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Abstract. Property-preserving hashing (PPH) consists of a family of
compressing hash functions h such that, for any two inputs x, y, we can
correctly identify whether some property P (x, y) holds given only the
digests h(x), h(y). In a basic PPH, correctness should hold with over-
whelming probability over the choice of h when x, y are worst-case values
chosen a-priori and independently of h. In an adversarially robust PPH
(RPPH), correctness must hold even when x, y are chosen adversarially
and adaptively depending on h. Here, we study (R)PPH for the property
that the Hamming distance between x and y is at most t.

The notion of (R)PPH was introduced by Boyle, LaVigne and Vaikun-
tanathan (ITCS ’19), and further studied by Fleischhacker, Simkin (Eu-
rocrypt ’21) and Fleischhacker, Larsen, Simkin (Eurocrypt ’22). In this
work, we obtain improved constructions that are conceptually simpler,
have nearly optimal parameters, and rely on more general assumptions
than prior works. Our results are:

– We construct information-theoretic non-robust PPH for Hamming
distance via syndrome list-decoding of linear error-correcting codes.
We provide a lower bound showing that this construction is essen-
tially optimal.

– We make the above construction robust with little additional over-
head, by relying on homomorphic collision-resistant hash functions,
which can be constructed from either the discrete-logarithm or the
short-integer-solution assumptions. The resulting RPPH achieves
improved compression compared to prior constructions, and is nearly
optimal.

– We also show an alternate construction of RPPH for Hamming dis-
tance under the minimal assumption that standard collision-resistant
hash functions exist. The compression is slightly worse than our op-
timized construction using homomorphic collision-resistance, but es-
sentially matches the prior state of the art constructions from specific
algebraic assumptions.

– Lastly, we study a new notion of randomized robust PPH (R2P2H)
for Hamming distance, which relaxes RPPH by allowing the hashing
algorithm itself to be randomized. We give an information-theoretic
construction with optimal parameters.

⋆ Research supported by NSF grant CNS-1750795, CNS-2055510 and the Alfred P.
Sloan Research Fellowship.



1 Introduction

This work studies the problem of how to compress a large input into a small
digest that nevertheless preserves some class of properties of the input. This
high level goal is of central importance and lies behind many prominent topics in
computer science, such as sketching algorithms, locality sensitive hash functions,
streaming algorithms, and compressed sensing.

We focus on an important variant of this problem, called (robust) property-
preserving hashing (R)PPH, which was recently introduced by Boyle, LaVigne
and Vaikuntanthan [BLV19] and further studied by Fleischhacker, Simkin [FS21]
and Fleischhacker, Larsen, Simkin [FLS22]. An (R)PPH for a property P (a
binary predicate) consists of a compressing family of deterministic hash func-
tion h such that, for any x, y, we can determine whether the property P (x, y)
holds given only the digests h(x), h(y). In more detail, there is an Eval pro-
cedure that operates on the digests and whose goal is to ensure correctness:
Eval(h(x), h(y)) = P (x, y).3 The basic notion of PPH requires that correctness
holds with overwhelming probability over the choice of h, when the inputs x, y
are worst-case values chosen ahead of time and independently of the choice of
h. A robust PPH (RPPH), on the other hand, requires that correctness holds
with overwhelming probability over the choice of h, even when the inputs x, y
are chosen by an adversary adaptively depending on the hash function h. The
difference between non-robust and robust PPH is exemplified by the difference
between universal hashing and collision-resistant hashing. Concretely, if we con-
sider the equality property “P (x, y) = 1 iff x = y”, then universal hashing gives
an information-theoretic (non-robust) PPH for equality, while collision-resistant
hashing gives an RPPH for equality.

The interesting problem is to construct (R)PPH for more complex properties
beyond equality. Most naturally, we’d like to do so for properties P (x, y) that
hold if x, y are “similar” in some metric. For example, Apple recently suggested
a method for privately detecting users who store known Child Sexual Abuse
Material (CSAM) [App, NYT, Scha]. A key component of their system was a
hash function called NeuralHash, which was essentially intended to be an RPPH
for the property that two images are similar. However, it became clear that
NeuralHash is not robust, and it is possible to adversarially find images that are
completely different, yet their hashes identify them as being similar [Schb, Cru].
This leads to privacy violations in the overall system, which is one of the reasons
that Apple ended up abandoning the CSAM detection system for the time being.
The above highlights the need for a better understanding of RPPH, what it can
achieve, and what are its limitations.

(R)PPH for Hamming Distance. In this work, following prior works [BLV19,
FS21, FLS22], we study (R)PPH for Hamming distance over the binary alpha-
bet. In particular, for some distance bound t, we consider the property P (x, y),

3 Technically, the Eval procedure also takes as input the description of the hash func-
tion h, but for simplicity we omit this throughout the introduction.

2



which holds iff the Hamming distance between x, y is ||x − y||0 ≤ t. There are
several reasons for focusing on Hamming distance. Firstly, Hamming distance
is arguably the most basic metric to study and understanding it is likely to
be a prerequisite for understanding more complex metrics. Secondly, a common
approach to defining “similarity” between complex objects is to first translate
these objects into binary “feature vectors” that represent a list of potential fea-
tures and indicates whether or not the object has them, and then looking at the
Hamming distance between the feature vectors. In this case, a good (R)PPH
for Hamming distance gives a good (R)PPH for testing similarity of more com-
plex objects. Lastly, by focusing on Hamming distance, we can make use of an
extensive set of tools from coding theory to help us along.

The main measure of efficiency that we seek to optimize is the output length
m of the (R)PPH, as a parameter that depends on the input length n, the
distance parameter t and the security parameter λ. In particular, we would like
the RPPH to be as compressing as possible by minimizing m for any choice of
n, t, λ.

Prior Work. The work of Boyle, LaVigne and Vaikuntanthan [BLV19] initiated
the general study of (R)PPH. They provided definitions for both the non-robust
and robust variants of PPH.4 Although [BLV19] does not directly offer any con-
structions of RPPH for the exact Hamming distance property studied here, their
main positive results consider a relaxation called RPPH for gap-Hamming dis-
tance, where the goal is only to distinguish between the case where the Hamming
distance between x and y is ≤ t versus > (1 + δ)t, for some distance t and gap
parameter δ > 0. In other words, this relaxation only requires Eval(h(x), h(y))
to output 1 in the former case and 0 in the latter case, but any output is per-
missible in the gap between them. The work of [BLV19] gave two constructions
of RPPH for gap-Hamming distance with any constant gap δ > 0. The first
construction is based on only the existence of collisions-resistant hash functions
(CRHFs). Assuming CRHFs with output length ℓ = ℓ(λ), they showed that for
any constant compression factor η > 0, there exists some constant ρ > 0 such
that for any distance t ≤ ρ · n/(ℓ · log ℓ), there is an RPPH for gap Hamming
distance with output length m ≤ η · n.5 Their second construction is based on
a new but plausible computational assumption that they introduce and call the

4 They also considered two additional intermediate variants of PPH, where the ad-
versary does not get the full description of the hash function but gets some partial
oracle access before choosing x, y. Our notion of robust PPH is the strongest notion
they considered and is also referred to as a “direct access robust” PPH in their work.

5 Asymptotically, the existence of CRHFs with output length ℓ(λ) = λ is equivalent to
those with output length ℓ(λ) = λε for ε > 0. Moreover, it may be plausible to even
conjecture the existence of CRHFs with (e.g.,) output length ℓ(λ) = log λ log log λ.
However, these choices will have vastly different exact security. All the construc-
tions/reductions referred to in this work preserve exact security. Therefore, we find
it more informative to phrase all results in terms of the exact output length ℓ(λ) of
the underlying primitive and the construction with inherit the exact security of that
primitive with the given output length.
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Sparse Short Vector (SSV) assumption. Under that assumption, they got some-
what better parameters, showing that for any constant η > 0, there exists some
constant ρ > 0 such that for any t ≤ ρ · n/ log n there is an RPPH for gap
Hamming distance with output size m ≤ η · n.

The work of Fleischhacker, Simkin [FS21] gave the first construction of RPPH
for exact Hamming distance. They did so under a new assumption in bilinear
groups, which they called the q-Strong Bilinear Discrete Logarithm (q-SBDL)
Assumption. They showed that, assuming q-SBDL holds in a group whose ele-
ments can be represented using ℓ = ℓ(λ) bits, for any distance t there is an RPPH
for exact Hamming distance with output length m = O(tℓ). In particular, the
RPPH is non-trivially compressing for t = O(n/ℓ).

The work of Fleischhacker, Larsen, Simkin [FLS22], gave a similar result
as above but under the Short-Integer Solution (SIS) assumption, which is a
well-studied assumption (it is implied by learning-with-errors (LWE)) and can
be based on the hardness of worst-case lattice problems [Ajt96]. In particular,
under the SIS assumption, they showed that for any distance t there is an RPPH
for exact Hamming distance with output size m = O(tℓ · log n), where ℓ = ℓ(λ)
is the output length of Ajtai’s hash function based on SIS. In particular, the
output size is non-trivially compressing for t = O(n/(ℓ · log n)).

To summarize, the best prior RPPH constructions for exact Hamming dis-
tance at the very least required output size m ≥ tℓ(λ), where ℓ is some poly-
nomial. They also required specific algebraic assumptions, namely SIS or the
q-SBDL assumption in bilinear maps. For gap Hamming distance, we knew how
to get slightly better output length m ≥ t log n + ℓ(λ), but only under a new
non-standard variant of SIS, or we knew how to get m ≥ tℓ(λ) log n under just
collision-resistance.

1.1 Our Results

In this work, we give new constructions of (R)PPH for exact Hamming distance.
Our constructions are conceptually simpler, are based on more general assump-
tions, and achieve improved compression compared to prior work. Our results
are as follows.

