
More Efficient Dishonest Majority Secure
Computation over Z2k via Galois Rings

Daniel Escudero1, Chaoping Xing2 and Chen Yuan2

1 J.P. Morgan AI Research, New York, USA.
2 School of Electronic Information and Electrical Engineering,

Shanghai Jiao Tong University, Shanghai, China

Abstract. In this work we present a novel actively secure multiparty
computation protocol in the dishonest majority setting, where the com-
putation domain is a ring of the type Z2k . Instead of considering an
“extension ring” of the form Z2k+κ as in SPDZ2k (Cramer et al, CRYPTO
2018) and its derivatives, we make use of an actual ring extension, or
more precisely, a Galois ring extension Zpk [X]/(h(X)) of large enough
degree, in order to ensure that the adversary cannot cheat except with
negligible probability. These techniques have been used already in the
context of honest majority MPC over Zpk , and to the best of our knowl-
edge, our work constitutes the first study of the benefits of these tools in
the dishonest majority setting.
Making use of Galois ring extensions requires great care in order to avoid
paying an extra overhead due to the use of larger rings. To address this,
reverse multiplication-friendly embeddings (RMFEs) have been used in
the honest majority setting (e.g. Cascudo et al, CRYPTO 2018), and
more recently in the dishonest majority setting for computation over
Z2 (Cascudo and Gundersen, TCC 2020). We make use of the recent
RMFEs over Zpk from (Cramer et al, CRYPTO 2021), together with
adaptations of some RMFE optimizations introduced in (Abspoel et
al, ASIACRYPT 2021) in the honest majority setting, to achieve an
efficient protocol that only requires in its online phase 12.4k(n−1) bits of
amortized communication complexity and one round of communication for
each multiplication gate. We also instantiate the necessary offline phase
using Oblivious Linear Evaluation (OLE) by generalizing the approach
based on Oblivious Transfer (OT) proposed in MASCOT (Keller et al,
CCS 2016). To this end, and as an additional contribution of potential
independent interest, we present a novel technique using Multiplication-
Friendly Embeddings (MFEs) to achieve OLE over Galois ring extensions
using black-box access to an OLE protocol over the base ring Zpk without
paying a quadratic cost in terms of the extension degree. This generalizes
the approach in MASCOT based on Correlated OT Extension. Finally,
along the way we also identify a bug in a central proof in MASCOT, and
we implicitly present a fix in our generalized proof.

1 Introduction

Secure multiparty computation is a set of tools and techniques that enables a
group of parties, each having a private input, to jointly compute a given function



while only revealing its output. Since its introduction in the late 80s by Yao in
[29], several techniques for evaluating functionalities securely have been designed.
These typically depend on the exact security setting, namely on how many
parties are corrupted by an adversary, and whether they behave as an honest
party (semi-honest/passive security) or if they operate in an arbitrary manner
(active/malicious security).

One common aspect across all different constructions, however, is that they
model the desired computation as an arithmetic circuit where gates are comprised
of additions and multiplications over certain finite ring. Most attention has been
devoted to the case in which the given arithmetic circuit is defined over a finite
field, which is a natural choice due to its nice algebraic structure. However,
there are other finite rings that are suitable for a wide range of highly relevant
computations, which include, in particular, the ring Zpk of integers modulo pk.
For example, as shown in [16], computation over rings like Z2k with k = 64
or k = 128 may come with a series of performance benefits with respect to
computation over prime fields of approximately the same size. Also, computation
over arbitrary Zpk easily leads to efficient computation over arbitrary Zm via
the Chinese Remainder Theorem, leading to interesting results on the necessary
assumptions to achieve efficient and “direct” MPC protocols.

Several such protocols have been proposed in the literature [14,24,2,1]. In the
honest majority setting, where the adversary corrupts at most a minority of the
parties, Shamir secret-sharing is the most widely used building block to design
MPC protocols. Unfortunately, such construction cannot be instantiated over
Zpk , but recent works have successfully made use of the so-called Galois ring
extensions in order to enable Shamir secret-sharing over this ring which, together
with some care, leads to MPC over Zpk .

On the other hand, if the adversary is not assumed to corrupt a minority of
the parties—a setting which is also referred to as dishonest majority—a different
tool, in contrast to Shamir secret-sharing, is typically used. In this case, the
main building block is additive secret-sharing, another form of secret-sharing that
does not provide the redundancy features of Shamir secret-sharing, although it is
considerably much simpler. To deal with active adversaries, extra redundancy
comes in the form of message authentication codes, or MACs, which enable parties
to determine if certain reconstructed secret is correct, or if it was tampered with.

Most constructions of dishonest majority MPC [18,21,22] are designed to
support arithmetic circuits defined over fields, mostly because of the limitations
of their corresponding MACs, which are only secure as long as an adversary
cannot design a polynomial of “low” degree with many roots. This is indeed the
case if the given ring is a field, since a polynomial of degree d has at most d− 1
roots. However, when considering Zpk this does not longer hold, since there are
polynomials of degree 1 such as pk−1X that have a large amount of roots (pk−1

in this case).
To deal with this, a novel MAC that is compatible with arithmetic modulo

2k was proposed in [14]. This construction has inspired several other works for
MPC over Z2k in the dishonest majority setting [24,27,13], and even some in the
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honest majority setting [2,1]. However, these techniques comes at the expense
of increasing the ring size by an additive factor of κ, the statistical security
parameter. Although follow-up works that introduce somewhat homomorphic
encryption (SHE) improves the performance of the prepocessing phase [24,27,13],
their online phases still follow the original protocol in [14]. The instantiation of
the online phase incurs in a communication complexity of 4(k + κ)(n − 1) for
each multiplication gate as the parties have to open two values in Z2k+κ .

From the discussion above, we see that it remains open to explore the benefits
of using Galois ring extensions to achieve secure computation over Zpk in the
dishonest majority setting.

1.1 Our Contribution

Computation over Zpk . In this work, we design a highly efficient MPC protocol
over Zpk , for any prime p and integer k ≥ 1,3 that has a amortized communication
complexity of 19.68k(n− 1) for each multiplication gate in the online phase. Such
communication complexity can be further reduced to 12.4k(n− 1) if the security
parameter is κ = 64. Furthermore, the offline phase of our protocol requires an
amortized communication complexity of 5142.5kn(n− 1) to prepare the shares
for each multiplication gate in the online phase. We also note that we allow for a
small k (possibly even k = 1), while the offline phase presented in SPDZ2k [14],
which makes use of Oblivious Transfer (OT) as in [21], requires k to be as large
as the security parameter.

Computation over Z2. For the case p = 2 and k = 1, that is, when computation is
over Z2, the best known protocol of [9] requires 10.2ℓ(n−1) bits of communication
in implementing ℓ instances of multiplication simultaneously on the online phase
while our protocol requires 12.4ℓ(n− 1) bits of communication. However, their
protocol needs 2 rounds of communication for each multiplication layer while
our protocol only needs one round of communication. Furthermore, as the ratio
of the best known RMFEs constructions improve, our construction can become
more efficient. However, it is possible to bring down this cost to 8.2ℓ(n− 1) with
a more tricky technique. We will briefly review such improvement in the Remark
1. Since the binary field is not the main focus of our protocol, we do not include
this technique to optimize our online protocol.

Novel techniques for OLE over Galois ring extensions. As an additional con-
tribution of potential independent interest, as part of the preprocessing phase
of our protocol we present a novel method to enable Oblivious Linear Evalua-
tion (OLE) over a Galois ring extension R = Zpk/(f(x)) of degree d based on
any OLE protocol over Zpk , while only paying a factor of O(d). This makes
novel use of Multiplication Friendly Embeddings (MFEs) [25], which converts an
asymptotically good multiplicative secret sharing over extension field F2d into
3 Even though our title includes Z2k , our results are presented for the more general
Zpk .
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an asymptotically good multiplicative secret sharing scheme over binary field F2.
This must be compared to the naive approach to achieve OLE over a Galois ring
extension which would consist of representing each factor in terms of a Zpk -basis,
and then calling the underlying OLE over Zpk a total of O(d2) times to handle
all the resulting cross products. We elaborate on this in Section 1.2.

Fixing bug in [21] (and [9]). Our protocol shares certain similarities with the ones
from [21] (which is for binary extension fields) and [9] (which is for computation
over Z2). In particular, the way we authenticate elements in the preprocessing
phase, which requires OLE and makes use of MFEs as mentioned above, shares
certain resemblance with the corresponding authentication methods in [21,9]
which make use of OT, or more specifically, Correlated OT Extension (COT), in
order to avoid a quadratic blow-up in terms of the extension degree.

Due to the rough similarity between our preprocessing and the one from [21,9],
we are able to produce a proof of authentication along the lines of the one in [21].
However, in the process of doing so, we identified a bug in the proof from [21]
(which affects [9] as well), which invalidates the last part of their argument where
it is shown that the values extracted by the simulator are unique. We discuss
this bug, together with its fix, in the full version of this work.

1.2 Overview of our Techniques

We present an overview of the main ideas behind the protocol introduced in this
work, focusing on the high level ideas.

To get an idea of how our protocol works, consider the SPDZ-family of
protocols over a field Fp, which operates by additively secret-sharing each inter-
mediate value x ∈ Fp as JxK, together with shares of a global random key JαK,
and shares of the Message Authentication Code (MAC) Jα · xK. Addition gates
are handled locally, and multiplication gates make use of multiplication triples,
which ultimately require opening some values. These openings are done without
checking correctness, which is postponed to the final stage of the protocol where
an aggregated check is performed.

