
Formalizing Delayed Adaptive Corruptions and
the Security of Flooding Networks⋆

Christian Matt1[0000−0001−5900−336X], Jesper Buus
Nielsen2[0000−0002−7074−0683], and Søren Eller Thomsen2[0000−0002−6931−4740]

1 Concordium, Zurich, Switzerland cm@concordium.com
2 Concordium Blockchain Research Center, Aarhus University, Denmark

{jbn,sethomsen}@cs.au.dk

Abstract. Many decentralized systems rely on flooding protocols for
message dissemination. In such a protocol, the sender of a message sends it
to a randomly selected set of peers. These peers again send the message to
their randomly selected peers, until every network participant has received
the message. This type of protocols clearly fail in face of an adaptive
adversary who can simply corrupt all peers of the sender and thereby
prevent the message from being delivered. Nevertheless, flooding protocols
are commonly used within protocols that aim to be cryptographically
secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees,
especially in the setting of a blockchain that is supposed to run for an
extended period of time.
To be able to provide meaningful security guarantees in such settings,
we give precise semantics to what we call δ-delayed adversaries in the
Universal Composability (UC) framework. Such adversaries can adaptively
corrupt parties, but there is a delay of time δ from when an adversary
decides to corrupt a party until they succeed in overtaking control of
the party. Within this model, we formally prove the intuitive result that
flooding protocols are secure against δ-delayed adversaries when δ is at
least the time it takes to send a message from one peer to another plus
the time it takes the recipient to resend the message. To this end, we show
how to reduce the adaptive setting with a δ-delayed adversary to a static
experiment with an Erdős–Rényi graph. Using the established theory of
Erdős–Rényi graphs, we provide upper bounds on the propagation time
of the flooding functionality for different neighborhood sizes of the gossip
network. More concretely, we show the following for security parameter κ,
point-to-point channels with delay at most ∆, and n parties in total, with
a sufficiently delayed adversary that can corrupt any constant fraction of
the parties: If all parties send to Ω(κ) parties on average, then we can
realize a flooding functionality with maximal delay O

(
∆ · log(n)

)
; and if

all parties send to Ω
(√

κn
)

parties on average, we can realize a flooding
functionality with maximal delay O(∆).

⋆ Partially funded by The Concordium Foundation; The Danish Independent Research
Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg Foundation
under the Semper Ardens Research Project CF18-112 (BCM).

mailto:cm@concordium.com
cm@concordium.com
mailto:jbn@cs.au.dk
mailto:sethomsen@cs.au.dk

2 Matt, Nielsen, and Thomsen

Keywords: adaptive adversaries · corruption models · universal composability
· flooding networks · peer-to-peer networks · blockchain

1 Introduction

1.1 Motivation

In Nakamoto-style blockchains (NSBs) such as Bitcoin [36], several parties con-
tinuously try to solve cryptographic puzzles. The first party solving the puzzle
“wins” the right to create a new block extending the previously longest chain.
This block is then distributed to all other parties, who continue solving puzzles
to create the next block. Extensive research has shown for different variation of
NSBs that security can be guaranteed if a majority of the puzzles are solved by
honest parties and if blocks can be propagated fast enough to ensure with high
probability that the next winner has learned about the previous block before
creating a new block [20,21,38,40].

Since future block creators are unpredictable, these protocols have a high
resilience against adaptive corruptions. Intuitively, the only chance to exploit
the adaptivity of corruptions is to corrupt a party after learning that it has
solved a puzzle and subsequently prevent this party from distributing the created
block. An adversary with the power to stop messages from being delivered (or
changing the message) by corrupting the sender after sending but before the
message is delivered, is often referred to as strongly adaptive [1]. On the other
hand, if messages from honest senders are guaranteed to be delivered regardless
of whether the sender gets corrupted before delivery, the adversary is only weakly
adaptive, or equivalently, atomic message send (AMS) [19] is assumed.

Indeed, several papers [20,21,38] have proven the security of Bitcoin’s consen-
sus against adaptive corruptions, and Ouroboros Praos [15] has been developed
as a proof-of-stake blockchain with resilience against fully adaptive corruptions
as one of the main selling points. To achieve this, these papers have to assume
atomic message dissemination. In reality, however, NSBs typically use complex
peer-to-peer networks to disseminate blocks, in which each party propagates
messages to only a small set of other parties (referred to as their neighbors), who
will then propagate it to their neighbors and so forth. Even if the point-to-point
channels between neighbors allow atomic sends, the overall network will not
provide this guarantee because an adaptive adversary can simply corrupt all
neighbors of the sender and thereby stop the block from being propagated. Hence,
when considering the full protocol, which combines a NSB with a peer-to-peer
flooding network, security against fully adaptive corruptions can no longer be
guaranteed.

Formalizing delayed adaptive corruptions. To provide meaningful guarantees
to blockchain protocols including their peer-to-peer network, we observe that
intuitively, one needs to restrict the corruption speed of an adversary such that
parties in the peer-to-peer network have enough time to pass on the block they
receive before being corrupted. Based on this observation, we introduce a precise

Delayed Adaptive Corruptions and the Security of Flooding Networks 3

model for δ-delayed adversaries in the Universal Composability framework [7].
Using this model, one can quantify the minimum amount of time δ it takes from
when an adversary targets and starts attacking a specific party until this party
is actually under adversarial control and prove the security of protocols against
such corruptions. This allows us to describe exactly what kind of adversaries
different P2P networks and protocols build on top can withstand.

Note that the corruption speed of an adaptive adversary also has a natural
translation to reality. For an attacker to succeed in attacking some physical
machine it necessarily takes some time from targeting the machine to actually
hack into the network (by either physical or digital means) and take over the
computer. Denial-of-service attacks are arguably faster to mount, but it still
takes nonzero time to target a specific machine.

While unstructured peer-to-peer networks for message dissemination are the
main focus of our paper, delayed adversaries have much broader applications
and were in fact already used in other works, with varying degree of formality.
For example, the original Ouroboros [28], in contrast to its successor Ouroboros
Praos [15], which only requires AMS, needs that corruptions are sufficiently
delayed. The same is true for Snow White [14], another early proof-of-stake
blockchain. Another example is Hybrid Consensus [39], which periodically elects
committees using a blockchain and remains secure if corruptions are delayed
until the next committee is selected. The same applies to blockchain sharding
proposals [32,30,42] in which the members of shards are periodically chosen.

Concrete analysis of flooding networks. As mentioned above, the security of
NSBs crucially relies on the assumption that blocks are with high probability
propagated to other parties before the next winner creates another new block. If
an upper bound on the propagation time is known, the difficulty of the puzzles
can be set accordingly to provide this guarantee. Setting the difficulty based on
a too optimistic assumption on the delay jeopardizes the security of the system,
and setting it based on a too loose upper bound degrades efficiency. Knowing a
tight bound on the propagation delay is thus key for the security and efficiency
of an NSB.

Even more critical for the security of NSBs are so-called eclipse attacks that
prevent some parties from receiving blocks [23,33]. Furthermore, for large-scale
distributed systems, the number of neighbors has a significant impact on the
required communication. In particular, it is infeasible to simply send the message
directly to everybody. In this work, we provide constructions for flooding networks
with provable security against eclipse attacks in a well-defined adversarial model
and show different trade-offs between the propagation time and neighborhood
sizes.

Terminology. In the literature different terminology has been used for the pro-
cess of disseminating a message to all parties. Common terminology includes
“broadcast”, “flood” and “multicast”. In this paper, we will use the terminology
“flood” for this process. Contrary to byzantine broadcast, there is no agreement
requirement for a flooding network if the sender of a message is dishonest.

4 Matt, Nielsen, and Thomsen

1.2 Contributions and Results

Our contributions are twofold:

1. We give precise semantics to δ-delayed corruptions (introduced in [39] as
δ-agile corruptions) within the UC framework [8]. We define the semantics
via corruption shells which allows us to prove how this type of corruptions
relate to standard adaptive corruptions.

2. We define a functionality for disseminating information, Flood, that can be
used to implement a secure NSB, and that we implement using a flooding
protocol against a slightly delayed adversary. Importantly, we quantify exactly
how much is meant by “slightly” in terms of guarantees provided by the
underlying point-to-point channels. We provide two instantiations of our
protocol with different efficiency trade-offs.

Below we lay out the specifics of the individual contributions and state our
results in more detail.

Precise model for δ-delayed adversaries. We define a δ-delayed adversary as an
adversary which uses at least δ time to perform a corruption. We define this
notion precisely within the UC framework using the notion of time from [4]. We
do so by elaborating on the notion of corruption-shells from [8].

Using the idea of corruption shells, we give semantics to both “normal” byzan-
tine adaptive corruption and δ-delayed corruptions. We capture the semantics
of byzantine adaptive corruptions in a corruption-shell, BReal, for protocols and
in a corruption-shell, BIdeal, for ideal functionalities. Similarly, we capture the
semantics of δ-delayed adversaries in a corruption-shell, Dδ

Real, for protocols and
in a corruption-shell, Dδ

Ideal, for ideal functionalities. Dδ
Real and Dδ

Ideal accepts two
inputs: Precorrupt and Corrupt (both indexed by a specific party). Both shells ensure
that at least δ time has passed after receiving Precorrupt before reacting upon
Corrupt. Any Corrupt input that is sent prematurely is ignored.