Non-Robust PPH. Our first result is to construct a non-robust PPH for Ham-
ming distance via a simple connection to syndrome list-decoding of linear error-
correcting codes. In terms of parameters, the output size of our hash function
is m = η · n + λ, where 1 − η is the optimal rate of a linear list-decodable
error-correcting code that can correct t errors. Inefficiently, we can go up to
the Hamming bound with η = H(t/n), where H is the Shannon binary entropy
function. Efficiently we can go up to the slightly weaker Blokh-Zyablov bound.
In either case, this implies m = O(t log n) + λ. However, it also implies non-
trivial compression for larger distances up to t = O(n). In particular, for any
constant compression factor η > 0 there exists some ρ > 0 such that there is a
(non-robust) PPH with output length m = ηn+ λ for all distances t ≤ ρ · n.
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We give a matching lower bound, showing that the output size has to satisfy
m > (H(t/n)− o(1)) · n.

RPPH from Homomorphic Collision-Resistance. Our next result extends the
above idea to add robustness and achieve RPPH for Hamming distance by
leveraging homomorphic collision-resistant hash functions, which we in turn
construct under either the standard discrete logarithm (DLOG) assumption or
the short-integer-solution (SIS) assumption. The construction adds a constant
factor overhead of at most (log2 3) compared to our non-robust PPH, giving
m = (log2 3)η · n + ℓ, where 1 − η is the optimal rate of a linear list-decodable
error-correcting code that can correct t errors, and ℓ = ℓ(λ) is the output length
of the homomorphic CRHF (e.g., the bit-length of a group element). In par-
ticular, our output length is bounded by m = O(t · log n + ℓ), while previous
constructions [FS21, FLS22] achieved m = O(t · ℓ). Since we always assume
n = poly(λ), we can conclude that log n = O(log λ) is asymptotically smaller
than ℓ = poly(λ). Moreover, for any constant compression factor η > 0 there
exists some constant ρ > 0 such that we get an RPPH for Hamming distances
t ≤ ρ · n with output size m ≤ η · n. Previous constructions of RPPH for
Hamming distance [FS21, FLS22] only achieved non-trivial compression η < 1
for sub-linear distances t = O(n/ℓ), while we do so for up to linear distances
t = O(n).

RPPH from Standard Collision-Resistance. We also construct the first RPPH for
Hamming distance based on the minimal assumption that (standard) collision-
resistant hash functions (CRHFs) exist. Previously, we only knew how to do this
for gap-Hamming distance [BLV19], while we show how to do for exact Hamming
distance. In fact, we show how to using syndrome decoding to generically upgrade
an RPPH for gap-Hamming distance into one for exact Hamming distance. The
achieved parameters are slightly worse than those of our optimized construction
based on homomorphic CRHFs above, but are comparable to those achieved by
prior constructions for exact Hamming distance [FS21, FLS22] based on specific
algebraic assumptions. In particular, assuming CRHFs with output length ℓ =
ℓ(λ), we get an RPPH for distance t with output length m = O(t · ℓ · log(n/t)).

Randomized RPPH (R2P2H). We also consider a randomized notion of RPPH
(R2P2H), where the computations of the hash function h(x) can itself be a ran-
domized. The adversary can choose worst-case values x, y after seeing the descrip-
tion of h, but before knowing the internal randomness that will be employed in
the computation of h(x), h(y). The adversary wins if Eval(h(x), h(y)) ̸= P (x, y),
and we require that the can only happen with negligible probability over the
choice of the hash function h and the internal randomness used to compute
h(x), h(y). We emphasize that, aside for allowing the hash function to be random-
ized, the security guarantee provided by R2P2H is also qualitatively weaker than
that of deterministic RPPH. For deterministic RPPH, the security definition im-
plicitly allows the adversary to choose y after seeing h(x), since the adversary
can compute h(x) himself. This is not the case for R2P2H, where seeing h(x) can
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reveal something about the internal randomness employed in the computation
that would allow the adversary to find a bad y that breaks security. Surprisingly,
this relaxation to R2P2H allows us to get non-trivial information-theoretic con-
structions. It was previously known that one can achieve information-theoretic
R2P2H for the equality predicate, where the output length is m = O(

√
n) and

that this is optimal [NS96, BK97, MNS08, CN22]. We extend this to showing
a construction of information-theoretic R2P2H for Hamming distance t, where
the output length is O(

√
λn log n) + ηn), where 1 − η is the optimal rate of a

linear list-decodable error-correcting code that can correct t errors; in particular
ηn ≤ O(t log n).

1.2 Our Techniques

On a technical level, our constructions are quite different than those of [FS21,
FLS22]. The common theme of all our results is the reliance on syndrome de-
coding.

PPH from Syndrome Decoding. We start with a simple construction of a non-
robust PPH based on syndrome (list) decoding of linear error-correcting codes.
Assume there exists some linear error-correcting code over a field F, having
codeword length n, message length k, and the ability to (efficiently) correct up to
t errors. This is equivalent to the existence of a parity check matrix P ∈ F(n−k)×n

such that for any error-vector e ∈ Fn with Hamming weight ∥e∥0 ≤ t we can
(efficiently) recover e from the syndrome P · e. More generally, a code that
allows (efficient) list-decoding of up to t errors implies that given a syndrome
P · e as above we can (efficiently) recover a polynomial-sized list L of potential
error vectors with the guarantee that e ∈ L. Without loss of generality, we can
assume that each ei ∈ L has Hamming-weight ∥ei∥0 ≤ t.

For our construction of PPH, assume we have a list-decodable code as above
over the binary field F2 and let P be the parity check matrix. We will also
make use of the universal hash function huniv(x) = A · x where A ← Fλ×n

2 is
a random matrix. This ensures that for any x1 ̸= x2 ∈ Fn

2 chosen a-priori, we
have PrA[Ax1 = Ax2] = 2−λ. We will rely on the fact that this universal hash
function is linearly homomorphic with huniv(x1)− huniv(x2) = x1 − x2.

6

The description of the PPH h consists of the random matrix A of the universal
hash function. Given an input x, the PPH output y = h(x) is defined as y =
(P ·x,A ·x), consisting of the syndrome and the universal-hash of x. Given y1 =
h(x1), y2 = h(x2) with y1 = (v1, w1), y2 = (v2, w2) the procedure Eval(y1, y2)
does the following. It runs the syndrome list-decoding algorithm on v1 − v2 =
P · (x1 − x2) to recover a list of potential error-vectors L. If there exists some
ei ∈ L such that A · ei = w1−w2 than the Eval algorithm accepts else it rejects.

To see that the above construction satisfies the definition of a PPH, we
consider two cases. First, suppose x1 and x2 are “close”: i.e., ∥x1 − x2∥0 ≤ t.

6 Since we’re working over F2, addition and subtraction are equivalent, but we use
subtraction to make it easier to compare to later constructions that work in larger
fields.
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Then, during the computation of Eval
(
h(x1), h(x2)

)
, the correctness of syndrome

list-decoding for the syndrome v1−v2 = P ·(x1−x2) ensures that x1−x2 appears
in the list L. Moreover A · (x1− x2) = w1−w2 and therefore the Eval algorithm
will accept with probability 1. Next, suppose that x1 and x2 are instead “far”:
i.e., ∥x1 − x2∥0 > t. Then, during the computation of Eval

(
h(x1), h(x2)

)
, no

matter what list L is generated, we know that x1 − x2 ̸∈ L since the list only
contains vectors with Hamming weight at most t. Furthermore, the list L is
independent of A and is polynomial in size. This ensures that the probability
over A that there exists some ei ∈ L such that A · ei = w1 − w2 = A · (x1 − x2)
is at most |L| · 2−λ = negl(λ).

The output size of the above PPH is m = (n − k) + λ bits, where k is de-
termined by the optimal rate of the code that can list-decode up to t errors. It
is known that, inefficiently, such linear list-decodable codes exist with rates k/n
arbitrarily close to 1−H(t/n) where H is the binary entropy function [GHK10].
The well-known Hamming bound states that it is impossible to do better. This
gives an inefficient PPH with output length m ≈ H(t/n)·n+O(λ). For efficiently
list-decodable codes, it is a well known open problem to match the Hamming
bound. Instead, the best known constructions [GR09] achieve a slightly worse
bound called the Blokh-Zyablov bound [BZ82] (see Fact 3 for the exact expres-
sion). While this bound is somewhat difficult to interpret, we can always bound
the output length by at most m = O(t log n + λ). Moreover, for any constant
compression factor η > 0, there is some constant ρ > 0 such that we get a PPH
for all distances t ≤ ρ · n with output length m ≤ η · n+ λ.

Remark: Weak Robustness and Heuristic RPPH. As a remark, we mention that
we can leverage the result of [BLV19], who showed that one can generically
upgrade a non-robust PPH into a weak form of “double-oracle access robust”
PPH, where security holds even if the adversary is given oracle access to the
hash function h and the evaluation procedure Eval but does not get the code
of h itself. This transformation only relies on one-way functions and only adds
a small O(λ) additive overhead. The idea is to encrypt the output of the non-
robust PPH using symmetric-key authenticated encryption whose key is stored
as part of the hash function (and which can even be made deterministic), and the
Eval procedure first decrypts the non-robust PPH digests and then does what
the non-robust Eval procedure would do.

Moreover, we can heuristically convert any such “double-oracle access robust”
PPH into a fully robust RPPH by obfuscating the code of the hash function h
and the Eval procedure, without increasing the output size of the hash at all.
Therefore, this gives heuristic evidence that we can robustly match the above
parameters of our non-robust PPH without any additional overhead. Our main
results show how to almost match the above parameters robustly under standard
assumptions.

