\right)\operatorname{size}(Q)}{p_0(1 - p_0)}\right)$ such that on input $|\psi\rangle$, R computes a quantum state $\rho(\psi)$ that satisfies $\langle \phi(\psi)|\rho(\psi)|\phi(\psi)\rangle \geq 1 - 16\epsilon\frac{\log^2\left(\frac{1}{\epsilon}\right)}{p_0^2(1 - p_0)^2}$.

Lemma 2.2 (One-Way to Hiding Lemma [AHU19]). Let $S \subseteq \mathcal{X}$ be a random subset of \mathcal{X} . Let $G, H : \mathcal{X} \to \mathcal{Y}$ be random functions satisfying $\forall x \notin S$ [G(x) = H(x)]. Let z be a random classical bit string. (S, G, H, z) may have an arbitrary joint distribution.) Let \mathcal{A} be an oracle-aided quantum algorithm that makes at most q quantum queries. Let \mathcal{B} be an algorithm that on input z chooses $i \leftarrow [q]$, runs $\mathcal{A}^H(z)$, measures \mathcal{A} 's i-th query, and outputs the measurement outcome. Then we have $\left|\Pr[\mathcal{A}^G(z) = 1] - \Pr[\mathcal{A}^H(z) = 1]\right| \leq 2q\sqrt{\Pr[\mathcal{B}^H(z) \in S]}$.

2.3 QMA and k-SimQMA

Definition 2.1 (QMA). We say that a promise problem $A = (A_{\text{yes}}, A_{\text{no}})$ is in **QMA** if there exist a polynomial p, a QPT algorithm V, and $0 \le \beta < \alpha \le 1$ with $\alpha - \beta \ge \frac{1}{\text{poly}(|\mathbf{x}|)}$ such that

Completeness: For any $x \in A_{yes}$, there exists a quantum state w of p(|x|)-qubit (called a witness) such that

$$\Pr[V(\mathsf{x},\mathsf{w}) = \top] \geq \alpha.$$

Soundness: For any $x \in A_{no}$ and any quantum state w of p(|x|)-qubit,

$$\Pr[V(\mathsf{x},\mathsf{w}) = \top] \leq \beta.$$

For any $x \in A_{yes}$, $R_A(x)$ is the (possibly infinite) set of all quantum states w such that $\Pr[V(x, w) = T] \ge \frac{2}{3}$.

A complexity class of k-SimQMA is introduced, and proven to be equal to QMA in [BG20].

Definition 2.2 (k-SimQMA [BG20]). A promise problem $A = (A_{yes}, A_{no})$ is in k-SimQMA with soundness $\beta(|\mathsf{x}|) \leq 1 - \frac{1}{\operatorname{poly}(|\mathsf{x}|)}$, if there exist polynomials m and n such that given $\mathsf{x} \in A_{yes}$, there is an efficient deterministic algorithm that computes $m(|\mathsf{x}|)$ k-qubit POVMs $\{\Pi_1, I - \Pi_1\}, \ldots, \{\Pi_{m(|\mathsf{x}|)}, I - \Pi_{m(|\mathsf{x}|)}\}$ such that:

Simulatable completeness: If $x \in A_{yes}$, there exists an n(|x|)-qubit state ρ_{hist} , which we call a simulatable witness, such that for all $c \in [m]$, $\operatorname{Tr}(\Pi_c \rho_{hist}) \geq 1 - \operatorname{negl}(|x|)$, and there exists a set of k-qubit density matrices $\{\rho_{sim}^{x,S}\}_{S\subseteq [n(|x|)], |S|=k}$ that can be computed in polynomial time from x and ρ_{hist} such that $||\operatorname{Tr}_{\overline{S}}(\rho_{hist}) - \rho_{sim}^{x,S}||_{\operatorname{tr}} \leq \operatorname{negl}(|x|)$.

Soundness: If $x \in A_{no}$, for any n(|x|)-qubit state ρ , $\frac{1}{m} \sum_{c \in [m]} \text{Tr}(\Pi_c \rho) \leq \beta(|x|)$.

2.4 Cryptographic Tools

In this section, we review cryptographic tools used in this paper.

Non-interactive commitment.

Definition 2.3 (Non-Interactive Commitment (Syntax)). Let λ be the security parameter and let p, q and r be some polynomials. A (classical) non-interactive commitment scheme consists of a single PPT algorithm Commit with plaintext space $\mathcal{M} \coloneqq \{0,1\}^{p(\lambda)}$, randomness space $\{0,1\}^{q(\lambda)}$ and commitment space $\mathcal{C} \coloneqq \{0,1\}^{r(\lambda)}$ satisfying two properties:

Perfect binding: For every $(r_0, r_1) \in \{0, 1\}^{q(\lambda)} \times \{0, 1\}^{q(\lambda)}$ and $(m, m') \in \mathcal{M}^2$ such that $m \neq m'$, we have that $\mathsf{Commit}(m; r_0) \neq \mathsf{Commit}(m'; r_1)$, where $(\mathsf{Commit}(m; r_0), \mathsf{Commit}(m'; r_1)) \in \mathcal{C}^2$.

Unpredictability: Let $\Sigma := \text{Commit.}$ For any QPT adversary A, we define the following security experiment $\text{Exp}_{\Sigma,A}^{\text{unpre}}(\lambda)$.

- 1. The challenger chooses $R \leftarrow \mathcal{M}$ and $R' \leftarrow \{0,1\}^{q(\lambda)}$, computes com \leftarrow Commit(R;R'), and sends com to \mathcal{A} .
- 2. A outputs R^* . The output of the experiment is 1 if $R^* = R$. Otherwise, the output of the experiment is 0.

We say that the commitment is unpredictable if for any QPT adversary A, it holds that

$$\mathsf{Adv}^{\mathsf{unpre}}_{\Sigma,\mathcal{A}}(\lambda) \coloneqq \Pr \Big[\mathsf{Exp}^{\mathsf{unpre}}_{\Sigma,\mathcal{A}}(\lambda) = 1 \Big] \leq \mathsf{negl}(\lambda).$$

Note that we assume $\frac{1}{|\mathcal{M}|}$ is negligible.

Remark 2.1. The unpredictability is a weaker version of computational hiding. We define unpredictability instead of computational hiding since this suffices for our purpose.

A non-interactive commitment scheme that satisfies the above definition exists assuming the existence of injective one-way functions or perfectly correct public key encryption [LS19]. Alternatively, we can also instantiate it based on random oracles.

Quantum encryption with certified deletion. Broadbent and Islam [BI20] introduced the notion of quantum encryption with certified deletion.

Definition 2.4 (One-Time SKE with Certified Deletion (Syntax)). Let λ be the security parameter and let p, q and r be some polynomials. A one-time secret key encryption scheme with certified deletion consists of a tuple of polynomial-time algorithms (KeyGen, Enc, Dec, Del, Verify) with plaintext space $\mathcal{M} := \{0,1\}^n$, ciphertext space $\mathcal{C} := \mathcal{Q}^{\otimes p(\lambda)}$, key space $\mathcal{K} := \{0,1\}^{q(\lambda)}$ and deletion certificate space $\mathcal{D} := \{0,1\}^{r(\lambda)}$.

KeyGen $(1^{\lambda}) \to sk$: The key generation algorithm takes as input the security parameter 1^{λ} , and outputs a secret key $sk \in \mathcal{K}$.

Enc(sk, m) \rightarrow CT: The encryption algorithm takes as input sk and a plaintext $m \in \mathcal{M}$, and outputs a ciphertext CT $\in \mathcal{C}$.

 $\mathsf{Dec}(\mathsf{sk},\mathsf{CT}) \to m' \ or \ \bot$: The decryption algorithm takes as input sk and CT , and outputs a plaintext $m' \in \mathcal{M} \ or \ \bot$.

 $Del(CT) \rightarrow cert$: The deletion algorithm takes as input CT, and outputs a certification $cert \in \mathcal{D}$.

Verify(sk, cert) $\rightarrow \top$ or \bot : The verification algorithm takes sk and cert, and outputs \top to indicate acceptance or \bot .

Definition 2.5 (Correctness for One-Time SKE with Certified Deletion). There are two types of correctness. One is decryption correctness and the other is verification correctness.

Decryption correctness: There exists a negligible function negl such that for any $\lambda \in \mathbb{N}$ and $m \in \mathcal{M}$,

$$\Pr\left[\mathsf{Dec}(\mathsf{sk},\mathsf{CT}) = m \; \middle| \begin{matrix} \mathsf{sk} \leftarrow \mathsf{KeyGen}(1^\lambda) \\ \mathsf{CT} \leftarrow \mathsf{Enc}(\mathsf{sk},m) \end{matrix}\right] \geq 1 - \mathsf{negl}(\lambda).$$

Verification correctness: There exists a negligible function negl such that for any $\lambda \in \mathbb{N}$ and $m \in \mathcal{M}$,

$$\Pr\left[\mathsf{Verify}(\mathsf{sk},\mathsf{cert}) = \top \, \left| \begin{matrix} \mathsf{sk} \leftarrow \mathsf{KeyGen}(1^\lambda) \\ \mathsf{CT} \leftarrow \mathsf{Enc}(\mathsf{sk},m) \\ \mathsf{cert} \leftarrow \mathsf{Del}(\mathsf{CT}) \end{matrix} \right] \geq 1 - \mathsf{negl}(\lambda).$$

Definition 2.6 (Certified Deletion Security for One-Time SKE). Let $\Sigma = (\text{KeyGen, Enc, Dec, Del, Verify})$ be a secret key encryption with certified deletion. We consider the following security experiment $\mathsf{Exp}_{\Sigma,\mathcal{A}}^{\mathsf{otsk-cert-del}}(\lambda,b)$.

- 1. The challenger computes $\mathsf{sk} \leftarrow \mathsf{KeyGen}(1^{\lambda})$.
- 2. A sends $(m_0, m_1) \in \mathcal{M}^2$ to the challenger.
- 3. The challenger computes $\mathsf{CT}_b \leftarrow \mathsf{Enc}(\mathsf{sk}, m_b)$ and sends CT_b to \mathcal{A} .
- 4. A sends cert to the challenger.
- 5. The challenger computes Verify(sk, cert). If the output is \bot , the challenger sends \bot to A. If the output is \top , the challenger sends sk to A.
- 6. A outputs $b' \in \{0,1\}$. The experiment outputs b'.

We say that the Σ is OT-CD secure if for any unbounded A, it holds that

$$\begin{split} \mathsf{Adv}^{\mathsf{otsk-cert-del}}_{\varSigma,\mathcal{A}}(\lambda) \\ &\coloneqq \left| \Pr \Big[\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\varSigma,\mathcal{A}}(\lambda,0) = 1 \Big] - \Pr \Big[\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\varSigma,\mathcal{A}}(\lambda,1) = 1 \Big] \right| \leq \mathsf{negl}(\lambda). \end{split}$$

Broadbent and Islam [BI20] showed that a one-time SKE scheme with certified deletion that satisfies the above correctness and security exists unconditionally.

