
Public-Coin 3-Round Zero-Knowledge
from Learning with Errors and

Keyless Multi-Collision-Resistant Hash⋆

Susumu Kiyoshima

NTT Research, Sunnyvale, CA, USA
susumu.kiyoshima@ntt-research.com

Abstract. We construct a public-coin 3-round zero-knowledge argu-
ment for NP assuming (i) the sub-exponential hardness of the learn-
ing with errors (LWE) problem and (ii) the existence of keyless multi-
collision-resistant hash functions against slightly super-polynomial-time
adversaries. These assumptions are almost identical to those that were
used recently to obtain a private-coin 3-round zero-knowledge argument
[Bitansky et al., STOC 2018]. (The difference is that we assume sub-
exponential hardness instead of quasi-polynomial hardness for the LWE
problem.)

1 Introduction

This paper concerns computational zero-knowledge (ZK) arguments, i.e., ZK
proofs where soundness and zero-knowledge are both defined against polynomial-
time adversaries.

A central research topic about ZK arguments is 3-round ZK arguments, which
are optimal in terms of round complexity due to the impossibility of 2-round
ZK arguments [25]. Obtaining 3-round ZK arguments is notoriously hard, and
obtaining 3-round ZK arguments with black-box simulations is known to be
impossible [23]. Until recently, 3-round ZK arguments had been obtained only
under unfalsifiable knowledge-type assumptions (e.g., [27, 4, 16, 7, 9]) or under
weak security definitions (e.g., [38, 8, 6, 30, 36, 1, 12, 11, 20]1).

Recently, Bitansky, Kalai, and Paneth [10] obtained a 3-round ZK argument
by relying on super-polynomial hardness of the learning with errors (LWE)
assumption [39] and keyless multi-collision-resistant hash functions.2 Multi-
collision resistance [5, 10, 37] is a natural relaxation of the standard collision re-
sistance. In the standard keyed setting, K-collision resistance (K ∈ N) of a hash
function family H is defined by requiring that for a random hash function h ∈ H,
⋆ The full version of this paper is available at https://ia.cr/2022/820.
1 Some of these works constructed even 2-round or non-interactive ZK arguments

under weak security definitions.
2 More precisely, they obtained it by relying on various cryptographic primitives that

can be based on these assumptions.

https://ia.cr/2022/820

2 Susumu Kiyoshima

any polynomial-time adversary cannot find a K-collision, i.e., any (x1, . . . , xK)
such that h(x1) = · · · = h(xK). In the keyless setting, multi-collision resis-
tance is defined by allowing K to grow with the adversary’s size. That is, K-
collision resistance of a keyless hash function h is defined by requiring that any
polynomial-time adversary with any polynomial-size non-uniform advice z can-
not find a K(|z|)-collision. It is unknown whether keyless multi-collision-resistant
hash functions can be obtained from more standard cryptographic primitives (in-
cluding keyed collision-resistant hash function families), but they have a simple
falsifiable definition. Recently, they were used to obtain new results about, e.g.,
ZK proofs/arguments [10, 12, 13], succinct arguments [10], and non-malleable
commitments [12]. (See [10] for more about keyless multi-collision-resistant hash
functions.)

Given the result of Bitansky et al. [10], a natural question is whether we can
obtain public-coin 3-round ZK arguments by relying on the LWE assumption
and keyless multi-collision-resistant hash functions. Recall that an interactive
argument is called public coin if (i) the verifier only sends the outcome of a coin
toss in each round and (ii) the final output of the verifier is deterministically
computed from the transcript. (Well-known examples include the classical ZK
proofs of Goldreich, Micali, and Wigderson [24] and Blum [14].) In addition
to being simple, public-coin ZK arguments have useful properties such as (i)
they are publicly verifiable, i.e., verifying a proof does not require any secret
information, and (ii) they can be used to achieve additional security such as
leakage-soundness [21] and resettable soundness [3]. The 3-round ZK argument
of Bitansky et al. [10] (as well as the subsequent 3-round statistical ZK argument
of Bitansky and Paneth [13]) is not public coin.

Our result. In this paper, we give a positive result about public-coin 3-round
ZK arguments.

Main Theorem (informal). Assume the existence of polynomially compress-
ing keyless hash functions3 that are multi-collision resistant against slightly
super-polynomial-time (e.g., quasi-polynomial-time) adversaries, and addition-
ally assume the sub-exponential hardness of the LWE assumption. Then, there
exists a public-coin 3-round zero-knowledge argument for NP.

(See Theorem 2 in Section 7 for the formal description.) The assumptions that
we use are similar to those that are used by Bitansky et al. [10] for their (private-
coin) 3-round ZK argument. The difference is that we assume the sub-exponential
hardness of the LWE assumption whereas Bitansky et al. [10] assume the quasi-
polynomial hardness of the LWE assumption.

2 Overview of Our Techniques

Our starting point is the (private-coin) 3-round ZK argument of Bitansky, Kalai,
and Paneth [10].
3 e.g., those that hash length-λ2 strings to length-λ strings.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 3

2.1 Techniques of Bitansky et al. [10]

The main component of the 3-round ZK argument of Bitansky et al. [10] is a
memory delegation scheme [19, 6]. In the setting considered in [6, 10], memory
delegation schemes proceed in 3 rounds.

1. The prover sends the verifier a short digest of a long memory string.
2. The verifier chooses a computation to be executed on the memory, and sends

the prover the description of the computation and a challenge string.
3. The prover responds with the computation output and a proof of correctness.

It is required that the verifier runs in polynomial time even when the length
of the memory (and the running time of the computation to be evaluated on
it) is slightly super-polynomial, such as λlog λ for the security parameter λ. For
security, the soundness notion given by Bitansky et al. [10] requires that no
prover can generate an accepting proof for a randomly sampled output (which
is sampled after a digest and a computation to be evaluated on the memory are
fixed).

Bitansky et al. [10] obtained a memory delegation scheme by using a key-
less multi-collision-resistant hash function and the 2-round delegation scheme of
Kalai, Raz, and Rothblum [35] (the KRR delegating scheme in short). Specifi-
cally, their scheme was obtained based on the following two observations.

1. The first observation is that the KRR delegating scheme can be converted to
a memory delegation scheme if there exists a keyless multi-collision-resistant
hash function with a local opening property (i.e., a property that any loca-
tion of a hashed string can be opened without revealing the entire string).
In the KRR delegating scheme, for an input x and a Turing machine M ,
the verifier sends a challenge string to the prover, and the prover responds
with the output y := M(x) and a proof of the correctness of y. A nice
property of the KRR delegating scheme is that soundness holds even when
the verifier only has oracle access to (an encoding of) the input x, where
the verifier only makes a small number of non-adaptive queries. Given this
property, the KRR delegation scheme can be converted to a memory dele-
gation scheme as follows. The digest is created by hashing a memory with
the keyless hash function. The verifier sends a challenge string and input
queries of the KRR delegation scheme.4 The prover responds with the com-
putation output y, a proof of the KRR delegation scheme for the correctness
of y, and local opening of the queried locations of the memory. Intuitively, if
local opening of the keyless hash function satisfies a sufficiently strong multi-
collision-resistant property, the prover can only create accepting proofs for a
small number of values of y. Thus, the prover cannot generate an accepting
proof for a randomly chosen value of y.

2. The second observation is that any multi-collision-resistant hash functions
can be converted to those that have a local opening property. It should be

4 In Bitansky et al. [10], the input queries need to be encrypted by an FHE scheme so
that the prover cannot learn the input queries. We ignite this detail in this overview.

4 Susumu Kiyoshima

noted that the standard tree-hashing technique cannot be used for this pur-
pose. Indeed, in the case of multi-collision resistance, an adversary might be
able to open each location to two values, and thus, it might be able to open λ
locations to 2λ combinations of such values. The conversion given in Bitansky
et al. [10] yields a multi-collision resistant hash function for long inputs while
avoiding this exponential deterioration of multi-collision resistance. (Details
about this conversion, including the formal definition of multi-collision re-
sistance of local opening, are not important to this overview.) A notable
limitation is that when multiple locations are opened, they must be opened
simultaneously so that the above “mixed-and-match” attack can be pre-
vented. That is, opening each location individually as in the case of the
standard tree-hashing is not allowed. Fortunately, this limitation does not
cause a problem for the current purpose since the KRR delegation scheme
only makes non-adaptive input queries.

The memory delegation scheme of Bitansky et al. [10] is private coin, and this
is the reason why their 3-round ZK argument is private coin. Specifically, their
3-round ZK argument is obtained from a memory delegation scheme by following
the idea of an earlier work [6] (roughly speaking, the idea is to reduce the round
complexity of the public-coin ZK argument of Barak [2] by using a memory
delegation scheme), and if the underlying memory delegation scheme is public
coin, this step can be simplified straightforwardly and yields a public-coin 3-
round ZK argument.

2.2 Our Techniques

We obtain a public-coin memory delegation scheme (and as a result a public-coin
3-round ZK argument) by using recent results about succinct non-interactive
arguments (SNARGs) for deterministic computations [32, 29, 17].

Failed attempt #1. First, let us consider using the result of Choudhuri, Jain,
and Jin [17] that gives a SNARG for RAM computations. When their scheme
is viewed as a public-coin 2-round RAM delegation scheme,5 a memory DB is
tree-hashed to a digest by using a keyed collision-resistant hash function (the
key is sampled by the verifier), the verifier chooses a RAM machine R and a
challenge string, and the prover responds with the output y = RDB and a proof
of correctness of y. Choudhuri et al. [17] showed that their scheme works for
all polynomial-time RAM computations under the polynomial hardness of the
LWE assumption, and their analysis can be trivially extended for λω(1)-time
RAM computations under the λω(1)-hardness of the LWE assumption. (The ver-
ifier still runs in polynomial time.) Since the prover needs to compute a digest
non-interactively in memory delegation schemes, a natural approach is to mod-
ify the RAM delegation scheme of Choudhuri et al. [17] so that it works even
when the memory is hashed by a keyless multi-collision-resistant hash function.
5 Their SNARG works in the common random string model and therefore can be

viewed as a public-coin 2-round delegation scheme.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 5

Unfortunately, this approach does not work (at least when naively implemented)
since the scheme of Choudhuri et al. [17] requires each memory location to be
locally opened individually on a locating-by-location basis as explained below.
(Recall that the local opening method given by Bitansky et al. [10] for multi-
collision-resistant hash functions does not allow such individual opening.) At a
high level, the scheme of Choudhuri et al. [17] proves the correctness of a RAM
computation by proving the correctness of multiple evaluations of a single small
circuit. Intuitively, this small circuit represents a single step of the RAM com-
putation. That is, it takes as input a local state of the RAM machine, a digest of
the memory, and local opening of a single location of the memory, and it outputs
an updated local state of the RAM machine along with an updated digest of the
memory and a corresponding certificate. The circuit size depends on the memory
length only polylogarithmically since local opening of a single location is given
as input rather than the entire memory. Since this polylogarithmic dependence
is essential for the verifier efficiency of the RAM delegation scheme, it is required
that each location of the memory can be locally opened individually.