Lower Bound. We also prove a lower bound on the output length m of any
(not necessarily robust or efficiently computable) PPH for Hamming distance,
showing that we require m > log

(
n
t

)
which implies m ≥ (H(t/n)− o(1)) · n and
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m ≥ t log(n/t). Our lower bound is simpler than the previous lower bound of
[FLS22] and, more importantly, for constant error-rate ρ = t/n, it gives a tight
bound on compression factor η = m/n, showing η = H(ρ) − o(1). Our upper
bound shows how to match the lower bound of η ≈ H(ρ) inefficiently. Efficiently,
our upper bound gives a slightly worse η matching the Blokh-Zyablov bound.
Closing this gap between our inefficient and efficient constructions boils down to
the fundamental coding theoretic problem of improving the rate of efficiently list-
decodable linear codes from the Blokh-Zyablov bound to the better Hamming
bound.

The idea behind the lower bound is as follows. For a random x, we show
that if we can correctly guess the PPH output y = h(x) as well as some value
x′ that’s exactly at distance t from x, then we can recover x. If we select y, x′

uniformly at random then our guess is good with probability 1
2m ·

(nt)
2n , but this

can then be at most the probability of guessing x, which is 1
2n .

RPPH from Homomorphic Collision-Resistance. We take our construction of
PPH for Hamming distance and show how to make it robust. At a high level,
the idea is exactly the same as before, and we simply replace the homomorphic
universal hash function huniv with a homomorphic collision-resistant hash func-
tion hCR. We have such hash functions under the discrete-logarithm (DLOG) as-
sumption – namely, the Pedersen hash function hCR(x1, . . . , xn) =

∏
gxi
i , where

gi are random group elements in some prime-order cyclic group. We also have
such hash functions under the short-integer-solution (SIS) problem – namely,
Ajtai’s hash function hCR(x) = A · x, where A is a random compressing matrix
over Zq and ||x||∞ is small. In both cases, the output size can be bounded by
some polynomial ℓ = ℓ(λ).

There is only one catch: the above hash functions are homomorphic over Zq

for some q > 2 rather than over Z2. In particular, given w1 = hCR(x1), w2 =
hCR(x2) we can compute hCR(x1 − x2) where the subtraction is now over Zq.
Since our PPH construction applies the hash function to values x1, x2 ∈ {0, 1}n
we have x1 − x2 ∈ {−1, 0, 1}n is the same when computed mod q or over the
integers. Therefore, to make the overall PPH construction work, we will also need
to use a linear (list decodable) code over some field F of characteristic p > 2 so
that, given the syndrome P · (x1 − x2) computed over F, we can recover a list
containing x1 − x2 ∈ {−1, 0, 1}n computed over the integers. For simplicity, we
can just use codes over F3 instead of F2. With these changes, the construction
and proof of security are essentially the same as in the non-robust case, but
now we rely on collision-resistance instead of universality to achieve security
even when x1, x2 are chosen adaptive depending on the description of the hash
function h.

The parameters of the resulting RPPH are essentially the same as those of
the non-robust PPH, with the only difference that the hash output now contains
n−k elements of F3 rather than bits. This increases the bit-length of the output
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by a multiplicative factor of at most log2(3) ≈ 1.58.7 It is an interesting open
problem to get rid of this constant-factor increase by constructing CRHFs that
are homomorphic over Zn

2 .
8

RPPH from Standard Collision-Resistance. Next, we show how to construct
RPPH for Hamming distance using just standard collision-resistant hash func-
tions (CRHFs). The output size is larger than that of our optimized construction
using homomorphic collision-resistance, but essentially matches the prior state
of the art constructions [FS21, FLS22] from specific assumptions.

Our construction relies on two ingredients. The first is an RPPH for gap
Hamming distance, which was previously constructed from CRHFs by [BLV19].
Namely, assuming a CRHF with output length ℓ = ℓ(λ), they gave a construc-
tion of an RPPH for gap Hamming distance with any constant gap δ > 0 and
any constant-factor compression, for distances up to t = O(n/ℓ log ℓ). We gen-
eralize their analysis to showing that for smaller distances t we can get even
smaller compression, and in general, for any t, we can make the output as small
as O(tℓ log(n/t)). Our second ingredient is a linear error-correcting code over

F2 with a parity check matrix P ∈ F(n−k)×n
2 that enables efficient (unique)

syndrome decoding from (1 + δ)t errors.

We use syndrome decoding to upgrade an RPPH for gap Hamming dis-
tance hgap with some constant gap δ > 0, into an RPPH for exact Ham-
ming distance hexact. We define hexact(x) = (P · x, hgap(x)). Given two hashes
hexact(x1) = (P · x1, hgap(x1)), hexact(x2) = (P · x2, hgap(x2)), we can define
the Evalexact procedure that tests whether ||x1 − x2||0 ≤ t as follows. First,
it runs Evalgap(hgap(x1), hgap(x2)) and if that outputs 0 then we know that
||x1 − x2||0 > t and hence output 0. Otherwise, if Evalgap outputs 1 then we
know that ||x1 − x2||0 ≤ (1 + δ)t. In this case we apply syndrome decoding on
P · (x1− x2) to uniquely recover (x1− x2) and if the Hamming weight is ≤ t we
outputs 1 else 0.

The end result is an RPPH for exact Hamming distance, where the output
length is the sum of n−k and the output length of the RPPH for gap Hamming
distance from CRHFs. Using Reed-Solomon codes, the former can be bounded
by O(t log n). Therefore the second term dominates, and we get the same param-
eters for exact Hamming distance as the previous construction for gap Hamming
distance by [BLV19].

7 On the other hand, it allows us to use codes over F3 which may have slightly improved
rate compared to ones over F2.

8 A heuristic construction would be to define the hash function hCR whose description
consists of an obfuscated program that has a hard-coded random matrix A← Zλ×n

2

and a key k for a pseudorandom permutation πk : {0, 1}λ → {0, 1}λ. On input
(“hash”, x) the program would output πk(Ax), which we would also define as the
output of the hash function hCR(x). On input (“homomorphism”, y1, y2) the pro-
gram would output πk(π

−1
k (y1)− π−1

k (y2)), which would allow us to implement the
homomorphic operation on the hash outputs.
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R2P2H. Finally, we turn to the construction of randomized RPPH (R2P2H). We
go back to our initial construction of a (non-robust) PPH for Hamming distance,
where h(x) outputs a syndrome of x and a homomorphic universal hash of x.
We can think of the universal hash function as a (deterministic, non-rboust)
PPH for equality. By taking that construction and replacing the universal hash
function with a R2P2H for quality we get our R2P2H for Hamming distance.
We just need the R2P2H for equality to satisfy an appropriate homomorphic
property, and we show how to adapt known constructions to do so.

Open Question. While our work gives nearly optimal constructions of (R)PPH
for exact Hamming distance, it leaves open the question whether one can get
significantly better parameters for gap Hamming distance. Recall that, in the
non-robust case, we had a lower bound of m ≥ log

(
n
t

)
≥ t log(n/t) on the output

length of a (even non-robust) PPH for exact Hamming distance. As pointed out
in [BLV19], using the result of [KOR00], it turns out that one can do much better
for gap Hamming distance: for any constant gap δ > 0 there is a non-robust
PPH for gap Hamming distance with output length just O(λ) independent of
n, t. A very interesting open question is whether it is possible to match this with
robustness or not. Currently, we don’t even have heuristic constructions that
would beat the m ≥ t log(n/t) lower bound in the gap setting with robustness.
On the other hand, we also currently don’t have any techniques for proving any
lower bounds on the cost of robustness – all current lower bounds for RPPH also
hold for non-robust PPH.

1.3 Other Related Work

Locality sensitive hash functions [IM98] can be thought of as a strengthening
of PPH, where we want h(x1) = h(x2) to collide iff P (x1, x2) holds. In other
words, we can think of this as a special case of PPH where Eval just outputs 1
iff the digests are equal. While there is a simple construction of locality sensitive
hash functions for gap Hamming distance [IM98], there are strong lower bounds
showing that they cannot achieve a negligible correctness error, even in the non-
robust setting [MNP07, OWZ11]. In particular, they cannot be robust.

Secure sketches [DORS08] ensure that, given a hash (called a “sketch”) h(x1)
and some x2 within distance t of x1, we can recover x1. While the original
notion of secure sketches did not require the digest to be compressing, one of
the constructions of [DORS08] for Hamming distance is based on syndrome
decoding and is compressing. Secure sketches easily yield a relaxation of PPH
(resp. RPPH), where we can determine whether P (x1, x2) holds given one digest
h(x1) and the other input x2 in the clear. In particular, we simply append a
universal (resp. collision resistant) hash function of x1 to the output of the
sketch; then, given x2, we first use the sketch to attempt to recover a candidate
x′1 for x1, then check that it matches the universal (resp. collision resistant) hash,
and finally check that it is within distance t of x2. This type of relaxed notion of
(R)PPH was also defined by [BLV19], and referred to as a “single-input property”
(R)PPH. Given the above, the main novelty of our work and previous works on
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RPPH for Hamming distance, is that we need to decide whether P (x1, x2) holds
given only the two digests h(x1), h(x2), without having either of the inputs in
the clear.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k]
then we let x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of
values x[i] for i ∈ s.

Predictability and Entropy. The predictability of a random variableX isPred(X)
def
=

maxx Pr[X = x]. Themin-entropy of a random variableX isH∞(X) = − log(Pred(X)).
Following Dodis et al. [DORS08], we define the conditional predictability of X

given Y as Pred(X|Y )
def
= Ey←Y [Pred(X|Y = y)] and the (average) condi-

tional min-entropy of X given Y as: H∞(X|Y ) = − log (Pred(X|Y )) . Note
that Pred(X|Y ) is the success probability of the optimal strategy for guessing
X given Y .

Lemma 1 ([DORS08]). For any random variables X,Y, Z where Y is sup-
ported over a set of size T we have H∞(X|Y,Z) ≤ H∞(X|Z)− log T .