3 Commitment with Certified Everlasting Hiding and Classical-Extractor-Based Binding

In this section, we define and construct commitment with certified everlasting hiding and statistical binding. We adopt a non-standard syntax for the verification algorithm and a slightly involved definition for the binding, which we call the classical-extractor-based binding, that are tailored to our construction. This is because they are convenient for our construction of certified everlasting zero-knowledge proof for **QMA** given in Sec. 4. We can also construct one with a more standard syntax of verification and binding property, namely, the sum-binding, by essentially the same construction. See the full version [HMNY21a] for details.

3.1 Definition

Definition 3.1 (Commitment with Certified Everlasting Hiding and Classical-Extractor-Based Binding (Syntax)). Let λ be the security parameter and let p, q, r, s and t be some polynomials. Commitment with certified everlasting hiding and classical-extractor-based binding consists of a tuple of polynomial-time algorithms (Commit, Verify, Del, Cert) with message space $\mathcal{M} := \{0,1\}^n$, commitment space $\mathcal{C} := \mathcal{Q}^{\otimes p(\lambda)} \times \{0,1\}^{q(\lambda)}$, decommitment space $\mathcal{D} := \{0,1\}^{r(\lambda)}$, key space $\mathcal{K} := \{0,1\}^{s(\lambda)}$ and deletion certificate space $\mathcal{E} := \{0,1\}^{t(\lambda)}$.

Commit(1^{λ} , m) \rightarrow (com, d, ck): The commitment algorithm takes as input a security parameter 1^{λ} and a message $m \in \mathcal{M}$, and outputs a commitment com $\in \mathcal{C}$, a decommitment $d := (d_1, d_2) \in \mathcal{D}$ and a key $ck \in \mathcal{K}$. Note that com consists of a quantum state $\psi \in \mathcal{Q}^{\otimes p(\lambda)}$ and a classical bit string $f \in \{0, 1\}^{q(\lambda)}$.

Verify(com, d) \rightarrow m' or \bot : The verification algorithm consists of two algorithms, Verify₁ and Verify₂. It parses d = (d₁, d₂). Verify₁ takes f and (d₁, d₂) as input, and outputs \top to indicate acceptance or \bot . Verify₂ takes com and d₁ as input, and outputs m'. If the output of Verify₁ is \bot , then the output of Verify is \bot . Otherwise the output of Verify is m'.

 $\mathsf{Del}(\mathsf{com}) \to \mathsf{cert}$: The deletion algorithm takes com as input, and outputs a certificate $\mathsf{cert} \in \mathcal{E}$.

 $\mathsf{Cert}(\mathsf{cert},\mathsf{ck}) \to \top$ or \bot : The certification algorithm takes cert and ck as input, and outputs \top to indicate acceptance or \bot .

Definition 3.2 (Correctness). There are two types of correctness, namely, decommitment correctness and deletion correctness.

Decommitment correctness: There exists a negligible function negl such that for any $\lambda \in \mathbb{N}$ and $m \in \{0,1\}^n$,

$$\Pr \big[m \leftarrow \mathsf{Verify}(\mathsf{com},\mathsf{d}) \mid (\mathsf{com},\mathsf{d},\mathsf{ck}) \leftarrow \mathsf{Commit}(1^{\lambda},m) \big] \geq 1 - \mathsf{negl}(\lambda).$$

Deletion correctness: There exists a negligible function negl such that for any $\lambda \in \mathbb{N}$ and $m \in \{0,1\}^n$,

$$\Pr[\top \leftarrow \mathsf{Cert}(\mathsf{cert},\mathsf{ck}) \mid (\mathsf{com},\mathsf{d},\mathsf{ck}) \leftarrow \mathsf{Commit}(1^{\lambda},m), \mathsf{cert} \leftarrow \mathsf{Del}(\mathsf{com})] \geq 1 - \mathsf{negl}(\lambda).$$

Definition 3.3 (Classical-Extractor-Based Binding). There exists an unbounded-time deterministic algorithm Ext that takes $f \in \{0,1\}^{q(\lambda)}$ of com as input, and outputs $\mathsf{d}_1^* \leftarrow \mathsf{Ext}(f)$ such that for any com, any $\mathsf{d}_1 \neq \mathsf{d}_1^*$, and any d_2 , $\Pr[\mathsf{Verify}(\mathsf{com}, \mathsf{d} = (\mathsf{d}_1, \mathsf{d}_2)) = \bot] = 1$.

Definition 3.4 (Computational Hiding). Let $\Sigma := (Commit, Verify, Del, Cert)$. Let us consider the following security experiment $Exp_{\Sigma,\mathcal{A}}^{c-hide}(\lambda, b)$ against any QPT adversary \mathcal{A} .

- 1. A generates $(m_0, m_1) \in \mathcal{M}^2$ and sends them to the challenger.
- 2. The challenger computes $(\mathsf{com}, \mathsf{d}, \mathsf{ck}) \leftarrow \mathsf{Commit}(1^{\lambda}, m_b)$, and sends $\mathsf{com}\ to\ \mathcal{A}$.
- 3. \mathcal{A} outputs $b' \in \{0, 1\}$.
- 4. The output of the experiment is b'.

Computational hiding means that the following is satisfied for any QPT A.

$$\mathsf{Adv}^{\mathsf{c-hide}}_{\Sigma,\mathcal{A}}(\lambda) \coloneqq \left| \Pr \Big[\mathsf{Exp}^{\mathsf{c-hide}}_{\Sigma,\mathcal{A}}(\lambda,0) = 1 \Big] - \Pr \Big[\mathsf{Exp}^{\mathsf{c-hide}}_{\Sigma,\mathcal{A}}(\lambda,1) = 1 \Big] \right| \leq \mathsf{negl}(\lambda).$$

Definition 3.5 (Certified Everlasting Hiding). Let $\Sigma := (Commit, Verify, Del, Cert)$. Let us consider the following security experiment $Exp_{\Sigma,\mathcal{A}}^{ever-hide}(\lambda,b)$ against $\mathcal{A} = (\mathcal{A}_1,\mathcal{A}_2)$ consisting of any QPT adversary \mathcal{A}_1 and any unbounded adversary \mathcal{A}_2 .

- 1. A_1 generates $(m_0, m_1) \in \mathcal{M}^2$ and sends it to the challenger.
- 2. The challenger computes (com, d, ck) \leftarrow Commit(1^{λ} , m_b), and sends com to \mathcal{A}_1 .
- 3. At some point, A_1 sends cert to the challenger, and sends its internal state to A_2 .
- 4. The challenger computes Cert(cert, ck). If the output is \top , then the challenger outputs \top , and sends (d, ck) to A_2 . Else, the challenger outputs \bot , and sends \bot to A_2 .
- 5. A_2 outputs $b' \in \{0, 1\}$.
- 6. If the challenger outputs \top , then the output of the experiment is b'. Otherwise, the output of the experiment is \bot .

We say that it is certified everlasting hiding if the following is satisfied for any $A = (A_1, A_2)$.

$$\mathsf{Adv}^{\mathsf{ever-hide}}_{\Sigma,\mathcal{A}}(\lambda) \coloneqq \left| \Pr \Big[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma,\mathcal{A}}(\lambda,0) = 1 \Big] - \Pr \Big[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma,\mathcal{A}}(\lambda,1) = 1 \Big] \right| \leq \mathsf{negl}(\lambda).$$

Remark 3.1. We remark that it would be incorrect to formulate a definition that conditions on cert being accepted (see discussion in [Unr15].) We also remark that certified everlasting hiding does not imply computational hiding since it does not require anything if the adversary does not send a valid certificate.

The following lemma will be used in the construction of the certified everlasting zero-knowledge proof for **QMA** in Sec. 4. It is shown with the standard hybrid argument. It is also easy to see that a similar lemma holds for computational hiding.

Lemma 3.1. Let $\Sigma := (\mathsf{Commit}, \mathsf{Verify}, \mathsf{Del}, \mathsf{Cert})$ and $\mathcal{M} = \{0, 1\}$. Let us consider the following security experiment $\mathsf{Exp}^{\mathsf{bit}-\mathsf{ever-hide}}_{\Sigma, \mathcal{A}}(\lambda, b)$ against $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ consisting of any QPT adversary \mathcal{A}_1 and any unbounded adversary \mathcal{A}_2 .

- 1. A_1 generates $(m^0, m^1) \in \{0, 1\}^n \times \{0, 1\}^n$ and sends it to the challenger.
- 2. The challenger computes

$$(\mathsf{com}_i(m_i^b), \mathsf{d}_i(m_i^b), \mathsf{ck}_i(m_i^b)) \leftarrow \mathsf{Commit}(1^\lambda, m_i^b)$$

for each $i \in [n]$, and sends $\{com_i(m_i^b)\}_{i \in [n]}$ to A_1 . Here, m_i^b is the i-th bit of m^b .

- 3. At some point, A_1 sends $\{cert_i\}_{i\in[n]}$ to the challenger, and sends its internal state to A_2 .
- 4. The challenger computes $\mathsf{Cert}(\mathsf{cert}_i, \mathsf{ck}_i(m_i^b))$ for each $i \in [n]$. If the output is \top for all $i \in [n]$, then the challenger outputs \top , and sends $\{\mathsf{d}_i(m_i^b), \mathsf{ck}_i(m_i^b)\}_{i \in [n]}$ to \mathcal{A}_2 . Else, the challenger outputs \bot , and sends \bot to \mathcal{A}_2 .
- 5. A_2 outputs $b' \in \{0, 1\}$.
- 6. If the challenger outputs \top , then the output of the experiment is b'. Otherwise, the output of the experiment is \bot .

