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Abstract. We study the power of preprocessing adversaries in find-
ing bounded-length collisions in the widely used Merkle-Damg̊ard (MD)
hashing in the random oracle model. Specifically, we consider adversaries
with arbitrary S-bit advice about the random oracle and can make at
most T queries to it. Our goal is to characterize the advantage of such
adversaries in finding a B-block collision in an MD hash function con-
structed using the random oracle with range size N as the compression
function (given a random salt).
The answer to this question is completely understood for very large val-
ues of B (essentially ΩpT q) as well as for B � 1, 2. For B � T , Coretti
et al. (EUROCRYPT ’18) gave matching upper and lower bounds of
Θ̃pST 2{Nq. Akshima et al. (CRYPTO ’20) observed that the attack of
Coretti et al. could be adapted to work for any value of B ¡ 1, giving an
attack with advantage Ω̃pSTB{N � T 2{Nq. Unfortunately, they could
only prove that this attack is optimal for B � 2. Their proof involves a
compression argument with exhaustive case analysis and, as they claim,
a naive attempt to generalize their bound to larger values of B (even
for B � 3) would lead to an explosion in the number of cases needed
to be analyzed, making it unmanageable. With the lack of a more gen-
eral upper bound, they formulated the STB conjecture, stating that the
best-possible advantage is ÕpSTB{N � T 2{Nq for any B ¡ 1.
In this work, we confirm the STB conjecture in many new parameter
settings. For instance, in one result, we show that the conjecture holds
for all constant values of B. Further, using combinatorial properties of
graphs, we are able to confirm the conjecture even for super constant
values of B, as long as some restriction is made on S. For instance, we
confirm the conjecture for all B ¤ T 1{4 as long as S ¤ T 1{8. Technically,
we develop structural characterizations for bounded-length collisions in
MD hashing that allow us to give a compression argument in which the
number of cases needed to be handled does not explode.

1 Introduction

Starting from the seminal work of Hellman [21], there have been significant ef-
forts to understand the power of preprocessing attacks in various applications
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and constructions (e.g., [31,16,28,5,30,13,15,1,9,8,3,11,6]). Preprocessing attacks,
i.e., ones that utilize a bounded amount of auxiliary information, capture the
standard modeling of attackers as non-uniform, allowing them to obtain some ar-
bitrary (but bounded length) “advice” before attacking the system. In this work,
we continue the recent line of works studying the power of preprocessing adver-
saries in the context of finding collisions in the widely used Merkle-Damg̊ard
(MD) design.

Collision resistance of salted MD. The Merkle-Damg̊ard hash function con-
struction [24,25,26,12] is a popular design for building an arbitrary-size-input
compression function from a fixed-size-input compression function. This design
is not only extremely fundamental in cryptographic theory, but it also underlies
popular hash functions used in practice, most notably MD5, SHA-1, and SHA-2.

The MD construction is defined relative to a compressing function h : rN s �
rM s Ñ rN s3, modeled as a random oracle, as follows. First, for a P rN s and
α P rM s, let MDhpa, αq � hpa, αq. Then, define recursively

MDhpa, pα1, . . . , αBqq � hpMDhpa, pα1, . . . , αB�1qq, αBq

for a P rN s and α1, . . . , αB P rM s. The a is referred to as salt (sometimes also
called IV) and each of the following B elements are referred to as blocks.

Due to the ubiquitous influence of this hashing paradigm, both in theory
and practice, characterizing the complexity of finding collisions in MDh (on a
random salt) is a fundamental problem. The well-known birthday attack gives a
T -query attacker with ΘpT 2{Nq advantage. However, this attack is very generic:
it neither takes advantage of the structure of MDh nor does it utilize the fact
that the attacker may have access to some limited amount of “advice” about
h due to a long preprocessing phase. But, there is a good reason that security
against non-uniform attackers has become the standard notion of security in
the cryptographic literature: it captures the natural idea that an adversary may
have been designed to attack specific instances, guaranteeing security against an
expensive preprocessing stage, or even unknown future attacks. On the whole,
it is widely believed by the theoretical community that non-uniformity is the
right cryptographic modeling of attackers, despite being overly conservative and
including potentially unrealistic attackers. Therefore, understanding the com-
plexity of finding collisions in MD, allowing preprocessing, is a fundamental
problem.