Universal Hashing. We recall the definition of universal hash function and a
simple well-known construction via matrix multiplication.

Definition 1. A family of hash functions H = {h : {0, 1}n → {0, 1}m} is a
universal hash family if for all x1, x2 ∈ {0, 1}n such that x1 ̸= x2, we have:

Pr [h(x1) = h(x2) : h← H] ≤ 2−m

We will rely on the following simple universal hash function family, which also
has the additional feature of being homomorphic over Zn

2 with h(x1) + h(x2) =
h(x1 + x2).

Lemma 2. For any n,m, the hash function family H consisting of hash func-
tions hA(x) = A · x with A ∈ Zm×n

2 , is a universal hash family.

Proof. Let x1, x2 ∈ {0, 1}n such that x1 ̸= x2 and let v = (x1 − x2) ̸= 0n.
Denote the bits of v = (v1, . . . , nn). Then there exists some i ∈ [n] such that
vi = 1. Denote the columns of A by A = [a1, . . . , an] with ai ∈ Zm

2 . Then

PrA[Ax1 = Ax2] = PrA[Av = 0] = PrA

[
ai = −

∑
j ̸=i aj · vj

]
= 1

2m .

11



2.1 Coding Theory

Definition 2. An [n, k]q code for n, k, q ∈ Z+ is an injective linear function
C : Fk

q → Fn
q . We call k the message length and n the block length of C.

A codeword of C is any element of the image of C.

Definition 3 (Parity Checks / Syndromes). A parity check matrix9 for an
F-linear code C : Fk → Fn is a matrix P ∈ F(n−k)×n such that c ∈ Fn is a
codeword of C if and only if P · c = 0.

When C and P are fixed, we call P · y the syndrome of y.

Definition 4 (Distance). The distance of a code C is the minimum Hamming
distance between two different codewords of C.

Definition 5 (List-Decoding). An [n, k]q code C : Fk
q → Fn

q is said to be
combinatorially list decodable against t errors if for any y ∈ Σn

k , there are at
most10 poly(n) codewords of C within Hamming distance t of any y ∈ Fn

q . If
there is a poly(n)-time algorithm that outputs all such codewords, then C is said
to be efficiently list decodable against t errors.

Syndrome decoding is another standard but less common way of character-
izing list decodability.

Definition 6 (Syndrome Decoding). Let C : Fk
q → Fn

q be an [n, k]q code
with parity check matrix P .

C is said to be combinatorially syndrome list decodable against t errors if for
every s ∈ Fn−k

q , there are at most poly(n) vectors e ∈ Fn
q with Hamming weight

at most t such that P · e = s.
C is said to be efficiently syndrome list decodable against t errors if there is

a poly(n)-time algorithm that on input s ∈ Fn−k
q enumerates all e ∈ Fn

q with
Hamming weight at most t for which P · e = s.

Fact 1 An [n, k]q code C with parity check matrix P is combinatorially list de-
codable against t errors if and only if it is combinatorially syndrome list decodable
against t errors. Moreover C is efficiently list decodable against t errors if and
only if it is efficiently syndrome list decodable against t errors.

Proof. For any [n, k]q code C : Fk
q → Fn

q with parity check matrix P ∈ F(n−k)×n
q ,

any t ∈ Z+, and any y ∈ Fn
q with syndrome s = P · y ∈ Fn−k

q , there is a bijective
correspondence between:

– e ∈ Fn
q such that P · e = s and ∥e∥0 ≤ t; and

– m ∈ Fk
q such that ∥y − C(m)∥0 ≤ t.

9 There are multiple possible parity check matrices for any code, but the specific choice
will be unimportant for us.

10 The asymptotic bound of poly(n) in fact assumes that we have a family of codes for
an infinite and dense set of n.
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Specifically, any such e can be mapped to m = C−1(y − e). This is well-defined
because P · (y − e) = P · y − P · e = s− s = 0, so y − e is in the image of C. In
the other direction, any such m can be mapped to e = y−C(m), which satisfies
P · e = P · y − P · C(m) = s − 0 = s. It is easy to check that these maps are
inverses of each other.

Known Results

Definition 7 (q-ary Entropy Function). The q-ary entropy function Hq is
defined as

Hq(ρ)
def
= ρ logq(q − 1)− ρ logq ρ− (1− ρ) logq(1− ρ).

We use H without a subscript to refer to the binary entropy function H2.

We first state the fact that inefficiently (combinatorially) list-decodable codes
exist matching the Hamming bound.

Fact 2 (Combinatorially List-Decodable Codes [GHK10]) For all q ∈ Z+,
all 0 < ρ < 1 − 1

q , all 0 < R < 1 −Hq(ρ), and for all sufficiently large n, there

exists an [n,Rn]q code that is combinatorially list decodable against ρ · n errors.
Moreover the list size is inversely proportional to 1−Hq(ρ)−R.11

When it comes to efficiently list-decodable codes, we only have construction
matching the slightly weaker Blokh-Zyablov bound as stated below.

Fact 3 (Blokh-Zyablov bound [BZ82, GR09]) For any q ∈ Z+, any ρ ∈
(0, 1

2 ), any

0 < R < 1−

(
Hq(ρ) + ρ ·

∫ 1−Hq(ρ)

0

dx

H−1q (1− x)

)
︸ ︷︷ ︸

HBZ
q (ρ)

, (1)

and any sufficiently large n, there is an explicit
[
n, ⌈Rn⌉

]
q
code that is efficiently

list decodable against ρn errors.
We define the quantity HBZ

q (ρ) as in Eq. (1). Note that limρ→0 H
BZ
q (ρ) = 0.

In particular, for every η > 0 there exists some ρ > 0 such that η > HBZ
q (ρ).

Lastly, when the distance d is small (say d ≈ nε for constant ε > 0) then we
can get nearly optimal high-rate codes via Reed-Solomon. While Reed-Solomon
codes are usually expressed over a large field, if the field is an extension-field of
some small field Fq (e.g., q = 2) then we can always re-interpret the codes as just
being linear codes over Fq. Therefore Reed-Solomon yields essentially optimal
high-rate codes over F2 when the distance is small.

11 In fact, a random linear code is known to have the stated list decodability with high
probability.
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Fact 4 (Efficiently Decodable High-Rate Codes) For all n, all q, and all
d and for k = n − d logq n there exists an Fq-linear code C : Fk

q → Fn
q that is

efficiently uniquely decodable against ⌊d2⌋ errors.

Proof. We start with a Reed-Solomon code C ′ : (F′)k′ → (F′)n′
, where n′ =

n/ logq n and k′ = k/ logq n and F′ = Fqlogq n is an extension field of Fq satisfying

|F′| ≥ n ≥ n′. By standard properties of Reed-Solomon codes, C ′ is F′-linear,
has distance d = n′ − k′ + 1, and is efficiently uniquely decodable against ⌊d/2⌋
errors [Pet60].

Using the fact that F′ ∼= Flogq n
q , we can view C ′ as a code C : Fk

q → Fn
q . The

code C inherits its distance and efficient unique decodability from C ′, because if
two strings differ in at most d symbols when interpreted as string over Fq, then
they also differ in at most d symbols when interpreted as string over F′.

Finally, it is easy to see (e.g., see [RRR21, Proposition 6.6]) that C is Fq-
linear.

3 Definition of (R)PPH

We recall the definition of (R)PPH from [BLV19]. We first define a general
notion for arbitrary properties P and then discuss the specific Hamming distance
property considered in this work. For the general notion, we also potentially
consider partial predicates P (x1, x2) that can sometimes output ⊥, in which
case we do not care what output the (R)PPH gives.

Definition 8. Let n = n(λ),m = m(λ) be some polynomials in the security pa-
rameter λ. A (n,m)-Property Preserving Hash (PPH) family H = {h : {0, 1}n →
{0, 1}m} for a two-input (partial) predicate P : {0, 1}n × {0, 1}n → {0, 1,⊥} is
a family of efficiently computable functions with the following algorithms:

– Samp(1λ)→ h is a PPT algorithm that samples a random h ∈ H.
– Eval(h, y1, y2) is a deterministic polynomial-time algorithm that on input h ∈
H and y1, y2 ∈ {0, 1}m, outputs a single bit.

Additionally, h ∈ H must satisfy the following correctness property:

– Correctness: ∀x1, x2 ∈ {0, 1}n

Pr
h←Samp(1λ)

[P (x1, x2) ̸= ⊥ ∧ Eval(h, h(x1), h(x2)) ̸= P (x1, x2)] = negl(λ)

Definition 9. A (n,m)-PPH is a robust PPH (RPPH) if it satisfies the follow-
ing additional robustness property.

– Robustness: For any PPT adversary A,

Pr
h←Samp(1λ)
(x1,x2)←A(h)

[P (x1, x2) ̸= ⊥ ∧ Eval(h, h(x1), h(x2)) ̸= P (x1, x2)] = negl(λ)
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The main focus of this work is (R)PPH for the (exact) Hamming distance
property, which is defined by the following (total) predicate.

Definition 10. For n ∈ N, 0 < t < n, the (two-input) Hammingn,t predicate
is a predicate defined as

Hammingn,t(x1, x2) =

{
1 if ∥x1 ⊕ x2∥0 ≤ t

0 if ∥x1 ⊕ x2∥0 > t

As a tool in one of our constructions, we will also consider a relaxation of
(R)PPH to gap-Hamming distance, which is defined by the following (partial)
predicate.

Definition 11. For n ∈ N, 0 < t < n, δ > 0, the (two-input) GapHammingn,t,δ

predicate is a partial predicate defined as

GapHammingn,t,δ(x1, x2) =


1 if ∥x1 ⊕ x2∥0 ≤ t

0 if ∥x1 ⊕ x2∥0 ≥ (1 + δ)t

⊥ otherwise.