Having defined the semantics for both standard adaptive corruptions and
for δ-delayed corruptions using corruption shells, we state basic results relating
the two models. We show that a protocol is secure against a standard adaptive
adversary iff it is secure against a 0-delayed adversary (Theorem 1). Furthermore,
we show that if a protocol is secure against a “fast” adversary, then this implies
that it is also secure against a “slow” adversary (Theorem 2). Together these
results allow constructions proven secure in the standard model of adaptive
adversaries to be reused when constructing new protocols secure against a δ-
delayed adversary, and to compose protocols that are secure against adversaries
with different delays.

Flooding networks. We define a functionality for flooding messages, F∆
Flood. It

ensures that all parties learn messages that an honest party has sent or has
received within ∆ time, and is thereby similar to the flooding functionality
assumed in many consensus protocols. We realize our flooding functionality with
both a naive protocol, πNaiveFlood, where everybody simply sends to everybody,

Delayed Adaptive Corruptions and the Security of Flooding Networks 5

and a more advanced protocol, πERFlood(ρ), where all parties choose to send to
other parties with probability ρ.

In order to realize the flooding functionality, we introduce a functionality for a
point-to-point channel Fσ,∆

MessageTransfer. This functionality is also parameterized by
a bound for the delivery time ∆, and additionally has a parameter σ describing
the time an honest party needs to stay honest after starting to send the message
for the delivery guarantee to apply. If σ = 0 then this corresponds to assuming
AMS. On the other hand, if σ ≥ δ and we consider δ-delayed adversaries, then
this corresponds to not assuming AMS. However, having the time quantified
allows us to relate this time to the delay we can tolerate when building more
advanced constructions. In particular, we show that πERFlood using Fσ,∆

MessageTransfer
implements F∆′

Flood against a (σ + ∆)-delayed adversary.
In this setting, we provide two different ways to instantiate the probability

parameter ρ of πERFlood, each presenting a different efficiency trade-off. Concretely,
let h denote the minimum number of parties that will stay honest throughout
the execution of the protocol, let n denote the total number of parties, and let κ
be the security parameter. We provide the following two instantiations:

Instantiation 1: Guaranteed delivery within ∆′ := 2 · ∆ for ρ :=
√

κ
h .

Instantiation 2: Guaranteed delivery within ∆′ := ∆·
(
5 log

(
n
2κ

)
+2

)
for ρ := κ

h .

Both instantiations ensure that the statistical distance between the ideal and the
real executions of πERFlood and F∆′

Flood is negligible in the security parameter. We
provide concrete bounds for the statistical distance in Corollary 1. Furthermore,
standard probability bounds ensure that each instantiation has a neighborhood
of O(n · ρ) with high probability.

1.3 Techniques

An Erdős–Rényi graph [18] is a graph where each edge appears with an equal
and independent probability. Our flooding protocol πERFlood is strongly inspired
by this type of graph. Our main technical contributions are thus concerned
with transporting bounds for Erdős–Rényi graphs to the cryptographic setting,
especially in presence of adaptive adversaries.

Concrete bounds for Erdős–Rényi graphs. The asymptotic behavior of Erdős–Rényi
graphs has been thoroughly studied in the literature (for a comprehensive overview
see [6]). However, bounds about a graph’s behavior when the amount of nodes
goes towards infinity is of little use for protocols that are supposed to be run
by a finite number of parties. For a protocol imitating the behavior of such
graphs, we need concrete bounds when a security parameter is increased. As a
technical contribution, we prove such concrete upper-bounds for the diameter of
Erdős–Rényi graphs.

Applying Erdős–Rényi graph results in the presence of adaptive adversaries. For
a flooding protocol as πERFlood, it is straightforward to apply bounds about the

6 Matt, Nielsen, and Thomsen

diameter of an Erdős–Rényi to also bound the probability that a message is
not delivered in the protocol in presence of a static adversary. However, for an
adaptive adversary that is capable of preventing certain nodes from connecting
to their neighbors, it is by no means this easy. Our main technical contribution is
to transfer the bounds on the diameter of an Erdős–Rényi graph to our flooding
protocol in presence of an adaptive adversary. We achieve this by relating the
protocol execution to 7 random experiments.

First, we relate the protocol execution to a well-defined game between an
adversary and an oracle, which returns a graph. The rules of the game is that
an adversary can query the oracle to reveal the edges of a node and query the
oracle to remove a node from the graph. However, once either an incoming or
outgoing edge to a node has been revealed, the adversary can no longer remove
this node. This game mimics the powers of a slightly delayed adaptive adversary
in the real protocol.

We relate this game to a similar game but with undirected edges, and do a
couple of simple gamehops where we show that an adversary does not gain any
additional advantage w.r.t. increasing the diameter by stopping this game at an
early point nor injecting any additional edges.

As the adversary can only remove nodes for which no information has been
revealed, one might be led to believe that the Erdős–Rényi graph results apply
for this game. However, the adversary can still dynamically control the size of
the graph that is returned. At first, this may seem innocent, but in fact, it is not.
Deciding whether or not more nodes are to be included in the graph, can amplify
the probability that the returned graph has a high diameter.

Therefore, we relate this game to a new game, which is similar to the other,
except that the oracle now at random fixes the size of the graph beforehand.
The oracle fixes the size of the graph by making a uniform guess in the range of
possible sizes. In case of a correct guess (a guess identical to what the adversary
anyway would end up with), the adversary is only left with the choice of which
parties to include in the random graph. Finally, we show that this game is equally
distributed to a game which specifically embeds an Erdős–Rényi graph of the
fixed size. This allows us to apply results bounding diameter of Erdős–Rényi
graphs to bound the probability that a message is not delivered timely.

Due to space constraints, many technical details are left out of this version.
We refer to the full version of this paper [34] for these.

1.4 Related Work

Hybrid consensus. Hybrid Consensus [39] is a consensus protocol that uses a
blockchain to periodically select committees as subsets of the parties partici-
pating in the blockchain protocol, who can subsequently produce blocks more
efficiently. Once a committee has been chosen, a fully adaptive adversary can
simply corrupt the majority of its members to break the security of the protocol.
Hence, the protocol is only secure against corruptions that are delayed until the
next committee gets selected.

Delayed Adaptive Corruptions and the Security of Flooding Networks 7

To prove the security of hybrid consensus, that paper introduces τ -agile
corruptions, which essentially correspond to the capabilities of our τ -delayed
adversaries. While that paper also uses the UC framework, the definitions for the
corruption model mostly remain at a high level. For example, their definitions
assume there is some notion of time, which does not exist in the original UC
formalism. There are also no clear definitions of how the delayed corruptions are
precisely embedded in the UC execution model.

In contrast to that, our work provides a precise embedding of the corruption
model in the standard UC framework. This allows us to compose protocols
formulated in standard UC with protocols proven secure against δ-delayed adver-
saries. It is thus fair to say that the hybrid consensus paper has introduced the
delayed corruption model at an intuitive, semi-formal level, while our work fills
in several missing technical details to provide a precise formalization within the
UC framework.

Time in UC. [26] models time using a clock functionality that is local to each pro-
tocol. This functionality synchronizes the parties by only allowing the adversary
to advance time when all parties have reported that they have been activated. As
this is a local functionality, other ideal functionalities have no access to it, and
therefore need to provide their own notion of time which can clutter the final
guarantees from the functionality.

[29] takes a similar approach to Katz et al., but changes the clock to be a
global functionality in GUC [9]. This enables several different protocols to rely on
the same notion of time when composed and also solves the problem of time not
being available to ideal functionalities. Both functionalities and parties can query
the global clock for the current time, and thus inherently makes any protocol
modelled with this a synchronous protocol.

A different approach is taken in [4]. They take the standpoint that parties
should be oblivious to the passing of time. To allow this they introduce a global
functionality, dubbed a ticker (written ḠTicker), which exposes an interface to
learn about the passing of time to functionalities only. In particular honest parties
are oblivious to the passing of time. This allows time to be modelled without
having synchrony as an inherent assumption. The specific timing-assumptions can
then be captured by adding an extra ideal functionality which exposes relevant
information to the parties.

Contrary to [26,29,4], [10] focuses on modeling and making real time available
to parties in GUC, and use this to model the expiration of certificates in a
public-key infrastructure. In their modeling, a global clock can be advanced by
the environment without restrictions. In this work, our protocols do not rely on
real-time, but rather on an abstract notion of time used to state assumptions and
guarantees about the delivery time of channels and protocols. For the guarantees
to be upheld, we rely on restrictions about how time is advanced (namely that all
parties have to be activated once each abstract time step) by the environment.

We chose to rely on the modeling of time from [4]. This allows us to model
general timing assumptions on the capabilities of the adversary without tying
our modeling to a particular assumption on synchrony for actual protocols.