If Σ is certified everlasting hiding,

$$\begin{split} \mathsf{Adv}^{\mathsf{bit-ever-hide}}_{\Sigma,\mathcal{A}}(\lambda) \\ &\coloneqq \left| \Pr \Big[\mathsf{Exp}^{\mathsf{bit-ever-hide}}_{\Sigma,\mathcal{A}}(\lambda,0) = 1 \Big] - \Pr \Big[\mathsf{Exp}^{\mathsf{bit-ever-hide}}_{\Sigma,\mathcal{A}}(\lambda,1) = 1 \Big] \right| \leq \mathsf{negl}(\lambda) \\ & \textit{for any } \mathcal{A} = (\mathcal{A}_1,\mathcal{A}_2). \end{split}$$

3.2 Construction

Let λ be the security parameter, and let p,q,r,s,t and u be some polynomials. We construct commitment with certified everlasting hiding and classical-extractor-based binding, $\mathcal{L}_{\mathsf{ccd}} = (\mathsf{Commit}, \mathsf{Verify}, \mathsf{Del}, \mathsf{Cert})$, with message space $\mathcal{M} = \{0,1\}^n$, commitment space $\mathcal{C} = \mathcal{Q}^{\otimes p(\lambda)} \times \{0,1\}^{q(\lambda)} \times \{0,1\}^{r(\lambda)}$, decommitment space $\mathcal{D} = \{0,1\}^{s(\lambda)} \times \{0,1\}^{t(\lambda)}$, key space $\mathcal{K} = \{0,1\}^{r(\lambda)}$ and deletion certificate space $\mathcal{E} = \{0,1\}^{u(\lambda)}$ from the following primitives:

- Secret-key encryption with certified deletion, $\Sigma_{\sf skcd} = \sf SKE.(KeyGen, Enc, Dec, Del, Verify)$, with plaintext space $\mathcal{M} = \{0,1\}^n$, ciphertext space $\mathcal{C} = \mathcal{Q}^{\otimes p(\lambda)}$, key space $\mathcal{K} = \{0,1\}^{r(\lambda)}$, and deletion certificate space $\mathcal{E} = \{0,1\}^{u(\lambda)}$.
- Classical non-interactive commitment, $\Sigma_{\sf com} = \sf Classical.Commit$, with plaintext space $\{0,1\}^{s(\lambda)}$, randomness space $\{0,1\}^{t(\lambda)}$, and commitment space $\{0,1\}^{q(\lambda)}$.
- A hash function H from $\{0,1\}^{s(\lambda)}$ to $\{0,1\}^{r(\lambda)}$ modeled as a quantumly-accessible random oracle.

The construction is as follows.

Commit $(1^{\lambda}, m)$:

- Generate ske.sk \leftarrow SKE.KeyGen(1 $^{\lambda}$), $R \leftarrow \{0,1\}^{s(\lambda)}$, $R' \leftarrow \{0,1\}^{t(\lambda)}$, and a hash function H from $\{0,1\}^{s(\lambda)}$ to $\{0,1\}^{r(\lambda)}$.
- Compute ske.CT \leftarrow SKE.Enc(ske.sk, m), $f \leftarrow$ Classical.Commit(R; R'), and $h := H(R) \oplus$ ske.sk.
- Output com := (ske.CT, f, h), $d_1 := R$, $d_2 := R'$, and ck := ske.sk.

Verify₁ (com, d_1, d_2):

- Parse com = (ske.CT, f, h), $d_1 = R$, and $d_2 = R'$.
- Output \top if f = Classical.Commit(R; R'), and output \bot otherwise.

Verify₂(com, d_1):

- Parse com = (ske.CT, f, h) and $d_1 = R$.
- Compute ske.sk' $:= H(R) \oplus h$.
- − Output $m' \leftarrow \mathsf{SKE.Dec}(\mathsf{ske.sk'}, \mathsf{ske.CT})$.

Del(com):

- Parse com = (ske.CT, f, h).
- Compute ske.cert ← SKE.Del(ske.CT).
- Output cert := ske.cert.

Cert(cert, ck):

- Parse cert = ske.cert and ck = ske.sk.
- − Output \top/\bot ← SKE.Verify(ske.sk, ske.cert).

Correctness. The decommitment and deletion correctness easily follow from the correctness of $\Sigma_{\sf skcd}$.

Security. We prove the following three theorems.

Theorem 3.1. If Σ_{com} is perfect binding, then Σ_{ccd} is classical-extractor-based binding.

Theorem 3.2. If Σ_{com} is unpredictable and Σ_{skcd} is OT-CD secure, then Σ_{ccd} is certified everlasting hiding.

Theorem 3.3. If Σ_{com} is unpredictable and Σ_{skcd} is OT-CD secure, then Σ_{ccd} is computationally hiding.

Proof of Theorem 3.1. Due to the perfect binding of $\Sigma_{\mathsf{com}} = \mathsf{Classical}.\mathsf{Commit}$, there exists a unique d_1^* such that $f = \mathsf{Classical}.\mathsf{Commit}(\mathsf{d}_1^*; \mathsf{d}_2)$ for a given f. Let Ext be the algorithm that finds such d_1^* and outputs it. (If there is no such d_1^* , then Ext outputs \bot .) Then, for any $\mathsf{com} = (\mathsf{ske}.\mathsf{CT}, f, h)$, any $\mathsf{d}_1 \neq \mathsf{d}_1^*$, and any d_2 ,

$$\Pr[\mathsf{Verify}(\mathsf{com},\mathsf{d}=(\mathsf{d}_1,\mathsf{d}_2))=\bot] \geq \Pr[f \neq \mathsf{Classical}.\mathsf{Commit}(\mathsf{d}_1,\mathsf{d}_2)]=1,$$

which completes the proof.

Proof of Theorem 3.2. For clarity, we describe how the experiment works against an adversary $\mathcal{A} := (\mathcal{A}_1, \mathcal{A}_2)$ consisting of any QPT adversary \mathcal{A}_1 and any quantum unbounded time adversary \mathcal{A}_2 .

 $\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,b)$: This is the original experiment.

- 1. A uniformly random function H from $\{0,1\}^{s(\lambda)}$ to $\{0,1\}^{r(\lambda)}$ is chosen. \mathcal{A}_1 and \mathcal{A}_2 can make arbitrarily many quantum queries to H at any time in the experiment.
- 2. \mathcal{A}_1 chooses $(m_0, m_1) \leftarrow \mathcal{M}^2$, and sends (m_0, m_1) to the challenger.
- 3. The challenger generates ske.sk \leftarrow SKE.KeyGen (1^{λ}) , $R \leftarrow \{0,1\}^{s(\lambda)}$ and $R' \leftarrow \{0,1\}^{t(\lambda)}$. The challenger computes ske.CT \leftarrow SKE.Enc(ske.sk, m_b), $f := \mathsf{Classical.Commit}(R; R') \text{ and } h := H(R) \oplus \mathsf{ske.sk}, \text{ and sends (ske.CT, } f, h)$ to \mathcal{A}_1 .
- 4. A_1 sends ske.cert to the challenger and sends its internal state to A_2 .
- 5. If $\top \leftarrow \mathsf{SKE}.\mathsf{Verify}(\mathsf{ske}.\mathsf{sk},\mathsf{ske}.\mathsf{cert})$, the challenger outputs \top and sends $(R, R', \mathsf{ske.sk})$ to \mathcal{A}_2 . Otherwise, the challenger outputs \perp and sends \perp to \mathcal{A}_2 .
- 6. \mathcal{A}_2 outputs b'.
- 7. If the challenger outputs \top , then the output of the experiment is b'. Otherwise, the output of the experiment is \perp .

What we have to prove is that

$$\mathsf{Adv}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda) \coloneqq \left| \Pr \Big[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,0) = 1 \Big] - \Pr \Big[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,1) = 1 \Big] \right| \leq \mathsf{negl}(\lambda).$$

We define the following sequence of hybrids. Hyb₁(b): This is identical to $\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,b)$ except that the oracle given to \mathcal{A}_1 is replaced with $H_{R\to H'}$ which is H reprogrammed according to H' on an input R where H' is another independent uniformly random function. More formally, $H_{R\to H'}$ is defined by

$$H_{R \to H'}(R^*) := \begin{cases} H(R^*) & (R^* \neq R) \\ H'(R^*) & (R^* = R). \end{cases}$$

We note that the challenger still uses H to generate h, and the oracle which A_2 uses is still H similarly to the original experiment.

 $\mathsf{Hyb}_2(b)$: This is identical to $\mathsf{Hyb}_1(b)$ except for the following three points. First, the challenger generates h uniformly at random. Second, the oracle given to \mathcal{A}_1 is replaced with H' which is an independent uniformly random function. Third, the oracle given to A_2 is replaced with $H'_{R\to h\oplus \mathsf{ske.sk}}$ which is H'reprogrammed to $h \oplus \mathsf{ske.sk}$ on an input R. More formally, $H'_{R \to h \oplus \mathsf{ske.sk}}$ is defined by

$$H'_{R \to h \oplus \mathsf{ske.sk}}(R^*) \coloneqq \begin{cases} H'(R^*) & (R^* \neq R) \\ h \oplus \mathsf{ske.sk} & (R^* = R). \end{cases}$$

Proposition 3.1. If Σ_{com} is unpredictable, then

$$\left|\Pr\!\left[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,b) = 1\right] - \Pr\!\left[\mathsf{Hyb}_1(b) = 1\right]\right| \leq \mathsf{negl}(\lambda).$$

Proof. The proof is similar to [HMNY21b, Proposition 5.8], but note that this time we have to consider an unbounded adversary after the certificate is issued unlike the case of [HMNY21b]. We assume that $\left|\Pr\left[\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,b)=1\right] - \Pr[\mathsf{Hyb}_1(b)=1]\right|$ is non-negligible, and construct an adversary \mathcal{B} that breaks the unpredictability of Σ_{com} . For notational simplicity, we denote $\mathsf{Exp}^{\mathsf{ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{A}}(\lambda,b)$ by $\mathsf{Hyb}_0(b)$. We consider an algorithm $\widetilde{\mathcal{A}}$ that works as follows. $\widetilde{\mathcal{A}}$ is given an oracle \mathcal{O} , which is either H or $H_{R\to H'}$, and an input z that consists of R and the whole truth table of H, where $R \leftarrow \{0,1\}^{s(\lambda)}$, and H and H' are uniformly random functions. $\widetilde{\mathcal{A}}$ runs $\mathsf{Hyb}_0(b)$ except that it uses its own oracle \mathcal{O} to simulate \mathcal{A}_1 's random oracle queries. On the other hand, $\widetilde{\mathcal{A}}$ uses H to simulate h and h2's random oracle queries regardless of h2, which is possible because the truth table of h3 is included in the input h4. By definition, we have

$$\Pr[\mathsf{Hyb}_0(b)=1] = \Pr\Bigl[\widetilde{\mathcal{A}}^H(R,H)=1\Bigr]$$

and

$$\Pr[\mathsf{Hyb}_1(b) = 1] = \Pr \Big[\widetilde{\mathcal{A}}^{H_{R \to H'}}(R, H) = 1 \Big]$$

where H in the input means the truth table of H. We apply the one-way to hiding lemma (Lemma 2.2) to the above $\widetilde{\mathcal{A}}$. Note that $\widetilde{\mathcal{A}}$ is inefficient, but the one-way to hiding lemma is applicable to inefficient algorithms. Then if we let $\widetilde{\mathcal{B}}$ be the algorithm that measures uniformly chosen query of $\widetilde{\mathcal{A}}$, we have

$$\left|\Pr\Big[\widetilde{\mathcal{A}}^H(R,H)=1\right]-\Pr\Big[\widetilde{\mathcal{A}}^{H_{R\to H'}}(R,H)=1\Big]\right|\leq 2q\sqrt{\Pr\Big[\widetilde{\mathcal{B}}^{H_{R\to H'}}(R,H)=R\Big]}.$$

By the assumption, the LHS is non-negligible, and thus $\Pr\left[\widetilde{\mathcal{B}}^{H_{R\to H'}}(R,H)=R\right]$ is non-negligible.