The probability of the adversary cheating in the above protocol is 1/p so, if
p is too small, we have to consider an extension field Fpd so as to ensure that
the adversary can not succeed with non-negligible probability. When it comes
to the ring Zpk , the failure probability of the adversary is still comparable to
p−1 instead of p−k. This is because there is only a (1− 1

p )-fraction of invertible
elements in Zpk . To decrease the failure probability, we consider the Galois ring
R = Zpk/(f(x)), which is a degree-d extension of the ring Zpk , where f(x) is a
degree-d irreducible polynomial over Zpk . This means that, if we run the SPDZ
protocol over the Galois ring R by treating the input of each parties in Zpk

as an element in R, we can obtain a SPDZ protocol with security parameter
p−d. However, the communication complexity of this protocol is d times bigger
than the original one. To mitigate the blow-up of communication complexity, we
resort to RMFEs, which can implement multiple instances of computation by
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embedding multiple inputs in Zpk into a single element in R, while keeping the
security parameter of each instance to be d.

This technique which was defined over field was introduced in [8] to amortize
the communication complexity in the honest majority setting, where a minimum
size on the underlying field is needed in order to enable Shamir secret-sharing.
Block et al. [6] independently proposed this technique to study two-party protocol
over small fields. Then, this was used in [9] to amortize the communication
complexity in the dishonest majority setting. This technique was restricted to
the finite field F2 due to the fact that RMFEs were only known to exist over
fields until very recently, when it was provided in [15] a construction of RMFEs
over an arbitrary ring Zpk , which enables us to amortize the communication
complexity over this ring. The previous works that employ this technique require
an extra round for multiplication gate so as to re-encode the secret. We save this
extra round protocol by introducing a quintuple for the multiplication gate. This
technique was first presented in [3] for the honest majority setting. As the ring
is a generalization of field, our protocol can also be carried out over the field.
This allows us to compare our protocol with those over fields Fp with small p.
We defer the comparison to Section 1.3.

As we have mentioned before, we also introduce, as a potential contribution
of independent interest, a method to obtain OLE protocols over the Galois ring
extension R of degree d, having only black-box access to an OLE functionality
over the base ring Zpk , with a communication complexity that is linear in d. This
is achieved by making novel use of MFEs, which enable us to represent a product
over R as roughly d-many products over Zpk . This way, and by exploiting the
Zpk -linearity of the MFEs, we can obtain the desired OLE over R by evaluating
these many smaller OLEs over the base ring Zpk . We note that this generalizes
the approach introduced in [21], which uses COT in the setting of p = 2 and
k = 1 in order to avoid a quadratic penalty in terms of the extension degree
d.4 Besides, our Galois ring is of size kd which is much bigger than other SPDZ
protocols. Their protocol requires either k = 1 or d = 1 which is suitable for the
use of COT. However, we may face the situation that both k, d are comparable
to the security parameter κ. The direct use of COT will cause the quadratic
penalty in κ. This MFE technique can break the Galois Ring into a direct sum of
small integer ring Zpk and allow us to do the oblivious product evaluation over
each Zpk separately. This will save us at least the penalty of quadratic d even
with the COT-based approach.

We also introduce the quintuples instead of Beaver triple to save one round
of communication for each multiplication gate. Note that the previous works
applying RMFE such as [9], [8] have to "re-encode" the secret. Basically speaking,
all inputs xi ∈ Zm

pk are encoded as ϕ(xi) via the RMFE map. When two inputs
ϕ(x), ϕ(y) enter the multiplication gate, the output should have the form ϕ(x⋆y)

4 Interestingly, our techniques do not constitute a strict generalization of the ones in
[21], since they are of a different nature. We leave it as future work to analyze the
potential benefits of our MFE-based techniques when p = 2 and k = 1 with respect
to their COT-based approach.
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where ⋆ is the component-wise product. If we use the Beaver triple to securely
compute the multiplication gate, we have to re-encode the secret to meet the
desired form. In this work, we resort to the quintuple to save one round of
communication which was first presented in [1]. One can find the details in the
Theorem 3 and online protocol.

From amortized execution to single-circuit. Making use of Galois rings and
RMFEs imposes the restriction that the computation must occur in batches, that
is, multiplications and additions occurs on vectors rather than individual values.
This is perfect for secure computation over SIMD circuits, which carry out the
exact same computation to several inputs simultaneously, but in general there is
a wide range of practical circuits that do not exhibit this structure. The general
case can be easily addressed in the exact same way as in [9] by preprocessing
certain permutation tuples, that serve as a way to re-route data throughout the
circuit evaluation. We do not include this in our work, and refer the reader to [9,
Section 4] for an explanation of how this works, which adapts seamlessly to our
case with little effort.

1.3 Related Work

Dishonest majority MPC over Zp. The most standard case in the literature
is when k = 1 and p is a large prime. In this case Zp is a field, and there are
multiple protocols designed to work in this setting, with the most notable being
BeDOZa [5], SPDZ [18,17], MASCOT [21], Overdrive [22] and the more recent
TopGear [4]. For the case in which p is a large prime, our protocol does not need
to make use of any Galois ring extension, and in fact, our online phase becomes
exactly the one from [17] (which is the same as in [21,22,4]).

In terms of the preprocessing all of the protocols above, except for MASCOT,
are based on Somewhat Homomorphic Encryption (SHE), which was shown in
[22] to perform better than OT-based approaches like MASCOT. We leave it as
an interesting open problem to explore the benefits of basing the offline phase of
our protocol in SHE, instead of OLE as done in our work.

Finally, MASCOT makes use of OT to instantiate the necessary preprocesing
over Zp by interpreting elements in this field as integers and representing them
in base 2. Instead, in our case, our preprocessing would be based directly on an
OLE primitive over Zp, and the concrete efficiency would depend on the concrete
instantiation for the OLE.

Dishonest majority MPC over Z2k . In terms of computation over Zpk for
a small p and k > 1, existing works focus on p = 2 and relatively large k.5
The first such protocols was SPDZ2k , which introduced a novel technique of
performing MAC checks over a larger ring Z2k+κ to achieve authentication over
5 However, we remark that we are not aware of any limitation that would enable these

works to be ported to the setting of Zpk for a more general prime p, and, furthermore,
some of them already mention explicitly their ability to be generalized.
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Z2k with error probability 2−κ For each multiplication gate, SPDZ2k requires
4(k + κ)(n− 1) bits of communication since the shares are defined over Z2k+κ .6
Subsequent works that build on top of the same idea, most notably [10,24], suffer
from the same overhead. In contrast, our online phase requires 4km(n− 1) bits of
communication for simultaneously computing ℓ instances for each multiplication
gate. The amortized communication complexity is 4km

ℓ (n− 1) = 19.68k(n− 1).
This complexity does not grow with the security parameter m. This means if
the security parameter in [14] is 4 times bigger than k, our online protocol is
more efficient. One can cut this communication complexity to 12.4k(n− 1) if the
security parameter is 64.

In terms of the offline phase, SPDZ2k extends the OT-based approach proposed
in MASCOT [21] to the Z2k+κ setting. However, due to the lack of invertibility
in this ring, the protocol in [14] ends up adding quite some noticeable overhead
so as to generate the Beaver triple. In their protocol, they claim that the parties
communicate 2(k+2κ)(9κ+4k)n(n− 1) bits to securely generate a Beaver triple
for multiplication gate. In our protocol, the amortized complexity of generating
the quintuple for a multiplication gate is 5142.5kn(n− 1) for κ = 64. In Section
6, we show that our prepocessing phase is more efficient than theirs if k ≤ 29 for
κ = 64 and k ≤ 114 for κ = 128. Moreover, our communication complexity does
not grow with the security parameter as we can amortize it away by computing
more instances simultaneously. This implies that our protocol should be more
competitive for high security parameter range.

Finally, the approaches in [10,24,27] make use of homomorphic encryption
(either Additively or Somewhat HE) in order to create the necessary correlations
among the parties for SPDZ2k ’s online phase. It is not clear how these techniques
can be used in our current context where the correlations are over Galois rings,
and as we have mentioned we leave it as an interesting future work to explore
these potential relations.

To end, we remark that none of the protocols we have cited so far require
multiple executions of the same circuit, unlike our case. As we have mentioned
in Section 1.2, this can be easily overcome, as shown in [9], but nevertheless this
adds a little overhead and an extra layer of complication.

Dishonest majority MPC over Z2. Finally, we consider the relevant case of
p = 2 and k = 1, which corresponds to the case of computation over Z2 = {0, 1}.
In this case, relevant protocols include [20,23,19,9]. These works share, at a high
level, the general idea of making use of an extension field of Z2 of large enough
degree as to guarantee small cheating probability, which is a pattern that our
work also employs. However, our work is more closely related to that of [9], which
on top of using field extensions to lower failure probability, also makes use of
RMFEs to reduce the overhead cause by such extensions. By doing this, as shown
6 An optimization in [14] seems to reduce this to 4k(n− 1) since the online phase can

be modified so that only elements of Z2k are transmitted, while full elements over
Z2k+κ only appear in the final check phase. However, a bug in this approach leads to
this cost still being present in the offline phase (personal communication).
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in [9], their work constitutes the state-of-the-art in terms of communication
complexity in dishonest majority MPC over Z2.