8 Matt, Nielsen, and Thomsen

Epidemic and gossip protocols. Epidemic algorithms or gossip protocols were
first considered for data dissemination by Demers et al. [17], and have been
studied extensively since then, see e.g., [5,25,27,22,13,24]. In this line of work,
many different protocols have been considered. Some are very closely related to
our flooding protocol, where parties simply forward to a random set of parties,
and some are more advanced, letting parties keep sending to new random peers
until a certain number of recipients replied that they already knew the message.
However, this line of work considers only random failures [27] or incomplete
network topologies [13,24] and not adaptive corruptions of a malicious adversary.
Hence, while some of the protocols are applicable to our setting, their analysis
is not. Among other results, [27] showed how random node failures affect the
success probability of a flooding process similar to ours. For this setting, they
derive connectivity bounds similar to the bounds for logarithmic diameter we
present in this work.

Kadcast. Kadcast [41] is a structured peer-to-peer network for blockchains. The
paper claims that unstructured networks are inherently inefficient because many
superfluous messages are sent to parties who already received the message from
other peers. They instead propose a structured network based on Kademlia [35],
in which every node has O(log n) neighbors and the diameter of the graph is also
O(log n). Additionally, their protocol includes a parameter for controlling the
redundancy and thus the resistance to attacks. Due to the structured nature, the
suggested network is, however, not secure against adaptive corruptions of any
kind.

The hidden graph model. Chandran et al. [11] consider communication locality of
multi-party computation (MPC) protocols, which corresponds to the maximal
number of parties each honest party needs to interact with. They construct an
MPC protocol with poly-logarithmic communication locality that is secure against
adaptive corruptions and that runs in a poly-logarithmic number of rounds. Their
protocol uses a random communication graph, similar to our flooding protocols.
To be secure against adaptive corruptions, they however need to assume that the
communication graph between honest parties remains hidden, i.e., they allow
honest parties to communicate securely without an adversary learning who is
communicating with whom. Furthermore, they only prove very loose bounds
on the locality and diameter of the obtained graph by showing that both are
poly-logarithmic. In the full version of this work [34], we replicate this result but
with concrete bounds.

Message dissemination relying on resource assumptions. Recently, the problem
of disseminating messages assuming a constant fraction of honest resources
(computational power, stake, etc.) instead of assuming a constant fraction of
honest parties (as assumed in this work) has received attention. Extending on
results from this work, [31] provides an efficient flooding protocol relying on a
constant fraction of the resources behaving honestly. Their protocols achieve an
asymptotic efficiency similar to the protocol presented in this work. [12] presents

Delayed Adaptive Corruptions and the Security of Flooding Networks 9

a block dissemination protocol for the Ouroboros Praos protocol [16] that also
relies on the majority of honest stake assumption. By using long-lived connections
between parties, they prevent a specific denial-of-service attack possible in the
protocol. However, this comes at the cost of allowing a small fraction of honest
parties to be eclipsed.

2 Preliminaries

2.1 Notation

We use the infix notation “:=” for assigning a variable a (new) value, the infix
notation “≜” to emphasize that a concept is being defined formally for the first
time, the infix notation “==” to denote an equality test returning a boolean
value, and the infix notation “::” to denote list-extension. In our proofs we will
use the acronyms LHS and RHS to refer to respectively the left-hand side and
the right-hand side of an equality.

When describing functionalities we let P be a set of unique party identifiers
(PIDs) and will leave out session-identifiers for clarity of presentation. As a
convention we use the variable t ∈ N to denote the maximal number of parties
an adversary can corrupt, use the variable n := |P| to denote the total number
of parties in a protocol (except when we state and prove general results about
graphs) and h := n− t to denote the minimal number of honest parties. Whenever
we refer to honest parties we will refer to parties that have not received any
precorrupt or corrupt tokens.

2.2 Universally Composable Security

The UC framework is a general framework for describing and proving crypto-
graphic protocols secure. Its main selling point is that protocols can be described
and proven secure in a modular manner while ensuring that the protocol in
question remains secure independently of how one may compose the protocol in
question with other protocols. We build upon the journal version of UC [8] and
refer to this for details about the framework. Below we recap two peculiarities of
the framework that are important for our model (Section 3).

Corruptions The UC framework has no built-in semantics for corruption of
parties in a protocol. Instead, it is up to each individual protocol description
to describe the semantics of corruptions whenever the adversary signals that
a specific party should be corrupted. Having no built-in corruption model in
UC makes the composition theorem independent of a particular corruption
model. This allows several different corruption models to be captured within
the framework. Some machinery is however common for many different types of
corruptions.

10 Matt, Nielsen, and Thomsen

The corruption aggregation ITI. The intuition behind UC-security is to translate
an attack on the protocol to an attack on the specification (the ideal functionality)
and thereby show that an adversary does not gain any capabilities interacting
with an implementation that another adversary did not have interacting with
the ideal functionality. That is to show that any attack is not really an attack as
it was already allowed by the specification. This translation between attacks is
what is known as a simulator.

For this intuition to make sense when active corruptions are possible, the
translation between attacks on the protocol and the specification necessarily
needs to be corruption preserving. That is, it should not require more corruptions
to attack the ideal functionality than what it takes to attack the real protocol.
In order to ensure this, an additional Interactive Turing Machine Instance (ITI)
called the corruption aggregation ITI is run aside the parties in protocol. Whenever
a party is corrupted, it registers as corrupted by the corruption aggregation ITI.
The environment can then query the corruption aggregation ITI in order to
get an overview of who is currently corrupted. Similarly, the ideal functionality
makes information about who is corrupted available to the environment. Note
that the corruption aggregation ITI is only present for modeling purposes and
thus not present when deploying a protocol. In that way, if the simulator corrupts
differently than the adversary, the environment is immediately able to distinguish.

Identity masking function and PIDs. The UC framework allows for a very
fine-grained control over what knowledge about corruptions is leaked to the envi-
ronment, by parameterizing the corruptions using an identity-masking-function,
which parties will apply to the information that they send to the corruption
aggregation ITI. This can allow an adversary to corrupt only sub-protocols of
a party instead of an entire party. We leave this out of the definitions below
for clarity as we will always consider corruptions of entire parties (known as
PID-wise corruptions within the framework).

Time There is no built-in notion of time in UC. However, the flexibility of the
framework allows to model a notion of time using an ideal functionality. In this
work we adopt the notion of time presented in TARDIS [4].

In TARDIS time is modelled via a global functionality dubbed a ticker
(written ḠTicker). The ticker’s job is to keep track of time and enforce that any
party has enough time to perform the actions that it wishes to perform between
any two time-steps. It does so by allowing parties to register by the functionality
and only allows the environment to progress time once it has heard that this is
okay from all registered parties.

Functionalities can query the ticker and get an answer to whether or not time
has passed since the last time they asked the ticker. Importantly, this query can
only be made by functionalities and not parties. That is, this modeling of time
does not tie the protocols to be designed under a specific synchrony assumption,
as parties are oblivious to time. The only way that they can observe the passing
of time is by asking functionalities. This parallels the real world in that we do

Delayed Adaptive Corruptions and the Security of Flooding Networks 11

not have raw access to time, only clocks. The level of information functionalities
provide to parties about time is what determines possible assumptions about
synchrony.

The complete ticker functionality as described in TARDIS as well as a small
note about preventing fast-forwarding is provided in the full version of this
work [34].

Ticked?-convention. In the remainder of this paper, we adopt the convention (also
used in [4]) that when describing ideal functionalities we omit Ticked? queries to
ḠTicker from the description. Functionalities are instead assumed to make this
query whenever they are activated and in case of a positive answer perform
whatever action that is described by Tick. We furthermore adopt the convention
that for brevity we leave out registration of functionalities and parties by the
global ticker. All of the functionalities and protocols we consider will upon
initialization as the first thing register by the global ticker.

Global functionalities within plain UC. Technically, the ticker functionality in
TARDIS is defined within the GUC framework [9]. However, as pointed out
in [2], the GUC framework has not been updated since its introduction, even
though that it relies on the UC framework which has been revised and updated
several times since. Furthermore, [2] points out that several technical subtleties
of the composition theorem of GUC are under-specified which at best leaves its
correctness unproven. The compatibility with the latest version of UC which we
use in this work is thus unclear.

However, [2] introduces machinery to handle “global subroutines”, which
can be used to model similar global setup assumptions to global functionalities,
and extends the composition theorem of UC to cover such “global subroutines”
directly within the version of UC also adapted for this work. Additionally, they
show how examples of global functionalities that instead can be modelled as
global subroutines. One of their examples [2, Section 4.3] of such a transformation
is, that they show that [3] that implements a transaction ledger using a global
clock (similar to the one from [26]), instead could have been done directly within
UC, by modeling the clock as a global subroutine instead of a global functionality.
We note that ḠTicker is regular (informally, it does not spawn new ITIs) and
as all of the protocols considered in this work are ḠTicker-subroutine respecting
(informally, all subroutines except ḠTicker only communicate with ITIs within
the session). Therefore, we can use the same approach as [2, Section 4.3] (in
particular can adopt the same identity bound for the environment to ensure that
the ticker works as expected) to keep our modeling within plain UC.

3 Delayed Adversaries within UC

In this section we describe the semantics of delayed corruptions within the
UC framework. First, we introduce the semantics for δ-delayed corruptions
via corruption shells. Next, we revisit the standard adaptive corruptions using

12 Matt, Nielsen, and Thomsen

corruption-shells. Finally, we relate the standard notion of adaptive corruptions
to a 0-delayed adversary.