The auxiliary-input random oracle model. The concrete hash functions h
used in real-life do not have solid theoretical foundations from the perspective
of provable security. Therefore, when analyzing the security of the MD con-
struction, the function h is typically modeled as a completely random one, i.e.,
a random oracle. We follow the standard approach and model preprocessing
adversaries using the influential extension of the random oracle model termed
auxiliary-input random oracle model (AI-ROM). This model was (implicitly)
used, for example, in the classical works of Yao [31] and Fiat and Naor [16],

3 We use the notation rN s to denote the set t1, 2, . . . , Nu for a natural number N .
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and formally defined in the influential work of Unruh [30] which was recently
revisited by Dodis, Guo, and Katz [15] and Coretti et al. [9].

The AI-ROM models preprocessing adversaries as two-stage algorithms pA1,
A2q parametrized by S (for “space”) and T (for “time”). The first part A1 has
unbounded access to the random oracle h, and its goal is to compute an S-bit
“advice” σ for A2. The second part A2 gets the advice σ, can make at most T
queries to the random oracle, and attempts to accomplish some task involving
h. In our case, A2 gets a random salt a as a challenge and its goal is to come up
with a collision in MDhpa, �q. Both A1 and A2 are unbounded in running time.

Known results. Collision resistance of salted MD hash functions in the AI-
ROM was first studied by Coretti, Dodis, Guo, and Steinberger [9]. Among
other results, they showed an attack, loosely based on the idea of rainbow ta-
bles [21,28], with advantage Ω̃pST 2{Nq.4 5 They further showed that this attack
is optimal. Namely, no attack can have an advantage better than ÕpST 2{Nq.
(Notice that this attack beats the naive birthday attack mentioned above for typ-
ical values of S.) In a more recent work of Akshima, Cash, Drucker, and Wee [3]
observed that the attack of Coretti et al. [9] results in very long collisions, of the
order of T blocks, which may limit their practical usefulness. While formally, a
length T collision does violate collision resistance, it is hard to imagine a natural
application where it is useful. Indeed, for reasonable values of T , say T � 260, it
is unlikely that such a collision, which is several petabytes long, could damage
any widely-used application.

Akshima et al. [3] therefore raise the very natural question of what is the
complexity of finding short collisions.

What is the complexity, as a function of S and T (the allowed space and query
bounds, respectively), of finding a B-block collision in salted MD?

Although this question is very natural and clean, as mentioned, a complete
answer is known only in the extreme cases, either when B � 2 or when B �
Ω̃pT q. Indeed, when B is very close to T , the result above of Coretti et al. [9]
implies that the advantage is Θ̃pST 2{Nq. The case of B � 2 was resolved by
Akshima et al. [3] who showed that the advantage is Θ̃pST {N � T 2{Nq. Even
for B � 3, a complete answer is not known: The analysis of Akshima et al. [3]
consists of an elaborate case analysis tailored to the B � 2 case, and they claim
that even for B � 3 the proof of their lower bound “. . . would be too long and
complex to write down”.6

The STB conjecture. In terms of upper bounds, Akshima et al. [3] showed that
a variant of Coretti et al.’s (rainbow tables inspired) attack could be generalized
to get a B-block collision with advantage Ω̃pSTB{Nq. This attack generalized
the attack of Coretti et al. [9] which gives an OpT q-block collision with probabil-
ity Ω̃pST 2{Nq. With the lack of better bounds on the best possible attack for a

4 Throughout the paper, the˜notation suppresses poly-logarithmic terms in N .
5 By “advantage” we mean the probability of finding a collision.
6 For B � 1 a tight bound of ΘpS{N � T 2{Nq is known [15].
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wide range of B’s (anywhere between B � 3 and B ! T ), Akshima et al. [3] put
forward the “STB conjecture” which posits that the optimal attack for finding
length B collisions has advantage Θ̃pSTB{N � T 2{Nq (i.e., the better between
their attack and the generic birthday attack).