Online phase. Our protocol is very competitive with respect to that of [9]. In
terms of the online phase, the communication complexity of our protocol, although
not better than that of [9], is only worse by a small multiplicative factor 0.2.
However, this is the only downside of our protocol with respect to that of [9].
Improvements of our protocol, which stem mostly from the different type of
encoding we make use of, include the following:

– Our protocol is considerably simpler as it has less necessary “pieces”. As a
concrete example, the reader can compare the FMPC functionality we make
use of in this work with respect to the corresponding functionality defined in
[9]: here we only need to store vectors over Z2 (over Zpk in general), while
the functionality in [9] needs to keep two dictionaries, one to store vectors
over Z2 and another to store elements over certain field extension of Z2. In
addition, among several other simplifications, our protocol does not make use
of the input encoding mechanisms needed in [9], nor it requires re-encoding
secret-shared values after each multiplication.

– Our online protocol, in spite of involving only the communication complexity
overhead of a small factor 1.2 with respect to that of [9], requires half the
amount of rounds than the protocol in [9]. This stems from the fact that, as
mentioned above, we do not require the extra round needed in [9] to re-encode
secret-shared values. Our input phase is also more efficient as we do not need
to check that secret-shared values lie in certain subspace.

Offline phase. Now, when comparing the offline phase of our protocol with respect
to that of [9], we have to set pk = 2. If we omits the cost of calls of OLE, our
protocol is more efficient. However, we admit that it is not a fair comparison. We
also want to emphasize that this OLE approach does save the communication
cost for large k. If we replace the OLE with COT used by previous works like
[9], the communication cost is quite close as we follow almost the same approach
to generate the triples. The deviation is that our shares and MAC shares are
defined over R while they divide them into two cases.

1.4 Organization of the Paper

This work is organized as follows. In Section 2 we present the necessary prelim-
inaries, and then in Section 3 we present the online phase of our protocol. In
Section 4 we present our protocol for authenticating secrets, which in particular
includes our novel approach to OLE over Galois ring extensions based on OLE
over Zpk using MFEs, and also the updated proof that shows that, in spite of the
adversary being able to introduce errors in this protocol, there will be a unique
set of extractable inputs the adversary is committed to. In Section 5 we present
the full-fledged offline phase of our protocol, which includes the generation of the
modified triples we use in our work. Finally, in Section 6 we analyze concretely
the communication complexity of our resulting protocol.
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2 Preliminaries

2.1 Basic Notation

We use bold letters (e.g. x, y) to denote vectors, and we use the star operator
(⋆) to denote component-wise product of vectors. Also, in some cases we use the
notation x[i] to denote the i-entry of the vector x. Finally, we use [N ] to denote
the set of integers {1, . . . , N}. We denote by n the number of parties, and the
set of parties is {P1, . . . , Pn}.

In this work we make use of the authenticated and homomorphic secret-
sharing construction from [17], where a value x ∈ R is secret-shared as ⟨x⟩ =
(JxK , Jx · αK , JαK), where α $← R is a global uniformly random key. More precisely,
this sharing contains three parts, JxK = (x(1), . . . , x(n)), Jx · αK = (m(1), . . . ,m(n))
and JαK = (α(1), . . . , α(n)), where party Pi holds the random share x(i) of the
secret x, the MAC share m(i) and the key share α(i). These satisfy

∑n
i=1m

(i) =
(
∑n

i=1 x
(i))(

∑n
i=1 α

(i)).

2.2 Algebraic Preliminaries

Galois rings. We denote by GR(pk, d) the Galois ring over Zpk of degree d,
which is a ring extension Zpk/(f(X)) of Zpk , where f(X) ∈ Zpk [X] is a monic
polynomial of degree d over Zpk whose reduction modulo p is irreducible over Zp.
For details on Galois rings we refer the reader to the text [28], and also to the
full version of this work.

Multiplication-friendly embeddings. We begin by considering the crucial no-
tions of Multiplication-Friendly Embeddings (MFEs) and Reverse Multiplication-
Friendly Embeddings (RMFEs), which act as an interface between Galois ring
extensions and vectors over Zpk , making the products defined in each of these
structures (component-wise products for the vectors) somewhat “compatible”.
The asymptotically good multiplicative secret sharing schemes over field were
already known in [11,12,25,26]. However, the similar results for asymptotically
good multiplicative secret sharing scheme over ring were not known until very
recently [15]. Basically speaking, they manage to show that the asymptotically
good multiplicative secret sharing scheme over ring Zpk can achieve the same
performance as the one over field Fp. There results provide a machinery for ex-
plicitly constructing multiplication friendly embedding and reverse multiplication
friendly embedding over ring. We start with MFEs below.

Definition 1. Let m, t ∈ N. A pair of Zpk-module homomorphisms ρ : Zt
pk →

GR(pk,m) and µ : GR(pk,m)→ Zt
pk is a multiplication-friendly embedding, or

MFE for short, if, for all x, y ∈ GR(pk,m) it holds that xy = ρ(µ(x) ⋆ µ(y)).

It is easy to see from the definition that ρ must be surjective and µ must be
injective. Indeed, given x ∈ GR(pk,m), we have that x = x · 1 = ρ(µ(x) ⋆ µ(1)),
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and if µ(x) = 0 then x = ρ(µ(x) ⋆ µ(1)) = ρ(0 ⋆ µ(1)) = ρ(0) = 0. In particular,
t ≥ m.7

For the convenience of comparison with other works, we only list the results
about p = 2 in the following theorem. If p > 2, the ratio will be smaller. This
also holds for RMFEs.

Theorem 1 ([15]). There exists an explicit MFE family (ρm, µm)m∈N with
t(m)/m→ 5.12 as m→∞.

Reverse multiplication-friendly embeddings. Now we define the notion of
an RMFE.

Definition 2. Let m, ℓ ∈ N. A pair of Zpk -module homomorphisms (ϕ, ψ) with
ϕ : Zℓ

pk → GR(pk,m) and ψ : GR(pk,m) → Zℓ
pk is a reverse multiplication-

friendly embedding, or RMFE for short, if, for every x,y ∈ Zℓ
pk , it holds that

x ⋆ y = ψ(ϕ(x) · ϕ(y)).

Note that, if (ϕ, ψ) is an RMFE, then necessarily ϕ is injective and ψ is
surjective, so in particular ℓ ≤ m. The following theorem shows the existence of
RMFEs over Z2k . The existence of RMFEs over Zpk can be found in [15].

Theorem 2 ([15]). There exists an explicit RMFE family (ϕm, ψm)m∈N with
m/ℓ(m) → 4.92 as m → ∞. For small value, we can optimize this ratio by
choosing (m, ℓ(m)) = (65, 21) or (m, ℓ(m)) = (135, 42).

Without loss of generality we can assume that ϕ(1) = 1. This implies that,
given x ∈ Zℓ

pk , a preimage of x under ψ is x = ϕ(x).

2.3 Security Model

We prove the security of our protocol under the Universal Composability (UC)
framework by Canetti [7]. We let n be the number of parties, among which
at most n − 1 can be actively corrupted. We let C,H ⊆ [n] denote the index
set of corrupted and honest parties, respectively. The adversary is static and
malicious, which means that the corruption may only happen before the start of
the protocols, and corrupted parties may behave arbitrarily. We say a protocol
Π securely implement a functionality F with statistical security parameter κ,8
if there is a simulator that interacts with the adversary (or more formally, the
environment) so that he can distinguish the ideal/simulated world and the real
worlds with probability at most O(2−κ).

7 In fact, one can reasonably easy prove that t ≥ 2m.
8 We consider only statistical security since, even though dishonest majority MPC is

known to be generally impossibly to achieve without computational assumptions, we
rely in this work on an OLE functionality, and do not provide any instantiation of it.
This allows us to design protocols in the statistical setting.
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The composability of the UC framework enables us to build our protocol in
a modular fashion by defining small protocols together with the functionalities
they are intended to implement, and proving the security of each of these pieces
separately. Finally, we asusme for simplicity and without loss of generality that
the outputs to be computed are intended to be learned by all parties, i.e. there
are no private outputs.

2.4 Communication Model

We assume private and authenticated channels between every pair of parties, as
well as a broadcast channel. In addition, we assume the existence of what we
call a simultaneous message channel, which allows the parties, each Pi holding
a value xi, to send these to all the other parties while guaranteeing that the
corrupt parties cannot modify their values based on the messages from other
parties. This is ultimately used to enable reconstruction of an additively shared
secret while disallowing a rushing adversary from modifying the secret at will,
restricting him to additive errors only. Such channel is implemented in practice
by following the standard “commit-and-open” approach in which the parties first
broadcast to each other a commitment of their messages, and then, only once
this is done, they open via broadcast the commitments to the values they wanted
to send in a first place.9

More formally, we model communication as an ideal functionality FChannels.
This is presented in detail in the full version of this work. Note that all of
our protocols make use of FChannels, but we do not write this explicitly in their
descriptions or in their associated theorems.

3 Online Phase

We set m =
⌈
κ logp(2)

⌉
so pm ≥ 2κ, where κ is the statistical security parameter,

and denote ϕ := ϕm : Zℓ(m)

pk → R and ψ := ψm : R→ Zℓ(m)

pk , the mappings whose
existence is guaranteed by Theorem 2. Now that m is fixed, we write ℓ instead
of ℓ(m). We also let R = GR(pk,m) and R = GF(pm) = {r : r ∈ R}. Finally, we
consider the Zpk -linear map τ : R→ R given by τ = ϕ ◦ ψ.

We begin by describing how the online phase of our protocol works. In
more detail, we describe a protocol ΠOnline that securely implements the MPC
functionality FMPC, that models general purpose secure computation over vectors
Zℓ
pk , in the FPrep-hybrid model, where, as we will see, FPrep is a functionality that

provides certain correlated randomness. Then, in following Sections we discuss
how to instantiate FPrep.