We define the notion of a delayed adversary precisely within the UC-model
via what we call δ-delayed corruptions or a δ-delayed adversary. For such an
adversary, it takes at least δ time to execute a corruption. The delay can be
thought of as either the time it takes to hack into the system or the time it
takes to physically orchestrate and attack on the specific property that hosts
the system. To capture this within UC we introduce an additional token that an
adversary has to use when wanting to corrupt a party. The two corruption tokens
that can be passed to a party are the Precorrupt token and the Corrupt token. When
receiving a Precorrupt token, the party notes the time it received this token, t, and
ignores all Corrupt tokens that are received before t + δ. When a Corrupt token is
received at or after time t + δ, the party becomes corrupted in the usual manner.

Below we give a more precise description of how this corruption model can
be captured within the UC framework.

3.1 The δ-delay Shell

It is tedious and error-prone to include code that models corruption behavior
in each protocol description and ideal functionality description. We therefore
separate the concern of describing corruption behaviors to that of describing the
protocol, by introducing protocol transformers, dubbed shells, which extend a
protocol that does not handle corruption tokens into one that obeys a particular
corruption behavior. In particular we provide the following two shells for δ-delayed
corruptions:

Dδ
Real: This a wrapper around a protocol π. It ensures that the protocol respects

δ-delayed corruptions. The wrapper preserves the functionality of π but
additionally ensures that corruptions are executed as expected.

Dδ
Ideal: This is a wrapper around an ideal functionality F . It ensures that the

functionality respects δ-delayed corruptions and preserves the functionality
of F but additionally ensures that corruptions are executed as expected.

Both shells intuitively work in the same way: They keep track of when Precorrupt
tokens are delivered and only accept corruption tokens for a particular party δ
time later. Having two different shells is, however, necessary as the protocol shell
needs to wrap the individual ITMs actually executing the protocol, whereas the
ideal shell needs to wrap only the ITM running the ideal functionality.

Additionally, both shells allow the first message that is sent to a specific
party to initialize the precorruption time. The delay shells for real parties ensure
to use this initialization option when an inner protocol sends a message to a
sub-routine for the first time. This ensures that the time of precorruption is
inherited when new sub-routines are spawned and thereby induces the natural
behavior for PID-wise corruptions, i.e., that any sub-routine can be corrupted
no later than the routine that spawned it. The initialized precorruption time

Delayed Adaptive Corruptions and the Security of Flooding Networks 13

is allowed to be negative. This allows the environment to start the protocol in
a state where some parties are precorrupted in the past, and hence be able to
immediately corrupt these parties at the start of the protocol (similar to letting
some parties be statically corrupted).

The shells that wrap the individual party’s ITMs do not have access to
query the ticker for the time, whereas the ideal shells can do this freely. We
solve this by additionally letting the DReal spawn a corruption-clock (written
FCorruptionClock) which exactly allows the shells to access time. Importantly, this
does not reintroduce a global synchrony assumption as our shells prevent the
inner protocols from communicating with the corruption clock. The corruption
clock is therefore only an artifact of our modeling and will not appear when
actually running the protocol.

Functionality FCorruptionClock

The functionality maintains a counter Time. Initially, Time := 0.

Time?: When receiving (Time?) from a party pi ∈ P it returns (Time, Time)
to pi.

Tick: It updates Time := Time + 1.

When describing DReal we will leave out calls to FCorruptionClock for brevity,
but these happens each time the shell uses any notion of time.

We amend the corruption aggregation ITI presented in [8] to also make
information about the precorruptions an adversary have used, available to the
environment (and similarly the ideal functionalities). This prevents a simulator
from using more precorruption tokens or corrupting faster than the real adversary.

Aside from ensuring the protocol corruption delays are respected the DIdeal
additionally propagates both precorruption and corruption-tokens to the “inner
functionality” (the functionality that the shell is a wrapper around). This is done
in order to ensure that the simulator appended to the ideal functionalities can
actually gain functionality-specific powers when performing a corruption. For
example it might be that a certain channel does not need to respect delivery
guarantees when the sender gets corrupted (for an example of this see Section 4.1).

Below we provide formal descriptions of both shells.

Function Dδ
Real(π)

The shell wraps each party pi ∈ P in a small wrapper that maintains a
variable PrecorruptionTimei. Initially, PrecorruptionTimei := ⊥. When
receiving precorruptions and corruptions the wrapper has the behavior
described below. The wrapper also filters out any communication with
FCorruptionClock and on all other inputs it simply forwards the inputs/outputs
to/from the original protocol.

14 Matt, Nielsen, and Thomsen

Initialization: If pi receives (Initialize, τ) as the first message, then the
party updates PrecorruptionTimei := τ and if τ ̸= ⊥ then also notifies
the corruption-aggregation ITI.

Precorruption: If pi ∈ P receives Precorrupt at time τ , then the party first
notifies the corruption-aggregation ITI by sending (Precorrupt, pi) to this
machine. It then updates PrecorruptionTimei := τ .

Corruption: When pi receives Corrupt at time τ , then pi checks if
PrecorruptionTimei + δ ≤ τ . If that is not the case the request is
ignored. Otherwise the party first notifies the corruption-aggregation
ITI by sending (Corrupt, pi) to this machine and then it corrupts pi by
forwarding Corrupt to π. Each time pi is activated after this it sends its
entire local state of the inner protocol to the adversary and furthermore
forwards all messages m (assuming that m includes both content and
recipient) that are written on the backdoor tape of pi.

Whenever the shell of pi detects that the inner protocol sends a message to a
new sub-routine for the first time, it sends (Initialize, PrecorruptionTimei)
to the subroutine before forwarding the message of the inner protocol.
Furthermore, the shell starts a separate corruption aggregation ITI. It
maintains two lists Precorrupted and Corrupted that initially are both
empty. The corruption aggregation ITI has the following behavior:

Precorruption Registration: When receiving a (Precorrupt, p) from a
party p it sets Precorrupted := p :: Precorrupted.

Corruption Registration: When receiving a (Corrupt, p) from a party p
it sets Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment
it queries all sub-functionalities of the protocol for their corruption
status and updates the Precorrupted and Corrupted-lists accordingly.
Finally, it sends (Precorrupted, Corrupted) back to the environment.

Function Dδ
Ideal(F)

The shell wraps the functionality in a wrapper which maintains two lists
Precorrupted and Corrupted that initially are both empty. Furthermore,
it has a map PrecorruptionTimeMap : P → Time and a counter to keep
track of time Time which initially is instantiated to be 0. When receiving
precorruptions, corruptions and corruption-status requests it has the follow-
ing behavior and on all other inputs/outputs it forwards the inputs to/from
F .

Initialization: If the functionality receives (Initialize, τ) at the port be-
longing to p as the first message for this party, then the party up-
dates PrecorruptionTimeMap[p] := τ . If τ ̸= ⊥ then it also updates

Delayed Adaptive Corruptions and the Security of Flooding Networks 15

Precorrupted := p :: Precorrupted, and forwards (Initialize, τ) to the
inner functionality.

Precorruption: When receiving (Precorrupt, p) and p is a valid PID
of a dummy party then it adds the current time, Time, to
PrecorruptionTimeMap[p] := Time and updates Precorrupted := p ::
Precorrupted. Furthermore, it propagates (Precorrupt, p) to F .

Corruption: When receiving (Corrupt, p) where p is a valid PID of a dummy
party then the functionality checks if PrecorruptionTimeMap[p] + δ ≤
Time. If that is the case it updates Corrupted := p :: Corrupted and
returns to the adversary all the values received from p and output to
p so far. From now on inputs from p are ignored but are instead given
via the backdoor tape by the adversary. Furthermore, it propagates
(Corrupt, p) to F .
If the request is send too early, it is ignored.

Inputs: If the functionality receives (Input, p, v) from the adversary and
p ∈ Corrupted, then v is forwarded to F as if it was directly input by
p to F .

Corruption Status: When receiving CorruptionStatus from the environment
it sends (Precorrupted, Corrupted) back to the environment.

Tick: The functionality updates Time := Time + 1.

The additional (Input, p, v) command accepted by the ideal shell allows an
adversary to input a message v on behalf of party p if p is corrupted. This
follows how standard byzantine corruptions are treated and modelled in the UC
framework.

We next formally define what it means for a protocol to securely implement
a functionality against a δ-delayed adversary, see also Fig. 1 for a graphical
depiction.

Definition 1 (UC-security against delayed adversaries). Let δ ∈ N. We
say that a protocol π securely implements an ideal functionality F against a
δ-delayed adversary when Dδ

Real(π) securely implements Dδ
Ideal(F) in the usual

UC sense [8], i.e., if

∀A ∃S ∀Z, EXEC(Z, A, Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F))

where EXEC(Z, ·, ·) denotes the random variable describing the binary output of
the environment Z, and ≈ means that the statistical distance is negligible in the
security parameter.

Note that security against a delayed adversary is defined both for func-
tionalities that have special behavior defined for receiving precorruptions and
functionalities that do not have any such behavior defined, as the default for
protocols/functionalities is to ignore any unrecognized inputs.

16 Matt, Nielsen, and Thomsen

The Hybrid World The Ideal World

Fig. 1. A depiction of the security statement for a protocol that implements an ideal
functionality F using the functionality G against a δ-delayed adversary.