Failed attempt #2. Next, let us consider using the result of Jawale, Kalai,
Khurana, and Zhang [32] that obtains a SNARG from the public-coin interactive
proof of Goldwasser, Kalai, and Rothblum [26] (the GKR interactive proof in
short). The scheme of Jawale et al. [32], when viewed as a public-coin 2-round
delegation scheme,6 has the same syntax as the KRR delegation scheme (cf. Sec-
tion 2.1). In addition, it has the same additional property as the KRR delegation
scheme, i.e., soundness holds even when the verifier only makes a small num-
ber of non-adaptive queries to (an encoding of) the input. Therefore, just like
Bitansky et al. [10] obtained a (private-coin) memory delegation scheme from
the KRR delegation scheme, we can obtain a (public-coin) memory delegation
scheme from the scheme of Jawale et al. [32] by combining it with a keyless
multi-collision-resistant hash function. (We need to assume the sub-exponential
hardness of the LWE assumption since the scheme of Jawale et al. [32] requires
it.) The problem is that the scheme of Jawale et al. [32] is only shown to work for
log-uniform7 bounded-depth computations. As a result, the memory delegation
scheme that we can obtain from it has the same limitation. Unfortunately, for
the application to 3-round ZK arguments, memory delegation schemes for such
limited computations are insufficient.

Our approach. Given the above two failed attempts, we obtain a public-coin
memory delegation scheme by using both the scheme of Choudhuri et al. [17]
and the scheme of Jawale et al. [32]. We obtain our memory delegation scheme
in two steps.

6 Their SNARG works in the common random string model and therefore can be
viewed as a public-coin 2-round delegation scheme.

7 A computation is log-uniform if it has a circuit that can be generated by a log-space
Turing machine.

6 Susumu Kiyoshima

1. First, we obtain a public-coin tree-hash memory delegation scheme, i.e., a
public-coin memory delegation scheme for proving the correctness of tree-
hash computations. We obtain such a scheme by combining the scheme of
Jawale et al. [32] and a keyless multi-collision-resistant hash function as sug-
gested above. The key point is that, as already observed by Goldwasser et
al. [26], the GKR interactive proof works not only for log-uniform compu-
tations but also for any computations that have a certain form of succinct
descriptions. Tree-hash computations have the required form of succinct de-
scriptions because of their simple tree structure. Thus, the GKR interactive
proof can be used to prove the correctness of tree-hash computations. Then,
since the scheme of Jawale et al. [32] inherits this property, the memory del-
egation scheme that we obtain from it also inherits this property, i.e., works
for tree-hash computations.

2. Next, we use the above tree-hash memory delegation scheme to obtain a
public-coin memory delegation scheme for all λω(1)-time computations on
memories of length λω(1). A key observation is that the tree-hash mem-
ory delegation scheme can be used to verify whether a digest is correctly
computed for the RAM delegation scheme of Choudhuri et al. [17]. More
concretely, we consider the following scheme.
(a) The digest of a memory DB is obtained as in the tree-hash memory

delegation scheme using a keyless multi-collision-resistant hash function.
(b) The verifier sends the prover (i) a (keyed) collision-resistant hash func-

tion h together with a challenge string of the tree-hash delegation scheme
and (ii) the description R of the computation to be evaluated on the
memory (modeled as a RAM machine) together with a challenge string
of the RAM delegation scheme of Choudhuri et al. [17].

(c) The prover responds with (i) the tree-hash rt := TreeHashh(DB) of the
memory DB w.r.t. h together with the proof of the tree-hash delegation
for the correctness of rt and (ii) the output y := RDB of the computation
together with the proof of the RAM delegation scheme for the correctness
of y, where rt is used as the digest in the RAM delegation scheme.

In the above scheme, the digest rt of the RAM delegation scheme is chosen
adaptively after the prover learns the challenge string. Still, the tree-hash
memory delegation scheme guarantees that rt is correctly computed based on
the memory DB, and as a result, we can think as if rt is fixed non-adaptively.
Thus, we can use the soundness of the RAM delegation scheme to show the
correctness of the computation output y. (In a little more detail, we can
show that a cheating prover can give accepting proofs for at most a small
number of values of rt and therefore can give accepting proofs for at most a
small number of values of y.)

Before concluding the technical overview, we give remarks about the actual
construction given in the subsequent sections.

Remark 1 (On tree-hash memory delegation). Firstly, obtaining a tree-hash
memory delegation scheme from the scheme of Jawale et al. [32] is actually
not trivial. To explain the difficulty, we first note that for the soundness of the

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 7

GKR interactive proof to hold, the verifier should be given oracle access to an
encoding of the input x, and the length of the encoding is determined by various
parameters of the GKR interactive proof. Now, the problem is that if we obtain
a tree-hash memory delegation scheme from the scheme of Jawale et al. [32]
naively, the encoding needs to be super-polynomially long since the scheme of
Jawale et al. [32] uses the GKR interactive scheme with modified parameters.8
Almost the same problem was already observed in a different context by Bronf-
man and Rothblum [15], and we avoid our problem as in their work. Namely,
instead of directly using the result of Jawale et al. [32], we use the result of Holm-
gren, Lombardi, and Rothblum [29] that shows, based on Jawale et al. [32], that
a SNARG can be obtained from the GKR interactive proof without modifying
its parameters.

Secondly, we focus on tree-hash memory delegation schemes for tree-hash
computations w.r.t. polylogarithmic-depth collision-resistant hash functions. (By
doing so, we can work with the GKR interactive proof in a typical setting,
i.e., for polylogarithmic-depth computations.) Such tree-hash memory delegation
schemes are sufficient for our purpose since the sub-exponential hardness of
the LWE assumption implies the existence of polylogarithmic-depth collision-
resistant hash functions.9 ♢

Remark 2 (Our actual approach). Like Bitansky et al. [10], we first focus on
oracle memory delegation schemes, which are simpler than memory delegation
schemes in that the verifier publishes an encoding of the memory in the clear
at the beginning. (Importantly, we do not need keyless multi-collision-resistant
hash functions to construct them.) After obtaining an oracle memory delegation
scheme, we upgrade it to a memory delegation scheme by using a keyless multi-
collision-resistant hash function. ♢

3 Preliminaries

We denote the security parameter by λ. Due to the space constraint, we only
give a minimal set of definitions below. Additional definitions are given in the
full version of this paper.

3.1 Notations for (Keyed) Hash Functions

Informally, for a hash function family H, we use Hλ to denote the set of the hash
functions that can be used for the security parameter λ. (See the full version of
8 If the reader is familiar with the GKR interactive proof, we note that the scheme

of Jawale et al. [32] uses the GKR interactive proof with a super-polynomially large
field, and as a result, the low-degree encoding of the input is super-polynomially
long.

9 For example, polylogarithmic-depth collision-resistant hash functions can be ob-
tained by using a sub-exponentially hard collision-resistant hash function with a
polylogarithmic security parameter.

8 Susumu Kiyoshima

this paper for the formal meaning.) We usually assume that each h ∈ Hλ hashes
a string of length 2λ to a string of length λ. For a hash function h, we use
TreeHashh to denote the algorithm that computes tree-hashing using h.

3.2 Keyless Multi-Collision Resistant Hash Functions

We recall the definition of multi-collision resistant hash functions from [10],
focusing on the keyless version.

Definition 1. For any functions K : N × N → N and γ : N → N, a keyless
hash function Hash is said to be weakly (K, γ)-collision-resistant if for every
probabilistic γO(1)-time adversary A and every sequence of polynomial-size advice
{zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N, the
following holds for K = K(λ, |zλ|).

Pr

[
y1 = · · · = yK
∧ ∀i ̸= j : xi ̸= xj

∣∣∣∣ (x1, . . . , xK)← A(1λ, zλ)
∀i : yi := Hash(1λ, xi)

]
≤ negl(γ(λ)).

As in [10], we focus on the case that Hash is polynomially compressing in the
sense that Hash(1λ, ·) takes a string of length λ2 as input and outputs a string
of length λ.

3.3 Weak Memory Delegations

We recall the definition of 2-round weak memory delegation schemes [10], focus-
ing on the keyless setting and the publicly verifiable version of the definition.

Definition 2. We say that an efficiently samplable distribution ensemble
{Yλ}λ∈N is entropic if H∞(Yλ) := − logmaxy∈supp(Yλ) Pr [Yλ = y] = Ω(λ).

Definition 3. A publicly verifiable 2-round weak memory delegation scheme
consists of four algorithms (Mem,Query,Prove,Ver) that have the following syn-
tax and efficiency.

– dig := Mem(1λ,DB): Mem is a deterministic polynomial-time algorithm that
takes as input a security parameter 1λ and a memory DB, and it outputs a
digest dig of the memory.

– q ← Query(1λ): Query is a probabilistic polynomial-time algorithm that takes
as input a security parameter 1λ, and it outputs a query q.

– π := Prove(DB, ⟨M, t, y⟩, q): Prove is a deterministic algorithm that takes as
input a memory DB, a deterministic Turing machine M (possibly with some
hardwired inputs), a time bound t, an output y, and a query q, and it outputs
a proof π.

– b := Ver(dig, ⟨M, t, y⟩, q, π): Ver is a deterministic algorithm that takes as
input a digest dig, a deterministic Turing machine M (possibly with some
hardwired inputs), a time bound t, an output y, a query q, and a proof π,
and it outputs a bit b.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 9

Efficiency. For any polynomial p, there exists polynomials polyP , polyV such
that for every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}p(λ), and DB ∈ {0, 1}∗ such that M(DB)
outputs y within t steps and |DB| ≤ t ≤ λlog λ, (i) Prove(DB, ⟨M, t, y⟩, q) runs in
time polyP (λ, t), and (ii) Ver(dig, ⟨M, t, y⟩, q, π) runs in time polyV (λ).

Security. For any function t̄ : N→ N, a publicly verifiable 2-round weak memory
delegation scheme is called sound for computation-time bound t̄ if it satisfies
the following.