9 This is modeled in other works with a functionality (typically denoted by FComm), but
we decided to incorporate this as part of the communication channel for simplicity.
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3.1 Required Functionalities

First, we present some of the essential functionalities we will need in this section.
We follow a similar approach to that in [9]. We let FMPC be a functionality that
enables the parties to input secret vectors in Zℓ

pk , perform arbitrary SIMD affine
combinations and multiplications on these, and open results. This is ultimately
the functionality that we wish to instantiate. To achieve this, we consider a
restricted functionality FPrep that acts like FMPC, except it does not allow for
multiplications. Instead, it can store certain correlated vectors upon request
by the parties, which can be used to instantiate multiplications. Finally, we
define FAuth, which is a more restricted version of both FMPC and FPrep that
acts exactly as these two except that, with respect to FMPC, it does not allow
for multiplication, and with respect to FPrep it does not generate correlated
randomness.

We remark that these functionalities are essentially the same as the ones
presented in [9]. However, we note that in our case they can be fully defined over
one single ring (either Zℓ

pk or R), while in [9], due to the type of encoding they
use, both rings appear simultaneously in these functionalities.

Authentication functionality FAuth. This functionality is the basic building
block that allows parties to store secrets and perform affine combination on these.
Intuitively, it corresponds to Homomorphic Authenticated Secret-Sharing. We
remark that we will not make direct use of FAuth in this Section, but we include it
since it is instructive to define this functionality first and describe both FMPC and
FPrep in terms of FAuth later on. FAuthis defined as Functionality 1 below.

Functionality 1: FAuth

The functionality maintains a dictionary Val, which it uses to keep track of
authenticated elements of R. We use ⟨x⟩ to denote the situation in which the
functionality stores Val[id] = x for some identifier id.

– Input: On input (Input, (id1, id2, . . . idL), (x1, x2, . . . , xL), Pi) from Pi and
(Input, (id1, id2, . . . idL), Pi) from all other parties, set Val[idj ] = xj for
j = 1, 2, . . . , L.

– Affine combination: On input (AffComb, id, (id1, . . . , idL), (a1, . . . , aL), a)
from all parties, the functionality computes z = a +

∑L
j=1 aj · Val[idj ]

and stores Val[id] = z. We denote this by ⟨z⟩ ← a+
∑L

j=1 aj ⟨xj⟩, where
xj = Val[idj ].

– Partial openings: On input (Open, id) from all parties, if Val[id] ̸= ⊥,
send x = Val[id] to the adversary and wait for an x′ back. Then send x′ to
the honest parties.

– Check openings: On input (Check, (id1, id2, . . . , idL), (x1, x2, . . . , xL))
from every party wait for an input from the adversary. If he inputs OK,
and if Val[idj ] = xj for j = 1, 2, . . . , L, return OK to all parties. Otherwise
abort.

12



Preprocessing functionality FPrep. This functionality extends FAuth by letting

the parties obtain shares (⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩), where a, b $← R are
uniformly random and unknown to any party. It also allows the parties to obtain
⟨r⟩ where r $← ψ−1(0). FPrep is defined as Functionality 2 below.

Functionality 2: FPrep

This functionality behaves exactly like FAuth, but in addition it supports the
following commands:

– Correlated randomness: On input (CorrRand, id1, id2, id3, id4, id5)
from all parties, sample a, b ∈ R uniformly at random and store Val[id1] = a,
Val[id2] = b, Val[id3] = τ(a), Val[id4] = τ(b) and Val[id5] = τ(a) · τ(b).

– Input: On Input (InputPrep, Pi, id) from all parties, samples Val[id] $← R
and output it to Pi.

– Kernel element: On input (Ker, id) from all parties, sample r ∈ R
uniformly at random subject to ψ(r) = 0, and store Val[id] = r.

Parallel MPC functionality FMPC. Finally, we describe the functionality that
we aim at implementing in this section. It takes FAuth as a starting point, and
implement the following changes/additions:

– It replaces R by Zℓ
pk , so, instead of storing elements of R, it stores vectors

over Zpk of dimension ℓ.
– Affine combinations now take coefficients over Zpk .
– It implements a multiplication command that, on input (Mult, id, (id1, id2))

from all parties, computes z = Val[id1] ⋆ Val[id2] and stores Val[id] = z.

FMPC is defined in full detail in the full version of this work.

3.2 Instantiating FMPC in the FPrep-Hybrid Model

The protocol ΠOnline, described as Protocol 1 later in the section, instantiates
FMPC in the FPrep-hybrid model, with statistical security parameter κ. Intuitively,
the protocol consists of the parties storing vectors x ∈ Zℓ

pk by storing with FPrep an
element x ∈ R with ψ(x) = x. The corresponding commands in FPrep are used
to instantiate Input, AffComb, Open and Check, and the correlated randomness is
used to handle the Mult command.

We remark that the Input command can be instantiated more efficiently instead
of relying on the corresponding command from FPrep, by using the standard
approach of letting each party Pi broadcast its input masked with a random
value of which the parties have (preprocessed) shares. A crucial observation is
that we can allow this since any possible input in R is a valid input, while in
other works like [9], a special “subspace check” is needed to ensure that this input
lies in a special subset of valid inputs.
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Protocol 1: ΠOnline

– Input: The parties, upon receiving input (Input, id, Pi), and Pi receiving
input (Input, id,x, Pi), execute the following:
1. Call FPrepwith the command InputPrep. Pi takes the mask value (r, ⟨r⟩).
2. Pi broadcasts ϕ(x)− r and each party locally computes ϕ(x)− r+ ⟨r⟩.

As a result, the parties obtain ⟨x⟩, where x = ϕ(x) ∈ ψ−1(x).
– Affine combination: Upon receiving

(AffComb, id, (id1, . . . , idL), (a1, . . . , aL),a), the parties send
(AffComb, id, (id1, . . . , idL), (a1, . . . , aL), ϕ(a)) to FPrep.

– Multiplication: Upon receiving input (Mult, id, (id1, id2)), the parties
proceed as described below. Let ⟨x⟩ and ⟨y⟩ be the values stored by FPrep in
id1 and id2 respectively. Below, when not written explicitly, the identifiers
needed for the given commands are assumed to be fresh and unique, and
are only used ephemerally for the purpose of handling the multiplication
command.
1. Call FPrep with the command CorrRand to obtain

(⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩).
2. Call FPrep with the command AffComb to obtain ⟨d⟩ ← ⟨x⟩ − ⟨a⟩ and
⟨e⟩ ← ⟨y⟩ − ⟨b⟩.

3. Call FPrep with the command Open to obtain d← ⟨d⟩ and e← ⟨e⟩.
4. Call FPrep with the command AffComb to obtain ⟨z⟩ ← τ(d) ⟨τ(b)⟩ +

τ(e) ⟨τ(a)⟩+ ⟨τ(a)τ(b)⟩+ τ(d)τ(e), indicating FPrep to store this value
at the identifier id.

– Partial openings: Upon receiving input (Open, id), the parties execute
the following. Let ⟨x⟩ be the value stored by FPrep at id.
1. Call FPrepto with the command Ker to get ⟨r⟩ with r ∈ ψ−1(0).
2. Call FPrep with the command AffComb to get ⟨z⟩ ← ⟨x⟩+ ⟨r⟩, storing

this value at id (hence overloading ⟨x⟩ with ⟨z⟩).
3. Call FPrep with the command Open so that the honest parties in Zpk

learn z′, for a value z′ ∈ R provided by the adversary to FPrep. The
parties store internally the pair (id, z′).

4. The parties output z′ = ψ(z′).
– Check openings: Upon receiving input

(Check, (id1, id2, . . . , idL), (x1,x2, . . . ,xL)), the parties fetch the in-
ternally stored pairs (idj , x′j) for j = 1, . . . , L and call FPrep on input
(Check, (id1, id2, . . . , idL), (x′1, x′2, . . . , x′L)). If FPrep aborts, then the
parties abort.

Theorem 3. Protocol ΠOnline implements FMPC in the FPrep-hybrid model

Proof (Sketch). A full-fledged simulation-based proof is presented in the full
version of this work. Here we restrict ourselves to the core idea of the proof.
First, notice that for every input x ∈ Zℓ

pk , the value stored by FPrep is x :=

ϕ(x)−r+r = ϕ(x) ∈ R, which satisfies ψ(x) = x. We see then that, for the input
phase, the values stored by FPrep are a preimage under ψ of the corresponding
vectors that ΠOnline stores. We claim that this invariant is preserved through the
interaction with the AffComb and Mult commands.
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The case of AffComb is easy since ψ is Zpk -linear. To analyze Mult, con-
sider two stored values x,y ∈ Zℓ

pk in ΠOnline, and assume that the invariant
holds, so the underlying stored values x, y ∈ R in FPrep satisfy ψ(x) = x and
ψ(y) = y. After the command Mult is issued to ΠOnline, the parties get a tuple
(⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩), then open d = x − a and e = y − b, and
compute locally ⟨z⟩ ← τ(d) ⟨τ(b)⟩+ τ(e) ⟨τ(a)⟩+ ⟨τ(a)τ(b)⟩+ τ(d)τ(e). We can
verify that this is equal to z = τ(x)τ(y), which preserves the invariant since
ψ(z) = ψ(ϕ(ψ(x)) · ϕ(ψ(y))) = ψ(x) ⋆ ψ(y) = x ⋆ y, using the definition of τ
together with Def. 2. The above assumes that d and e are opened correctly,
but this can be assumed to be the case since, if this does not hold, this will be
detected in when the Check command is issued, and the adversary does not learn
sensitive information before then since the values a and b perfectly mask the
stored values x and y.