3.2 Relating Corruption Models

In this section we relate the notion of a 0-delayed adversary to the standard
notion of an adaptive adversary in UC. We further show that any protocol that
is secure against a fast adversary is also secure against a slower adversary. These
results allow us to reuse cryptographic constructions which are already proven
secure modularly when implementing larger constructions.

Byzantine corruptions and 0-delayed corruptions. To showcase the generality of
the δ-delayed corruption model, we relate this model to the standard model of
adaptive Byzantine corruptions as defined in UC. To be able to precisely quantify
how these notions relate, we introduce two Byzantine shells similar to the delay
shells. The byzantine-shells are meant to precisely encapsulate the corruption
model as presented in [8]. We believe that these are of independent interest as by
using these it can be avoided to clutter the protocol and functionality description
with a specific corruption model.

Function BReal(π)

The shell adds the following behavior to each party pi ∈ P. If any other
inputs are received than the ones below, it is the original code of the party
that is executed.

Corruption: If pi ∈ P receives Corrupt then the party first notifies the
corruption-aggregation ITI by sending (Corrupt, pi) to this machine.
Each time pi is activated after this it sends its entire local state of the
inner protocol to the adversary and furthermore forwards all messages m
(assuming that m includes both content and recipient) that are written
on the backdoor tape of pi.

Delayed Adaptive Corruptions and the Security of Flooding Networks 17

Furthermore the shell runs a separate corruption-aggregation ITI. It main-
tains a list Corrupted which initially is set to be the empty list and has the
following behavior:

Registration: When receiving a (Corrupt, p) from a party p it sets
Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment
it queries all sub-functionalities of the protocol for their corruption
status and updates the Corrupted-list accordingly. Finally, it sends
Corrupted back to the environment.

Function BIdeal(F)

The functionality maintains a list of corrupted parties, Corrupted, which
initially is set to be the empty list. Upon receiving the following

Corruption: If the functionality receives (Corrupt, p) from the adversary
and p is a valid PID of the dummy parties, it updates Corrupted := p ::
Corrupted and returns to the adversary all the values received from p
and output to p so far. From now on inputs from p are ignored but are
instead given via the backdoor tape by the adversary. Furthermore it
propagates (Corrupt, p) to F .

Inputs: If the functionality receives (Input, p, v) from the adversary and
p ∈ Corrupted then v is forwarded to F as if it was directly input by p
to F .

Corruption Status: When receiving CorruptionStatus from the environment
it sends Corrupted back to the environment.

Security against 0-delayed adversary implies security in the standard model
and vice versa if the functionality that is implemented ignores precorruption and
initialization tokens. We encapsulate this intuition in the theorem below.

Theorem 1. Let π be a protocol and F an ideal functionality that ignores
precorruptions and initializations. BReal(π) securely implements BIdeal(F) if and
only if D0

Real(π) securely implements D0
Ideal(F).

Formally,

∀A ∃S ∀Z, EXEC(Z, A, BReal(π)) ≈ EXEC(Z, S, BIdeal(F))
⇐⇒ ∀A′ ∃S ′∀Z ′, EXEC(Z ′, A′, D0

Real(π)) ≈ EXEC(Z ′, S ′, D0
Ideal(F)).

(1)

Proof Sketch. We prove the two directions of the implication individually.

“=⇒”: We let A′ be any adversary and construct an adversary A by wrapping A′

with a shell that forwards all inputs/outputs except precorruptions to/from
A′. Whenever A receives a Precorrupt directed to pi from A′ it forwards

18 Matt, Nielsen, and Thomsen

(Precorrupt, pi) to the environment instead. We now use the LHS of Eq. (1) to
obtain a simulator S s.t.

∀Z, EXEC(Z, A, BReal(π)) ≈ EXEC(Z, S, BIdeal(F)). (2)

Given S we construct S ′ by running S inside S ′. Each time S outputs
(Precorrupt, pi) to the environment then S ′ outputs (Precorrupt, pi) to D0

Ideal(F).
All other inputs and outputs are forwarded to and from S directly. Note
that precorruptions are ignored by F and therefore F does not change its
behavior based upon these.
Let us now for the sake of contradiction assume that there exists some
environment Z ′ that can distinguish against A′ and S ′, i.e.,

EXEC(Z ′, A′, D0
Real(π)) ̸≈ EXEC(Z ′, S ′, D0

Ideal(F)) (3)

Let us now show how to construct an environment, Z, that can distinguish
for the byzantine setting and thereby contradict Eq. (2).
We build Z by running Z ′ inside, and forward all inputs and outputs to Z ′.
Z only deviates from Z ′ in the two cases below:

– Whenever a CorruptionStatus command is issued by Z ′ to the corruption
aggregation ITI, we amend the answer with an additional list of precor-
ruptions which we have received from A so far.

– Whenever a (Initialize, τ) command is send to some party it is not for-
warded by Z but instead recorded as a precorruption of this party. This
does not change the behavior of the protocol nor the ideal functionality
as these are ignored.

In particular, Z simply forwards the guess on which world it is placed in
from Z ′.
We observe that

EXEC(Z, S, BIdeal(F)) ≈ EXEC(Z ′, S ′, D0
Ideal(F)), (4)

and
EXEC(Z, A, BReal(π)) ≈ EXEC(Z ′, A′, D0

Real(π)). (5)

Together with Eq. (3) this contradicts Eq. (2) and thus concludes the case.
“⇐=”: The proof of this case mirrors the other case. We are now given A and

construct A′ by sending Precorrupt-tokens just before Corrupt-tokens. From the
RHS of Theorem 1 we get a simulator S ′ which we use to construct S by
forwarding everything except Precorrupt-tokens. Finally, we assume for the
sake of contradiction that there exists a Z that is able to distinguish, build
an environment Z ′ using this (removing Precorrupt-tokens and initializations),
and derive a contradiction similarly to the other case.

Note that the above theorem allows reusing constructions that are proven
secure against a standard adaptive adversary when building complex systems
that are to be secure against a 0-delayed adversary.

Delayed Adaptive Corruptions and the Security of Flooding Networks 19

Lifting security to weaker adversaries. If protocols that are proven secure within
different corruption models are composed, it gets hard to identify the final
security guarantee that is provided by the composed construction. Intuitively,
one would presume that a protocol that is proven secure against an adversary
able to do “fast” corruptions is also secure against an adversary only able to do
“slow” corruptions. Using precise shells to quantify corruption-speed allows us to
capture this intuition in the lemma below.

Theorem 2 (Lifting Security to Slower Corruptions). Let δ, δ′ ∈ N, s.t.
δ ≤ δ′, let π be a protocol, and let F be an ideal functionality. If Dδ

Real(π) securely
implements Dδ

Ideal(F), then Dδ′

Real(π) securely implements Dδ′

Ideal(F).
Formally,

∀A, ∃S, ∀Z, EXEC(Z, A, Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F))

=⇒ ∀A′, ∃S ′, ∀Z ′, EXEC(Z ′, A′, Dδ′

Real(π)) ≈ EXEC(Z ′, S ′, Dδ′

Ideal(F)).
(6)

Proof. Let H be the hypothesis (LHS of the implication), and let A′ be an
adversary. We define Filter(A, δ) to be a wrapper around an adversary that
simply filters out corruption request that are to early w.r.t. δ.

Using H we know that there exists a simulator S s.t.

∀Z, EXEC(Z, Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F)). (7)

Let us now show,

∀Z, EXEC(Z, Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z, S, Dδ′

Ideal(F)). (8)

Assume for the sake of contradiction that there exists an environment Z that
is able to distinguish in Eq. (8). We use this to build an environment Z ′ which
is able to distinguish in Eq. (7) with at least as big an advantage. Z ′ works by
forwarding everything to and from Z. Except if at any point in time there is a
Precorrupt-token followed by a Corrupt send with strictly less than δ′ between them,
then Z ′ immediately guesses that it is in the ideal case.

As every time that this happens the environment is correct, and every time
this does not happen the execution is exactly similar to that of Eq. (7) this
implies Eq. (8).

We now define S ′ ≜ S and let Z ′ be any environment. We specialize Eq. (8)
with Z ′ and obtain

EXEC(Z ′, Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z ′, S, Dδ′

Ideal(F)). (9)

Furthermore,

EXEC(Z ′, Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z ′, Filter(A′, δ′), Dδ′

Real(π)) (10)

≈ EXEC(Z ′, A′, Dδ′

Real(π)). (11)

Eq. (10) holds as if early corruptions are ignored, then Dδ
Real(π) and Dδ′

Real(π) are
identically distributed. Eq. (11) holds as it is not observable by the environment
if the corruption is ignored by the filter or the shell. Together Eqs. (9) and (11)
finishes the proof.

20 Matt, Nielsen, and Thomsen

Note that if one considered a simpler model with just one corruption token
and a subsequent automatic effectuation of the corruption a certain time after
such the token was input (instead of a model like ours with separate tokens for
precorruptions and corruptions), then Theorem 2 would not hold. The reason
is that in such a model a fast adversary would not have the ability to imitate a
slow adversary. Hence, in such a model a fast adversary would not be strictly
“stronger” than a slow adversary.

Theorems 1 and 2 together imply that any protocol that is secure against a
standard adaptive adversary in UC, is also secure against any δ-delayed adversary.