– Correctness. For every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}poly(λ), and DB ∈ {0, 1}∗
such that M(DB) outputs y within t steps and |DB| ≤ t ≤ t̄(λ),10

Pr

Ver(dig, ⟨M, t, y⟩, q, π) = 1

∣∣∣∣∣∣
dig := Mem(1λ,DB)
q ← Query(1λ)
π := Prove(DB, ⟨M, t, y⟩, q)

 = 1 .

– Soundness for computation-time bound t̄. For every pair of PPT ad-
versaries (A1,A2) and every sequence of polynomial-size advice {zλ}λ∈N,
there exists a negligible function negl such that for every samplable entropic
distribution ensemble {Yλ}λ∈N, every λ ∈ N, and every t ≤ t̄O(1)(λ),

Pr

Ver(dig, ⟨M, t, y⟩, q, π) = 1

∣∣∣∣∣∣
(dig,M, st)← A1(1

λ, zλ)
q ← Query(1λ); y ← Yλ

π ← A2(q, y, st)

 ≤ negl(λ) .

A publicly verifiable 2-round weak memory delegation scheme is called public
coin if the query algorithm Query is public coin, i.e., it just outputs a string that
is sampled uniformly randomly.

3.4 Oracle Memory Delegations

We recall the definition of 2-round oracle memory delegation schemes [10]. We
use the publicly verifiable version of the definition, and for technical reasons, use
a slightly modified version of the definition (see Remark 3).

Definition 4. A publicly verifiable 2-round oracle memory delegation scheme
consists of five algorithms (Mem,Query1,Prove,Query2,Ver) that have the follow-
ing syntax and efficiency.

– D̂B := Mem(1λ,DB): Mem is a deterministic polynomial-time algorithm that
takes as input a security parameter 1λ and a memory DB, and it outputs an
encoding D̂B of the memory.

– (q, σ)← Query1(1
λ): Query1 is a probabilistic polynomial-time algorithm that

takes as input a security parameter 1λ, and it outputs a query q and a random
string σ.

10 We consider a slightly weaker notion of correctness where t is at most t̄(λ). (In [10],
t is at most 2λ.)

10 Susumu Kiyoshima

– π := Prove(DB, ⟨M, t, y⟩, q): Prove is a deterministic algorithm that takes as
input a memory DB, a deterministic Turing machine M (possibly with some
hardwired inputs), a time bound t, an output y, and a query q, and it outputs
a proof π.

– I := Query2(LDB, σ, π): Query2 is a deterministic algorithm that takes as
input a length parameter LDB, a random string σ, and a proof π, and it
outputs a set I ⊆ N of oracle queries.

– b := Ver(·)(LDB, ⟨M, t, y⟩, q, σ, π): Ver is a deterministic oracle algorithm that
takes as input a length parameter LDB, a deterministic Turing machine M
(possibly with some hardwired inputs), a time bound t, an output y, a query
q, a random string σ, and a proof π, and it outputs a bit b.

Efficiency. For any polynomial p, there exists polynomials polyP , polyV such
that for every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}p(λ), and DB ∈ {0, 1}∗ such that M(DB)
outputs y within t steps and |DB| ≤ t ≤ λlog λ, (i) Prove(DB, ⟨M, t, y⟩, q) runs in
time polyP (λ, t), and (ii) Ver(·)(|DB|, ⟨M, t, y⟩, q, σ, π) runs in time polyV (λ).

Security. For any functions γ, t̄ : N → N, a publicly verifiable 2-round oracle
memory delegation scheme is called γ-sound for computation-time bound t̄ if it
satisfies the following.

– Correctness. For every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}poly(λ), and DB ∈ {0, 1}∗
such that M(DB) outputs y within t steps and |DB| ≤ t ≤ t̄(λ),

Pr

VerD̂B|I (|DB|, ⟨M, t, y⟩, q, σ, π) = 1

∣∣∣∣∣∣∣∣
D̂B := Mem(1λ,DB)
(q, σ)← Query1(1

λ)
π := Prove(DB, ⟨M, t, y⟩, q)
I := Query2(|DB|, σ, π)

 = 1 .

– γ-soundness for computation-time bound t̄. For every pair of proba-
bilistic γO(1)-time adversaries (A1,A2) and every sequence of polynomial-
size advice {zλ}λ∈N, there exists a negligible function negl such that for every
λ ∈ N and t ≤ t̄O(1)(λ),

Pr


y ̸= y′

∧ VerD̂B|I (LDB, ⟨M, t, y⟩, q, σ, π) = 1

∧ VerD̂B|I′ (LDB, ⟨M, t, y′⟩, q, σ, π′) = 1

∣∣∣∣∣∣∣∣∣
(D̂B, LDB,M, y, y′, st)← A1(1

λ, zλ)

(q, σ)← Query1(1
λ)

(π, π′)← A2(q, σ, st)
I := Query2(LDB, σ, π)
I ′ := Query2(LDB, σ, π

′)


≤ negl(γ(λ)) .

A publicly verifiable 2-round oracle memory delegation scheme is called public
coin if the query algorithm Query1 is public coin, i.e., it just outputs a string
that is sampled uniformly randomly.

Remark 3 (Differences from the original definition [10]). First, the syntax is
slightly more general since we split the query algorithm into two, Query1 and

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 11

Query2, so that input queries can be chosen based on the proof π. (An additional
minor syntax difference is that Ver (and Query2) is given the memory length,
i.e., |DB|.) Second, soundness is slightly stronger since we allow the adversary
A2 to learn σ (which allows A2 to learn the input queries I, I ′). ♢

3.5 Low-Degree Extensions

Let F be a finite field, H ⊆ F be a subset of F, and m ∈ N be an integer. Any
function f : Hm → {0, 1} can be extended into a (unique) function f̂ : Fm → F
such that (i) f̂(z) = f(z) for every z ∈ Hm and (ii) f̂ is an m-variate polynomial
of degree at most |H| − 1 in each variable. This function f̂ (or the truth table of
it) is called the low-degree extension (LDE) of f .

Low-degree extensions of strings. The LDE of a binary string x of length
N can be obtained by choosing H and m such that N ≤ |H|m, identifying
{1, . . . , |H|m} with Hm in the lexicographical order, and viewing x as a function
x : Hm → {0, 1} such that x(i) = xi for ∀i ∈ [N] and x(i) = 0 for ∀i ∈
{N + 1, . . . , |H|m}. We use LDEF,H,m(x) to denote the LDE of x. We note that
for any z ∈ Fm, the LDE of x can be evaluated on z in time |H|m · poly(m, |H|),
where we assume that we have |F| = poly(|H|) and field operations over F can
be done in time poly(log|F|) = poly(log|H|) (see, e.g., [26, Claim 2.3]).

4 Public-Coin Tree-Hash Oracle Memory Delegation

In this section, we construct a public-coin tree-hash oracle memory delegation
scheme, i.e., a public-coin oracle memory delegation scheme that is focused on
proving the correctness of tree-hash computations. Specifically, we consider a
scheme that satisfies the following tailored soundness notion.

Definition 5. For any hash function family H, publicly verifiable 2-round tree-
hash oracle memory delegation schemes are defined in the same way as publicly
verifiable 2-round oracle memory delegation schemes (Definition 4) except for
the following differences.

1. Correctness is defined for a statement of the form ⟨Mh, t, y⟩ and a memory
DB of length 2iλ for λ ∈ N, h ∈ Hλ, t ∈ N, y ∈ {0, 1}λ, and i ∈ [⌊log2 λ⌋],
where Mh is a Turing machine that takes as input a string DB ∈ {0, 1}∗ and
outputs TreeHashh(DB) using the hash function h that is hardwired in it.11

2. The soundness condition is replaced with the following one.
– γ-soundness. There exists a probabilistic polynomial-time algorithm

Decode such that for every pair of probabilistic γO(1)-time adversaries

11 We assume that h ∈ Hλ hashes a string of length 2λ to a string of length λ. Therefore,
TreeHashh hashes a string of length 2iλ to a string of length λ.

12 Susumu Kiyoshima

(A1,A2) and every sequence of polynomial-size advice {zλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N and h ∈ Hλ,

Pr


rt ̸= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, ⟨Mh, tLDB
, rt⟩,

q, σ, π) = 1

∣∣∣∣∣∣∣∣∣∣
(D̂B, LDB, st)← A1(1

λ, zλ)
(q, σ)← Query1(1

λ)
(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)


≤ negl(γ(λ)) ,

where tLDB
is the running time of Mh for inputs of length LDB, and

Decode(·, LDB) always outputs a LDB-bit string (or ⊥).

The goal of this section is to show the following lemma.

Lemma 1. Assume the sub-exponential hardness of the LWE assumption. Then,
for any polylogarithmic-depth hash function family and any sufficiently small
super-polynomial functions γ (e.g., γ(λ) = λlog log λ), there exists a public-coin
2-round tree-hash oracle memory delegation scheme with γ-soundness.

4.1 Public-Coin Weak Tree-Hash Oracle Memory Delegation

As a preliminary step, we construct a scheme with a weak soundness notion
(where the cheating prover is required to give a valid encoding of a memory).

Lemma 2. Assume the sub-exponential hardness of the LWE assumption. Then,
for any polylogarithmic-depth hash function family H and any sufficiently small
super-polynomial functions γ (e.g., γ(λ) = λlog log λ), there exists a public-coin
2-round tree-hash oracle memory delegation scheme with the following weaker
soundness. (The differences from Definition 5 are highlighted by underlines.)

– Weak γ-soundness. There exists a deterministic polynomial-time algorithm
Decode and a predicate Valid such that for every pair of probabilistic γO(1)-
time adversaries (A1,A2) and every polynomial-size advice {zλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N and h ∈ Hλ,

Pr


rt ̸= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, ⟨Mh, tLDB
, rt⟩,

q, σ, π) = 1

∧ Valid(D̂B, LDB) = 1

∣∣∣∣∣∣∣∣∣∣
(D̂B, LDB, st)← A1(1

λ, zλ)
(q, σ)← Query1(1

λ)
(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)


≤ negl(γ(λ)) ,

where tLDB
is the running time of Mh for inputs of length LDB, and

Decode(·, LDB) always outputs a LDB-bit string (or ⊥).