Finally, for the Open command, we see that, due to the invariant, the value
returned by FPrep is indeed a preimage under ψ of the value stored by ΠOnline.
However, one small technicality is that this preimage may contain “noise” from
previous operations, or more precisely, which preimage is this may depend on
previous data which is not intended to be revealed. This is fixed by adding a
random element r ∈ ψ−1(0) before opening, which preserves the invariant, but
guarantees that the preimage is uniformly random among all possible preimages.
In formal terms, in the actual proof, this enables the simulator to simulate this
value by simply sampling a uniformly random preimage of the output obtained
from the ideal functionality FMPC. Once again, we refer the reader to the full
version of this work for a more detailed and self-contained simulation-based
proof. ⊓⊔

Remark 1. One idea to bring these costs down at the expense of making the final
MAC check more costly. When the parties partially open d and e, they open
instead τ(d) and τ(e), by applying locally τ to each of their additive shares. The
image of τ has the size of |Sℓ|. Now, to check these openings, the parties take
linear combinations with coefficients over S, not over R, open the respective
elements over R, and check that they map to the correct elements after applying
τ . To get good soundness we need to repeat this several times, which makes the
final check more expensive. Depending on the size of the circuit, this tradeoff,
specifically, if the circuit is large enough, this approach will pay up.

4 Authentication

In this section we aim at instantiating FAuth. This makes use of the authenticated
secret-sharing scheme briefly introduced in Section 1.2. However, for enabling
the parties to create authenticated values, that is, for instantiating the Input
command in FAuth, we need to rely on certain functionalities that, ultimately,
are used to enable two-party secure multiplication. This building block will be
also used to produce the necessary preprocessing material in Section 5. We begin
by introducing the required functionalities below. However, first we introduce
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some notation. Recall that m =
⌈
κ logp(2)

⌉
and R = GR(pk,m). Let ρ := ρm :

Zt(m)

pk → R and µ := µm : R → Zt(m)

pk be the mappings from Theorem 1. We
write t instead of t(m).

4.1 Required Functionalities

Oblivious linear evaluation FOLE. The functionality FOLE is described in
detail below as Functionality 3. We remark that, even though OLE can be
regarded as a generalization of OT, the functionality we are defining here is not
a strict generalization of the functionality FROT in [21,9]. In their case, where
pk = 2, the authors can use a short OT to generate certain correlated keys, which
then can be extended via OT extension (with the help of a PRF) to an arbitrary
amount of OTs, which suits very well the COPE application. Such approach,
unfortunately, does not work for general pk, although it does so partially for
pk = 2k. As a matter of fact, we could have actually based our ΠCOPEe protocol
on a more elaborate version of OLE that is more aimed towards its use in COPE.

Functionality 3: FOLE

Upon receiving (OLE, a, PA, PB) from PA and (OLE, x, PA, PB) from PB where
x, a ∈ Zpk , the functionality samples b $← Zpk , sets y = ax+ b, and sends y to
PB and −b to PA.

Public coins FCoin. This functionality samples a uniformly random element in
R and sends this to the parties. The detailed functionality is presented in the
full version of this work.

4.2 Correlated Oblivious Product Evaluation

As in [9] and [21], the general idea to instantiate the Input command is to ask
each party Pi to first sample their share α(i) of the key α. Then, when Pj

wants to input a value x, each party Pi interacts with Pj so that they obtain
additive sharings u(i,j) and v(j,i) (held by Pi and Pj respectively) of α(i) · x,
i.e. u(i,j) + v(j,i) = α(i) · x. Once this is done, each party Pi for i ̸= j can
define m(i) = u(i,j), while Pj sets α(j)x +

∑
i ̸=j v

(j,i). This way, it holds that∑n
i=1m

(i) = α · x.10
We refer to the required two-party interaction above by correlated oblivious

product evaluation, or COPE for short. Our main idea consists of instantiating a
COPE between Pi and Pj by letting the parties run t OLE instances, where Pi

10 Notice that, since Pj knows x, the parties already hold trivial additive shares of x,
namely all parties set their share to 0, and Pj sets it to x. However, in the actual
protocol, Pj must also distribute actual random shares of x, since otherwise leakage
may occur, for example, when adding and reconstructing shared values inputted by
different parties.
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inputs µ(αi)[l] and Pj inputs µ(x)[l] for l ∈ [t] (recall that z[l] denotes the l-th
coordinate of the vector z). This way, Pi and Pj get shares u(i,j) and v(j,i) such
that u(i,j) + v(j,i) = µ(α(i)) ⋆ µ(x), and, by using Def. 1, they can locally apply
ρ to each share to obtain u(i,j) + v(j,i) = ρ(µ(α(i)) ⋆ µ(x)) = α(i) · x.

Consider the COPE instantiation sketched in previous paragraphs. We see
that Pj is free to provide as input any vector x(j,i) ∈ Zt

pk to the t OLE calls,
but the protocol actually requires this vector to be x(j,i) = µ(x), that is, it
must lie in the image of µ.11 Recall from Section 2.2 that µ is injective but
not surjective, so there is no way in which we can enforce this. Hence, in the
case of an actively corrupt Pj , the parties would not obtain additive shares of
α(i) · x, but instead ρ(µ(α(i)) ⋆ x(j,i)) for some vector x(j,i) provided as input
by Pj . Ultimately, this leads to the parties obtaining MAC shares m(i) where∑n

i=1m
(i) = α(j)x+

∑
i̸=j ρ(µ(α

(i)) ⋆ x(j,i)).
Similarly to [9,21], we do not attempt at removing the possibility of this

attack at this stage, and instead model it as permissible behavior in the function-
ality FCOPEe below.12 Then, in ΠAuth we introduce a check that handles these
inconsistencies.

Functionality 4: FCOPEe

This functionality runs with two parties Pi and Pj and the adversary A. The
Initialize phase is run once first. The Multiply phase can be run an arbitrary
number of times.

– Initialize: On input α(i) ∈ R from Pi, store this value.
– Multiply: On input x ∈ R from Pj :
• If Pj is corrupt then receive v(j,i) ∈ R and a vector x(j,i) ∈ Zt

pk from
A and compute u(i,j) = ρ(µ(α(i)) ⋆ x(j,i))− v(j,i).

• If Pi is corrupt then receive α(i,j) ∈ Zt
pk and u(i,j) from A and compute

v(j,i) = ρ(α(i,j) ⋆ µ(x))− u(i,j)

• If both Pi and Pj are honest then sample u(i,j) and v(j,i) uniformly at
random subject to u(i,j) + v(j,i) = α(i) · x.

The functionality sends u(i,j) to Pi and v(j,i) to Pj .

The functionality FCOPEe can be instantiated as we have sketched above with
the help of FOLE. The corresponding protocol ΠCOPEe is described in full detail
in the full version of this work. We state the following theorem whose proof can
be found in the full version of this work.

Theorem 4. Protocol ΠCOPEe implements FCOPEe in the FOLE-hybrid model.

11 Similarly, Pi’s input must lie in the image of µ, but as we will see this deviation is
not that harmful.

12 Even though this functionality is named the same as its counterpart in [9,21], we
remark that the errors the adversary can introduce in our setting are different.
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4.3 Authenticated Secret-Sharing

Local operations. The scheme ⟨·⟩ is Zpk -module homomorphic, so additions,
subtractions, and in general Zpk -affine combinations of ⟨·⟩-shared values can be
computed locally by the parties. These operations are standard and can be found
for instance in [17]. However, for completeness, these are described in detail in the
procedure13 πAff given in the full version of this work. This operation is denoted
by ⟨y⟩ ← a+

∑L
h=1 ah ⟨xh⟩.

Opening and checking. To partially reconstruct a shared value ⟨y⟩ = (JyK , Jα · yK , JαK),
the parties can all send their share of JyK to P1, who can reconstruct and send
the (possibly modified) result y′ to the parties. To check the correctness of this
opening, the parties locally compute Jα · yK− y′ JαK, and send the shares of this
value to each other using the simultaneous message channel. The parties abort
if the reconstructed value is not 0. These operations are represented by the
procedures πOpen(⟨y⟩) and πCheck(⟨y⟩ , y′), which are described in detail in the full
version of this work.

4.4 Authentication Protocol

We describe our protocol ΠAuth implementing FAuth as Protocol 2 below. At
a high level, the protocol is very similar to the corresponding one proposed
in [21,9]: allow the parties to obtain authenticated shares of their inputs by
using FCOPEe followed by a check, process affine combinations locally using the
homomorphic properties of the secret-sharing scheme, partially open shared
values by using πOpen and check their correctness by using πCheck.

Protocol 2: ΠAuth

The parties collectively maintain a dictionary Val of shared values.

– Initialize: First the parties perform an initialization step that consists of
each party Pi calling the Initialize step in FCOPEe.

– Input: Once Pj receives (Input, (id1, id2, . . . idL), (x1, x2, . . . , xL), Pj) and
the other parties receive (Input, (id1, id2, . . . idL), Pj), the parties execute
the following.
1. Pj samples x0

$← R.
2. For h = 0, . . . , L and i ∈ [n], Pj samples x(i)h ∈ R uniformly at random

subject to
∑n

i=1 x
(i)
h = xh, and sends {x(i)h }

L
h=0 to each Pi.