4 Functionalities
In this section we define a time-bounded channel between parties as well as a
flooding functionality. The functionalities that we present are:
MessageTransfer: A functionality that allows one party to send messages to

another party. This is modeling a point-to-point channel.
Flood: A functionality that allows all honest parties to disseminate to all other

parties.

Conventions for ideal functionalities. Our functionalities needs to maintain
a counter which is incremented each time a tick happens (similarly to what
DIdeal does). For clarity of presentation, we describe our functionalities without
explicitly mentioning this, but instead describe them as having direct access to
time. Furthermore, we define the functionalities without specifying the corruption
model as we will make use of the shells described in Section 3 to make the
corruption-model explicit when implementing the functionalities.

Additionally, the behavior of both our functionalities depend on which parties
are precorrupted and which parties are corrupted. Therefore they both maintain
two sets: Precorrupted and Corrupted which are initially empty. These are
updated by the following activation rules which we do not make explicit in the
functionalities below for clarity of presentation.
Precorrupt: Upon receiving (Precorrupt, pi) or an initialization that changes

party pi’s status to precorrupted, it sets Precorrupted := Precorrupted ∪
{pi}.

Corrupt: Upon receiving (Corrupt, pi) it sets Corrupted := Corrupted ∪ {pi}.

Furthermore, both of our ideal functionalities are parameterized by a type of
messages that can be propagated which we denote Messages.

4.1 MessageTransfer
In this section we present a basic functionality that allows a party to send
messages to other parties. This is similar to the point-to-point channel presented
in [4], but instead of hardcoding whether we assume AMS (as done in [4]) or not,
we introduce an additional parameter which is the time an honest party needs to
stay honest for ensuring delivery of the message.

Delayed Adaptive Corruptions and the Security of Flooding Networks 21

Functionality Fσ,∆
MessageTransfer(ps, pr)

The functionality is parameterized by two parties ps (the sender) and pr (the
receiver), and a time σ which parties needs to stay honest for the delivery
guarantee ∆ to apply. It maintains a mailbox for pr, Mailbox : Messages.

Initialize: Initially, Mailbox := ∅.
Send: After receiving (Send, m) from ps it leaks (Leak, ps, m) to the adver-

sary.
Get Messages: After receiving (GetMessages) from pr it outputs Mailbox to

party pr.
Set Message: After receiving (SetMessage, m) from the adversary, the func-

tionality sets Mailbox := Mailbox ∪ {m}.

At any time the functionality automatically enforces the following property:

1. Let m be a message that is input for the first time by an honest party
ps ̸∈ Corrupted at some time τ . If ps ̸∈ Corrupted at time τ + σ, then
by time τ + ∆ it is ensured that m ∈ Mailbox.

The property is ensured by the functionality automatically making the
minimal possible additional calls with SetMessage.

Note that building a construction using F0,∆
MessageTransfer exactly corresponds to

assuming AMS whereas assuming Fσ,∆
MessageTransfer against a δ-delayed adversary

with δ < σ corresponds to not assuming AMS.

4.2 Flood

The ideal functionality that we present here provides the guarantees of flooding
network, i.e., that all information some honest party knows is disseminated to all
other parties within a bounded time.

Functionality F∆
Flood

The functionality is parameterized by a set of parties P, and a delivery
guarantee ∆.

Furthermore, it keeps track of a set of messages for each party Mailbox : P →
Messages. These sets contain the messages that each party will receive
after fetching.

Initialize: Initially, Corrupted := ∅ and Mailbox[pi] := ∅ for all pi ∈ P.
Send: After receiving (Send, m) from pi it leaks (Leak, pi, m) to the adver-

sary.

22 Matt, Nielsen, and Thomsen

Get Messages: After receiving (GetMessages) from pi it outputs Mailbox[pi]
to party pi.

Set Message: After receiving (SetMessage, m, pi) from the adversary, the
functionality sets Mailbox[pi] := Mailbox[pi] ∪ {m}.

At any time after all parties have been initialized the functionality automat-
ically enforces the following two properties:

1. Let m be a message that is input for the first time to an honest party
pi ̸∈ Precorrupted ∪ Corrupted at some time τ . By time τ + ∆ it
is ensured that ∀pj ∈ P \ (Corrupted ∪ Precorrupted) it holds that
m ∈ Mailbox[pj].

2. Let m be a message at some time τ is in the mailbox of an honest
party pi ̸∈ Precorrupted ∪ Corrupted i.e., m ∈ Mailbox[pi]. By time
τ + ∆ it is distributed to all honest mailboxes, i.e., for any party
pj ∈ P \ (Corrupted ∪ Precorrupted) it holds that m ∈ Mailbox[pj].

The properties are ensured by the functionality automatically making the
minimal possible additional calls with SetMessage.

5 Implementations of Flood

In this section we will present the following protocols that implement Flood:

πNaiveFlood: Everybody simply sends to everybody.
πERFlood: Everybody sends to each other party with some fixed probability ρ.

We provide two types of implementations for Flood. A naive approach where
everybody sends to everybody and a more efficient one where each party sends to
their neighbors with probability ρ. The latter construction allows us to reuse the
theoretic foundation of Erdős–Rényi graphs in the distributed systems setting
and achieve a variety of properties.

5.1 Naive Flood

We present here a protocol that implements Flood with a message complexity
that is quadratic in the number of messages that is input to the system.

The protocol πNaiveFlood works straightforwardly by a peer sending and relaying
any non-relayed message to all other parties. As everybody sends to everybody the
protocol achieves a very small diameter and resilience against fairly fast adaptive
adversaries at the cost of a large communication overhead and neighborhood.

Delayed Adaptive Corruptions and the Security of Flooding Networks 23

Protocol πNaiveFlood

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj).

Each party pi ∈ P keeps track of a set of relayed messages Relayedi.

Initialize: Initially, all parties initialize their channel between them and
set Relayedi := ∅.

Send: When pi receives (Send, m) they now forward inputs (Send, m) to
Fσ,∆

MessageTransfer(pi, pj) for all pj ∈ P and set Relayedi := Relayedi ∪{m}.
Get Messages: When pi receives (GetMessages) they let M be the union of

the messages they achieve by calling (GetMessages) to Fσ,∆
MessageTransfer(pi, pj)

for all pj ∈ P, and outputs M .

Furthermore, once in every activation each honest pi let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj).
For any m ∈ M \ Relayedi, pi inputs (Send, m) to Fσ,∆

MessageTransfer(pi, pj) for
all pj ∈ P, and sets Relayedi := Relayedi ∪ {m}.

An obvious attack on this protocol an adversary might try to perform is to
try to corrupt the sender between the time τ that a message is sent and time
τ +σ where the delivery guarantee from the underlying Fσ,∆

MessageTransfer applies. An
adversary that succeeds with this can violate both Properties 1 and 2 of F∆

Flood.
However, σ-delayed adversaries do not have sufficient time to succeed with this
as the properties only needs to be upheld for parties that are neither corrupted
nor precorrupted when they try to send the message. Below we explicitly3 prove
that against such adversaries the naive protocol actually realizes F∆

Flood.

Lemma 1. Let σ, ∆ ∈ N. The protocol πNaiveFlood perfectly realizes F∆
Flood in the

Fσ,∆
MessageTransfer-hybrid model against a σ-delayed adversary.

Proof. We construct a simulator S.

1. S simulates all parties pi ∈ P inside it self.
2. When receiving (Leak, pi, m) from F∆

Flood the simulator inputs (Send, m) to pi

(running inside S).
3. When receiving (SetMessage, m) from the adversary on the port belonging to

functionality Fσ,∆
MessageTransfer(pi, pj), S forwards (SetMessage, m, pj) to F∆

Flood.
4. Whenever A corrupts some pi ∈ P, S corrupts pi and sends the simulated

internal state to A. From then on the simulated pi (inside S) follows A’s
instructions.

3 In [37, Chapter 3, p. 111], it is shown that it is enough to argue correct realization
to achieve secure realization for any protocol which leaks all I/O behavior to the
adversary. One may be lead to believe that this result directly applies to πNaiveFlood,
but as (GetMessages) inputs (and corresponding outputs) are hidden from the adversary
this is not the case.

24 Matt, Nielsen, and Thomsen

5. Whenever the ḠTicker notifies S about the passing of time, S ensures to
activate F∆

Flood.

As protocol, functionality, and simulator are all deterministic it is enough to
argue that the I/O behavior of A interacting with πNaiveFlood is equal to the I/O
behavior of S interacting with F∆

Flood to argue perfect indistinguishability. The
send command is invoked at the exact same times in the real execution and
in the execution inside S this produces the exact same behavior. Furthermore,
for any send command that is invoked at time τ by an honest party (neither
precorrupted nor corrupted) there will be a set-message command within τ + ∆
for all honest parties in the real protocol as a σ-delayed adversary does not have
time to violate the delivery property of the underlying Fσ,∆

MessageTransfer(pi, pj), and
therefore Property 1 is upheld. Similarly, the relaying of messages in the real
protocol ensure that messages will be delivered by the adversary according to
the properties of F∆

Flood in the real protocol (inside S and therefore also in the
ideal) which ensures Property 2.