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 13

Furthermore, (i) Mem(1λ,DB) outputs LDEF,H,m(DB) for some (F,H,m), where
(F,H,m) are the parameters that are determined based on |DB| and satisfy
2m|H| < |F| = poly(log λ) and |DB| ≤ |H|m ≤ |F|m ≤ poly(|DB|), and (ii)
Valid(D̂B, LDB) outputs 1 if and only if D̂B is (the truth table of) a polynomial
x̂ : Fm → F of degree at most m(|H| − 1).
We prove Lemma 2 by relying on recent results [32, 29] about soundly applying
the Fiat–Shamir transformation to the public-coin interactive proof of Gold-
wasser, Kalai, and Rothblum [26] (the GKR interactive proof in short).

Preliminary 1: the GKR interactive proof. We recall the “bare-bones”
version of the GKR interactive proof [26, Section 3], focusing on the parts that
are relevant to us. (As in [32], we use a slightly modified version of it [33] so that
we can use the recent results about the Fiat–Shamir transformation [32, 29].)

The GKR interactive proof is a public-coin interactive proof for proving the
correctness of computations. The statement consists of a circuit C and an input
x, and the prover proves C(x) = 0. The circuit C is an arithmetic circuit over
a finite field F. The circuit C is assumed to be layered, i.e., the gates in C can
be partitioned into layers such that (i) the starting layer consists of the input
gates and the last layer consists of the output gates, and (ii) the gates in the
i-th layer take their inputs from the gates in the (i− 1)-st layer. For a circuit of
depth D and W , we denote the gates in the i-th layer by (gi,0, . . . , gi,W−1) for
each i ∈ {0, . . . , D}. We note that we start the index of layers from 0, i.e., the
starting layer (which contains the input gates) is “the 0-th layer.”

The GKR interactive proof is associated with several parameters. When the
statement contains a circuit of depth D and width W , important parameters
include the finite field F over which the circuit is defined, as well as a subset H ⊂
F and an integer m ∈ N. How these parameters are used in the GKR interactive
proof is not important to this paper (essentially, the parameters (F,H,m) are
used to obtain the LDE of the gate values of each layer). These parameters
can be set relatively freely as long as they satisfy certain constraints, such as
(i) |F| is sufficiently larger than D, |H|, and m and (ii) |H|m is larger than
the width W . When D = poly(logW), a typical choice is |H| = poly(logW),
m = ⌈log|H| W ⌉ = O(logW/ log logW), and |F| = poly(|H|) = poly(logW).

Importantly, in the GKR interactive proof, the verifier does not explicitly
take a statement as input. Indeed, if the verifier explicitly takes a circuit C as
input, the running time of the verifier becomes Ω(|C|), and the GKR interactive
proof cannot have significant efficiency benefits. In the bare-bones version of the
GKR interactive proof, the verifier learns about C by making queries to certain
polynomials that are guaranteed to satisfy the following conditions. Let D and
W be the depth and width of C. For each i ∈ [D], let addi : {0, . . . ,W − 1}3 →
{0, 1} be the function such that on input (u, v, w), it outputs 1 if and only if
gi,u = gi−1,v + gi−1,w, i.e., the u-th gate in the i-th layer is an addition gate
such that its inputs come from the v-th and w-th gates in the (i − 1)-st layer.
Let {multi}i∈[D] be defined similarly about multiplication gates. The functions
{addi,multi}i∈[D] are called the functions that specify C. Then, the verifier of

14 Susumu Kiyoshima

the GKR interactive proof is given oracle access to extensions {ãddi, m̃ulti}i∈[D]

of {addi,multi}i∈[D], where each ãddi, m̃ulti : F3m → F are guaranteed to satisfy
the following for each (zu, zv, zw) ∈ H3m. Let α : Hm → {0, . . . , |H|m−1} be the
mapping that returns the lexicographic order of the input.

ãddi(zu, zv, zw) =

{
addi(α(zu), α(zv), α(zw)) if α(zu), α(zv), α(zw) ≤W − 1

0 otherwise
.

m̃ulti(zu, zv, zw) =

{
multi(α(zu), α(zv), α(zw)) if α(zu), α(zv), α(zw) ≤W − 1

0 otherwise
.

Extensions {ãddi, m̃ulti}i∈[D] do not need to be the LDEs of {addi,multi}i∈[D],
but they need to be low-degree polynomials, which roughly means that the
individual degree δ of each ãddi, m̃ulti is much smaller than the field size |F|.

In [26], the bare-bones version of the GKR interactive proof is used as a
stepping-stone toward their main results. For example, the bare-bones version
is used to obtain an interactive proof for log-space uniform bounded-depth cir-
cuit computations. (The verifier can evaluate extensions {ãddi, m̃ulti}i∈[D] effi-
ciently for such computations.12) It is also used to obtain an interactive proof for
any (not necessarily log-space uniform) bounded-depth circuit computations by
considering a model where the verifier evaluates {ãddi, m̃ulti}i∈[D] in an offline
pre-processing phase. Jumping ahead, we use the bare-bones version to obtain a
protocol for a circuit that is not necessarily log-space uniform. The key point is
that for the circuit that we consider, the verifier can evaluate {ãddi, m̃ulti}i∈[D]

efficiently because of the simple structure of the circuit.
Below, we summarize the properties of the GKR interactive proof that we

use. (It is based on [26, Theorem 3.1] and its analysis with slight adaptation.
The differences are explained in footnotes.)

Lemma 3 (Soundness and efficiency of the GKR interactive proof).
There exists a constant cgkr ∈ N such that the GKR interactive proof is sound
(with constant soundness error) when it is used with a finite field F, an arithmetic
circuit C over F, and parameters H ⊂ F, m ∈ N that satisfy the following
condition.

– GKR compatibility: Let W and D be the width and the depth of C. Then,
there exists δ ∈ N (m(|H| − 1) ≤ δ < |F|) for which the following hold.13

1. The field F is large; concretely, cgkrDmδ ≤ |F| ≤ poly(|H|).
2. The parameters H and m satisfy max(D, logW) ≤ |H| ≤ poly(D, logW)

and W ≤ |H|m ≤ poly(W).
12 More precisely, in [26], it is observed that the verifier can delegate the evaluation of
{ãddi, m̃ulti}i∈[D] to the prover, and in a subsequent work [22], it is observed that
the verifier can evaluate {ãddi, m̃ulti}i∈[D] efficiently.

13 For convenience, we use a slightly stronger lower bound for δ. (In [26], the require-
ment is |H| − 1 ≤ δ < |F|.) See Footnote 14.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 15

3. There exist polynomials {ãddi, m̃ulti}i∈[D] such that (i) each ãddi, m̃ulti

are of individual degree at most δ and (ii) {ãddi, m̃ulti}i∈[D] are exten-
sions of the functions {addi,multi}i∈[D] that specify C.

Furthermore, soundness holds even in a model where the verifier is not given
the statement (C, x) and instead given (i) oracle access to {ãddi, m̃ulti}i∈[D] and
(ii) oracle access to a polynomial x̂ : Fm → F that is of (total) degree at most
m(H−1) and has x as a prefix of x̂|Hm .14 In such a model, the verifier runs in time
poly(D, logW) while the prover runs in time poly(D,W). The verifier queries
the encoding x̂ at two points15 (where the queries are determined by the (public)
randomness of the verifier) and makes O(D) queries to {ãddi, m̃ulti}i∈[D].

Preliminary 2: the Fiat–Shamir transformation for the GKR interac-
tive proof. We next recall a result by Holmgren et al. [29], which shows (based
on an observation by Jawale et al. [32]) that we can obtain a public-coin non-
interactive argument by applying the Fiat–Shamir transformation to the parallel
repetition of the GKR interactive proof. The result that we use is summarized
in the following lemma, which is a rephrasing of a result given in [28, Section
6.2.2] (see also [31, Corollary 6.6, Theorem 4.5]).
Lemma 4. Let W,D, δ : N → N be functions such that W (λ) ≤ poly(λlog λ),16

D(λ) ≤ poly(log λ), and δ(λ) ≤ poly(D(λ), logW (λ)). Then, under the sub-
exponential hardness of the LWE assumption, there exists a public-coin hash
family HFS that satisfies the following for t(λ) = poly(λ,D(λ), logW (λ)) and a
sub-exponential function T .

Let Π = (Setup, P, V) be the public-coin non-interactive argument that is
obtained by applying the Fiat-Shamir transformation to the t-repetition
of the GKR interactive proof w.r.t. the hash family HFS.
1. Correctness. For every λ ∈ N, fix any (C,F,H,m) such that (i) F

is a finite field such that |F| = poly(D(λ), logW (λ)) is sufficiently
large, (ii) C is a layered arithmetic circuit over F with output length
λ, where the width and the depth of C are at most W (λ) and D(λ)
respectively, and (iii) (C,F,H,m) is GKR compatible for δ ≤ δ(λ)
(cf. Lemma 3). Then, when Π is used with λ and (C,F,H,m), the
following hold for every input x and y := C(x).

Pr

[
V F (crs, x, y, π) = 1

∣∣∣∣ crs← Setup(1λ)
π ← P (crs, C, x, y)

]
= 1 ,

14 In [26, Theorem 3.1], the encoding x̂ is required to be the LDE of x. However, the only
requirement that is used in the analysis of [26, Theorem 3.1] is that the individual
degree of x̂ is upper bounded by the degree parameter δ. Since we guarantee δ ≥
m(|H|−1), it suffices to require that the total degree of x̂ is at most m(H−1) (which
implies that the individual degree is at most δ).

15 Unlike the original version [26], the version given in [33] (which is the version that
we use) requires the verifier to read x̂ at two points.

16 This is a super-polynomial upper bound that is sufficient for our purpose.

16 Susumu Kiyoshima

where F := {ãddi, m̃ulti}i∈[D] are the polynomials that are guaranteed
to exist by the GKR compatibility of (C,F,H,m).

2. T -soundness. For every probabilistic poly(T)-time prover P ∗ and
every sequence of polynomial-size advice {zλ}λ∈N, there exists a neg-
ligible function negl such that for every λ ∈ N, every (C,F,H,m) as
above, and every input x,

Pr

[
y ̸= C(x)
∧ V F (crs, x, y, π) = 1

∣∣∣∣ crs← Setup(1λ)
(y, π)← P ∗(crs, C, x, zλ)

]
≤ negl(T (λ)) .

3. Efficiency. For every λ ∈ N and every (C,F,H,m) as above, P
runs in time D(λ) · poly(λ,D(λ), logW (λ)) + TGKR,P and V runs
in time D(λ) · poly(λ,D(λ), logW (λ)) + TGKR,V , where TGKR,P and
TGKR,V are the running time of the prover and the verifier in the
t-repetition of the GKR interactive proof.