Let $\widetilde{\mathcal{B}}'$ be the algorithm that is the same as $\widetilde{\mathcal{B}}$ except that it does not take the truth table of H as input, and sets h to be uniformly random string instead of setting $h := H(R) \oplus \mathsf{ske.sk}$. Then we have

$$\Pr \Big[\widetilde{\mathcal{B}}^{H_{R \to H'}}(R,H) = R \Big] = \Pr \Big[\widetilde{\mathcal{B}}'^{H_{R \to H'}}(R) = R \Big].$$

The reason is as follows: First, $\widetilde{\mathcal{B}}$ uses the truth table of H only for generating $h := H(R) \oplus \mathsf{ske.sk}$, because it halts before $\widetilde{\mathcal{B}}$ simulates \mathcal{A}_2 . Second, the oracle $H_{R \to H'}$ reveals no information about H(R), and thus h can be independently and uniformly random.

Moreover, for any fixed R, when H and H' are uniformly random, $H_{R\to H'}$ is also a uniformly random function, and therefore we have

$$\Pr\Bigl[\widetilde{\mathcal{B}}'^{H_{R\to H'}}(R)=R\Bigr]=\Pr\Bigl[\widetilde{\mathcal{B}}'^{H}(R)=R\Bigr].$$

Since $\Pr\left[\widetilde{\mathcal{B}}^{H_{R\to H'}}(R,H)=R\right]$ is non-negligible, $\Pr\left[\widetilde{\mathcal{B}}'^{H}(R)=R\right]$ is also non-negligible. Recall that $\widetilde{\mathcal{B}}'^{H}$ is an algorithm that simulates $\mathsf{Hyb}_{0}(b)$ with the

modification that h is set to be uniformly random and measures randomly chosen \mathcal{A}_1 's query. Then it is straightforward to construct an adversary \mathcal{B} that breaks the unpredictability of Σ_{com} by using $\widetilde{\mathcal{B}}'$. For clarity, let us give the description of \mathcal{B} as follows.

 \mathcal{B} is given Classical.Commit(R;R') from the challenger of $\mathsf{Exp}^{\mathsf{unpre}}_{\Sigma_{\mathsf{com}},\mathcal{B}}(\lambda)$. \mathcal{B} chooses $i \leftarrow [q]$ and runs $\mathsf{Hyb}_1(b)$ until \mathcal{A}_1 makes i-th random oracle query or \mathcal{A}_1 sends the internal state to \mathcal{A}_2 , where \mathcal{B} embeds the problem instance Classical.Commit(R;R') into those sent to \mathcal{A}_1 instead of generating it by itself. \mathcal{B} measures the i-th random oracle query by \mathcal{A}_1 , and outputs the measurement outcome. Note that \mathcal{B} can efficiently simulate the random oracle H by Zhandry's compressed oracle technique [Zha19]. It is clear that the probability that \mathcal{B} outputs R is exactly $\mathsf{Pr} \left[\widetilde{\mathcal{B}}'^H(R) = R \right]$, which is non-negligible. This contradicts the unpredictability of Σ_{com} . Therefore $|\mathsf{Pr}[\mathsf{Hyb}_0(b) = 1] - \mathsf{Pr}[\mathsf{Hyb}_1(b) = 1]|$ is negligible.

Proposition 3.2.
$$\Pr[\mathsf{Hyb}_1(b) = 1] = \Pr[\mathsf{Hyb}_2(b) = 1].$$

Proof. First, let us remind the difference between $\mathsf{Hyb}_1(b)$ and $\mathsf{Hyb}_2(b)$. In $\mathsf{Hyb}_1(b)$, \mathcal{A}_1 receives $h = \mathsf{ske.sk} \oplus H(R)$. Moreover, \mathcal{A}_1 can access to the random oracle $H_{R \to H'}$, and \mathcal{A}_2 can access to the random oracle H. On the other hand, in $\mathsf{Hyb}_2(b)$, \mathcal{A}_1 receives uniformly random h. Moreover, \mathcal{A}_1 can access to the random oracle H' instead of $H_{R \to H'}$, and \mathcal{A}_2 can access to the random oracle $H'_{R \to h \oplus \mathsf{ske.sk}}$ instead of H.

Let $\Pr[(h, H_{R \to H'}, H) = (r, G, G') \mid \mathsf{Hyb}_1(b)]$ be the probability that the adversary \mathcal{A}_1 in $\mathsf{Hyb}_1(b)$ receives a classical bit string r as h, random oracle which \mathcal{A}_1 can access to is G, and random oracle which \mathcal{A}_2 can access to is G'. Similarly, let us define $\Pr[(h, H', H'_{R \to h \oplus \mathsf{ske.sk}}) = (r, G, G') \mid \mathsf{Hyb}_2(b)]$ for $\mathsf{Hyb}_2(b)$. What we have to show is that the following equation holds for any (r, G, G')

$$\Pr[(h, H_{R \to H'}, H) = (r, G, G') \mid \mathsf{Hyb}_1(b)] = \Pr[(h, H', H'_{R \to h \oplus \mathsf{ske} \, \mathsf{sk}}) = (r, G, G') \mid \mathsf{Hyb}_2(b)].$$

Since $h=\mathsf{ske.sk}\oplus H(R)$ in $\mathsf{Hyb}_1(b),\,H$ is a uniformly random function, and h in $\mathsf{Hyb}_2(b)$ is uniformly generated,

$$\Pr[h = r \mid \mathsf{Hyb}_1(b)] = \Pr[h = r \mid \mathsf{Hyb}_2(b)]$$

holds for any r.

For any classical bit string r and any random oracle G, we have

$$\Pr[H_{B \to H'} = G \mid h = r, \mathsf{Hyb}_1(b)] = \Pr[H' = G \mid h = r, \mathsf{Hyb}_2(b)].$$

This is shown as follows. First, in $\mathsf{Hyb}_1(b)$, from the construction of $H_{R \to H'}, H_{R \to H'}(R)$ is independent from h for any $R \in \{0,1\}^{s(\lambda)}$. Furthermore, since H and H' is random oracle, $H_{R \to H'}(R)$ is uniformly random for any $R \in \{0,1\}^{s(\lambda)}$. Second, in $\mathsf{Hyb}_2(b)$, from the construction of H', H'(R) is independent from h for any $R \in \{0,1\}^{s(\lambda)}$. Furthermore, since H' is random oracle, H'(R) is uniformly random for any $R \in \{0,1\}^{s(\lambda)}$. Therefore, we have the above equation.

For any classical bit string r and any random oracles G and G', we have

$$\Pr[H = G' \mid (h, H_{R \to H'}) = (r, G), \mathsf{Hyb}_1(b)] = \Pr\big[H'_{R \to h \oplus \mathsf{ske.sk}} = G' \mid (h, H') = (r, G), \mathsf{Hyb}_2(b)\big].$$

This can be shown as follows. First, in $\mathsf{Hyb}_1(b)$, we obtain $H(R) = r \oplus \mathsf{ske.sk}$, because $h \coloneqq \mathsf{ske.sk} \oplus H(R)$ and h = r. Furthermore, from the definition of $H_{R \to H'}$, we obtain $H(R^*) = G(R^*)$ for $R^* \neq R$. Second, in $\mathsf{Hyb}_2(b)$, from the definition of $H'_{R \to h \oplus \mathsf{ske.sk}}$, we have $H'_{R \to h \oplus \mathsf{ske.sk}}(R) = r \oplus \mathsf{ske.sk}$ and $H'_{R \to h \oplus \mathsf{ske.sk}}(R^*) = G(R^*)$ for $R^* \neq R$.

From all the above discussions, we have

$$\Pr[(h,H_{R\to H'},H)=(r,G,G')\mid \mathsf{Hyb}_1(b)] = \Pr\big[(h,H',H'_{R\to h\oplus \mathsf{ske.sk}})=(r,G,G')\mid \mathsf{Hyb}_2(b)\big].$$

Proposition 3.3. If Σ_{skcd} is OT-CD secure, then

$$|\Pr[\mathsf{Hyb}_2(1)=1] - \Pr[\mathsf{Hyb}_2(0)=1]| \leq \mathsf{negl}(\lambda).$$

Proof. To show this, we assume that $|\Pr[\mathsf{Hyb}_2(1) = 1] - \Pr[\mathsf{Hyb}_2(0) = 1]|$ is non-negligible, and construct an adversary $\mathcal B$ that breaks the OT-CD security of Σ_{skcd} .

 \mathcal{B} plays the experiment $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$ for some $b' \in \{0,1\}$. First, \mathcal{B} sends $(m_0,m_1) \in \mathcal{M}^2$ to the challenger of $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$. \mathcal{B} receives ske.CT from the challenger of $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$. \mathcal{B} generates $R \leftarrow \{0,1\}^{s(\lambda)}$, $R' \leftarrow \{0,1\}^{t(\lambda)}$ and $h \leftarrow \{0,1\}^{r(\lambda)}$, and computes $f \coloneqq \mathsf{Classical.Commit}(R;R')$. \mathcal{B} sends (ske.CT, f,h) to \mathcal{A}_1 . \mathcal{B} simulates the random oracle H' given to \mathcal{A}_1 by itself. At some point, \mathcal{A}_1 sends ske.cert to \mathcal{B} , and sends the internal state to \mathcal{A}_2 . \mathcal{B} passes ske.cert to the challenger of $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$.

The challenger of $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$ runs $\mathsf{SKE.Verify}(\mathsf{ske.sk},\mathsf{ske.cert}) \to \top/\bot$. If it is \top , the challenger sends $\mathsf{ske.sk}$ to \mathcal{B} . In that case, \mathcal{B} outputs \top , and sends $(R,R',\mathsf{ske.sk})$ to \mathcal{A}_2 . We denote this event by $\mathsf{Reveal}_{\mathsf{sk}}(b')$. \mathcal{B} simulates \mathcal{A}_2 , and outputs the output of \mathcal{A}_2 . On the other hand, if $\mathsf{SKE.Verify}(\mathsf{ske.sk},\mathsf{ske.cert}) \to \bot$, then the challenger sends \bot to \mathcal{B} . In that case, \mathcal{B} outputs \bot and aborts. Note that \mathcal{B} can simulate the random oracle $H'_{R\to h\oplus\mathsf{ske.sk}}$ given to \mathcal{A}_2 when \mathcal{B} does not abort, because \mathcal{B} receives $\mathsf{ske.sk}$ from the challenger of $\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b')$ when \mathcal{B} does not abort.