13 In this work we distinguish between procedures (denoted by smallcase π) and protocols
(denoted by capital Π). Protocols are associated to ideal functionalities and have
simulation-based proofs, whereas procedures, even though they also specify steps
the parties must follow, are used as helpers within actual protocols and do not have
functionalities or simulation-based proofs associated to them. This can be thought of
being somewhat analogous to the difference between macros and actual fuctions in
programming languages such as C/C++.
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3. For every i ∈ [n] \ {j}, Pi and Pj execute the Multiply step of
FCOPEe L+ 1 times, where Pj inputs x0, . . . , xL. For h = 0, . . . , L, Pi

receives u(i,j)
h and Pj receives v(j,i)h .

4. For i ∈ [n] \ {j}, Pi defines m(i)(xh) = u
(i,j)
h while Pj sets m(j)(xh) =

α(j) · xh +
∑

i̸=j v
(j,i)
h . By setting x(i)h = 0 for i ̸= j, the parties have

defined ⟨xh⟩ for h = 0, . . . , L.
5. Parties call FCoin to get r1 . . . , rL

$← R. Set r0 := 1.
6. Parties compute locally ⟨y⟩ ←

∑L
h=0 rh ⟨xh⟩ and call y′ ← πOpen(⟨y⟩)

followed by πCheck(⟨y⟩ , y′).
7. If the previous call did not result in abort, the parties store Val[idh] =
⟨xh⟩ for h ∈ [L].

– Affine combination: If all parties receive input
(AffComb, id, (id1, . . . , idL), (a1, . . . , aL), a), they fetch ⟨xh⟩ = Val[idh] for
h ∈ [L], compute locally ⟨z⟩ ← a+

∑L
j=1 aj ⟨xj⟩, and let Val[id] = ⟨z⟩.

– Partial openings: Once all parties receive input (Open, id), they recover
⟨x⟩ = Val[id] and call x′ ← πOpen(⟨x⟩).

– Check openings: If all the parties receive
(Check, (id1, id2, . . . , idL), (x′1, x′2, . . . , x′L)), they set ⟨xh⟩ = Val[idh]
for h ∈ [L] and execute the following:
1. Call FCoin to get r1, . . . , rL

$← R.
2. Compute locally ⟨y⟩ ←

∑L
h=1 rh ⟨xh⟩ and y′ =

∑L
h=1 rh · x

′
h, and call

πCheck(⟨y⟩ , y′)

Theorem 5. Protocol ΠAuth implements FAuth in the (FCoin,FCOPEe)-hybrid model.

Proof. Part of the proof is quite standard: the simulator extracts the inputs
from the corrupt parties and sends this to the ideal functionality FAuth, and it
also emulates the functionalities FCoin and FCOPEe, and emulates virtual honest
parties that behave as the real honest parties, except they do not know the real
inputs. At the end of the execution the simulator adjusts14 the honest parties’
shares to be compatible with the output and the corrupt parties’ shares.

The most complex and non-standard step is the extraction of the corrupt
parties’ inputs. It turns out that the check performed in the input phase may
actually pass with non-negligible probability, even if the adversary cheats in the
FCOPEe calls. Our goal is to show that, in spite of this, the corrupt parties are
still committed to a unique set of inputs—that is, these are the only values the
adversary could open these sharings to in a posterior output phase—and these

14 As we discuss in the full version of this work there is a subtlety with this “adjustment”
that originates from the fact that R has zero-divisors.
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inputs are extractable by the simulator. We point out that a full-fledged proof
is given in the full version of this work. Here we only provide the intuition of
how the inputs from the corrupt parties are extracted, and why they are unique.
Furthermore, we assume that k = 1, so R = Fpm and Zpk = Fp. The general case
of a Galois ring with zero divisors in handled in the full version of this work, and
requires a few extra technical considerations.

Let Pj be a corrupt party who is intended to provide some inputs {xh}Lh=0.
For each Pi, in the L+1 calls to FCOPEe, Pj may use as input a vector x(j,i)

h , which
leads to Pi and Pj obtaining u(i,j)h and v(j,i)h respectively, where these values add
up to ρ(µ(α(i)) ⋆x

(j,i)
h ). If Pj acts honestly, it would hold that x(j,i)

h = µ(xh), but
in the general case this may not hold. Then, the parties compute sharings ⟨y⟩,
open this to a possibly incorrect value y, and finally each party Pi reveals σ(i).

The check passes if and only if
∑n

i=1 σ
(i) = 0. By computing an explicit

expression of the σ(i) held by honest parties, we can verify that this check passes
if and only if the key shares {α(i)}i∈H held by honest parties satisfy∑

i∈C
σ(i) =

∑
i∈H

α(i) · y −m(i)(y)

=
∑
i∈H

(
α(i) · y −

L∑
h=0

rh ·m(i)(xh)

)

=
∑
i∈H

(
α(i) · y −

L∑
h=0

rh · u(i,j)h

)

=
∑
i∈H

(
α(i) · y −

L∑
h=0

(
rh · ρ(µ(α(i)) ⋆ x

(j,i)
h )− rh · v(j,i)h

))
.

We assume, for the sake of easing the notation, that there is only one honest
party H = {Pl}, and we denote α := α(l) and xh := x

(j,l)
h . This way, we can

write the above equation as

∑
i∈C

σ(i) −
L∑

h=0

rhv
(j,l)
h︸ ︷︷ ︸

=:z

= α · y −
L∑

h=0

rh · ρ(µ(α) ⋆ xh). (1)

Notice that z above is a value provided by the adversary, as well as y and
the vectors xh. Furthermore, the coefficients rh are public, so the only unknown
(from the adversary point of view) is the key α. Unfortunately, it can be the case
that this equation holds with non-neglible probability even though Pj did not
provide valid inputs. However, as we will see, in the event in which this equation
holds, when the parties at a later point want to open the sharings produced by
the input phase, there will only be one possible set of values the adversary can
open these sharings to successfully.

Let us denote by Kz ⊆ Fpm the set of all α satisfying Eq. (1). Some important
observations about Kz:
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– K0 is an Fp-vector space.
– Either Kz = ∅, or Kz = K0 + ξ, for any ξ ∈ Kz.
– In particular, |Kz| = 0 or |Kz| = |K0|.

Intuitively, A wants to set the values under its control so that |Kz|, which is
either 0 or |K0|, is as large as possible, since this way A increases the chances of
α ∈ Kz, and hence the more likely the input check passes. However, A does not
fully control the values defining Kz: xh must be chosen before {rh}h∈[L], which
are sampled at random.

Naturally, A’s optimal strategy is to choose z = 0 (which is in fact what z
equals to under honest behavior), since in this case there are no chances that
Kz = ∅. To prove this intuition, we simply notice that the mapping α 7→ α · y −∑L

h=0 rh · ρ(µ(α) ⋆ xh) is Fp-linear, and Kz ̸= ∅ if and only if z is in the range of
this function, which we denote by Z. If z ≠ 0, the probability that z is in this range
is |Z|/|R|, and the conditional probability that α ∈ Kz is |Kz|/|R| = |K0|/|R|.
Furthermore, from the rank-nullity theorem we have that |Z| · |K0| = |R| so the
overall success probability, if z ̸= 0, becomes |Z|

|R| ·
|K0|
|R| = 1/|R|, which is negligible.

We see then that we can assume that z = 0.15
Suppose now that the Eq. (1) holds, that is, the input check passes. Imagine

that at a later point in the actual circuit computation, a value ⟨xh⟩ is intended to
be opened (here xh does not stand for a specific value yet—since the adversary
did not input any concrete value—but instead it acts as an identifier for the
sharings corresponding to the h-th input of Pj). The adversary can cause the
partial opening to be a value xh, and in the final check each party announces σ(i)

h .
As before, the check passes if and only if

∑n
i=1 σ

(i)
h = 0. We can compute what

the MAC shares of ⟨xh⟩ held by the honest parties are based on the input phase,
and conclude, via a similar derivation to the one made above, that the check
passes if and only if zh = α · xh− ρ(µ(α) ⋆xh), where zh is a value chosen by the
adversary. As before, we can show that zh = 0 for each h. Therefore, xh must be
equal to (ρ(µ(α) ⋆ xh))/α. It seems then that we have been able to “extract” the
inputs that the corrupt party Pj has committed to, but these {xh}h are defined
in terms of the key α, which is unknown to the simulator. In what follows, we
show that, with overwhelming probability, the same set of {xh}h can be obtained
from any possible key α ∈ K0, which enables extraction.

Putting together what we have seen above, for the adversary to pass all the
checks it must be the case that the key α ∈ Fpm lies in K0, that is, it must satisfy
0 =

∑L
h=0 rh (α · xh − ρ(µ(α) ⋆ xh)), and furthermore, the adversary can only

open the input shares at a later stage to the values to xh = ρ(µ(α) ⋆ xh)/α for
h = 0, . . . , L.

Now, our goal is to show that, no matter what α ∈ K0 the honest party
happens to choose, the values {xh}h are fixed, which amounts to showing that the
functions fxh

: Fpm \ {0} → Fpm given by fxh
(α) = ρ(µ(α) ⋆ xh)/α are constant.

This will enable the simulator to extract xh by using any element in K0.
15 We point out that in [21], this subtlety that enables us to consider z = 0 is not

mentioned explicitly.
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To show that each fxh
is constant, we consider e1, . . . , ed ∈ Fpm a basis of

K0 over Fp, and make the simple but powerful observation that, if {fxh
(ei)}h

is proven to be constant as i ranges over [d], then this will extend to any
α ∈ K0. This is because, for any (ch) ∈ FL+1

p , the set of α ∈ K0 \ {0} such that
fxh

(α) = ch forms a subspace of K0 (after adding 0), so if {fxh
(ei)}h is equal to

a constant (ch)h as i ranges over [d], then this subspace must include the Fp-span
of {e1, . . . , ed}, which is equal to K0 itself.