(See the full version of this paper about how we obtain Lemma 4 from [29].)

Remark 4 (On adaptive choice of y in the definition of soundness). Lemma 4
differs from what is shown in [32, 29] in that (i) the output length of the circuit
C is λ and (ii) the cheating prover in the definition of soundness is allowed to
choose the output y adaptively. (In [32, 29], the output length of C is 1, and as
in the GKR interactive proof described above, the output y is fixed to be 0).
Still, it is easy to see that the results in [32, 29] can be used to obtain Lemma 4.
Consider, for simplicity, that C outputs a binary output. (This is the case that
we are interested in.) First, if the output length of C is 1 and the cheating
prover adaptively chooses the output y ∈ {0, 1}, it suffices to consider a protocol
where the verifier initiates the protocol of [32, 29] twice in parallel, one for the
statement C(x) = 0 and the other for the statement C(x) = 1, and the prover
chooses one of them according to the actual output. Next, if the output length of
C is λ, the prover and the verifier run this single-bit protocol λ times in parallel,
one for each output bit. In total, the protocol of [32, 29] is executed 2λ times in
parallel, and it is easy to see that if there exists a cheating prover that breaks the
multi-bit version with probability ϵ, there exists a cheating prover that breaks
the original version with probability at least ϵ/λ. ♢

Remark 5 (On soundness when the verifier is not given (C, x) explicitly). The
Fiat–Shamir transformation preserves the furthermore part of Lemma 3, i.e.,
soundness (and completeness) holds even when the verifier only has (i) oracle
access to F = {ãddi, m̃ulti}i∈[D] and (ii) oracle access to a low-degree poly-
nomial x̂ that encodes x. Also, the number of queries to F and x̂ is not in-
creased by the Fiat–Shamir transformation.17 Furthermore, since the queries
to x̂ are determined by the verifier randomness in the GKR interactive proof,
they are determined by the proof π after the Fiat–Shamir transformation.
17 Note that the Fiat–Shamir transformation only requires hashing the transcript (ex-

cluding x) as shown in [31, Figure 1].

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 17

Thus, there is a deterministic polynomial-time algorithm InpQuery such that
the correctness and soundness of Π hold even when we replace V F (crs, x, y, π)
with V x̂|I ,F (crs, y, π), where I := InpQuery(π). Since Π is obtained from t-
repetition of the GKR interactive proof for t(λ) = poly(λ,D(λ), logW (λ)), we
have |I| = poly(λ,D(λ), logW (λ)). ♢

Proof of Lemma 2. We are ready to give our weak tree-hash memory del-
egation scheme. Our approach is to use Lemma 4 for tree-hash computations.
That is, we consider the GKR interactive proof for tree-hash computations and
then obtain the desired protocol by applying the Fiat–Shamir transformation.
By Lemma 3, we need a circuit that computes tree-hashing in a “GKR friendly”
way, i.e., we need a tree-hashing circuit that satisfies properties such as hav-
ing efficiently computable low-degree extensions {ãddi, m̃ulti}i∈[D]. Motivated
by this observation, we show the following lemma.

Lemma 5. LetH be any polylogarithmic-depth hash function family. Then, there
exist polynomials polyW , polyD, polyδ such that for any λ, ℓ ∈ N (ℓ ≤ log2 λ) and
any finite field F of sufficiently large size |F| ≤ poly(log λ), there exist a subset
H ⊂ F and an integer m ∈ N such that for any h : {0, 1}2λ → {0, 1}λ ∈ Hλ,
there exists a layered arithmetic circuit C : FL → Fλ that satisfies the following,
where L is defined as L := 2ℓλ.

1. The circuit C computes TreeHashh for every input x ∈ {0, 1}L, and it outputs
values in Fλ \{0, 1}λ for inputs in x ∈ FL \{0, 1}L. The circuit C is of width
W := polyW (λ,L) and of depth D := polyD(log λ, ℓ).

2. There exist {ãddi, m̃ulti}i∈[D] such that (C,F,H,m) is GKR compatible for
δ := polyδ(D, logW) and {ãddi, m̃ulti}i∈[D]. Furthermore, {ãddi, m̃ulti}i∈[D]

can be evaluated in time poly(λ) given the description of h.

Furthermore, (H,m) can be obtained in polynomial time given λ and ℓ.

The proof of this lemma is straightforward. The circuit C is defined by connecting
many copies of the polylogarithmic-depth circuit Ch of h in the tree structure.
The key point is that, because of the tree structure of C, there exist extensions
{ãddi, m̃ulti}i∈[D] that can be evaluated almost as efficiently as the LDEs of the
functions that specify Ch, which in turn can be evaluated in time poly(λ) since
Ch is of size poly(λ). For a formal proof, see the full version of this paper.

Now, we proceeds to the proof of Lemma 2.

Proof (of Lemma 2). We first note that from Lemma 3, Lemma 4, Remark 5,
and Lemma 5, we have the following corollary. (See the full version of this paper
for the proof.)

Corollary 1. Let H be any polylogarithmic-depth hash function family. Then,
under the sub-exponential hardness of the LWE assumption, there exists a
public-coin non-interactive argument Π = (Setup, P, V) and a deterministic
polynomial-time algorithm InpQuery such that the following hold for a sub-
exponential function T .

18 Susumu Kiyoshima

1. Parameters. For each λ, ℓ ∈ N such that ℓ ≤ log2 λ, the non-interactive
argument Π has (F,H,m) as parameters, where F is a finite field, H ⊂ F is
a subset, and m ∈ N is an integer such that 2m|H| < |F| = poly(log λ) and
L ≤ |H|m ≤ |F|m ≤ poly(L), where L = 2ℓλ.

2. Completeness. For every λ, ℓ ∈ N (ℓ ≤ log2 λ), h ∈ Hλ, x ∈ {0, 1}L,
x̂ := LDEF,H,m(x), and y := TreeHashh(x),

Pr

V x̂|I (crs, ℓ, h, y, π) = 1

∣∣∣∣∣∣
crs← Setup(1λ)
π ← P (crs, h, x, y)
I := InpQuery(π)

 = 1 .

3. T -soundness. For every probabilistic poly(T)-time prover P ∗ and every
sequence of polynomial-size advice {zλ}λ∈N, there exists a negligible function
negl such that for every λ, ℓ ∈ N (ℓ ≤ log2 λ), every h ∈ Hλ, and every
polynomial x̂ : Fm → F that is of degree at most m(H− 1),

Pr

y ̸= TreeHashh(x)
∧ V x̂|I (crs, ℓ, h, y, π) = 1

∣∣∣∣∣∣
crs← Setup(1λ)
(y, π)← P ∗(crs, h, x, zλ)
I := InpQuery(π)

 ≤ negl(T (λ)) ,

where x is the length-L prefix of x̂|Hm if it is in {0, 1}L and x := ⊥ otherwise,
where L := 2ℓλ.

4. Efficiency. P runs in time poly(λ,L) and V runs in time poly(λ).

Given Corollary 1, the proof of Lemma 2 is trivial. Consider the delegation
scheme given in Algorithm 1. The efficiency and security conditions can be ver-
ified by inspection. (We note that Mem runs in polynomial time since we have
|F|m ≤ poly(|DB|).) This completes the proof of Lemma 2. ⊓⊔

4.2 Overview of Proof of Lemma 1

We are ready to explain how we obtain our tree-hash oracle memory delega-
tion scheme. The idea is to upgrade the soundness of our weak tree-hash oracle
memory delegation scheme (Lemma 2) by considering a verifier that addition-
ally checks the validity of the encoded memory. Fortunately, such a check can be
implemented easily by relying on well-known techniques about low-degree poly-
nomials, namely low-degree tests and self-correction. As stated in Lemma 2, in
our weak tree-hash oracle memory delegation scheme, an encoding of a memory
is valid if it is a polynomial of degree at most m(|H| − 1). Thus, the verifier can
use low-degree tests to check whether it is given an encoding D̂B that is close to
a valid encoding D̂B

′
, and then it can use self-correction to make queries to D̂B

′

through D̂B. For a formal proof, see the full version of this paper.

5 Public-Coin Oracle Memory Delegation

In this section, we construct a public-coin oracle memory delegation scheme.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 19

Algorithm 1 Public-coin weak oracle memory tree-hash delegation wTHDel.
Let Π = (Setup, P, V) and InpQuery be the public-coin non-interactive argument and
the deterministic algorithm given by Corollary 1.

– D̂B := Mem(1λ,DB):
1. Let ℓ∗ be the integer such that |DB| = 2ℓ

∗
λ, and let (F,H,m) be the parameters

that Π uses for λ and ℓ∗. Then, output D̂B := LDEF,H,m(DB).
– (q, σ)← Query1(1

λ):
1. Run crs← Setup(1λ).
2. Output q := crs and σ := ⊥.

– π := Prove(DB, ⟨Mh, t|DB|, rt⟩, q):
1. Parse q as crs.
2. Output π ← P (crs, h,DB, rt), where h is the hash function that is hardwired

in Mh.
– I := Query2(|DB|, σ, π):

1. Output I := InpQuery(π).
– b := VerD̂B|I (|DB|, ⟨Mh, t|DB|, rt⟩, q, σ, π):

1. Obtain ℓ∗ as in Mem, and obtain crs from q as in Prove. (If there does not
exist ℓ∗ such that |DB| = 2ℓ

∗
λ, output 0.)

2. Output b := V D̂B|I (crs, ℓ∗, h, rt, π).
– D̃B← Decode(D̂B, LDB):

1. Let D̃B be the length-LDB prefix of D̂B|Hm .
2. Output D̃B if D̃B ∈ {0, 1}LDB , and output ⊥ otherwise.

Lemma 6. Assume the sub-exponential hardness of the LWE assumption. Then,
there exists a public-coin 2-round oracle memory delegation scheme with γ-
soundness for computation-time bound γ for any (sufficiently small) super-
polynomial function γ (e.g., γ(λ) = O(λlog log λ)).

We prove Lemma 1 by combining our tree-hash memory delegation scheme
(Lemma 1) with the RAM delegation scheme of Choudhuri et al. [17].

5.1 Preliminary: RAM delegation

We recall the definition of publicly verifiable non-interactive RAM delegation
schemes from [34, 17]. (We straightforwardly generalize the definition to consider
security against slightly super-polynomial-time adversaries.)