Now we have

 $\begin{aligned} \mathsf{Adv}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda) \\ &\coloneqq \Big| \mathrm{Pr} \Big[\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b') = 1 \mid b' = 0 \Big] - \mathrm{Pr} \Big[\mathsf{Exp}^{\mathsf{otsk-cert-del}}_{\Sigma_{\mathsf{skcd}},\mathcal{B}}(\lambda,b') = 1 \mid b' = 1 \Big] \Big| \\ &= |\mathrm{Pr}[\mathcal{B} = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 0] - \mathrm{Pr}[\mathcal{B} = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 1] | \\ &= |\mathrm{Pr}[\mathcal{A}_2 = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 0] - \mathrm{Pr}[\mathcal{A}_2 = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 1] | \\ &= |\mathrm{Pr}[\mathsf{Hyb}_2(b') = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 0] - \mathrm{Pr}[\mathsf{Hyb}_2(b') = 1 \wedge \mathsf{Reveal}_{\mathsf{sk}}(b') \mid b' = 1] | \\ &= |\mathrm{Pr}[\mathsf{Hyb}_2(b') = 1 \mid b' = 0] - \mathrm{Pr}[\mathsf{Hyb}_2(b') = 1 \mid b' = 1] | \\ &= |\mathrm{Pr}[\mathsf{Hyb}_2(0) = 1] - \mathrm{Pr}[\mathsf{Hyb}_2(1) = 1] |. \end{aligned}$

In the second equation, we have used the fact that $\operatorname{Exp}_{\Sigma_{\operatorname{skcd}},\mathcal{B}}^{\operatorname{otsk-cert-del}}(\lambda,b)=1$ if and only if $\mathcal{B}=1$ and the challenger of $\operatorname{Exp}_{\Sigma_{\operatorname{skcd}},\mathcal{B}}^{\operatorname{otsk-cert-del}}(\lambda,b')$ outputs \top . In the third equation, we have used the fact that the output of \mathcal{B} is equal to the output of \mathcal{A}_2 conditioned that $\operatorname{Reveal}_{\operatorname{sk}}(b')$ occurs. In the fourth equation, we have used the fact that \mathcal{B} simulates the challenger of $\operatorname{Hyb}_2(b)$ when $\operatorname{Reveal}_{\operatorname{sk}}(b)$ occurs. In the fifth equation, we have used the fact that $\operatorname{Hyb}_2(b)=1$ only when $\operatorname{Reveal}_{\operatorname{sk}}(b)$ occurs. Since $|\operatorname{Pr}[\operatorname{Hyb}_2(0)=1]-\operatorname{Pr}[\operatorname{Hyb}_2(1)=1]|$ is non-negligible, $\operatorname{Adv}_{\Sigma_{\operatorname{skcd}},\mathcal{B}}^{\operatorname{otsk-cert-del}}(\lambda)$ is non-negligible. This contradicts the OT-CD security of $\Sigma_{\operatorname{skcd}}$.

By Propositions 3.1 to 3.3, we immediately obtain Theorem 3.2. \Box Proof of Theorem 3.3. This can be shown similarly to Theorem 3.2. \Box

4 Certified Everlasting Zero-Knowledge Proof for QMA

In this section, we define and construct the certified everlasting zero-knowledge proof for **QMA**. In Sec. 4.1, we define the certified everlasting zero-knowledge proof for **QMA**. We then construct a three round protocol with completeness-soundness gap $\frac{1}{\text{poly}(\lambda)}$ in Sec. 4.2, and finally amplify the gap to $1 - \text{negl}(\lambda)$ with the sequential repetition in Sec. 4.3.

4.1 Definition

We first define a quantum interactive protocol. Usually, in zero-knowledge proofs or arguments, we do not consider prover's output. However, in this paper, we also consider prover's output, because we are interested in the certified everlasting zero-knowledge. Furthermore, in this paper, we consider only an interactive proof, which means that a malicious prover is unbounded.

Definition 4.1 (Quantum Interactive Protocol). A quantum interactive protocol is modeled as an interaction between QPT machines \mathcal{P} referred as a prover and \mathcal{V} referred as a verifier. We denote by $\langle \mathcal{P}(x_P), \mathcal{V}(x_V) \rangle(x)$ an execution of the protocol where x is a common input, x_P is \mathcal{P} 's private input, and x_V is \mathcal{V} 's private input. We denote by $\mathrm{OUT}_{\mathcal{V}}\langle \mathcal{P}(x_P), \mathcal{V}(x_V) \rangle(x)$ the final output of \mathcal{V} in the execution. An honest verifier's output is \top indicating acceptance or \bot indicating rejection, and a malicious verifier's output is an arbitrary quantum state. We denote by $\mathrm{OUT}_{\mathcal{P}}\langle \mathcal{P}(x_P), \mathcal{V}(x_V) \rangle(x)$ the final output of \mathcal{P} in the execution. An honest prover's output is \top indicating acceptance or \bot indicating rejection. We also define $\mathrm{OUT'}_{\mathcal{P},\mathcal{V}}\langle \mathcal{P}(x_P), \mathcal{V}(x_V) \rangle(x)$ by

$$\begin{aligned}
&\operatorname{OUT'}_{\mathcal{P},\mathcal{V}}\langle\mathcal{P}(x_P),\mathcal{V}(x_V)\rangle(x) \\
&\coloneqq \begin{cases}
(\top,\operatorname{OUT}_{\mathcal{V}}\langle\mathcal{P}(x_P),\mathcal{V}(x_V)\rangle(x)) & (\operatorname{OUT}_{\mathcal{P}}\langle\mathcal{P}(x_P),\mathcal{V}(x_V)\rangle(x) = \top) \\
(\bot,\bot) & (\operatorname{OUT}_{\mathcal{P}}\langle\mathcal{P}(x_P),\mathcal{V}(x_V)\rangle(x) \neq \top).
\end{aligned}$$

We next define a computational zero-knowledge proof for \mathbf{QMA} , which is the standard definition.

Definition 4.2 (Computational Zero-Knowledge Proof for QMA). A c-complete s-sound computational zero-knowledge proof for a QMA promise problem $A = (A_{yes}, A_{no})$ is a quantum interactive protocol between a QPT prover \mathcal{P} and a QPT verifier \mathcal{V} that satisfies the followings:

c-completeness: For any $x \in A_{ves}$ and any $w \in R_A(x)$,

$$\Pr \Big[\mathsf{Out}_{\mathcal{V}} \langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V} \rangle (\mathsf{x}) = \top \Big] \geq c$$

for some polynomial k.

s-soundness: For any $x \in A_{no}$ and any unbounded-time prover \mathcal{P}^* ,

$$\Pr[\mathsf{Out}_{\mathcal{V}}\langle \mathcal{P}^*, \mathcal{V}\rangle(\mathsf{x}) = \top] \leq s.$$

Computational zero-knowledge: There exists a QPT algorithm S such that

$$\mathsf{OUT}_{\mathcal{V}^*}\langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V}^*(\cdot) \rangle(\mathsf{x}) \approx_c \mathcal{S}(\mathsf{x}, \mathcal{V}^*, \cdot)$$

for any QPT malicious verifier \mathcal{V}^* , any $\mathbf{x} \in A_{\mathsf{yes}} \cap \{0,1\}^{\lambda}$, any $\mathbf{w} \in R_A(\mathbf{x})$, and some polynomial k. Note that $\mathsf{OUT}_{\mathcal{V}^*} \langle \mathcal{P}(\mathbf{w}^{\otimes k(|\mathbf{x}|)}), \mathcal{V}^*(\cdot) \rangle (\mathbf{x})$ and $\mathcal{S}(\mathbf{x}, \mathcal{V}^*, \cdot)$ are quantum channels that map any quantum state ξ to quantum states $\mathsf{OUT}_{\mathcal{V}^*} \langle \mathcal{P}(\mathbf{w}^{\otimes k(|\mathbf{x}|)}), \mathcal{V}^*(\xi) \rangle (\mathbf{x})$ and $\mathcal{S}(\mathbf{x}, \mathcal{V}^*, \xi)$, respectively.

We just call it a computational zero-knowledge proof if it satisfies $(1 - \mathsf{negl}(|\mathsf{x}|))$ -completeness, $\mathsf{negl}(|\mathsf{x}|)$ -soundness, and computational zero-knowledge.

We finally define a certified everlasting zero-knowledge proof for \mathbf{QMA} , which is the main target of this paper.

Definition 4.3 (Certified Everlasting Zero-Knowledge Proof for QMA). A certified everlasting zero-knowledge proof for a QMA promise problem $A = (A_{\text{yes}}, A_{\text{no}})$ is a computational zero-knowledge proof for A (Definition 4.2) that additionally satisfies the followings:

Prover's completeness: $\Pr[OUT_{\mathcal{P}}\langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V}\rangle(\mathsf{x}) = \top] \geq 1 - \mathsf{negl}(\lambda) \ for \ any \ \mathsf{x} \in A_{\mathsf{yes}} \cap \{0, 1\}^{\lambda} \ and \ any \ \mathsf{w} \in R_A(\mathsf{x}).$

Certified everlasting zero-knowledge: There exists a QPT algorithm $\mathcal S$ such that

$$\mathrm{OUT'}_{\mathcal{P},\mathcal{V}^*} \langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V}^*(\cdot) \rangle(\mathsf{x}) \approx_s \mathcal{S}(\mathsf{x},\mathcal{V}^*,\cdot)$$

for any QPT malicious verifier \mathcal{V}^* , any $\mathbf{x} \in A_{\mathsf{yes}} \cap \{0,1\}^{\lambda}$, any $\mathbf{w} \in R_A(\mathbf{x})$, and some polynomial k. Note that $\mathsf{OUT'}_{\mathcal{P},\mathcal{V}^*} \langle \mathcal{P}(\mathbf{w}^{\otimes k(|\mathbf{x}|)}), \mathcal{V}^*(\cdot) \rangle (\mathbf{x})$ and $\mathcal{S}(\mathbf{x},\mathcal{V}^*,\cdot)$ are quantum channels that map any quantum state ξ to quantum states $\mathsf{OUT'}_{\mathcal{P},\mathcal{V}^*} \langle \mathcal{P}(\mathbf{w}^{\otimes k(|\mathbf{x}|)}), \mathcal{V}^*(\xi) \rangle (\mathbf{x})$ and $\mathcal{S}(\mathbf{x},\mathcal{V}^*,\xi)$, respectively.

Remark 4.1. We remark that certified everlasting zero-knowledge does not imply computational zero-knowledge since it does not require anything if the prover does not output \top .

4.2 Construction of Three Round Protocol

In this section, we construct a three round protocol with completeness-soundness gap $\frac{1}{\text{poly}(\lambda)}$. In the next section, we will amplify its completeness-soundness gap by the sequential repetition.