More precisely, we claim that the probability that there exist i0, i1 ∈ [d] with
{fxh

(ei0)}h ̸= {fxh
(ei1)}h is negligible. Indeed, since each ei ∈ K0, we have that

0 = ei · y −
∑L

h=0 rh · ρ(µ(ei) ⋆ xh), so

y =

L∑
h=0

rh ·
(
ρ(µ(ei) ⋆ xh)

ei

)
=

L∑
h=0

rh · fxh
(ei).

In particular, it holds that 0 =
∑L

h=0 rh · (fxh
(ei1) − fxh

(ei0)), or, in other
words, (r0, . . . , rL) is orthogonal to the vector (fxh

(ei1) − fxh
(ei0))

L
h=0, which

is non-zero if {fxh
(ei0)}h ≠ {fxh

(ei1)}h. However, the latter vector is chosen
by the adversary before the former one is sampled uniformly at random, so the
probability of this happening is at most 1/pm.

From the above we see that the probability that the ordered pair (i0, i1)
results in {fxh

(ei0)}h ̸= {fxh
(ei1)}h is at most 1/pm, so in particular, since

there are at most d2 ≤ m2 such pairs, the probability that there exists at least
one such pair is upper bounded by m2/pm = 2−(m log2(p)−2 log2(m)). Now, it is
easy to see that if α ∈ K0 is an Fp-multiple of ei then fxh

(α) = fxh
(ei), so the

result we have just obtained enables us to conclude that, except with probability
2−(m log2(p)−2 log2(m)), the values {fxh

(α)}h are constant for α ∈ K0.
Putting the pieces together, we see that if the adversary passes the input

check, meaning that the key α chosen by the honest party lies in K0, then there
is only one possible set of values that the adversary can later open these sharings
to, namely, the values xh = fxh

(α′) given by any α′ ∈ K0. Since K0 is known by
the simulator, these inputs can be efficiently extracted. ⊓⊔

5 Offline Phase

Recall that our the preprocessing phase requires to generate the quintuples
(⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩) with random elements a, b ∈ R. During the
online phase, such quintuple will save one round of communication for each multi-
plication gate with respect to approaches like the one followed in [9]. To generate
this quintuple, we begin by first generating authenticated pairs (⟨a⟩ , ⟨τ(a)⟩), a
step that we carry out in a similar way as the “re-encode pair protocol” in [9]. We
use a similar technique to process the random values ⟨r⟩ such that r ∈ kerψ. Fi-
nally, to obtain the products ⟨τ(a)τ(b)⟩, we make use of our FCOPEe functionality,
together with a cut-and-choose-based check that verifies no errors are introduced
by the adversary.

We discuss these protocols in detail below.
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Encoding pairs. The idea to obtain certain amount T of pairs (⟨a⟩ , ⟨τ(a)⟩)
is to generate T + s many pairs (⟨ai⟩ , ⟨τ(ai)⟩) for i = 1, . . . , T + s, and then
sacrifice the last s of them by taking a random Zpk -linear combinations of the
first T pairs to obtain s equations for correctness check. If there is at least one of
the first T pairs that is corrupted, with probability at most p−s, the corrupted
pair will pass all the check, which we can make negligible in κ by choosing s to
be large enough. This is presented in detail in the Procedure 3 below.

Procedure 3: πEnc

The procedure generates a series of T pairs (⟨ai⟩ , ⟨τ(ai)⟩) where ai ∈ R is a
random element. We assume the functionalities FCOPEe and FAuth.

– Construct:
1. Pi samples a(i)j ∈ R uniformly at random for j = 1, . . . , s+ T .

2. Pi calls FAuth to obtain
〈
a
(i)
j

〉
and

〈
τ(a

(i)
j )

〉
.

3. All parties computes ⟨aj⟩ =
∑n

i=1

〈
a
(i)
j

〉
, ⟨τ(aj)⟩ =

∑n
i=1

〈
τ(a

(i)
j )

〉
.

– Sacrifice:
1. All parties call FCoin to generate s random vectors xi = (xi,1, . . . , xi,T ) ∈

ZT
pk .

2. Compute ⟨bi⟩ =
∑T

j=1 xi,j ⟨aj⟩+ ⟨aT+i⟩ and ⟨ci⟩ =
∑T

j=1 xi,j ⟨τ(aj)⟩+
⟨τ(aT+i)⟩ and partially open bi and ci.

3. If τ(bi) ̸= ci for some i ∈ {1, . . . , s}, then abort.
4. Call FAuthwith the command Check on the opened values bi and ci.

– Output: Output (⟨ai⟩ , ⟨τ(ai)⟩) for i = 1, . . . , T .

Kernel elements. In order to generate sharings ⟨r⟩, where r is uniformly
random in kerψ, we proceed in a similar way as the procedure πEnc, except that
instead of each party Pi calling FAuth to input a pair (a(i), τ(a(i))), each party
inputs a value r(i) $← kerψ. Then, the same correctness check as in πEnc works in
this case since kerψ is Zpk -linear. The resulting procedure, πKer, is presented in
detail in the full version of this work.

Multiplication. As for generating ⟨τ(a)τ(b)⟩, the technique employed in [21]
can not be applied to our quintuples. The reason is that to prevent the leakage of
single bit of the input a = (a1, . . . , aγ) ∈ Rγ , the combine in the multiplication
triple protocol in [21] takes the random linear combination a′ = ⟨a, r⟩ for a
random vector r = (r1, . . . , rγ) ∈ Rγ . In our situation, it requires that τ(a′) =
τ(
∑γ

i=1 riai) =
∑γ

i=1 riτ(ai) which is clearly not the case. The same problem
also arises in [9]. Therefore, we follow the approach in [9] by the committed MPC
technique [20] to obtain ⟨τ(a)τ(b)⟩. There is some difference from [9], our share
and MAC are defined over the same domain R, while the share and MAC in [9]
lie in different spaces. This forces them to convert the sharing of a vector x into
a sharing of an element x in the extension field at each opening. In our work, we
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do not need this extra step, which brings us closer to the original approach in
[20].

Procedure 4: πMult

The procedure takes as input a set of N = γ1 + γ1γ
2
2T authenticated

pairs (⟨ai⟩ , ⟨τ(ai)⟩), (⟨bi⟩ , ⟨τ(bi)⟩) where Jτ(ai)K = (τ(ai)
(1), . . . , τ(ai)

(n)) and
Jτ(bi)K = (τ(bi)

(1), . . . , τ(bi)
(n)). As output, the procedure produces a multipli-

cation quintuple (⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩) where a, b ∈ R are random
elements. We assume the functionalities FCOPEe,FAuth and FCoin. Let u = 2N .

– Multiply:
1. For h = 1, . . . , N
2. For each ordered pair of parties Pi and Pj calls FCOPEewith Pi’s input

τ(ah)
(i) and Pj ’s input τ(bh)(j).

3. Pi receives u
(i,j)
h and Pi receives v

(j,i)
h such that u

(i,j)
h + v

(j,i)
h =

τ(ah)
(i)τ(bh)

(j).

4. Pi sets its share c(i)h = τ(ah)
(i)τ(bh)

(i) +
∑

j ̸=i u
(i,j)
h + v

(i,j)
h .

5. Pi call FAuthwith the command Input to obtain
〈
c
(i)
h

〉
.

6. The parties locally compute ⟨ch⟩ =
∑n

i=1

〈
c
(i)
h

〉
.

– Cut-and-Choose:
1. All parties call FCointo obtain γ1 distinct elements 1 ≤ ℓ1, . . . , ℓγ1 ≤ N .
2. All parties open ⟨τ(aℓi)⟩ , ⟨τ(bℓi)⟩ , ⟨cℓi⟩ for i = 1, . . . , γ1. Abort if

τ(aℓi)τ(bℓi) ̸= cℓi .
– Sacrifice:

1. Use FCointo random divide the rest N−γ1 triples (⟨τ(ah)⟩ , ⟨τ(bh)⟩ , ⟨ch⟩)
into γ2

2T buckets with γ1 triples in each. (We still record the other two
sharings ⟨ah⟩ and ⟨bh⟩ for later use)

2. In each bucket with γ1 triples (⟨τ(ai)⟩ , ⟨τ(bi)⟩ , ⟨ci⟩)i∈[γ1], all parties
locally compute ⟨αh⟩ = ⟨τ(ah)⟩ − ⟨τ(a1)⟩ and ⟨βh⟩ = ⟨τ(bh)⟩ − ⟨τ(b1)⟩
for h = 2, . . . , γ1. All parties partially open αh and βh.

3. Compute ⟨ρh⟩ = ⟨ch⟩−αh ⟨τ(b1)⟩−βh ⟨τ(a1)⟩−αhβh−⟨c1⟩. Open ρh for
h = 2, . . . , γ1. Abort if ρh ̸= 0 and otherwise call (⟨τ(a1)⟩ , ⟨τ(b1)⟩ , ⟨c1⟩)
a correct triple.

– Combine:
1. Combine on a: Use FCointo randomly divide the remaining γ2

2T triples
(⟨τ(ah)⟩ , ⟨τ(bh)⟩ , ⟨ch⟩) into γ2T buckets with γ2 triples in each. In each
bucket, denote by (⟨τ(ah)⟩ , ⟨τ(bh)⟩ , ⟨ch⟩) for h = 1, . . . , γ2.
(a) Locally compute

〈
a′
〉
=

γ2∑
i=1

⟨ai⟩ ,
〈
τ(a′)

〉
=

γ2∑
i=1

⟨τ(ai)⟩ ,
〈
τ(b′)

〉
= ⟨τ(b1)⟩ .