A RAM machine R with word size ℓ is modeled as a deterministic machine
with random access to a memory of at most 2ℓ bits and a local state of O(ℓ) bits.
At every step, the machine reads or writes a single memory bit and updates its
state. For simplicity, we use the security parameter λ as the word size. Also, for
convenience, we consider a slightly more general model than [34, 17] and think of
a RAM machine that has access to a memory of at most 2ℓ bits and additionally
takes a short input. (In [34, 17], a RAM machine has access to a memory of
(exactly) 2ℓ bits and takes no input other than the memory and the initial local

20 Susumu Kiyoshima

state.) In this paper, the memory and state of a RAM machine at a given time-
step are referred to as its memory-state pair.18 For any RAM machine R, let UR

denote the language such that (ℓ, x,ms,ms′, T) ∈ UR if and only if R with word
size ℓ and on input x transitions from memory-state pair ms to memory-state
pair ms′ in T steps.

Definition 6. For any RAM machine R, a publicly verifiable non-interactive
RAM delegation scheme for R consists of four algorithms (Setup,Mem,Prove,
Ver) that have the following syntax.

– (pk, vk, dk) ← Setup(1λ, T): Setup is a probabilistic algorithm that takes as
input a security parameter 1λ and a time bound T , and it outputs a triple of
public keys: a prover key pk, a verifier key vk, and a digest key dk.

– dig := Mem(dk,ms): Mem is a deterministic algorithm that takes as input a
digest key dk and a memory-state pair ms, and it outputs a digest dig of the
memory-state pair.

– π := Prove(pk, x,ms,ms′): Prove is a deterministic algorithm that takes as
input a prover key pk, an input x to R, source and destination memory-state
pairs ms,ms′, and it outputs a proof π.

– b := Ver(vk, x, dig, dig′, π): Ver is a deterministic algorithm that takes as input
a verifier key vk, an input x to R, source and destination digests dig, dig′,
and a proof π, and it outputs a bit b.

Efficiency. For any functions TSetup : N× N→ N and Lπ : N× N× N→ N, a
publicly verifiable non-interactive RAM delegation scheme is said to have setup
time TSetup and proof length Lπ if for every λ, T ∈ N such that T ≤ 2λ and for
every x,ms,ms′ ∈ {0, 1}∗ such that (λ, x,ms,ms′, T) ∈ UR:

– Setup(1λ, T) runs in time TSetup(λ, T).
– Mem(dk,ms) runs in time |ms| · poly(λ) and outputs a digest of length λ.
– Prove(pk, x,ms,ms′) runs in time poly(λ, T, |x|, |ms|) and outputs a proof of

length Lπ(λ, T, |x|).
– Ver(vk, x, dig, dig′, π) runs in time O(Lπ(λ, T, |x|)) + poly(λ, |x|).

Security. For any function γ : N → N, a publicly verifiable non-interactive
RAM delegation scheme is called γ-sound if it satisfies the following.

– Correctness. For every λ, T ∈ N such that T ≤ 2λ and for every x,ms,ms′ ∈
{0, 1}∗ such that (λ, x,ms,ms′, T) ∈ UR,

Pr

Ver(vk, x, dig, dig′, π) = 1

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Setup(1λ, T)
dig := Mem(dk,ms)
dig′ := Mem(dk,ms′)
π := Prove(pk, x,ms,ms′)

 = 1 .

18 Unlike [34, 17], we refrain from using the term “configuration” to refer to the memory
and state since we allow RAM machines to additionally have inputs.

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 21

– γ-collision resistance. For every probabilistic γO(1)-time adversary A and
every sequence of polynomial-size non-uniform advise {zλ}λ∈N, there exists
a negligible function negl such that for every λ ∈ N and T ≤ γ(λ),

Pr

[
ms ̸= ms′

∧ Mem(dk,ms) = Mem(dk,ms′)

∣∣∣∣ (pk, vk, dk)← Setup(1λ, T)
(ms,ms′)← A(pk, vk, dk, zλ)

]
≤ negl(γ(λ)) .

– γ-soundness. For every probabilistic γO(1)-time adversary A and every
sequence of polynomial-size non-uniform advise {zλ}λ∈N, there exists a neg-
ligible function negl such that for every λ ∈ N and T ≤ γ(λ),

Pr


Ver(vk, x, dig, dig′, π) = 1
∧ (λ, x,ms,ms′, T) ∈ UR

∧ dig = Mem(dk,ms)
∧ dig′ ̸= Mem(dk,ms′)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Setup(1λ, T)
(x,ms,ms′, dig, dig′, π)← A(pk, vk, dk, zλ)


≤ negl(γ(λ)) .

A publicly verifiable non-interactive RAM delegation scheme is called public coin
if the setup algorithm Setup is public coin, i.e., it just outputs a triple of strings
that are sampled uniformly randomly.

We use the following prior result [17] with straightforward adaptation.

Theorem 1. Let γ be any (sufficiently small) super-polynomial function (e.g.,
γ(λ) = λlog log λ), and assume the γ-hardness of the LWE assumption. Then, for
any RAM machine R, there exists a publicly verifiable non-interactive RAM
delegation scheme with γ-soundness, where the setup time is TSetup(λ, T) =
poly(λ, log T) and proof length is Lπ(λ, T, |x|) = poly(λ, log T, |x|). Furthermore,
this scheme is public coin, and (i) the setup algorithm Setup outputs a hash func-
tion as a digest key, where the hash function is sampled from a collision-resistant
hash function family that is independent of the computation-time bound T , and
(ii) the digest algorithm Mem, on input a digest key dk and a memory-state
pair ms = (DB, st), outputs a triple dig = (st, rt, |DB|) that consists of the local
state st, the tree-hash rt := TreeHashdk(DB) of the memory DB, and the memory
length |DB|, where the tree-hash is computed by using the digest key dk as a hash
function.

Two remarks about Theorem 1 are given below.

1. The first part of Theorem 1 differs from what is shown in [17] in that (i)
RAM machines are defined in a model where a RAM machine has access
to a memory of at most 2ℓ bits (rather than exactly 2ℓ bits) and takes a
short input in addition to a local state and a memory, and (ii) soundness
is required to hold for λω(1)-time adversaries and λω(1)-time RAM compu-
tations. (In [17], soundness is shown for polynomial-time adversaries and
polynomial-time RAM computations under the polynomial hardness of the

22 Susumu Kiyoshima

LWE assumption.) Still, the first part of Theorem 1 can be easily obtained
from [17]. In particular, the analysis given in [17] can be easily extended (i)
for memories of at most 2ℓ bits by appending the length |DB| of the memory
to the digest dig so that the verification algorithm Verify can learn |DB|, (ii)
for RAM machines that take additional short inputs by allowing the proof
length to be polynomial in the input length (but still polylogarithmic in
the computation-time bound T),19 and (iii) for λω(1)-time adversaries and
λω(1)-time RAM computations by assuming the λω(1)-hardness of the LWE
assumption.

2. Regarding the furthermore part of Theorem 1, the public-coin property is
implicitly mentioned in [17]. In particular, it is mentioned that the RAM del-
egation scheme (or more precisely its main component) works in the common
random string model rather than the common reference string model, imply-
ing that its setup algorithm Setup outputs uniformly random strings.20 The
properties of Setup and Mem can be easily verified by inspecting the scheme
description given in [18, Figure 5].21

5.2 Proof of Lemma 6

Fix any sufficiently small super-polynomial function γ. Let R be the following
RAM machine.

– R is given as input a description of a Turing machine M and given as memory
a string DB. Then, R internally executes M(DB).22 When M terminates, R
writes (y, t) at the beginning of the memory and terminates, where y is the
output of M and t is the running time of M .

Without loss of generality, we assume that there exists a (non-decreasing)
polynomial polyR such that when the running time of M(DB) is t, the run-
ning time of RDB(M) is polyR(t), and RDB(M) only reads and writes the first
polyR(t) bits of DB (hence, we assume that DB is of length polyR(t)). Let
RDel = (RDel.Setup,RDel.Mem,RDel.Prove,RDel.Ver) be the public-coin non-
interactive RAM delegation scheme given by Theorem 1 for the RAM ma-
chine R with γ-soundness. Recall that RDel.Setup outputs as a digest key
a hash function that is sampled from a collision-resistant hash family. We
19 For those who are familiar with the RAM delegation of [17], we note that we allow

the statements of the batch-NP argument to contain the input of the RAM machine.
20 Technically, the public-coin property can be verified by observing that under the

LWE assumption, all the components of the scheme of [17] can be made public coin
by using, e.g., an FHE scheme with pseudorandom public keys and ciphertexts.

21 Actually, Mem in [18, Figure 5] outputs a pair dig = (st, rt), but as noted above, we
consider an extended version that additionally includes |DB| in dig.

22 R emulates the working tape of M by writing it to the memory DB. (It is assumed
that DB contains a padding string as a suffix so that it is long enough for the
emulation of the working tape. It is also assumed that M is designed to ignore this
padding part of DB.)

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 23

can assume that this hash function family is polylogarithmic depth (and se-
cure against λlog λ-time adversaries) under the sub-exponential hardness of
the LWE assumption (cf. Footnote 9). For this hash function family, let
THDel = (THDel.Mem,THDel.Query1,THDel.Query2,THDel.Prove,THDel.Ver)
be any public-coin 2-round tree-hash oracle memory delegation scheme with
γ-soundness (e.g., the one given in Lemma 1).

Remark 6 (Simplified syntax of RDel.Setup). Without loss of generality, we can
think as if RDel.Setup only takes 1λ as input (rather than (1λ, T) as defined in
Definition 6). This is because the output length of RDel.Setup(1λ, T) is bounded
by polySetup(λ) for any T ≤ 2λ for a fixed polynomial polySetup. (Recall that
the setup time is TSetup(λ, T) = poly(λ, log T).) Indeed, in this case, we can as-
sume without loss of generality that RDel.Setup outputs a triple of sufficiently
long random strings (p̄k, v̄k, d̄k) (whose length is longer than polySetup(λ)), and
RDel.Mem, RDel.Prove, and RDel.Ver use prefixes of p̄k, v̄k, and d̄k as the ac-
tual keys.23 Thus, in the following, we use this simplified syntax of RDel.Setup.
Also, since RDel.Mem, RDel.Prove, and RDel.Ver need to know T to determine
the lengths of the actual keys, we write them as RDel.MemT , RDel.ProveT , and
RDel.VerT to make it explicit what value of T they depend on. ♢

Our oracle memory delegation scheme ODel = (Mem,Query1,Prove,Query2,
Ver) is given in Algorithm 2. (A high-level idea is explained in Section 2.) Since
THDel and RDel are public coin, ODel is also public coin. Completeness holds
due to the furthermore part of Theorem 1 (in particular, the part about the
digest algorithm RDel.Mem).24 The efficiency condition of ODel follows from the
efficiency conditions of THDel and RDel. In the following, we focus on soundness.