In the following, $n, m, \Pi_c, \rho_{\mathsf{hist}}$, and $\rho_{\mathsf{Sim}}^{\mathsf{x},S}$ are given in Definition 2.2. Let $S_c \subseteq [n]$ be the set of qubits on which Π_c acts non-trivially. The three round protocol Σ_{Ecd} is constructed from commitment with certified everlasting hiding and classical-extractor-based binding, $\Sigma_{\mathsf{ccd}} = (\mathsf{Commit}, \mathsf{Verify}, \mathsf{Del}, \mathsf{Cert})$.

The first action by the prover (commitment phase):

- Generate $x, z \leftarrow \{0, 1\}^n$.
- Compute

$$(\mathsf{com}_i(x_i), \mathsf{d}_i(x_i), \mathsf{ck}_i(x_i)) \leftarrow \mathsf{Commit}(1^\lambda, x_i)$$

 $(\mathsf{com}_i(z_i), \mathsf{d}_i(z_i), \mathsf{ck}_i(z_i)) \leftarrow \mathsf{Commit}(1^\lambda, z_i)$

for all $i \in [n]$.

- Generate a simulatable witness ρ_{hist} for the instance x and generate $X^x Z^z \rho_{\mathsf{hist}} Z^z X^x$.
- Send the first message (commitment), $\mathsf{msg}_1 \coloneqq (X^x Z^z \rho_{\mathsf{hist}} Z^z X^x) \otimes \mathsf{com}(x) \otimes \mathsf{com}(z)$, to the verifier, where $\mathsf{com}(x) \coloneqq \bigotimes_{i=1}^n \mathsf{com}_i(x_i)$ and $\mathsf{com}(z) \coloneqq \bigotimes_{i=1}^n \mathsf{com}_i(z_i)$.

The second action by the verifier (challenge phase):

- Generate $c \leftarrow [m]$.
- Compute $\operatorname{cert}_i(x_i) \leftarrow \operatorname{Del}(\operatorname{com}_i(x_i))$ and $\operatorname{cert}_i(z_i) \leftarrow \operatorname{Del}(\operatorname{com}_i(z_i))$ for all $i \in \overline{S}_c$.
- Send the second message (challenge), $\mathsf{msg}_2 \coloneqq (c, \{\mathsf{cert}_i(x_i), \mathsf{cert}_i(z_i)\}_{i \in \overline{S}_c})$, to the prover.

The third action by the prover (reply phase):

- Send the third message (reply), $\mathsf{msg}_3 \coloneqq \{\mathsf{d}_i(x_i), \mathsf{d}_i(z_i)\}_{i \in S_c}$, to the verifier
- Output \top if \top \leftarrow Cert(cert_i(x_i), ck_i(x_i)) and \top \leftarrow Cert(cert_i(z_i), ck_i(z_i)) for all $i \in \overline{S}_c$, and output \bot otherwise.

The fourth action by the verifier (verification phase):

- Compute $x'_i \leftarrow \mathsf{Verify}(\mathsf{com}_i(x_i), \mathsf{d}_i(x_i))$ and $z'_i \leftarrow \mathsf{Verify}(\mathsf{com}_i(z_i), \mathsf{d}_i(z_i))$ for all $i \in S_c$. If $x'_i = \bot$ or $z'_i = \bot$ for at least one $i \in S_c$, output \bot and abort.
- Apply $X_i^{x_i'}Z_i^{z_i'}$ on the *i*-th qubit of $X^xZ^z\rho_{\mathsf{hist}}Z^zX^x$ for each $i\in S_c$, and perform the POVM measurement $\{\Pi_c, I-\Pi_c\}$ on the state.
- Output \top if the result Π_c is obtained, and output \bot otherwise.

Theorem 4.1. $\Sigma_{\Xi cd}$ is a certified everlasting zero-knowledge proof for QMA with $(1 - negl(\lambda))$ -completeness and $\left(1 - \frac{1}{poly(\lambda)}\right)$ -soundness.

This is shown from the following Lemmata 4.1 to 4.4.

Lemma 4.1. $\Sigma_{\Xi cd}$ satisfies the $(1 - negl(\lambda))$ -completeness and prover's completeness.

Lemma 4.2. If Σ_{ccd} is classical-extractor-based binding, then $\Sigma_{\Xi\mathsf{cd}}$ satisfies $\left(1 - \frac{1}{\mathrm{poly}(\lambda)}\right)$ -soundness.

Lemma 4.3. If Σ_{ccd} is certified everlasting hiding and computational hiding, then $\Sigma_{\Xi cd}$ satisfies certified everlasting zero-knowledge.

Lemma 4.4. If Σ_{ccd} is computational hiding, then $\Sigma_{\Xi\mathsf{cd}}$ satisfies computational zero-knowledge.

Proof of Lemma 4.1. It is clear from the definition of k-SimQMA (Definition 2.2) and the correctness of Σ_{ccd} .

Proof of Lemma 4.2. Let us show the soundness by analyzing the case for $x \in A_{no}$. The prover sends the first message to the verifier. The first message consists of three registers, RS, RCX, and RCZ. The register RCX further consists of n registers $\{RCX_i\}_{i\in[n]}$. The register RCZ also consists of n registers $\{RCZ_i\}_{i\in[n]}$. If the prover is honest, RS contains $X^xZ^z\rho_{\mathsf{hist}}Z^zX^x$, RCX_i contains $\mathsf{com}_i(x_i)$, and RCZ_i contains $\mathsf{com}_i(z_i)$. Let $\mathsf{com}'_{i,x}$ and $\mathsf{com}'_{i,z}$ be the (reduced) states of the registers RCX_i and RCZ_i , respectively. Let $f'_{i,x}$ and $f'_{i,z}$ be classical parts of $\mathsf{com}'_{i,x}$ and $\mathsf{com}'_{i,z}$, respectively.

The verifier generates $c \leftarrow [m]$, and issues the deletion certificate. The verifier sends c and the deletion certificate to the prover. The verifier then receives $\{\mathsf{d}_1^{x,i},\mathsf{d}_2^{x,i},\mathsf{d}_1^{z,i},\mathsf{d}_2^{z,i}\}_{i\in S_c}$ from the prover. For each $i\in [n]$, let us define $\mathsf{d}_1^{*,x,i}$ and $\mathsf{d}_1^{*,z,i}$ by $\mathsf{d}_1^{*,x,i}\leftarrow \mathsf{Ext}(f'_{i,x})$ and $\mathsf{d}_1^{*,z,i}\leftarrow \mathsf{Ext}(f'_{i,z})$, respectively. Note that each $\mathsf{d}_1^{*,x,i}$ and $\mathsf{d}_1^{*,z,i}$ is independent of c, because $\mathsf{com}'_{i,x}$ and $\mathsf{com}'_{i,z}$ are sent to the verifier before the verifier chooses c.

We have only to consider the case when $\mathsf{d}_1^{x,i} = \mathsf{d}_1^{*,x,i}$ and $\mathsf{d}_1^{z,i} = \mathsf{d}_1^{*,z,i}$ for all $i \in S_c$, because of the following reason: Due to the classical-extractor-based binding of Σ_{ccd} , $\mathsf{Verify}(\mathsf{com}'_{i,x}, (\mathsf{d}_1^{x,i}, \mathsf{d}_2^{x,i})) = \bot$ for any $\mathsf{d}_1^{x,i} \neq \mathsf{d}_1^{*,x,i}$ and any $\mathsf{d}_2^{x,i}$. Similarly, $\mathsf{Verify}(\mathsf{com}'_{i,z}, (\mathsf{d}_1^{z,i}, \mathsf{d}_2^{z,i})) = \bot$ for any $\mathsf{d}_1^{z,i} \neq \mathsf{d}_1^{*,z,i}$ and any $\mathsf{d}_2^{z,i}$. Therefore, the prover who wants to make the verifier accept has to send $\mathsf{d}_1^{x,i} = \mathsf{d}_1^{*,x,i}$ and $\mathsf{d}_1^{z,i} = \mathsf{d}_1^{*,z,i}$ for all $i \in S_c$.

Let us define

$$p(x,z) \coloneqq \Pr\left[\bigwedge_{i \in [n]} \left(\mathsf{Verify}_2(\mathsf{com}'_{i,x}, \mathsf{d}_1^{*,x,i}) \to x_i \wedge \mathsf{Verify}_2(\mathsf{com}'_{i,z}, \mathsf{d}_1^{*,z,i}) \to z_i \right) \right].$$

Note that p(x, z) is independent of c, because $\{\mathsf{com}'_{i,x}, \mathsf{com}'_{i,z}\}_{i \in [n]}$ and $\{\mathsf{d}_1^{*,x,i}, \mathsf{d}_1^{*,z,i}\}_{i \in [n]}$ are independent of c. Let ψ be the (reduced) state of the register RS. The verifier's

acceptance probability is

$$\begin{split} &\frac{1}{m}\sum_{c\in[m]}\sum_{x,z\in\{0,1\}^n}p(x,z)\operatorname{Tr}\left[\Pi_c\left(\prod_{i\in S_c}Z_i^{z_i}X_i^{x_i}\right)\psi\left(\prod_{i\in S_c}X_i^{x_i}Z_i^{z_i}\right)\right]\\ &=\frac{1}{m}\sum_{c\in[m]}\sum_{x,z\in\{0,1\}^n}p(x,z)\operatorname{Tr}\left[\Pi_c\left(\prod_{i\in[n]}Z_i^{z_i}X_i^{x_i}\right)\psi\left(\prod_{i\in[n]}X_i^{x_i}Z_i^{z_i}\right)\right]\\ &=\frac{1}{m}\sum_{c\in[m]}\operatorname{Tr}\left[\Pi_c\sum_{x,z\in\{0,1\}^n}p(x,z)\left(\prod_{i\in[n]}Z_i^{z_i}X_i^{x_i}\right)\psi\left(\prod_{i\in[n]}X_i^{x_i}Z_i^{z_i}\right)\right]\\ &\leq 1-\frac{1}{\operatorname{poly}(\lambda)}, \end{split}$$

where the last inequality comes from Definition 2.2. This completes the proof. \Box

Proof of Lemma 4.3. Let us show certified everlasting zero-knowledge. For a subset $S_c \subseteq [n]$ and $x, z \in \{0,1\}^n$, let us define $x^{S_c} \coloneqq (x_1^{S_c}, x_2^{S_c}, \cdots, x_n^{S_c})$ and $z^{S_c} \coloneqq (z_1^{S_c}, z_2^{S_c}, \cdots, z_n^{S_c})$, where $x_i^{S_c} = x_i$ and $z_i^{S_c} = z_i$ for $i \in S_c$, and $x_i^{S_c} = z_i^{S_c} = 0$ for $i \notin S_c$.