5.2 Efficient Flood

We now present a more efficient version of Flood. The idea is simple: Instead of
relaying messages to all parties, each party flips a coin for each neighbor that
decides if a particular message should be relayed to this party. Compared to
the naive implementation of Flood presented in previous section the protocol
presented here will have significantly smaller neighborhoods at the cost of larger
diameter in the communication graph (the parameter ∆ of Flood). Furthermore,
the construction is only able to tolerate adversaries that are slightly more delayed
than those the naive protocol can tolerate.

The protocol πERFlood works by letting all parties relay and send messages to
a different random subset of parties for each message that is to be sent/relayed.
By letting the random subset be large enough we ensure that we establish a
connected graph with low diameter for all messages. As the subset of parties each
party chooses to send to is random, the protocol achieves quite some robustness
against adaptive adversaries, as a slightly delayed adversary cannot predict whom
to corrupt in order to eclipse some specific parties.

Protocol πERFlood(ρ)

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj).

Each party pi ∈ P keeps track of a set of relayed messages Relayedi :
Messages.

Initialize: Initially, all parties initialize their channel between them and
set Relayedi := ∅.

Send: When pi receives (Send, m), they input (Send, m) to
Fσ,∆

MessageTransfer(pi, pj) with probability ρ for each party pj ∈ P.
Finally they set Relayedi := Relayedi ∪ {m}.

Delayed Adaptive Corruptions and the Security of Flooding Networks 25

Get Messages: When pi receives (GetMessages) they let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj)
for all pj ∈ P, and outputs M .

Furthermore, once in each activation each honest pi let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj)
for all pj ∈ P. For any m ∈ M \ Relayedi, pi inputs (Send, m) to
Fσ,∆

MessageTransfer(pi, pj) with probability ρ for all pj ∈ P , and sets Relayedi :=
Relayedi ∪ {m}.

Depending on the parameter ρ the protocol πERFlood can achieve a variety
of properties. We provide two different instantiations that uses the channel
Fσ,∆

MessageTransfer and all works against a (σ + ∆)-delayed adversary. Before going
into detail with the actual proof, we provide some intuition for why the protocol
is secure against exactly a (σ + ∆)-delayed adversary. The main intuition is that
such an adversary cannot influence how the communication graph between the
parties that are honest are created. If a party decides to send a message at some
time τ then the set of parties that receives this message will have completed
forwarding the message at time τ + σ + ∆, which is the earliest point on this
party can be corrupted based upon this party’s role in the specific communication
graph. Therefore an adversary cannot make use of the adaptive corruptions to
disrupt the propagation of a message.

Each of the instantiations that are presented below provides a trade-off
between the diameter of the graph, the average size of the neighborhood and the
probability that the graph in fact has these properties. Instantiation 1 ensures a
diameter of 2 with a neighborhood of just Ω (

√
nκ) and Instantiation 2 ensures a

logarithmic diameter with a neighborhood of average size Ω (κ).

Theorem 3. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum
number of parties an adversary can corrupt, and let κ ∈ R be the security
parameter. The protocol πERFlood(ρ) securely implements F∆′

Flood against a (σ + ∆)-
delayed adversary using Fσ,∆

MessageTransfer. More precisely when r is an upper bound
on the number of different messages input (either via Send or via SetMessage),
the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let ∆′ := 2∆ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (12)

2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := κ
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)κ

)
log((1−δ2)α) +1

and ∆′ := ∆ · (t0 + 1). If

e−κγ + γα

1 − γ
≤ 1,

γn

(1 − δ1)κ > 1, and (1 − δ2) · α > 1, (13)

26 Matt, Nielsen, and Thomsen

then

pbad ≤ r · (t + 1) ·
(

n ·
(

e−
δ2

1κ

2 + t0e−
δ2

2α(1−δ1)κ

2

)
+ e−h·(κγ2−2)

)
. (14)

Proof Sketch. For an adversary we construct a simulator similar to how it is done
in the proof of Lemma 1. The only times this is not a perfect simulation is when
one of the properties of F∆′

Flood are violated in πERFlood which will never happen
when the environment interacts with F∆′

Flood. The main idea of the proof is to
argue about the probability that a message m, that is input via either Send or
SetMessage, is not propagated to all parties within ∆′ time. We will argue about
this via 7 random experiments:

FloodToER1: An experiment where an adversary interacts with an oracle to
learn edges in a directed graph. Only nodes that have an edge to them
can have their edges revealed to the adversary but the adversary can inject
additional edges in order to be able to reveal more nodes. The adversary
has the possibility to remove up to t nodes, but at the point of removal the
adversary cannot have learned any edges connecting to the removed node. If
at any point there is a cut in the graph the adversary can stop the game.

FloodToER2: An experiment similar to FloodToER1 except now the edges are
undirected.

FloodToER3: An experiment similar to FloodToER2 except the adversary cannot
stop the game before all parties have been revealed.

FloodToER4: An experiment similar to FloodToER3 except the adversary cannot
inject edges between parties.

FloodToER5: An experiment similar to FloodToER4 except that the oracle secretly
and uniformly predetermines the size of the returned graph, s ∈ {h, . . . , n}.
The adversary can however still decide whether or not to remove a particular
node given that it does not violate the size that the oracle has determined.

FloodToER6: An experiment similar to FloodToER5 except now the oracle also
predetermines a Erdős–Rényi graph of the predetermined size and embeds
this into the final graph that is returned.

Erdős–Rényi: An experiment that chooses a graph of a certain size and includes
each edge independently with probability ρ.

Let d := ∆′

∆ . We now argue via the following steps:

1. If there is an adversary that prevents timely delivery of m in the real
world with some probability, then there exists an adversary that can make
FloodToER1 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.

2. If any adversary can make FloodToER1 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER2 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.

Delayed Adaptive Corruptions and the Security of Flooding Networks 27

3. If any adversary can make FloodToER2 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER3 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.

4. If any adversary can make FloodToER3 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER4 return a graph with a diameter larger than d with at least as
high a probability.

5. If any adversary can make the FloodToER4 game return a graph with a
diameter larger than d with probability p, then the same adversary can make
FloodToER5 return a graph with a diameter larger than d with probability
at least p · (t + 1).

6. The experiments FloodToER5 and FloodToER6 are distributed identically.
7. The probability that FloodToER6 returns a graph with larger diameter than

d must be less than the probability that an Erdős–Rényi graph with the
worst size has a larger diameter than d.

8. We can now use the Erdős–Rényi graph results to bound the probability that
an adversary can prevent the delivery of m in the real world.

We finally do a union bound over the number of different messages that is input
to the functionality. The detailed proof can be found in the full version [34].

As the results in Theorem 3 are hard to interpret we additionally provide the
following corollary which instantiates some of the many constants and makes
some simplifying but non-optimal estimates. We emphasize that if one wants
to optimize for a particular use-case (i.e., small diameter or very small failure
probability) then Theorem 3 can be used to obtain tighter bounds.

Corollary 1. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum
number of parties an adversary can corrupt, and let κ ∈ R be the security
parameter. The protocol πERFlood(ρ) securely implements F∆′

Flood against a (σ + ∆)-
delayed adversary using Fσ,∆

MessageTransfer. More precisely when r is an upper bound
on the number of different messages input (either via Send or via SetMessage),
the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let ∆′ := 2∆ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (15)

2. Let ρ := κ
h , and ∆′ := ∆ · (5 log

(
n
2κ

)
+ 2), if n

2κ > 1 then

pbad ≤ r · (t + 1) ·
(

7n log
(n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
. (16)

Proof. Instantiation 1 immediately follows from Theorem 3 (Instantiation 1). To
derive instantiation Instantiation 2 we again use Theorem 3 (Instantiation 2) and
select

δ1 := δ2 := γ := 1
3 and α := 7

4 .

28 Matt, Nielsen, and Thomsen

With these parameters we see that Eq. (13) is fulfilled when κ ≥ 1. Furthermore,
we see that

pbad ≤ r · (t + 1) ·
(

n ·
(

e− κ
18 +

(
5 log

(n

2κ

)
+ 1

)
e− 7κ

108

)
+ e− h(κ−18)

9

)
≤ r · (t + 1) ·

(
7n log

(n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
.

The number of neighbors any party will need to send to when they send/relay
a message in πERFlood(ρ) concentrates around n · ρ (this follows from the Chernoff
bound and the union bound). Concretely, for Instantiation 1 we get that the
number of neighbors is upper-bounded by O (

√
κn) except with a negligible

probability, and for Instantiation 2 we get that the number of neighbors is
upper-bounded by O (κ) except with a negligible probability.

A note on changing from TCP to UDP. Results about Erdős–Rényi graphs can
be transferred to a setting without reliable message-transmission. Let us, instead
of reliable transmission assume that there is an independent failure probability
β for each message that is send via FMessageTransfer and ρ is an instantiation of
πERFlood(ρ) that ensures a certain diameter assuming reliable transfer. If we let
ρ′ := ρ

1−β then πERFlood(ρ′) with unreliable transfer is ensured to have the same
diameter as πERFlood(ρ) with reliable transfer. This is because that the probability
for a successful propagation from party pi to pj will then be ρ′ · (1 − β) = ρ,
which ensures that we in this more difficult setting inherent the original results
for πERFlood(ρ).