(b) For h = 2, . . . , γ2, locally compute ⟨ρh⟩ = ⟨τ(b1)⟩ − ⟨τ(bh)⟩ and
partially open ρh.

(c) Compute ⟨σ′⟩ = ⟨c1⟩ +
∑γ2

i=2(ρh ⟨τ(ah)⟩ + ⟨ch⟩) = ⟨τ(a′)τ(b1)⟩.
Record the new quintuple (⟨a′⟩ , ⟨τ(a′)⟩ , ⟨b′⟩ , ⟨τ(b′)⟩ , ⟨σ′⟩).
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2. Combine on b: Use FCointo randomly divide the remaining γ2T quintu-
ples into γ2T buckets with γ2 triples in each. In each bucket, denote by
(⟨ah⟩ , ⟨τ(ah)⟩ , ⟨bh⟩ , ⟨τ(bh)⟩ , ⟨ch⟩) for h = 1, . . . , γ2.
(a) Locally compute

〈
b′
〉
=

γ2∑
i=1

⟨bi⟩ ,
〈
τ(b′)

〉
=

γ2∑
i=1

⟨τ(bi)⟩ ,
〈
τ(a′)

〉
= ⟨τ(a1)⟩ .

(b) For h = 2, . . . , γ2, locally compute ⟨ρh⟩ = ⟨τ(a1)⟩ − ⟨τ(ah)⟩ and
partially open ρh.

(c) Compute ⟨σ′⟩ = ⟨c1⟩ +
∑γ2

h=2(ρh ⟨τ(bh)⟩ + ⟨ch⟩) = ⟨τ(a′)τ(b′)⟩.
Record the new quintuple (⟨a′⟩ , ⟨τ(a′)⟩ , ⟨b′⟩ , ⟨τ(b′)⟩ , ⟨σ′⟩).

(d) Call FAuthwith the command Check on the opened values so far. If
the check succeeds, output the T quintuples.

Putting the pieces together. With the procedures πEnc, πKer and πMul from
above, we can now define the protocol ΠPrep that instantiates the functionality
FPrep. The protocol simply uses πKer to instantiate the Ker command, and πEnc and
πMul in conjunction to instantiate CorrRand. ΠPrep is described in detail in the
full version of this work. Its security is stated in the following theorem, and since
the proof follows in a similar way as the argument in [9,20], we postpone it to
the full version of this work.

Theorem 6. ΠPrep securely implements FPrepin the (FCOPEe,FCoin,FAuth)-hybrid
model.

6 Communication Complexity Analysis

Our online phase can simultaneously evaluate ℓ instances of the same arithmetic
circuit over the ring Zpk . To the best of our knowledge, all known secret-sharing-
based amortized SPDZ-like protocols are defined over finite fields, e.g., MiniMAC
[19], Committed MPC [20] and RMFE-based MPC [9]. We choose R = GR(2k,m)
to analyze the communication complexity below. When we compare our perfor-
mance with other works over finite fields, we assume k = 1.

Communication complexity of the online phase. Our online phase only
requires one round of communication for each multiplication gate. For each
multiplication gate, we need to partially open two shared values ⟨r⟩ with r ∈ R.
At each opening, all parties sent their shares to one selected player for opening
and this player then broadcasts the opened value. This requires 4km(n−1) bits of
communication.16 Each input gate requires km(n−1) bits of communication. For
16 Like in previous works, we assume the cost of broadcast-with-abort is comparable

sending the messages directly.

25



the output gate, the parties have to perform the MAC check on the random linear
combination of previously opened values. This requires 2km(n− 1) + 2kmn bits
of communication. If we take the approach from Remark 1, the communication
cost for each multiplication gate can be further cut down to (2km+ 2kℓ)(n− 1).

Below we analyze the communication complexity of our protocol with respect
to that from other approaches. These were taken from [9].

MiniMac[19] Committed
MPC [20]

Cascudo et
al. [9]

This work

Comm. (4ℓ+ 2ℓ∗)(n− 1) (4ℓ+ 2ℓ∗ +
r)(n− 1)

(4ℓ+ 2m)(n− 1) 4m(n− 1)

Rounds 2 1 2 1

Fig. 1. The total number of bits and rounds communicated for one batch of ℓ multipli-
cations in the online phase.

Now we instantiate the concrete parameters for the RMFE construction, and
compare our amortized communication complexity (that is, per multiplication)
with respect to previous works. To make a fair comparison, we use the same
parameter set (ℓ,m) as in [9], namely (ℓ,m) = (21, 65), (ℓ,m) = (42, 135) and
(ℓ, ℓ∗, r) = (210, 1695, 2047), (ℓ, ℓ∗, r) = (338, 3293, 4096) (in our RMFE, ℓ is the
number of instances simultaneously computed).

Security MiniMac[19] Committed
MPC [20]

Cascudo et
al. [9]

This work

s = 64 20.14(n− 1) 29.89(n− 1) 10.2(n− 1) 12.4(n− 1)
s = 128 23.48(n− 1) 35.58(n− 1) 10.42(n− 1) 12.84(n− 1)

Fig. 2. The total number of bits communicated for computing each instance of a
multiplication gate when the security parameter is s = 64, 128.

Communication complexity of the preprocessing phase. The main bot-
tleneck of our preprocessing protocol ΠPrep are the πEnc and the πMul procedures
(only one kernel element is needed for each final output, so we ignore the cost
of πKer). Since ΠPrep uses FAuth, we also take into account the costs of ΠAuth.
Furthermore, since ΠAuth itself makes use of FCOPEe, and our protocol ΠCOPEeuses
FOLE, we measure the ultimate costs in terms of the number of calls to FOLE.

The Input command realized by ΠAuth aims at generating the authenticated
input for each party. The most expensive cost of this protocol is the call to
ΠCOPEe. The parties need to send 2kt(n − 1) bits for each element in R to be
authenticated and make t(n− 1) calls to the functionality FOLE.
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The check procedure is used to check the correctness of the shares obtained
from ΠCOPEe. The cost of the check protocol can be amortized away as it can
authenticate a batch of values by sacrificing one authenticated value. For the
command CorrRand, we first need to prepare the authenticated pairs (⟨a⟩ , ⟨τ(a)⟩)
with πEnc. Assume that T is much larger than s, which will amortize away the
cost of sacrificing s pairs. Thus, the cost for generating authenticated pairs
(⟨a⟩ , ⟨τ(a)⟩) comes from the call of ΠAuth with the command Input. The total
cost is 4ktn(n− 1) bits for each authenticated pairs and 2t(n− 1) calls of FOLE.

After generating N = γ1+γ1γ
2
2T authenticated pairs, which requires 8ktn(n−

1)N bits of communication and 4t(n− 1)N calls of FOLE, we use πMul to create
T authenticated quintuples (⟨a⟩ , ⟨b⟩ , ⟨τ(a)⟩ , ⟨τ(b)⟩ , ⟨τ(a)τ(b)⟩). In the following
discussion, we assume T is big enough so as to amortize away the part of the
communication that is independent of T . The procedure πMul calls ΠCOPEe n(n−
1)N times, which requires 2ktn(n− 1)N bits of communication and tn(n− 1)N

calls of FOLE. Each party Pi calls ΠAuth to obtain the authenticated share
〈
c
(i)
h

〉
.

This requires 2ktn(n− 1)N bits of communication and tn(n− 1) calls of FOLE.
The total amount of bits communicated in the procedure πMul is 4ktn(n−1)N and
2tn(n−1) calls of FOLE. During the rest of the protocol, the communication costs
mainly come from the partial opening. There are 3γ1 + 3γ22T (γ1 − 1) + γ2T (γ2 −
1) + T (γ2 − 1) openings in total such that each opening requires 2mt(n− 1) bits
of communications. We choose γ1 = γ2 = 3 suggested in [20]. The total bits of
communication from the opening is 26T × 2mt(n − 1). This cost is relatively
small if n is big enough.

From the above we see that generating one quintuple requires 12ktn(n −
1)N/T = 12× 27ktn(n− 1) = 324ktn(n− 1) bits of communication and 6tn(n−
1)N/T = 162tn(n−1) calls to FOLE. From Theorem 1 and Theorem 2, we can set
t = 5.12m and m = 4.92ℓ. The communications now becomes 8161.6kℓn(n− 1).
For small security parameter s = 64, we can set m/ℓ = 3.1. To compare our result
with that in [9], we set k = 1 and obtain 5142.5ℓn(n− 1) bits of communication
while their protocol requires 462.21ℓ2n(n−1) bits. Our cost is smaller than theirs
as ℓ has to be 21 or bigger to achieve 64 bits of statistical security.

Comparing to SPDZ2k [14]. We proceed to the comparison with SPDZ2k over the
ring Z2k . The prepocessing phase in [14] generates a Beaver triple by sacrificing
4k + 2ℓ authenticated shares. The total cost of communication complexity to
generate a Beaver triple is 2(k + 2s)(9s + 4k)n(n − 1) where s is the security
parameter. This is bigger than ours 5142.5kn(n − 1) if k ≤ 29. If we set the
security parameter to be 128, then our prepocessing phase outperforms the one in
[14] for k ≤ 114. Our communication complexity does not grow with the security
parameter. This gives us an advantage for larger security parameters.
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Online phase s = 64 s = 128

This work 19.68k(n− 1) 12.4k(n− 1) 12.84k(n− 1)
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