For clarity, we describe how the interactive algorithm $\langle \mathcal{P}(w^{\otimes k(|x|)}), \mathcal{V}^*(\xi) \rangle(x)$ runs against a QPT verifier \mathcal{V}^* with an input ξ , where w is the witness and x is the instance.

$$\langle \mathcal{P}(\mathbf{w}^{\otimes k(|\mathbf{x}|)}), \mathcal{V}^*(\xi) \rangle(\mathbf{x})$$
:

1. \mathcal{P} generates $x, z \leftarrow \{0,1\}^n$, and computes

$$\begin{aligned} &(\mathsf{com}_i(x_i), \mathsf{d}_i(x_i), \mathsf{ck}_i(x_i)) \leftarrow \mathsf{Commit}(1^\lambda, x_i) \\ &(\mathsf{com}_i(z_i), \mathsf{d}_i(z_i), \mathsf{ck}_i(z_i)) \leftarrow \mathsf{Commit}(1^\lambda, z_i) \end{aligned}$$

for all $i \in [n]$. \mathcal{P} sends $\mathsf{msg}_1 \coloneqq (X^x Z^z \rho_\mathsf{hist} Z^z X^x) \otimes \mathsf{com}(x) \otimes \mathsf{com}(z)$ to \mathcal{V}^* .

- 2. \mathcal{V}^* appends ξ to the received state, and runs a QPT circuit V_1^* on it to obtain $(c, \{\mathsf{cert}'_{i,x}, \mathsf{cert}'_{i,z}\}_{i \in \overline{S}_c})$. \mathcal{V}^* sends $\mathsf{msg}_2 \coloneqq (c, \{\mathsf{cert}'_{i,x}, \mathsf{cert}'_{i,z}\}_{i \in \overline{S}_c})$ to \mathcal{P} .
- 3. \mathcal{P} sends $\mathsf{msg}_3 \coloneqq \{\mathsf{d}_i(x_i), \mathsf{d}_i(z_i)\}_{i \in S_c}$ to \mathcal{V}^* .
- 4. \mathcal{V}^* appends msg_3 to its state, and runs a QPT circuit V_2^* on it. \mathcal{V}^* outputs its state ξ' .
- 5. \mathcal{P} computes $\mathsf{Cert}(\mathsf{cert}'_{i,x}, \mathsf{ck}_i(x_i))$ and $\mathsf{Cert}(\mathsf{cert}'_{i,z}, \mathsf{ck}_i(z_i))$ for all $i \in \overline{S}_c$. If all outputs are \top , then \mathcal{P} outputs \top . Otherwise, \mathcal{P} outputs \bot .

Next, let us define a simulator $\mathcal{S}^{(1)}$ as follows.

The simulator $S^{(1)}(x, \mathcal{V}^*, \xi)$:

1. Pick $c \leftarrow [m]$ and $x, z \leftarrow \{0, 1\}^n$. Compute

$$\begin{split} &(\mathsf{com}_i(x_i^{S_c}), \mathsf{d}_i(x_i^{S_c}), \mathsf{ck}_i(x_i^{S_c})) \leftarrow \mathsf{Commit}(1^\lambda, x_i^{S_c}) \\ &(\mathsf{com}_i(z_i^{S_c}), \mathsf{d}_i(z_i^{S_c}), \mathsf{ck}_i(z_i^{S_c})) \leftarrow \mathsf{Commit}(1^\lambda, z_i^{S_c}) \end{split}$$

for all $i \in [n]$.

- 2. Generate $(X^xZ^z\sigma(c)Z^zX^x)\otimes \operatorname{com}(x^{S_c})\otimes \operatorname{com}(z^{S_c})\otimes \xi$, where $\sigma(c)\coloneqq \rho_{\operatorname{sim}}^{x,S_c}\otimes \left(\prod_{i\in\overline{S}_c}|0\rangle\langle 0|_i\right)$. Run V_1^* on the state to obtain $(c',\{\operatorname{cert}'_{i,x},\operatorname{cert}'_{i,z}\}_{i\in\overline{S}_{c'}})$.
- 3. If $c' \neq c$, abort and output a fixed state η and the flag state fail.
- 4. Append $\{d_i(x_i^{S_c}), d_i(z_i^{S_c})\}_{i \in S_c}$ to its quantum state, and run V_2^* on the state to obtain ξ' .
- 5. Compute $\mathsf{Cert}(\mathsf{cert}'_{i,x}, \mathsf{ck}_i(x_i^{S_c}))$ and $\mathsf{Cert}(\mathsf{cert}'_{i,z}, \mathsf{ck}_i(z_i^{S_c}))$ for all $i \in \overline{S}_c$. If all outputs are \top , then output the state (\top, ξ') . Otherwise, output (\bot, \bot) . Also output the flag state success.

Let us also define other two simulators, $\mathcal{S}^{(2)}$ and $\mathcal{S}^{(3)}$, as follows.

The simulator $S^{(2)}(x, w^{\otimes k(|x|)}, \mathcal{V}^*, \xi)$: It is the same as $S^{(1)}$ except that $\sigma(c)$ is replaced with ρ_{hist} .

The simulator $\mathcal{S}^{(3)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\xi)$: $\mathcal{S}^{(3)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\cdot)$ is the channel that postselects the output of $\mathcal{S}^{(2)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\cdot)$ on the non-aborting state. More precisely, if we write $\mathcal{S}^{(2)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\rho_{in})=p\rho_{out}\otimes\mathsf{success}+(1-p)\eta\otimes\mathsf{fail}$, where p is the non-aborting probability, $\mathcal{S}^{(3)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\rho_{in})=\rho_{out}$.

Lemma 4.3 is shown from the following Propositions 4.1 to 4.3 (whose proofs will be given later) and quantum rewinding lemma (Lemma 2.1), which is used to reduce the probability that $\mathcal{S}^{(1)}$ aborts to $\operatorname{negl}(\lambda)$. In fact, from Proposition 4.1 and Lemma 2.1, there exists a quantum circuit $\mathcal{S}^{(0)}$ of size at most $O(m\operatorname{poly}(n)\operatorname{size}(\mathcal{S}^{(1)}))$ such that the probability that $\mathcal{S}^{(0)}$ aborts is $\operatorname{negl}(\lambda)$, and the output quantum states of $\mathcal{S}^{(0)}$ and $\mathcal{S}^{(1)}$ are $\operatorname{negl}(\lambda)$ -close when they do not abort. From Propositions 4.2 and 4.3, $\mathcal{S}^{(0)}$ is $\operatorname{negl}(\lambda)$ -close to the real protocol, which completes the proof.

Proposition 4.1. If Σ_{ccd} is computationally hiding, then the probability that $\mathcal{S}^{(1)}$ does not abort is $\frac{1}{m} \pm \mathsf{negl}(\lambda)$.

Proposition 4.2. $\mathcal{S}^{(1)}(\mathsf{x},\mathcal{V}^*,\cdot) \approx_s \mathcal{S}^{(2)}(\mathsf{x},\mathsf{w}^{\otimes k(|\mathsf{x}|)},\mathcal{V}^*,\cdot)$ for any $\mathsf{x} \in A_{\mathsf{yes}} \cap \{0,1\}^{\lambda}$ and any $\mathsf{w} \in R_A(\mathsf{x})$.

Proposition 4.3. If Σ_{ccd} is certified everlasting hiding, $\mathcal{S}^{(3)}(\mathsf{x}, \mathsf{w}^{\otimes k(|\mathsf{x}|)}, \mathcal{V}^*, \cdot) \approx_s \mathsf{OUT'}_{\mathcal{P}, \mathcal{V}^*} \langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V}^*(\cdot) \rangle(\mathsf{x}).$

Proof of Proposition 4.1. This can be shown similarly to [BG20, Lemma 5.6]. \square

Proof of Proposition 4.2. It is clear from the local simulatability (Definition 2.2) and the definition of x^{S_c} and z^{S_c} (all $x_i^{S_c}$ and $z_i^{S_c}$ are 0 except for those in $i \in S_c$).

Proof of Proposition 4.3. We prove the proposition by contradiction. We construct an adversary \mathcal{B} that breaks the security of the certified everlasting hiding

of Σ_{ccd} by assuming the existence of a distinguisher \mathcal{D} that distinguishes two states δ_0 and δ_1 ,

$$\delta_0 := (\mathsf{OUT'}_{\mathcal{P},\mathcal{V}^*} \langle \mathcal{P}(\mathsf{w}^{\otimes k(|\mathsf{x}|)}), \mathcal{V}^*(\cdot) \rangle(\mathsf{x}) \otimes I) \sigma$$

$$\delta_1 := (\mathcal{S}^{(3)}(\mathsf{x}, \mathsf{w}^{\otimes k(|\mathsf{x}|)}, \mathcal{V}^*, \cdot) \otimes I) \sigma,$$

with a certain state σ . Let us describe how \mathcal{B} works.

- 1. \mathcal{B} generates $c \leftarrow [m]$ and $x, z \leftarrow \{0, 1\}^n$.
- 2. \mathcal{B} sends $m_0 := \{x_i, z_i\}_{i \in \overline{S}_c}$ and $m_1 := 0^{2n-10}$ to the challenger of $\mathsf{Exp}^{\mathsf{bit-ever-hide}}_{\Sigma_{\mathsf{ccd}}, \mathcal{B}}(\lambda, b)$. \mathcal{B} receives commitments from the challenger which is either $\{\mathsf{com}_i(x_i), \mathsf{com}_i(z_i)\}_{i \in \overline{S}_c}$ or $\{\mathsf{com}_i(0), \mathsf{com}_i(0)\}_{i \in \overline{S}_c}$.
- 3. \mathcal{B} computes

$$(\mathsf{com}_i(x_i), \mathsf{d}_i(x_i), \mathsf{ck}_i(x_i)) \leftarrow \mathsf{Commit}(1^\lambda, x_i)$$

 $(\mathsf{com}_i(z_i), \mathsf{d}_i(z_i), \mathsf{ck}_i(z_i)) \leftarrow \mathsf{Commit}(1^\lambda, z_i)$

for $i \in S_c$ by itself.