6 Conclusion and Future Work

We have formally defined the model of δ-delayed adversaries within the UC
framework. This has allowed us to precisely characterize and prove the security
guarantees of the flooding protocol, πERFlood. Thereby, we have taken a first step
at putting the widely assumed flooding functionalities on firm ground.

Several interesting directions for future work remain. In this work, we have
explored a particular type of flooding protocol based upon Erdős–Rényi graphs.
However, as discussed earlier, there exist several more complex constructions for
different gossip networks in the literature. Analyzing such protocols against δ-
delayed corruptions could potentially yield protocols that are even more efficient
than what is presented here while also providing a well-understood security
guarantee. Another direction could be to optimize for security instead of efficiency.
The flooding protocol that we have presented is only secure against adversaries
that are delayed by at least (σ+∆). An interesting question that arises is whether
this is inherent for flooding networks, or whether it is possible to implement a
flooding network that is secure against a 0-delayed adversary.

Furthermore, this work has considered adaptive but not mobile adversaries,
which can again uncorrupt parties. For some notion of mobility, it seems that
πERFlood could be secure even in the presence of such mobile adversaries. Extending

Delayed Adaptive Corruptions and the Security of Flooding Networks 29

the model of δ-delayed adversaries to include some notion of mobility would be
useful in order to better understand guarantees of blockchain protocols that are
supposed to run for a very long time.

Acknowledgements. We thank Ran Canetti for explaining a subtle detail of the
UC framework, Sabine Oechsner for discussions in the initial phase of the project,
and the anonymous reviewers of Eurocrypt and Crypto for their feedback.

References

1. Abraham, I., Chan, T.H., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.: Com-
munication complexity of byzantine agreement, revisited. In: PODC. pp. 317–326.
ACM (2019)

2. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal compo-
sition with global subroutines: Capturing global setup within plain UC. In: TCC
(3). Lecture Notes in Computer Science, vol. 12552, pp. 1–30. Springer (2020)

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: CRYPTO (1). Lecture Notes in Computer Science,
vol. 10401, pp. 324–356. Springer (2017)

4. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A founda-
tion of time-lock puzzles in UC. In: EUROCRYPT (3). Lecture Notes in Computer
Science, vol. 12698, pp. 429–459. Springer (2021)

5. Birman, K.P., Hayden, M., Özkasap, Ö., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Trans. Comput. Syst. 17(2), 41–88 (1999). https://doi.org/10.
1145/312203.312207

6. Bollobás, B.: Random graphs. No. 73 in Cambridge studies in advanced mathematics,
Cambridge University Press, 2 edn. (2001)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press, Las Vegas,
NV, USA (Oct 14–17, 2001). https://doi.org/10.1109/SFCS.2001.959888

8. Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020)
9. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with

global setup. In: TCC. Lecture Notes in Computer Science, vol. 4392, pp. 61–85.
Springer (2007)

10. Canetti, R., Hogan, K., Malhotra, A., Varia, M.: A universally composable treatment
of network time. In: CSF. pp. 360–375. IEEE Computer Society (2017)

11. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: The hidden graph model: Communication locality and optimal resiliency
with adaptive faults. In: Roughgarden, T. (ed.) ITCS 2015. pp. 153–162. ACM,
Rehovot, Israel (Jan 11–13, 2015). https://doi.org/10.1145/2688073.2688102

12. Coretti, S., Kiayias, A., Moore, C., Russell, A.: The generals’ scuttlebutt: Byzantine-
resilient gossip protocols. Cryptology ePrint Archive, Report 2022/541 (2022),
https://ia.cr/2022/541

13. Crisóstomo, S., Schilcher, U., Bettstetter, C., Barros, J.: Analysis of probabilistic
flooding: How do we choose the right coin? In: ICC. pp. 1–6. IEEE (2009)

14. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and appli-
cations to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.) FC 2019.
LNCS, vol. 11598, pp. 23–41. Springer, Heidelberg, Germany, Frigate Bay, St. Kitts
and Nevis (Feb 18–22, 2019). https://doi.org/10.1007/978-3-030-32101-7_2

https://doi.org/10.1145/312203.312207
https://doi.org/10.1145/312203.312207
https://doi.org/10.1145/312203.312207
https://doi.org/10.1145/312203.312207
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2688073.2688102
https://doi.org/10.1145/2688073.2688102
https://ia.cr/2022/541
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2

30 Matt, Nielsen, and Thomsen

15. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/
978-3-319-78375-8_3

16. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: EUROCRYPT (2). Lecture Notes
in Computer Science, vol. 10821, pp. 66–98. Springer (2018)

17. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database
maintenance. In: Schneider, F.B. (ed.) 6th ACM PODC. pp. 1–12. ACM, Vancouver,
BC, Canada (Aug 10–12, 1987). https://doi.org/10.1145/41840.41841

18. Erdős, P., Rényi, A.: On the evolution of random graphs. In: PUBLICATION OF
THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF
SCIENCES. pp. 17–61 (1960)

19. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.S.: Adaptively secure broadcast,
revisited. In: Gavoille, C., Fraigniaud, P. (eds.) 30th ACM PODC. pp. 179–186.
ACM, San Jose, CA, USA (Jun 6–8, 2011). https://doi.org/10.1145/1993806.
1993832

20. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg, Germany, Sofia, Bulgaria
(Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-46803-6_10

21. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 291–323. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63688-7_10

22. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-based ad hoc routing. IEEE/ACM Trans.
Netw. 14(3), 479–491 (2006). https://doi.org/10.1145/1143396.1143399

23. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: Jung, J., Holz, T. (eds.) USENIX Security 2015. pp.
129–144. USENIX Association, Washington, DC, USA (Aug 12–14, 2015)

24. Hu, R., Sopena, J., Arantes, L., Sens, P., Demeure, I.M.: Fair comparison of
gossip algorithms over large-scale random topologies. In: SRDS. pp. 331–340. IEEE
Computer Society (2012)

25. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spread-
ing. In: 41st FOCS. pp. 565–574. IEEE Computer Society Press, Redondo Beach,
CA, USA (Nov 12–14, 2000). https://doi.org/10.1109/SFCS.2000.892324

26. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC. Lecture Notes in Computer Science, vol. 7785, pp. 477–498.
Springer (2013)

27. Kermarrec, A., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination in
large-scale systems. IEEE Trans. Parallel Distributed Syst. 14(3), 248–258 (2003)

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably
secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 357–388. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/
978-3-319-63688-7_12

29. Kiayias, A., Zhou, H., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: EUROCRYPT (2). Lecture Notes in Computer
Science, vol. 9666, pp. 705–734. Springer (2016)

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1145/1143396.1143399
https://doi.org/10.1145/1143396.1143399
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

Delayed Adaptive Corruptions and the Security of Flooding Networks 31

30. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy. pp. 583–598. IEEE Computer Society Press,
San Francisco, CA, USA (May 21–23, 2018). https://doi.org/10.1109/SP.2018.
000-5

31. Liu-Zhang, C.D., Matt, C., Maurer, U., Rito, G., Thomsen, S.E.: Practical provably
secure flooding for blockchains. Cryptology ePrint Archive, Paper 2022/608 (2022),
https://eprint.iacr.org/2022/608

32. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 17–30. ACM Press, Vienna,
Austria (Oct 24–28, 2016). https://doi.org/10.1145/2976749.2978389

33. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on Ethereum’s
peer-to-peer network. Cryptology ePrint Archive, Report 2018/236 (2018), https:
//eprint.iacr.org/2018/236

34. Matt, C., Nielsen, J.B., Thomsen, S.E.: Formalizing delayed adaptive corruptions
and the security of flooding networks. Cryptology ePrint Archive, Paper 2022/010
(2022), https://eprint.iacr.org/2022/010

35. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A.I.T. (eds.) Peer-
to-Peer Systems, First International Workshop, IPTPS 2002, Cambridge, MA, USA,
March 7-8, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2429,
pp. 53–65. Springer (2002). https://doi.org/10.1007/3-540-45748-8_5

36. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
37. Nielsen, J.B.: On protocol security in the cryptographic model. Ph.D. thesis, Aarhus

University (2003)
38. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous

networks. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol.
10211, pp. 643–673. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4,
2017). https://doi.org/10.1007/978-3-319-56614-6_22

39. Pass, R., Shi, E.: Hybrid consensus: Efficient consensus in the permissionless model.
In: Richa, A.W. (ed.) 31st International Symposium on Distributed Computing,
DISC 2017, October 16-20, 2017, Vienna, Austria. LIPIcs, vol. 91, pp. 39:1–39:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.DISC.2017.39

40. Ren, L.: Analysis of Nakamoto consensus. Cryptology ePrint Archive, Report
2019/943 (2019), https://eprint.iacr.org/2019/943

41. Rohrer, E., Tschorsch, F.: Kadcast: A structured approach to broadcast in blockchain
networks. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019. pp. 199–213.
ACM (2019). https://doi.org/10.1145/3318041.3355469

42. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: Scaling blockchain via
full sharding. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS
2018. pp. 931–948. ACM Press, Toronto, ON, Canada (Oct 15–19, 2018). https:
//doi.org/10.1145/3243734.3243853

https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://eprint.iacr.org/2022/608
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2022/010
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://eprint.iacr.org/2019/943
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

	Formalizing Delayed Adaptive Corruptions and the Security of Flooding Networks