4 Non-robust PPH

In this section, we present the construction of an information-theoretically se-
cure non-robust property preserving hash (PPH) for Hamming distance. The
construction relies on syndrome list-decoding and universal hashing.

(n,m)-PPH for Hammingn,t.

Let P ∈ F(n−k)×n
2 be a parity check matrix of an [n, k]2-linear code

which is efficiently list decodable against t errors.

– Samp(1λ): Sample A ← Fλ×n
2 uniformly at random. Output the

function h defined below, whose description contains A.
– h(x) := (P · x,A · x).
– Eval(h, y1, y2) : Let y1 = (v1, w1) and y2 = (v2, w2). Use syn-

drome list-decoding for the syndrome v1 − v2 to recover a list
L = {e1, . . . , eL} of possible error vectors ei ∈ Fn

2 such that
Pei = v1 − v2 and ∥ei∥0 ≤ t. Then
• output 1, if there exists ei ∈ L such that A · ei = w1 − w2,
• otherwise output 0.

Fig. 1. Construction of (n,m)-PPH for Hammingn,t

Theorem 5. Let λ be a security parameter. For any polynomial n, t, k such
that there exists an [n, k]2-linear code which is efficiently list decodable against
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t errors, the construction above is a (n,m)-PPH for Hammingn,t with output
length m = (n − k) + λ. If the code is only combinatorially (inefficiently) list
decodable, then the resulting PPH is inefficient.

Proof. Let x1, x2 ∈ Fn
2 be arbitrary values chosen a priori. Let h ← Samp(1λ)

and let y1 = h(x1), y2 = h(x2) with y1 = (v1, w1) and y2 = (v2, w2). Let L be the
list recovered during the computation of Eval(h, y1, y2). We consider two cases:

– If ∥x1 − x2∥0 ≤ t, then e := x1 − x2 ∈ L by the correctness of syndrome
list-decoding for the syndrome v1 − v2 = P · (x1 − x2). Therefore A · e =
A · (x1 − x2) = A · x1 −A · x2 = w1 − w2 and hence Eval will output 1.

– If ∥x1 − x2∥0 > t, then for all ei ∈ L, we have ∥ei∥0 ≤ t and therefore
ei ̸= x1 − x2. Note that the list L is independent of A. Hence for each
ei ∈ L, we have PrA[A · ei = w1 − w2] = PrA[A · ei = A · (x1 − x2)] = 2−λ,
by Lemma 2. By a union bound, the probability PrA[∃ei ∈ L : A · ei =
w1−w2] ≤ |L| ·2−λ = negl(λ). Therefore, with all but negligible probability,
Eval will output 0.

Plugging in Facts 3 and 4, we obtain the following corollaries for PPH.

Corollary 1. For all constant 0 < ρ < 1/2 and η > HBZ
2 (ρ) (see Fact 3), for all

polynomial n, there exists an efficient (n,m)-PPH for Hammingn,t with t = ρ·n,
having output length m = η ·n+λ. In particular, for every constant η > 0, there
exists some constant ρ > 0 such that the above holds.

Corollary 2. For all polynomial n and t, there exists an (n,m)-PPH for Hammingn,t

where m = 2t · log2 n+ λ.

Lastly, plugging in Fact 2, we obtain the following bound for inefficient PPH.

Corollary 3. For all constant 0 < ρ < 1/2 and η > H2(ρ) there exists an
inefficient (n,m)-PPH for Hammingn,t with t = ρ · n, having output length
m = η · n+ λ.

5 Lower Bounds on PPH Output

In this section we provide a lower bound on the output size of any (not neces-
sarily robust) PPH for the Hamming distance predicate. Previous lower bounds
on PPH [BLV19, FLS22] mainly come from communication complexity lower
bounds, and are usually presented as asymptotic bounds. In particular, in [FLS22]
the authors presented an output size bound of Ω(t log(minn/t, 1/δ)) for RPPHs
for Hammingn,t with error probability δ. We obtain an exact lower bound, with-
out asymptotic. In particular, this lets us argue that we cannot beat the Ham-
ming bound.

As with all previous lower bounds on RPPH ([BLV19, FLS22]), our lower
bound works for non-robust PPH as well. It remains unclear how robustness is
factored into RPPH lower bounds.
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Theorem 6. For any (n,m)-PPH for Hammingn,t with correctness error δ <
1
2n , the output size m must satisfy m ≥ log

(
n
t

)
. In particular, this implies m ≥

t log n
t and m ≥ (H

(
t
n

)
− o(1)) · n, where H is the binary entropy function.

Proof. Let (Samp,Eval) be an (n,m)-PPH for Hammingn,t. We first show that
there is some function Rec such that, for all x, y with ||x− y||0 = t, we have

Pr
h←Samp()

[Rec(h, h(x), y) = x] >
1

2
.

In particular, we define Rec(h, h(x), y) as follows:

– For each i ∈ [n], define the string y(i) to be the same as y except that we
flip the i’th bit. Then compute bi = Eval(h, h(x), h(y(i))). Let x̃i = bi ⊕ yi,
where yi denotes the i’th bit of y.

– Output x̃ = (x̃1, . . . , x̃n).

Observe that for each i ∈ [n], if xi = yi, we have
∥∥x− y(i)

∥∥
0
= t + 1 and if

xi ̸= x′i, we have
∥∥x⊕ y(i)

∥∥
0
= t − 1. Therefore, as long as for each i ∈ [n], we

get bi = 0 in the former case and bi = 1 in the latter case, we get x̃ = x. By
the correctness of the PPH, this occurs with overwhelming probability, since the
probability of Eval giving the wrong answer in any position i is < 1

2n , and by
the union bound, the probability of there being any error overall is then < 1

2 .
Now let us define a (randomized) function P (h, h(x)) whose goal is to predict

x given h, h(x):

– Sample a uniformly random y ← {0, 1}n and output Rec(h, h(x), y),

We have for all x ∈ {0, 1}n:

Pr
h←Samp()

[P (h, h(x)) = x]

≥ Pr
y←{0,1}n

[ ||x− y||0 = t ] Pr
h,y

[ Rec(h, h(x), y) = x | ||x− y||0 = t ]

>

(
n
t

)
2n
· 1
2
.

Now consider X to be a random variable uniformly distributed over {0, 1}n
and h to be a random variable distributed according to Samp(). Then

H∞(X | h, h(X)) ≤ − log(Pred(X | h, h(X))) ≤ − log(Pr
h,x

[P (h, h(x)) = x]) < n−log
(
n

t

)
+1.

On the other hand

H∞(X | h, h(X)) ≥ H∞(X | h)−m ≥ H∞(X)−m ≥ n−m.

The first inequality follows from Lemma 1, the second inequality follows since
h,X are independent, and the third since X is uniformly random over {0, 1}n.

Combining the above two inequalities, we get m > log
(
n
t

)
− 1, but since m

is an integer, this implies m ≥ log
(
n
t

)
.
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Optimality of Our Construction. Our lower bound in Theorem 6 shows that our
PPH construction from the previous section achieves essentially tight parame-
ters. We look at two concrete settings.

When t = ρ · n for some constant ρ > 0 then the lower bound shows
m ≥ (H(ρ)−o(1))·n. This essentially matches our upper bound from Corollary 3
which shows that inefficiently we can achieve m ≈ H(ρ) · n + λ. Therefore, our
inefficient construction is tight, including constant factors! Efficiently, Corol-
lary 1 allows us to achieve a slightly worse compression m ≈ HBZ

2 (ρ) · n + λ,
where HBZ

2 (ρ) is a slightly larger constant than H(ρ). The small gap between
our efficient upper bounds and the lower bound is due to the fact that current
constructions of efficiently list-decodable linear codes are slightly sub-optimal
compared to combinatorially (inefficiently) list-decodable counterparts – future
advances in coding theory will hopefully allows us to close this gap.

For smaller distances t = nε for some constant ε > 0, then the lower bound
shows that m ≥ t log(n/t) = Ω(t log n). This essentially matches our upper
bound of m = O(t log n) from Corollary 2, up to constant factors.

6 RPPH from Homomorphic Collision Resistance

In this section, we present the construction of a robust property preserving hash
(RPPH) from homomorphic collision resistant hash functions. The construction
is analogous to that of non-robust PPH, with the main difference being that we
replace the homomorphic universal hash function huniv(x) = A · x with a cryp-
tographic homomorphic collision-resistant hash function. We begin by defining
this notion and showing how to construct it.

6.1 Homomorphic CRHFs

We rely on the following definition of a homomorphic collision-resistant hash
function.

Definition 12 (Homomorphic CRHF). Let n = n(λ), ℓ = ℓ(λ) be some
polynomials with ℓ < n. A family of Homomorphic Collision Resistant Hash
Functions (Samp,H) consists of a sampling algorithm h ← Samp(1λ) that gen-
erates a hash function h ∈ H with h : Zn

q → {0, 1}ℓ for some integer q specified
by h. We require require the following properties:

– Efficiency: For any h ← Samp(1λ) the function h(x) can be computed in
poly(λ) time.

– Collision-Resistance: For any ppt adversary A:

Pr

h(x1) = h(x2)
∧ (x1 ̸= x2)
∧ x1, x2 ∈ {−1, 0, 1}n

:
h← Samp(1λ),

(x1, x2)← A(h)

 ≤ negl(λ).

– Homomorphism: The description of h determines some operation ÷ com-
putable in poly(λ) time such that for all x1, x2 ∈ Zn

q we have

h(x1)÷ h(x2) = h(x1 − x2).
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Note that, while for homomorphism we consider the domain of the hash
function to be Zn

q and the subtraction x1 − x2 is computed in Zn
q , for collisions

we only need to consider inputs in a restricted sub-domain {−1, 0, 1}n ⊆ Zn
q .

This will be important for our construction from the SIS assumption.

Construction from Discrete Log. We observer that the Pedersen hash function
[Ped92] (a deterministic version of Pedersen commitment) is a good homomor-
phic collision-resistant hash function under the discrete logarithm assumption.