Assume for contradiction that soundness does not hold, i.e., there exist a pair
of probabilistic γO(1)-time adversaries (A1,A2), a sequence of polynomial-size
advice {zλ}λ∈N, and a polynomial p such that for infinitely many λ ∈ N, there
exists t ≤ γO(1)(λ) such that

Pr


y0 ̸= y1

∧ VerD̂B|I0 (LDB, ⟨M, t, y0⟩,
q, σ, π0) = 1

∧ VerD̂B|I1 (LDB, ⟨M, t, y1⟩,
q, σ, π1) = 1

∣∣∣∣∣∣∣∣∣∣
(D̂B, LDB,M, y0, y1, st)← A1(1

λ, zλ)

(q, σ)← Query1(1
λ)

(π0, π1)← A2(q, σ, st)
I0 := Query2(LDB, σ, π0)
I1 := Query2(LDB, σ, π1)

 ≥ 1

p(γ(λ))
.

(1)

We use (A1,A2) to obtain a γO(1)-time adversary B that breaks the sound-
ness of RDel. A high-level strategy is as follows. As defined in Definition 6,
breaking the soundness of RDel requires generating an input x, source and des-
tination memory-state pairs (ms,ms′), source and destination digests (dig, dig′),
23 Recall that RDel.Setup is public coin.
24 Formally, completeness holds under a slightly modified definition where for each
⟨M, t, y⟩ ∈ {0, 1}poly(λ), we only consider a memory DB that contains a padding
string as a suffix so that it is of length T := polyR(t) (cf. Footnote 22).

24 Susumu Kiyoshima

Algorithm 2 Public-coin oracle memory delegation scheme ODel.
– D̂B := Mem(1λ,DB):

1. Output D̂B := THDel.Mem(1λ,DB).
– (q, σ)← Query1(1

λ):
1. Run (qTHDel, σTHDel)← THDel.Query1(1

λ) and (pk, vk, dk)← RDel.Setup(1λ).
2. Output q := (qTHDel, pk, vk, dk) and σ := σTHDel.

– π := Prove(DB, ⟨M, t, y⟩, q):
1. Parse q as (qTHDel, pk, vk, dk), and let T := polyR(t).
2. Run RDB(M). If RDB(M) does not terminate in T steps, abort. Otherwise, let

DB′ denote the content of the memory at the termination of RDB(M).
3. Run πRDel := RDel.ProveT (pk,M,ms,ms′) for ms := (DB, ststart) and ms′ :=

(DB′, stend), where ststart and stend are the initial and the terminating states
of R.

4. Run πTHDel := THDel.Prove(DB, ⟨Mh, t|DB|, rt⟩, qTHDel), where Mh and t|DB| are
defined as in Definition 5 for the hash function h := dk, and rt is the tree-hash
that is obtained by rt := TreeHashdk(DB).

5. Let (y′, t′) be the prefix of DB′ that R wrote before the termination, rt′ be the
tree-hash that is obtained by rt′ := TreeHashdk(DB

′), and πTreeHash be the local
opening for (y′, t′) w.r.t. rt′.

6. Output π := (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash).
– I := Query2(|DB|, σ, π):

1. Parse π as (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash).
2. Output I := THDel.Query2(|DB|, σ, πTHDel).

– b := VerD̂B|I (|DB|, ⟨M, t, y⟩, q, σ, π):
1. Parse q as (qTHDel, pk, vk, dk) and π as (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash).

Also, obtain T as in Prove, and abort if |DB| ̸= T . Let dig := (ststart, rt, T)
and dig′ := (stend, rt

′, T).
2. Output 1 if all of the following hold.

(a) y = y′ and t′ ≤ t.
(b) RDel.VerT (vk,M, dig, dig′, πRDel) = 1.
(c) THDel.VerD̂B|I (|DB|, ⟨Mh, t|DB|, rt⟩, qTHDel, σ, πTHDel) = 1, where h := dk.
(d) πTreeHash is a valid local opening for (y′, t′) w.r.t. rt′.
If any of the above does not hold, output 0.

and a proof π such that (i) π is accepting w.r.t. (dig, dig′), (ii) ms′ is the correct
destination memory-state pair that can be obtained by running R starting from
input x and memory-state pair ms, (iii) dig is the correct digest of ms, but (iv)
dig′ is not the correct digest of ms′. Now, suppose the adversary pair (A1,A2)
generates two proofs of ODel that are accepting w.r.t. a single encoded memory
D̂B and two different outputs as shown in (1). Then, at least one of the proofs
must be accepting w.r.t. an incorrect output (i.e., an output that differs from
the correct output that is obtained based on D̂B). In that case, one of the proofs
must contain a proof of RDel that is accepting w.r.t. an incorrect destination
digest (i.e., a digest that differs from the correct destination digest that is ob-

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 25

Algorithm 3 Adversary B against the soundness of RDel.
On input (pk, vk, dk), do the following. Let T := polyR(t).

1. Run (D̂B, LDB,M, y0, y1, st)← A1(1
λ, zλ).

2. Run (qTHDel, σTHDel)← THDel.Query1(1
λ).

3. Run (π0, π1)← A2(q, σ, st), where q := (qTHDel, pk, vk, dk) and σ := σTHDel.
4. For each b ∈ {0, 1}, parse πb as (rtb, rt

′
b, (y

′
b, t

′
b), πRDel,b, πTHDel,b, πTreeHash,b), and let

digb := (ststart, rtb, T) and dig′b := (stend, rt
′
b, T).

5. Find b∗ ∈ {0, 1} that satisfies all of the following.
(a) RDel.VerT (vk,M, digb∗ , dig

′
b∗ , πRDel,b∗) = 1.

(b) RDel.MemT (dk,ms) = digb∗ , where ms := (D̃B, ststart) for D̃B ←
DecodeTHDel(D̂B, LDB).

(c) RDel.MemT (dk,ms′) ̸= dig′b∗ , where ms′ is the memory-state pair of R after T
steps starting from input M and memory-state pair ms.

If such b∗ exists, output (M,ms,ms′, digb∗ , dig
′
b∗ , πRDel,b∗). Otherwise, abort.

tained based on D̂B). We consider an adversary that internally runs (A1,A2)
and outputs such a proof.

Formally, we obtain the adversary B as follows. Let DecodeTHDel be the algo-
rithm that is guaranteed to exist by the soundness of THDel (cf. Definition 5).
Then, for any λ ∈ N and t ≤ γO(1)(λ), the adversary B is described in Algo-
rithm 3. Note that B runs in time γO(1)(λ).

Let us see that B indeed breaks the soundness of RDel. Fix any λ ∈ N and
t ≤ γO(1)(λ) for which we have (1). Let T := polyR(t). We start by giving
a sequence of claims about various values that B computes. The first claim
says that in B, the internally emulated (A1,A2) succeed with non-negligible
probability as shown in (1).

Claim 1. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ),

Pr


y′
0 ̸= y′

1

∧ LDB = T
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digb, dig

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : THDel.VerD̂B|Ib (LDB, ⟨Mdk, tLDB , rtb⟩,
qTHDel, σ, πTHDel,b) = 1

∧ ∀b ∈ {0, 1} : πTreeHash,b is a valid opening for (y′
b, t

′
b), rt

′
b

 ≥
1

p(γ(λ))
,

where Ib := THDel.Query2(LDB, σ, πTHDel,b).

Proof. This claim follows from (1) (it suffices to rewrite (1) by inlining Query1,
Query2, and Ver). We note that when π0 and π1 are accepted and y0 ̸= y1, we
have y′0 ̸= y′1 and LDB = T since Ver checks yb

?
= y′b and LDB

?
= T . ⊓⊔

The second claim says that in B, if the internally emulated (A1,A2) output an
accepting proof πTHDel,b of THDel, the corresponding tree-hash rtb is correctly
computed.

26 Susumu Kiyoshima

Claim 2. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ), for
each b ∈ {0, 1},

Pr

[
rt ̸= TreeHashdk(D̃B)

∧ THDel.VerD̂B|Ib (LDB, ⟨Mdk, tLDB , rtb⟩, qTHDel, σ, πTHDel,b) = 1

]
≤ negl(γ(λ)),

where Ib := THDel.Query2(LDB, σ, πTHDel,b).

Proof. This claim follows immediately from the γ-soundness of THDel. ⊓⊔

The third claim says that in B, if the internally emulated (A1,A2) output two
distinct outputs y′0, y

′
1 and the corresponding openings πTreeHash,0, πTreeHash,1 are

valid, the corresponding destination digests dig′0, dig
′
1 must be distinct.

Claim 3. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ),

Pr

[
dig′0 = dig′1
∧ y′

0 ̸= y′
1

∧ ∀b ∈ {0, 1} : πTreeHash,b is a valid opening for (y′
b, t

′
b), rt

′
b

]
≤ negl(γ(λ)).

Proof. Since dig′0 = dig′1 implies rt′0 = rt′1 (recall dig′b := (stend, rt
′
b, T)), this claim

follows immediately from the binding property of tree-hashing. ⊓⊔

Now, we analyze B. Combined with Claim 2 and Claim 3, Claim 1 implies the
following when executing B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ).

Pr

dig′0 ̸= dig′1
∧ LDB = T
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digb, dig

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : rt = TreeHashdk(D̃B)

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Note that LDB = T ∧ rt = TreeHashdk(D̃B) implies RDel.MemT (dk,ms) =

digb since RDel.MemT (dk,ms) = (ststart, rt, |D̃B|) = (ststart, rt, LDB) =
(ststart, rt, T) = digb (the first equality holds due to the furthermore part
of Theorem 1 and the second equality holds since D̃B is obtained by
DecodeTHDel(D̂B, LDB), which outputs an LDB-bit string as stated in Defini-
tion 5). Thus, we obtain

Pr

[
dig′0 ̸= dig′1
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digb, dig

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : RDel.MemT (dk,ms) = digb

]
≥ 1

p(γ(λ))
− negl(γ(λ)) .