- 4. \mathcal{B} generates $X^xZ^z\rho_{\mathsf{hist}}Z^zX^x$. \mathcal{B} appends commitments and σ to the quantum state. If the commitments for $i\in \overline{S}_c$ are $\{\mathsf{com}_i(x_i),\mathsf{com}_i(z_i)\}_{i\in \overline{S}_c}$, \mathcal{B} obtains $(X^xZ^z\rho_{\mathsf{hist}}Z^zX^x)\otimes\mathsf{com}(x)\otimes\mathsf{com}(z)\otimes\sigma$. If the commitments for $i\in \overline{S}_c$ are $\{\mathsf{com}_i(0),\mathsf{com}_i(0)\}_{i\in \overline{S}_c}$, \mathcal{B} obtains $(X^xZ^z\rho_{\mathsf{hist}}Z^zX^x)\otimes\mathsf{com}(x^{S_c})\otimes\mathsf{com}(z^{S_c})\otimes\sigma$.
- 5. \mathcal{B} runs V_1^* on it to obtain $(c', \{\mathsf{cert}'_{i,x}, \mathsf{cert}'_{i,z}\}_{i \in \overline{S}_{c'}})$. \mathcal{B} aborts when $c \neq c'$.
- 6. \mathcal{B} appends $\{d_i(x_i), d_i(z_i)\}_{i \in S_c}$ to the post-measurement state and runs V_2^* on it to obtain σ' .
- 7. \mathcal{B} sends $\{\mathsf{cert}'_{i,x}, \mathsf{cert}'_{i,z}\}_{i \in \overline{S}_c}$ to the challenger of $\mathsf{Exp}^{\mathsf{bit-ever-hide}}_{\Sigma_{\mathsf{ccd}},\mathcal{B}}(\lambda, b)$, and receives \bot or $\{\mathsf{d}_i(x_i), \mathsf{d}_i(z_i)\}_{i \in \overline{S}_c}$ and $\{\mathsf{ck}_i(x_i), \mathsf{ck}_i(z_i)\}_{i \in \overline{S}_c}$ from the challenger.
- 8. \mathcal{B} passes (\bot, \bot) to \mathcal{D} if \mathcal{B} receives \bot from the challenger, and passes (\top, σ') to \mathcal{D} otherwise.
- 9. When \mathcal{D} outputs b, \mathcal{B} outputs b.

When $\mathcal B$ receives $\{\mathsf{com}_i(x_i), \mathsf{com}_i(z_i)\}_{i\in\overline{S}_c}$ from the challenger and it does not abort, it simulates $\mathsf{OUT}'_{\mathcal P,\mathcal V^*}\langle\mathcal P(\mathsf w^{\otimes k(|\mathsf x|)}),\mathcal V^*(\cdot)\rangle(\mathsf x)$. Because $(X^xZ^z\rho_{\mathsf{hist}}Z^zX^x)\otimes \mathsf{com}(x)\otimes \mathsf{com}(z)\otimes \sigma$ is independent of c, the probability that $\mathcal B$ does not abort is $\frac{1}{m}$. Therefore, $\mathcal B$ can simulate $\mathsf{OUT}'_{\mathcal P,\mathcal V^*}\langle\mathcal P(\mathsf w^{\otimes k(|\mathsf x|)}),\mathcal V^*(\cdot)\rangle(\mathsf x)$ with probability $\frac{1}{m}$.

When \mathcal{B} receives $\{\mathsf{com}_i(0), \mathsf{com}_i(0)\}_{i \in \overline{S}_c}$ from the challenger and it does not abort, it simulates $\mathcal{S}^{(3)}(\mathsf{x}, \mathsf{w}^{\otimes k(|\mathsf{x}|)}, \mathcal{V}^*, \cdot)$. The probability that \mathcal{B} does not abort is $\frac{1}{m} \pm \mathsf{negl}(\lambda)$ from Propositions 4.1 and 4.2. Therefore, \mathcal{B} can simulate $\mathcal{S}^{(3)}(\mathsf{x}, \mathsf{w}^{\otimes k(|\mathsf{x}|)}, \mathcal{V}^*, \cdot)$ with probability $\frac{1}{m} \pm \mathsf{negl}(\lambda)$.

Therefore, if there exists a distinguisher \mathcal{D} that distinguishes δ_0 and δ_1 , \mathcal{B} can distinguish $\{\mathsf{com}_i(x_i), \mathsf{com}_i(z_i)\}_{i \in \overline{S}_c}$ from $\{\mathsf{com}_i(0), \mathsf{com}_i(0)\}_{i \in \overline{S}_c}$. From Lemma 3.1, this contradicts the certified everlasting hiding of Σ_{ccd} .

Proof of Lemma 4.4. Computational zero-knowledge can be proven similarly to [BG20, Lemma 5.3] because our protocol is identical to theirs if we ignore the deletion certificates, which are irrelevant to the computational zero-knowledge property.

4.3 Sequential Repetition for Certified Everlasting Zero-Knowledge Proof for QMA

We can amplify the completeness-soundness gap of the three-round protocol constructed in the previous section by sequential repetition. See the full version [HMNY21a] for details.

Acknowledgements. TH is supported by JSPS research fellowship and by JSPS KAKENHI No. JP22J21864. TM is supported by JST Moonshot R&D JPMJMS2061-5-1-1, JST FOREST, MEXT QLEAP, the Grant-in-Aid for Scientific Research (B) No.JP19H04066, the Grant-in Aid for Transformative Research Areas (A) 21H05183, and the Grant-in-Aid for Scientific Research (A) No.22H00522.

References

- ACGH20. Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive classical verification of quantum computation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 153–180. Springer, Heidelberg, November 2020.
- AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, *CRYPTO 2019*, *Part II*, volume 11693 of *LNCS*, pages 269–295. Springer, Heidelberg, August 2019.
- BB21. Nir Bitansky and Zvika Brakerski. Classical binding for quantum commitments. IACR Cryptol. ePrint Arch., 2021:1001, 2021.
- BCKM21. James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On the round complexity of secure quantum computation. In Tal Malkin and Chris Peikert, editors, *CRYPTO 2021, Part I*, volume 12825 of *LNCS*, pages 406–435, Virtual Event, August 2021. Springer, Heidelberg.
- BDF⁺11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
- BG20. Anne Broadbent and Alex B. Grilo. QMA-hardness of consistency of local density matrices with applications to quantum zero-knowledge. In 61st FOCS, pages 196–205. IEEE Computer Society Press, November 2020.
- BI20. Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 92–122. Springer, Heidelberg, November 2020.
- BJSW16. Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zeroknowledge proof systems for QMA. In Irit Dinur, editor, 57th FOCS, pages 31–40. IEEE Computer Society Press, October 2016.

- BM21. James Bartusek and Giulio Malavolta. Candidate obfuscation of null quantum circuits and witness encryption for QMA. *IACR Cryptology ePrint Archive*, 2021:421, 2021.
- BS20. Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, 52nd ACM STOC, pages 269–279. ACM Press, June 2020.
- BY20. Zvika Brakerski and Henry Yuen. Quantum garbled circuits. $arXiv:2006.01085,\ 2020.$
- CCKV08. André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis, and Salil P. Vadhan. Interactive and noninteractive zero knowledge are equivalent in the help model. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 501–534. Springer, Heidelberg, March 2008.
- CDMS04. Claude Crépeau, Paul Dumais, Dominic Mayers, and Louis Salvail. Computational collapse of quantum state with application to oblivious transfer. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 374–393. Springer, Heidelberg, February 2004.
- CM21. Orestis Chardouvelis and Giulio Malavolta. The round complexity of quantum zero-knowledge. *IACR Cryptol. ePrint Arch.*, 2021.
- CVZ20. Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-knowledge arguments for QMA, with preprocessing. In Daniele Micciancio and Thomas Ristenpart, editors, *CRYPTO 2020, Part III*, volume 12172 of *LNCS*, pages 799–828. Springer, Heidelberg, August 2020.
- DFR⁺07. Ivan Damgård, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. A tight high-order entropic quantum uncertainty relation with applications. In Alfred Menezes, editor, *CRYPTO 2007*, volume 4622 of *LNCS*, pages 360–378. Springer, Heidelberg, August 2007.
- DFS04. Ivan Damgård, Serge Fehr, and Louis Salvail. Zero-knowledge proofs and string commitments withstanding quantum attacks. In Matthew Franklin, editor, *CRYPTO 2004*, volume 3152 of *LNCS*, pages 254–272. Springer, Heidelberg, August 2004.
- For 87. Lance Fortnow. The complexity of perfect zero-knowledge (extended abstract). In Alfred Aho, editor, 19th ACM STOC, pages 204–209. ACM Press, May 1987.
- FUW⁺20. Junbin Fang, Dominique Unruh, Jian Weng, Jun Yan, and Dehua Zhou. How to base security on the perfect/statistical binding property of quantum bit commitment? *IACR Cryptol. ePrint Arch.*, 2020:621, 2020.
- GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.
- GSV98. Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In 30th ACM STOC, pages 399–408. ACM Press, May 1998.
- GSY19. Alex Bredariol Grilo, William Slofstra, and Henry Yuen. Perfect zero knowledge for quantum multiprover interactive proofs. In David Zuckerman, editor, 60th FOCS, pages 611–635. IEEE Computer Society Press, November 2019.
- HMNY21a. Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified everlasting zero-knowledge proof for QMA. IACR Cryptol. ePrint Arch., 2021:1315, 2021.

- HMNY21b. Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum encryption with certified deletion, revisited: Public key, attribute-based, and classical communication. IACR Cryptol. ePrint Arch., 2021:617, 2021.
- Kob03. Hirotada Kobayashi. Non-interactive quantum perfect and statistical zero-knowledge. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, Algorithms and Computation, 14th International Symposium, ISAAC 2003, Kyoto, Japan, December 15-17, 2003, Proceedings, volume 2906 of Lecture Notes in Computer Science, pages 178–188. Springer, 2003.
- LC97. Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys. Rev. Lett., 78:3410–3413, 1997.
- LS19. Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments. Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/279.
- May97. Dominic Mayers. Unconditionally secure quantum bit commitment is impossible. *Phys. Rev. Lett.*, 78:3414–3417, 1997.
- MW18. Sanketh Menda and John Watrous. Oracle separations for quantum statistical zero-knowledge. arXiv:1801.08967, 2018.
- MY21. Tomoyuki Morimae and Takashi Yamakawa. Classically verifiable (dual-mode) NIZK for QMA with preprocessing. arXiv:2102.09149, 2021.
- Shm21. Omri Shmueli. Multi-theorem designated-verifier NIZK for QMA. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 375–405, Virtual Event, August 2021. Springer, Heidelberg.
- Unr
13. Dominique Unruh. Everlasting multi-party computation. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 380–397. Springer, Heidelberg, August 2013.
- Unr
15. Dominique Unruh. Revocable quantum timed-release encryption. J. ACM,
 $62(6):49:1-49:76,\ 2015.$
- Wat02. John Watrous. imits on the power of quantum statistical zero-knowledge. In 43rd FOCS, pages 459–470. IEEE Computer Society Press, November 2002.
- Wat
09. John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput.,
 $39(1):25-58,\ 2009.$
- Yan20. Jun Yan. Quantum computationally predicate-binding commitment with application in quantum zero-knowledge argument for NP. *IACR Cryptol.* ePrint Arch., 2020:1510, 2020.
- YWLQ15. Jun Yan, Jian Weng, Dongdai Lin, and Yujuan Quan. Quantum bit commitment with application in quantum zero-knowledge proof (extended abstract). In Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms and Computation 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, volume 9472 of Lecture Notes in Computer Science, pages 555-565. Springer, 2015.
- Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors, *CRYPTO 2019*, *Part II*, volume 11693 of *LNCS*, pages 239–268. Springer, Heidelberg, August 2019.