Let G = (G, g, q) ← GroupGen(1λ) be a group generation algorithm that
generates the description of a cyclic group G = ⟨g⟩ of prime order |G| = q, with
a generator g, such that the group operation (written as multiplication) can
be computed in poly(λ) time and group elements can be efficiently represented
using ℓ = ℓ(λ) bits.

The discrete logarithm (DLOG) assumption relative to the above GroupGen
algorithm says the following.

Definition 13 (Discrete Log Assumption.). For any ppt adversary A we
have:

Pr[A(G, gx) = x : G ← GroupGen(1λ), x← Zq] ≤ negl(λ).

For any polynomial input length n = n(λ), the Pederson hash functions
(Samp,H) is defined as follows:

– h← Samp(1λ) : Sample G = (G, g, q)← GroupGen(1λ), and let g1, . . . , gn ←
G be random group elements. The description of the hash function h consists
of (G, g1, . . . , gn).

– y = h(x): Given an input x = (x1, . . . , xn) ∈ Zn
q define h(x) =

∏
i∈[n] g

xi
i .

– The ÷ operation is defined as h(x)÷ h(x′) = h(x)/h(x′) = h(x− x′).

Theorem 7 ([Ped92]). The above hash function family is a homomorphic
collision-resistant hash function under the discrete logarithm assumption.

Construction from SIS. We observe that Ajtai’s hash function [Ajt96] based
on the short-integer solution (SIS) problem is is a good homomorphic collision-
resistant hash function.

Definition 14. The short integer solution SISm,q,B assumption with some pa-
rameters m = m(λ), q = q(λ) and B = B(λ) says that for all polynomial
n = n(λ) and all ppt A we have:

Pr[A · x = 0 ∧ x ̸= 0 ∧ x ∈ [−B,B]n : A← Zm×n
q , x← A(A)] ≤ negl(λ).

For any polynomial input length n = n(λ), Ajtai’s hash functions (Samp,H) is
defined as follows:

– h ← Samp(1λ) : Sample A ← Zm×n
q and let the description of the hash

function h : Zn
q → Zm

q consist of the matrix A.
– y = h(x): Given an input x ∈ {0, 1}n define h(x) = A · x.
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– The ÷ operation is defined as h(x1)÷ h(x2) = h(x1)− h(x2).

Theorem 8 ([Ajt96]). The above hash function family is a homomorphic collision-
resistant hash function under the SISm,q,B assumption with B = 2.

Proof. Assume otherwise, that there is some ppt A such that

Pr[A·x1 = A·x2∧x1 ̸= x2∧x1, x2 ∈ {−1, 0, 1}n : A← Zm×n
q , (x1, x2)← A(A)] = µ(λ)

for some non-negligible µ. Whenever A·x1 = A·x2∧x1 ̸= x2∧x1, x2 ∈ {−1, 0, 1}n
occurs, we can define x∗ = (x1 − x2) ∈ [−2, 2]n such that x∗ ̸= 0 and Ax∗ = 0.
Therefore if we define a ppt A′ that runs (x1, x2) ← A(A) and outputs x∗ =
(x1 − x2) then

Pr[A · x∗ = 0 ∧ x∗ ̸= 0 ∧ x∗ ∈ [−2, 2]n : A← Zm×n
q , x∗ ← A′(A)] = µ(λ).

and therefore A′ breaks the SISm,q,B

6.2 RPPH from Homomorphic CRHFs

We now give our construction of RPPH from homomorphic CRHFs. The con-
struction is essentially identical to the non-robust PPH construction in Figure
1. The main difference is that we now use a homomorphic CRHF in place of
a homomorphic universal hash function. Another difference arises from the fact
that the homomorphic CRHF is over Zn

q for some arbitrary q rather than just
over Z2. Although we will still apply the CRHF on inputs x1, x2 ∈ {0, 1}n,
when we subtract over Zn

q we get x1 − x2 ∈ {−1, 0, 1}n. If q ̸= 2 then −1 ̸= 1.
This means that we need to use a linear error-correcting code over some field
F of characteristic p > 2 so that when we apply syndrome decoding over F we
correctly recover the same value x1 − x2 ∈ {−1, 0, 1}n.

Theorem 9. Assume the existence of a homomorphic CRHF with output length
ℓ(λ). For any polynomial t, k and odd prime power Q such that there exists an
[n, k]Q code that is efficiently list decodable against t errors, the construction
above is an (n,m)-RPPH for Hammingn,t with output length (n− k) · log2 Q+
ℓ(λ).

Proof. Let h ← Samp(1λ), let x1, x2 ∈ {0, 1}n be arbitrary values chosen by
an adversary adaptively after seeing h. Let y1 = h(x1), y2 = h(x2) with y1 =
(v1, w1) and y2 = (v2, w2). Let L be the list recovered during the computation
of Eval(h, y1, y2). We consider two cases:

– If ∥x1 − x2∥0 ≤ t, then e := x1 − x2 ∈ L by the correctness of syndrome
list-decoding for the syndrome v1 − v2 = P · (x1 − x2). Therefore g(e) =
g(x1 − x2) = g(x1) ÷ g(x2) = w1 ÷ w2 and hence Eval will output 1. Note
that, since x1, x2 ∈ {0, 1}n, the difference x1 − x2 ∈ {−1, 0, 1}n is the same
when computed over the field F of characteristic p ≥ 3 as when just computed
over the integers.

20



(n,m)-RPPH for Hammingn,t.

Let n = n(λ) and ℓ = ℓ(λ). Let P ∈ F(n−k)×n be a parity check matrix
of an [n, k]Q code that is efficiently list decodable against t errors,
where Q is an odd prime power. Let (SampCR,HCR) be a family of
collision Resistant Homomorphic Hash Functions with input length
n and output length ℓ. The RPPH family (Samp,Eval) is defined as
follows:

– Samp(1λ): Sample g ← SampCR(1
λ) to generate a homomorphic

collision-resistant hash function g : Zn
q → {0, 1}ℓ for some q.

Output the function h defined below, whose description contains
g.

– h(x) := (P · x, g(x)).
– Eval(h, y1, y2) : Let y1 = (v1, w1) and y2 = (v2, w2). Use syndrome

list-decoding for the syndrome v1 − v2 ∈ Fn−k to recover a list
L = {e1, . . . , eL} of possible error vectors ei ∈ Fn such that Pei =
v1 − v2 and ∥ei∥0 ≤ t. Then
• output 1, if there exists ei ∈ L such that g(ei) = w1÷w2 and

ei ∈ {−1, 0, 1}n,
• otherwise output 0.

Fig. 2. Construction of (n,m)-RPPH for Hammingn,t.

– If ∥x1 − x2∥0 > t, then for all ei ∈ L, we have ∥ei∥0 ≤ t and therefore
ei ̸= x1 − x2 (mod q). If there exists some i such that ei ∈ {−1, 0, 1}n and
g(ei) = g(x1 − x2) it means that we found a valid collision ei ̸= (x1 − x2)
in the hash function g. But, by collision resistance, the probability of this is
negligible. Therefore, with overwhelming probability, no such index i exists
and Eval will output 0.

Plugging in Facts 3 and 4, and usingQ = 3, we obtain the following corollaries
for PPH.

Corollary 4. Assume the existence of a homomorphic CRHF with output length
ℓ = ℓ(λ). For all constants 0 < ρ < 1/2 and η > HBZ

3 (ρ) · (log2 3) (see Fact 3),
for all polynomial n, there exists an efficient (n,m)-PPH for Hammingn,t with
t = ρ · n, having output length m = η · n + ℓ. In particular, for every constant
η > 0, there exists some constant ρ > 0 such that the above holds.

Corollary 5. Assume the existence of a homomorphic CRHF with output length
ℓ = ℓ(λ). For all polynomial n and t, there exists an (n,m)-RPPH for Hammingn,t

where m = O(t · log n+ ℓ).

In the case where t = ρ · n for a constant ρ > 0, the first corollary gives
constant compression factor η ≈ HBZ

3 (ρ) · (log2 3). We know from our lower
bound (Theorem 6) that we cannot do better than η > H(ρ). The small gap
between the constant in our upper bounds and lower bounds comes from: (1)
the fact that current constructions of efficiently list-decodable linear codes are
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slightly sub-optimal compared to combinatorially (inefficiently) list-decodable
counterparts, which reuslts in our upper bound having HBZ instead of H, (2)
the fact that our constructions of homomorphic hash functions work over Zq for
q > 2 rather than over Z2, which necessitates the log2 3 factor. It is plausible
that future advances in list-decodable codes and homomorphic hashing could
remove either/both of these gaps.

In the case of smaller distances t in the range ℓ < t < nε for some constant
ε > 0, the lower bound (Theorem 6) shows that m ≥ t log(n/t) = Ω(t log n),
which essentially matches our upper bound of m = O(t log n), up to constant
factors.

7 RPPH from Standard Collision Resistance

In this section, we present our construction of RPPH for exact Hamming dis-
tance from standard collision-resistant hash functions. We do so by starting with
the construction of RPPH for gap Hamming distance due to Boyle, LaVigne,
and Vaikuntanathan in [BLV19], and then showing how to generically upgrade
an RPPH for gap Hamming to an RPPH for exact Hamming using syndrome
decoding.

7.1 RPPH for Gap-Hamming

We start with a RPPH construction for GapHammingn,t,δ described by Boyle,
LaVigne, and Vaikuntanathan in [BLV19]. We give a generalized (and somewhat
simplified) analysis of the construction that explicitly shows how the output
length m scales as a function of the input length n, the distance t and the
security parameter λ for general setting of parameters.