Then, since dig′0 ̸= dig′1 implies ∃b∗ ∈ {0, 1} s.t. RDel.MemT (dk,ms′) ̸= dig′b∗ , we
obtain

Pr

∃b
∗ ∈ {0, 1} :

RDel.MemT (dk,ms′) ̸= dig′b∗
∧ RDel.VerT (vk,M, digb∗ , dig

′
b∗ , πRDel,b∗) = 1

∧ RDel.MemT (dk,ms) = digb∗

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 27

Thus, B does not abort with probability at least 1/p(γ(λ)) − negl(γ(λ)).
Then, since the definition of ms′ guarantees (λ,M,ms,ms′, T) ∈ UR in
B when it does not abort, we have the following about the output
(M,ms,ms′, digb∗ , dig

′
b∗ , πRDel,b∗) of B.

Pr

RDel.VerT (vk,M, digb∗ , dig
′
b∗ , πRDel,b∗) = 1

∧ (λ,M,ms,ms′, T) ∈ UR

∧ RDel.MemT (dk,ms) = digb∗
∧ RDel.MemT (dk,ms′) ̸= dig′b∗

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Thus, B breaks the γ-soundness of RDel. This completes the proof of Lemma 6.

6 Public-Coin Weak Memory Delegation

In this section, we construct a public-coin memory delegation scheme.
Lemma 7. Assume the sub-exponential hardness of the LWE assumption, and
assume the existence of a keyless weakly (K, γ)-collision-resistant hash function
for K(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ) for a super-constant function τ(λ) =
ω(1). Then, there exists t̄(λ) = λω(1) such that there exists a two-round memory
delegation scheme with weak soundness for computation-time bound t̄.
We prove this lemma by following the same approach as Bitansky et al. [10]
(where a private-coin memory delegation scheme is obtained from a private-
coin oracle memory delegation scheme). Specifically, we obtain a public-coin
memory delegation scheme by augmenting our public-coin oracle memory dele-
gation scheme (Lemma 6) with a keyless multi-collision-resistant hash function.
Roughly speaking, we modify our oracle memory delegation scheme as follows:
(i) the verifier is no longer given oracle access to an encoded memory, and instead
given a digest that is obtained by hashing the encoded memory with a multi-
collision-resistant hash function with a local opening property (such a hash func-
tion can be obtained generically from any multi-collision-resistant hash function
[10]), and (ii) the prover provides local opening of the encoded memory w.r.t.
the locations that are necessary for the verification.25 After these modifications,
soundness can be shown as in Bitansky et al. [10] by relying on the multi-collision
resistance of the hash function and the soundness of our oracle memory dele-
gation scheme. (Our proof is simpler since we consider the public-coin setting.)
For a formal proof, see the full version of this paper.

7 Public-coin 3-round Zero-Knowledge Argument

In this section, we construct a public-coin 3-round zero-knowledge argument.
Theorem 2. Assume the sub-exponential hardness of the LWE assumption, and
assume the existence of a keyless weakly (K, γ)-collision-resistant hash function
for K(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ) for a super-constant function τ(λ) =
ω(1). Then, there exists a public-coin 3-round zero-knowledge argument for NP.
25 These locations can be determined based on the proof and the verifier query.

28 Susumu Kiyoshima

Following prior works [6, 10], we prove Theorem 2 by using our weak memory
delegation scheme (Lemma 7) to reduce the round complexity of Barak’s public-
coin zero-knowledge argument [2]. The high-level strategy is quite simple. Very
roughly speaking, Barak’s public-coin zero-knowledge argument uses a 4-round
interactive argument to prove a statement about a digest of a long string, and
the verification of this interactive argument is required to run in polynomial
time even for a statement about a slightly super-polynomial computation. We
reduce the round complexity of Barak’s zero-knowledge argument by using our
public-coin weak memory delegation scheme instead of this 4-round interactive
argument. Soundness and zero-knowledge can be shown as in [6, 10], and our
proof is simpler since we consider the public-coin setting. For a formal proof, see
the full version of this paper.

References

1. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 459–487. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96881-0_16

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS. pp.
106–115. IEEE Computer Society Press (Oct 2001). https://doi.org/10.1109/
SFCS.2001.959885

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd FOCS. pp. 116–125. IEEE Computer
Society Press (Oct 2001). https://doi.org/10.1109/SFCS.2001.959886

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (Aug 2004). https://doi.org/10.1007/
978-3-540-28628-8_17

5. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision re-
sistant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 133–161. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_5

6. Bitansky, N., Brakerski, Z., Kalai, Y.T., Paneth, O., Vaikuntanathan, V.: 3-
message zero knowledge against human ignorance. In: Hirt, M., Smith, A.D. (eds.)
TCC 2016-B, Part I. LNCS, vol. 9985, pp. 57–83. Springer, Heidelberg (Oct / Nov
2016). https://doi.org/10.1007/978-3-662-53641-4_3

7. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. Journal of Cryptology 30(4), 989–1066
(Oct 2017). https://doi.org/10.1007/s00145-016-9241-9

8. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 505–514. ACM
Press (May / Jun 2014). https://doi.org/10.1145/2591796.2591859

9. Bitansky, N., Eizenstadt, N., Paneth, O.: Weakly extractable one-way func-
tions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol.
12550, pp. 596–626. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/
978-3-030-64375-1_21

https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959886
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1007/978-3-662-53641-4_3
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1145/2591796.2591859
https://doi.org/10.1007/978-3-030-64375-1_21
https://doi.org/10.1007/978-3-030-64375-1_21

Public-Coin 3-Round ZK from LWE and Keyless MCR Hash 29

10. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th
ACM STOC. pp. 671–684. ACM Press (Jun 2018). https://doi.org/10.1145/
3188745.3188870

11. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-
box barrier. In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1091–1102.
ACM Press (Jun 2019). https://doi.org/10.1145/3313276.3316382

12. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 209–234. Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/
978-3-030-03807-6_8

13. Bitansky, N., Paneth, O.: On round optimal statistical zero knowledge arguments.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 128–156. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-26954-8_5

14. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. vol. 2, pp. 1444–1451 (1986)

15. Bronfman, L., Rothblum, R.D.: PCPs and Instance Compression from a Crypto-
graphic Lens. In: Braverman, M. (ed.) ITCS 2022. vol. 215, pp. 30:1–30:19. LIPIcs
(Jan 2022). https://doi.org/10.4230/LIPIcs.ITCS.2022.30

16. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(Jul 2008). https://doi.org/10.1007/978-3-540-70583-3_37

17. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 62nd FOCS.
pp. 68–79. IEEE Computer Society Press (Feb 2022). https://doi.org/10.1109/
FOCS52979.2021.00016

18. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. Cryptology ePrint
Archive, Report 2021/808, Version 20211108:181325 (2021), https://eprint.
iacr.org/2021/808. An extended version of [17]

19. Chung, K.M., Kalai, Y.T., Liu, F.H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (Aug
2011). https://doi.org/10.1007/978-3-642-22792-9_9

20. Deng, Y.: Individual simulations. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part III. LNCS, vol. 12493, pp. 805–836. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64840-4_27

21. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (Aug
2011). https://doi.org/10.1007/978-3-642-22792-9_17

22. Goldreich, O.: On the doubly-efficient interactive proof systems of GKR. Electronic
Colloquium on Computational Complexity (2017), https://eccc.weizmann.ac.
il/report/2017/101

23. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM Journal on Computing 25(1), 169–192 (1996)

24. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(3), 691–729 (1991)

25. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7(1), 1–32 (Dec 1994). https://doi.org/10.1007/
BF00195207

https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1145/3313276.3316382
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-030-26954-8_5
https://doi.org/10.1007/978-3-030-26954-8_5
https://doi.org/10.4230/LIPIcs.ITCS.2022.30
https://doi.org/10.1007/978-3-540-70583-3_37
https://doi.org/10.1109/FOCS52979.2021.00016
https://doi.org/10.1109/FOCS52979.2021.00016
https://eprint.iacr.org/2021/808
https://eprint.iacr.org/2021/808
https://doi.org/10.1007/978-3-642-22792-9_9
https://doi.org/10.1007/978-3-030-64840-4_27
https://doi.org/10.1007/978-3-642-22792-9_17
https://eccc.weizmann.ac.il/report/2017/101
https://eccc.weizmann.ac.il/report/2017/101
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207

30 Susumu Kiyoshima

26. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. Journal of the ACM 62(4), 27:1–27:64 (2015)

27. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 408–423. Springer, Heidel-
berg (Aug 1998). https://doi.org/10.1007/BFb0055744

28. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-Shamir via list-recoverable
codes (or: Parallel repetition of GMW is not zero-knowledge). Cryptology ePrint
Archive, Report 2021/286, Version: 20210307:022349 (2021), https://eprint.
iacr.org/2021/286. An extended version of [29]

29. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat–Shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge). In: Khuller, S.,
Williams, V.V. (eds.) 53rd ACM STOC. p. 750–760. ACM Press (Jun 2021).
https://doi.org/10.1145/3406325.3451116

30. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent sim-
ulation in two rounds and its applications. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Heidelberg (Aug
2017). https://doi.org/10.1007/978-3-319-63715-0_6

31. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. Cryptology ePrint
Archive, Report 2020/980, Version 20200819:035531 (2020), https://eprint.
iacr.org/2020/980. An extended version of [32]

32. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: Khuller, S.,
Williams, V.V. (eds.) 53rd ACM STOC. p. 708–721. ACM Press (Jun 2021).
https://doi.org/10.1145/3406325.3451055

33. Kalai, Y., Paneth, O., Yang, L.: On publicly verifiable delegation from stan-
dard assumptions. Cryptology ePrint Archive, Report 2018/776 (2018), https:
//eprint.iacr.org/2018/776

34. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1115–1124. ACM Press (Jun
2019). https://doi.org/10.1145/3313276.3316411

35. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 485–494. ACM
Press (May / Jun 2014). https://doi.org/10.1145/2591796.2591809

36. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds.
In: Umans, C. (ed.) 58th FOCS. pp. 564–575. IEEE Computer Society Press (Oct
2017). https://doi.org/10.1109/FOCS.2017.58

37. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
Dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 162–194. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_6

38. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9_10

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6) (2009)

https://doi.org/10.1007/BFb0055744
https://eprint.iacr.org/2021/286
https://eprint.iacr.org/2021/286
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1007/978-3-319-63715-0_6
https://eprint.iacr.org/2020/980
https://eprint.iacr.org/2020/980
https://doi.org/10.1145/3406325.3451055
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/2591796.2591809
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/3-540-39200-9_10

	Public-Coin 3-Round Zero-Knowledgefrom Learning with Errors and Keyless Multi-Collision-Resistant Hash