Theorem 10 (Generalizing [BLV19] Theorem 16). Let λ be a security
parameter and let δ > 0 be a constant. Assuming CRHFs with output size ℓ =
poly(λ), for any n = poly(λ), any 0 < t < n, there exists a (n,m)-RPPH for
GapHammingn,t,δ with output length m = O((t log n

t + λ)ℓ).

The main idea of the construction is to use a bipartite “expander graph” to
map the n locations of the input into k subsets for some k ≪ n. Then, we apply
a standard CRHF on the bits of x in each of the k sets of locations and set the
k CRHF outputs as the output of the RPPH. The expander ensures that there
is some threshold µ such that:

– If x1, x2 differ in ≤ t locations then they will differ < µ · k of the k subsets
and therefore at most that many of the CRHF output will differ.

– If x1, x2 differ in > (1 + δ)t locations then they will differ > µ · k of the k
subsets and therefore at least that many of the CRHF output will differ.

This allows us to distinguish the two cases.
In [BLV19], they rely on standard expander graphs to achieve the above

properties. We observe that the expansion is somewhat stronger than what we
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need: it guarantees that for every small set S ⊆ [n], must have a large number
of neighbors, whereas we only need this to hold when |S| ≥ (1+ δ)t. As a result,
we obtain a more straightforward analysis for the same construction and a more
general range of parameters.

Definition 15. Let G = (L∪R,E) be a bipartite graph with E ⊆ L×R. For a
set S ⊆ L let N(S) ⊆ R denote the neighbors of S. We say that G is (n, k, t, δ)-
nice if it has |L| = n, |R| = k, and there exists some threshold µ > 0 such
that:

1. For every “small” S ⊆ L such that |S| ≤ t, we have |N(S)| < µk.
2. For every “large” S ⊆ L such that |S| ≥ (1+ δ)t we have have |N(S)| > µk.

We show that such nice graphs exist and can be sampled efficiently via a prob-
abilistic argument. Indeed, a random graph is nice with overwhelming probabil-
ity. We can rely on randomized constructions since we can include the description
of the graph G as part of the description of the RPPH.

Lemma 3. For any n, 0 < t < n, and any constant δ > 0, a (n, k, t, δ)-nice
bipartite graph is efficiently constructible (with all but e−Ω(λ) probability) with
k = O(t log(n/t) + λ).

Proof. We show that a random graph satisfies the requirement with all but
negligible probability. Define the following constants that depend on δ:

µ0 =
δ

2(1 + δ)2
, µ1 = (1 + δ/2)µ0, ρ =

δ

4 + δ
, µ = (1 + ρ)µ0 = (1− ρ)µ1.

Sample a bipartite graph G = (L ∪ R,E) with |L| = n, |R| = k, where for any
(v, w) ∈ L×R, the edge (v, w) is included in E independently with probability
p = µ0

t . We show that this graph is (n, k, t, δ)-nice with overwhelming probability.
We do so by showing that each of the two properties holds separately.

First, we show property 1 holds. Fix any set S ⊆ L of size |S| = t. For any
w ∈ R, we can rely on the union bound to show:

Pr[w ∈ N(S)] = Pr

[⋃
v∈S

(v, w) ∈ E

]
≤
∑
v∈S

Pr[(v, w) ∈ E] ≤ t · p ≤ µ0.

Define the indicator random variables Xw which are 1 iff w ∈ N(S). Then these
random variables are independent and E[

∑
w∈R Xw] = µ0 · k. By the Chernoff

bound, we therefore have:

Pr [ |N(S)| ≥ µ · k ] = Pr

[ ∑
w∈R

Xw ≥ (1 + ρ)µ0k

]
≤ exp

(
−ρ2µ0k/3

)
.

Finally, by the union bound over all such sets S, we can bound the probability
that property 1 does not hold by:

Pr [∃S ⊆ L, |S| = t : |N(S)| ≥ µ · k] ≤
(
n

t

)
· exp

(
−ρ2µ0k/3

)
.
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By choosing a sufficiently large k = O(t log n
t + λ), we can bound the above by

2−Ω(λ).

Second, we show property 2 holds. Fix any set S ⊆ L of size |S| ≥ (1 + δ)t.
For any w ∈ R, we can rely on the inclusion-exclusion principle to show:

Pr[w ∈ N(S)] = Pr

[⋃
v∈S

(v, w) ∈ E

]
≥
∑
v∈S

Pr[(v, w) ∈ E]−
∑

v1 ̸=v2∈S

Pr[(v1, w) ∈ E ∧ (v2, w) ∈ E]

≥ (1 + δ)tp− [(1 + δ)t]2p2

= (1 + δ)tp− (δ/2)tp

= (1 + δ/2)tp = µ1.

Define the indicator random variables Xw which are 1 iff w ∈ N(S). Then these
random variables are independent and E[

∑
w∈R Xw] = µ1 · k. By the Chernoff

bound, we therefore have:

Pr [ |N(S)| ≤ µ · k ] = Pr

[ ∑
w∈R

Xw ≤ (1− ρ)µ1k

]
≤ exp

(
−ρ2µ0k/2

)
.

Finally, by the union bound over all such sets S, we can bound the probability
that property 2 does not hold by:

Pr [∃S ⊆ L, |S| = (1 + δ)t : |N(S)| ≥ µ · k] ≤
(

n

(1 + δ)t

)
exp

(
−ρ2µ0k/2

)
.

By choosing a sufficiently large k = O(t log n
t + λ), we can bound the above by

e−Ω(λ).

Therefore, for each property, the probability that it fails to hold is negiligible,
and by the union bound, the probability that either property fails to hold is then
also negligible. This shows that the samples graph G is (n, k, t, δ)-nice with all
but e−Ω(λ) probability.

The proof of Theorem 10 is similar to the proof of Theorem 16 in [BLV19],
modulo parameter settings and the graph G defined above. We present the proof
for completeness.

Proof (Proof of theorem 10). We show that the construction in Figure 3 yields
an RPPH construction. We split the proof of robustness into two cases:

– Suppose x1, x2 ∈ {0, 1}n satisfy ∥x1 ⊕ x2∥0 ≤ t. Let S ⊆ L be the set of
indices where x1, x2 differ, and T = N(S). We have |S| ≤ t. Since G is nice
with overwhelming probability, by the first property we have |T | < µk with
overwhelming probability.
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(n,m)-RPPH for GapHammingn,t,δ

Given parameters n, 0 < t < n, δ > 0 and a CRHF family
(SampCR,G):

– Samp(1λ): Set k = O(t log n
t
+ λ) appropriately and sample a

(n, k, t, δ)-nice bipartite graph G = (L ∪ R,E) per Lemma 3.
Sample a CRHF g ← SampCR(1

λ) with output size ℓ = ℓ(λ).
Output h = (G, g).

– h(x): For every j ∈ [k], compute the (ordered) set of neighbors of
the j-th right vertex in G, denoted N(j). Let x̂(j) := x|N(j) be x

restricted to the set N(j). Output h(x) := g(x̂(1)), ..., g(x̂(k)).

– Eval(h = (G, g), y1, y2). Parse y1 = (ŷ
(1)
1 , . . . , ŷ

(k)
1 ) and y2 =

(ŷ
(1)
2 , . . . , ŷ

(k)
2 ). Compute

∆ =

k∑
j=1

1(ŷ
(j)
1 ̸= ŷ

(j)
2 )

Let µ be the threshold parameter for the (n, k, t, δ)-nice bipartite
graph G per definition 15. If ∆ ≤ µk, output 1. Otherwise, output
0.

Fig. 3. Construction of (n,m)-RPPH family for GapHammingn,t,δ from CRHFs

Now for every j ∈ R such that j /∈ T , the subsampled values satisfy x̂
(j)
1 =

x̂
(j)
2 and in turn ŷ

(j)
1 = ŷ

(j)
2 . Therefore

∆ =

k∑
j=1

1(ŷ
(i)
1 ̸= ŷ

(i)
2 ) ≤ |T | < µk

so Eval will output 1 with overwhelming probability.
– Now suppose x1, x2 ∈ {0, 1}n satisfy ∥x1 ⊕ x2∥0 ≥ (1 + δ)t. Define S, T as

above, then |S| ≥ (1 + δ)t. Since G is nice, by the second property we have
|T | > µk, with overwhelming probability.

Now for every j ∈ T , x̂
(j)
1 ̸= x̂

(j)
2 . We show that ŷ

(j)
1 ̸= ŷ

(j)
2 with all but

negligible probability for (x1, x2) chosen by a PPT adversary. Suppose not,

then the x̂
(j)
1 , x̂

(j)
2 are a collision on the CHRF, which contradicts collision

resistance.
Therefore with all but negligible probability for each j ∈ T we have ŷ

(j)
1 ̸=

ŷ
(j)
2 . Using a union bound this holds for all j ∈ T still with all but negligible
probability, in which case ∆ > µ · k and Eval will output 0.

7.2 From Gap-Hamming to Hamming

Now we are ready to use syndrome decoding to generically amplify any RPPH for
gap Hamming distance to a RPPH for exact Hamming distance. In this section,
we rely on unique decoding rather than list decoding.
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(n,m)-RPPH for Hammingt

Given n, 0 < t < n: Let δ > 0 be any constant. Fix a (n,mgap)-RPPH
(Sampgap,Evalgap) for GapHammingn,t,δ with output size mgap and a

parity-check matrix P ∈ F(n−k)×n
2 of a (n, k)-linear code that allows

efficient (unique) decoding up to (1 + δ)t errors.

– Samp(1λ): Sample g ← Sampgap(1
λ). Output the hash function h

defied below, whose description consists of the description of g.
– h(x) := (Px, g(x)).
– Eval(h, y1, y2) : Parse y1 = (Px1, g(x1)) and y2 = (Px2, g(x2)).

Let s := Px1 ⊕ Px2 = P (x1 ⊕ x2). Apply syndrome decoding to
obtain e such that P · e = s and ∥e∥0 ≤ (1+ δ)t, or output 0 if no
such e exists. Set b = Evalgap(g, g(x1), g(x2)). Then
• output 1 if ∥e∥0 ≤ t and b = 1.
• output 0 otherwise.

Fig. 4. Construction of RPPH for Hammingn,t from RPPH for GapHammingn,t,δ

Theorem 11. Let λ be a security parameter and δ > 0 be any constant. Assume
there exist a (n,mgap)-RPPH for GapHammingn,t,δ with output size mgap and
an efficiently decodable (n, k)-linear code that corrects up to (1+δ)t errors. Then
the construction in figure 4 is a (n,m)-RPPH for Hammingn,t with output length
m = n− k +mgap.

Proof. We analyze robustness. Suppose a PPT adversary A outputs x1, x2 ∈
{0, 1}n:
– If x1, x2 satisfy ∥x1 − x2∥0 ≤ t, then syndrome decoding of s = P · (x1−x2)

always recovers e = x1 − x2, since ∥e∥0 ≤ t. Now since g is a RPPH for
GapHammingn,t,δ, by its robustness we have Evalgap(g, g(x1), g(x2)) = 1
with probability 1 − negl(λ). Therefore Eval(h, h(x1), h(x2)) will output 1
with probability 1− negl(λ).

– If x1, x2 satisfy ∥x1 − x2∥0 ≥ t+1, we further distinguish between two cases:
(1) If t + 1 ≤ ∥x1 − x2∥0 ≤ (1 + δ)t, syndrome decoding always recovers
e = (x1 − x2) and ∥e∥0 > t so Eval will output 0 with probability 1. (2) If
∥x1 ⊕ x2∥0 > (1 + δ)t, by the robustness of g, Evalgap(g, g(x1), g(x2)) = 0
with probability 1− negl(λ), so Eval will output 0 with probability at least
1− negl(λ).

Plugging in Theorem 10 along with Fact 4 to the above, and setting (e.g.,)
δ = 1, gives the following corollary.

Corollary 6. Assume there exists a CRHF with output length ℓ = ℓ(λ). For any
polynomial n and t, there exists an (n,m)-RPPH for Hammingn,t with output
length m = O(ℓ · t · log(n/t) + ℓ · λ).

The above essentially matches the parameters of prior works [FS21, FLS22] that
relied on specific algebraic asssumptions: the q-Strong Bilinear Discrete Loga-
rithm (q-SBDL) Assumption in the former case, and the Short-Integer Solution
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(SIS) in the latter case. It also essentially matches (a generalized form of) the
parameters achieved by the prior work of [BLV19] for gap Hamming distance,
but does so for exact Hamming distance.

7.3 The Necessity of Collision-Resistance

We also show that collision-resistant hash functions are necessary for RPPH for
Hamming distance, and therefore our construction above is based on a minimal
assumption. This result follow implicitly as a special case of a result of [BLV19]
(Corollary 30), but we include a simple stand-alone proof for completeness.

Theorem 12. Let n = n(λ) and t = t(λ) be polynomials with t < n/2. Any
(n,m)-RPPH for Hammingn,t is also necessarily a collision-resistant hash func-
tion.

Proof. First observe that for any x1, x2 ∈ {0, 1}n with x1 ̸= x2 we can efficiently
find y such that ||x1−y||0 ≤ t and ||x2−y||0 > t. In particular, if ||x1−x2||0 > t
then y = x1 satisfies this, and otherwise define y by flipping some arbitrary t
positions of x1 in which x1, x2 agree.

Now assume we have an RPPH construction which is not collision-resistant,
meaning that there is some PPT A such that, given h← Samp(1λ), the output
(x1, x2) ← A(h) is a valid collision with non-negligible probability, meaning:
x1 ̸= x2 and h(x1) = h(x1). WheneverA(h) finds a valid collision (x1, x2), we can
use it to find inputs on which the RPPH give the wrong answer. Namely, we can
find y as above with ||x1−y||0 ≤ t and ||x2−y||0 > t. Then Hammingn,t(x1, y) ̸=
Hammingn,t(x2, y), but Eval(h, h(x1), h(y)) = Eval(h, h(x2), h(y)), since h(x1) =
h(x2). Therefore it must hold that for one of the input pairs (xb, y) we have
Eval(h, h(xb), h(y)) ̸= Hammingn,t(xb, y), meaning that we get a valid attack
contradicting RPPH security.

8 Randomized Robust PPH (R2P2H)

In this section, we consider a randomized notion of RPPH, denoted R2P2H,
where the hash function h itself can be a randomized function. For robust-
ness, we assume that the adversary can choose the inputs x1, x2 adaptively
depending on the description of h, but before knowing the internal randomness
that will be used in the computations of h(x1), h(x2). The adversary wins if
Eval(h, h(x1), h(x2)) ̸= P (x1, x2). Formally, the definition is identical to that in
Section 3, with two modifications:

– We now allow the hash functions h : {0, 1}n → {0, 1}m to be randomized
functions.

– The definition of robustness (Definition 9) is modified accordingly so that
the probability is taken also over the internal randomness used in the com-
putation of h(x1), h(x2).
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R2P2H is a relaxation of RPPH. At first sight, it may seem that allowing ran-
domness does not alter the problem significantly, and that RPPH and R2P2H
are “morally equivalent”. This is not the case. On the positive side, for interest-
ing regimes, RPPH is known to require collision-resistant hash functions, while
R2P2H can be constructed information-theoretically. On the negative side, we
caution that R2P2H provides qualitatively weaker security than RPPH. For
deterministic RPPH, the security definition implicitly allows the adversary to
choose x2 after seeing h(x1), since the adversary can compute h(x1) himself. This
is not the case for R2P2H, where seeing h(x1) can reveal something about the
internal randomness used to compute it and could allow the adversary to find a
bad x2 that breaks security. Indeed, this will be the case for our construction.

The notion of R2P2H for the equality predicate was studied implicitly in
[NS96, BK97, MNS08] and the connection was recently made explicit in [CN22].

Lemma 4. Let T ⊆ [ℓ] be an arbitrary set of size |T | ≥ δ · ℓ for some constant
δ > 0. Let SA, SB ⊆ [n] be chosen as uniformly random and independent sets of
size |SA| = |SB | =

√
λℓ where ℓ > λ. Then Pr[|SA ∩ SB ∩ T | = ∅] ≤ 2−Ω(λ).

For lack of space, we defer the proof of the above lemma to the full version.

(n,m)-R2P2H for Hammingn,t.

Notation: For a string y ∈ {0, 1}ℓ and a subset S ⊆ [ℓ], let yS ∈
{0, 1}|S| denote the bits of y in the positions indexed by S.
Scheme: Set ℓ = 2n. Let G ∈ Fℓ×n

2 be the generator matrix of an
[ℓ, n]2-code which with distance δℓ for some constant δ > 0. Let P ∈
F(n−k)×n
2 be a parity check matrix of an [n, k]2-linear code which is

efficiently list decodable against t errors.

– h(x): Choose a set S ⊆ [ℓ] of size |S| =
√
λℓ uniformly at random.

Let C(x) = G · x. Output h(x) := (P · x, S,C(x)S)
– Eval(y1, y2) : Let y1 = (v1, S1, C(x1)S1) and y2 =

(v2, S2, C(x2)S2). Let S∗ = S1 ∩ S2. Use syndrome list-decoding
for the syndrome v1−v2 to recover a list L = {e1, . . . , eL} of pos-
sible error vectors ei ∈ Fn

2 such that Pei = v1− v2 and ∥ei∥0 ≤ t.
• output 1, if there exists some ei ∈ L such that C(ei)S∗ =

C(x1)S∗ − C(x2)S∗ .
• otherwise output 0.

Fig. 5. Construction of (n,m)-R2P2H for Hammingn,t

Theorem 13. Let λ be a security parameter. For any polynomial n, t, k such
that there exists an [n, k]2-linear code which is efficiently list decodable against t
errors, the construction above is a (n,m)-R2P2H for Hammingn,t with output

length m = O(
√
λn log n) + (n− k). In particular: (1) there exist (n,m)-RPPH
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for Hammingn,t with output length m = O(
√
λn log n) + 2t log n, and (2) for

any constant η > 0, there exists some constant ρ > 0 such that there exist
(n,m)-RPPH for Hammingn,t with t = ρn and m = O(

√
λn log n) + η · n.

Proof. Let x1, x2 ∈ Fn
2 be arbitrary values. Let y1 = h(x1) and y2 = h(x2)

with y1 = (v1, S1, C(x1)S1) and y2 = (v2, S2, C(x2)S2). Define T to be the set of
locations where C(e) ̸= C(x1 − x2) We consider two cases:

– If ∥x1 − x2∥0 ≤ t, then e = x1 − x2 ∈ L and C(e)S∗ = C(x1 − x2)S∗ =
C(x1)S∗ − C(x2)S∗ . Therefore Eval(y1, y2) will output 1 with probability 1.

– If ∥x1 − x2∥0 > t, for any ei ∈ L, we have ∥ei∥0 ≤ t and therefore ei ̸=
x1 − x2. Define the set Ti = {j : C(x1 − x2)j ̸= C(ei)j} of locations on
which C(x1 − x2) and C(ei) disagree. Since the minimum distance of the
code is δℓ, we have |Ti| > δℓ. By Lemma 4, we have

Pr[∃i ∈ [L]S1∩S2∩Ti = ∅] ≤
∑
i∈[L]

Pr[S1∩S2∩Ti = ∅] ≤ L2−Ω(λ) = negl(λ).

As long as the above event does not occur, Eval(y1, y2) will output 0, since for
every i ∈ [L] we have S1∩S2∩Ti ̸= ∅ and therefore there exists some j ∈ S∗

such that C(x1)j−C(x2)j ̸= C(ei)j . Overall, this shows that Eval(y1, y2) = 0
with all but negligible probability.
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