We believe that our current understanding of the exact security that MD-
style constructions could ideally achieve is insufficient. Therefore, given how
widespread MD-based hash functions are, progress towards resolving the conjec-
ture is highly important.

1.1 Our Results

Our main result confirms the STB conjecture in many new parameter settings.
Specifically, we prove two new upper bounds on the advantage of the best attack
for finding short collisions in salted MD hash functions in the AI-ROM. The
first bound confirms the STB conjecture for all constant values of B. The second
result confirms the STB conjecture even for super constant values of B but only
for moderately large values of S compared to T .

STB conjecture is true for all constant B. We show that for any B P
Op1q, the advantage of any S-space T -query attacker in finding a length B
collision is bounded by ÕpST {N � T 2{Nq, matching the known attack up to
poly-logarithmic factors.

Theorem 1.1 (Informal; See Theorem 5.1). For every constant B, the
STB conjecture is true.

This theorem is obtained as a special case of a more general bound on the
advantage of any S-space T -query attacker in finding a length B collision of the
form

Õ

�
STB2plog2 SqB�2

N
�
T 2

N



.

Note that this bound is meaningful when B is a constant (or slightly bigger) but
becomes vacuous when say, B � logN .

STB conjecture is true for all SB ! T . We show that as long as S,B ! T ,
the conjecture is true again. Specifically, we show that whenever S4B2 P ÕpT q,
the maximal advantage of any S-space T -query attacker in finding a length B
collision is obtained by the birthday attack, up to poly-logarithmic factors. For
example, when SB ¤ T 1{4, the maximal advantage is OpT 2{Nq, and therefore
the STB conjecture holds.

Theorem 1.2 (Informal; See Theorem 6.1). For every S4B2 P ÕpT q, the
STB conjecture is true. For instance, the conjecture holds if either

– B P poly logN and S P ÕpT 1{4q, or

– B P ÕpT 1{4q and S P ÕpT 1{8q.
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This theorem is obtained as a special case of a more general bound on the
advantage of any S-space T -query attacker in finding a length B collision of the
form

Õ

�
S4TB2

N
�
T 2

N



.

A concrete comparison between the results. The two bounds are gener-
ally incomparable. While the bound from Theorem 1.1 is asymptotically tight
whenever B is constant (independent of S, T ), it becomes vacuous for say B �
logN . On the other hand, the bound from Theorem 1.2 is meaningful for all
B P opN1{2q, as long as S4 � B2 ! N . For instance, assume that S � N1{16 and
B P ΘpN εq (for 0   ε   1{8). In this setting, the bound from Theorem 1.1 is
trivial. On the other hand, the bound from Theorem 1.2 gives that any successful
attack must satisfy T P Ω̃pN1{2q which is strictly better than what the generic
ÕpST 2{Nq bound gives (it only gives T P Ω̃pN15{32q).

Technical highlight. The main technical component in both of our bounds is a
compression argument that uses a “too-good-to-be-true” attacker to non-trivially
compress a uniformly random sequence of bits, thereby getting a contradiction.
The setup is somewhat similar to the one of Akshima et al. [3] (although slightly
more modular), but our compression argument deviates from theirs significantly.
Their argument inherently relied on the fact that there are at most two blocks
in the collision, therefore greatly simplifying the possible structures to consider.
In contrast, we consider arbitrary length collisions, and thus we have to deal
with all possible structures of collisions. Our proof identifies and analyzes a
general structure for MD collisions and unveils a natural combinatorial problem
that influences the resulting upper bound on the advantage of preprocessing
adversaries. Specifically, it turns out that the “dominant extra” terms in both
of our bounds (plog2 SqB�2 in the first bound and S3 in the second) emerge due
to the need to encode a reverse path in a general (fan-out 1, but possibly large
fan-in) directed graph, where the graph is the one induced by the queries that
the adversary makes to the random oracle. Any improvement on this encoding
would immediately imply a better upper bound, a fact that we hope will lead to
better bounds in the future.

1.2 Discussion

As mentioned, the MD paradigm underlies numerous hash function constructions
that are central building blocks in many applications. There are several popular
variants of the MD paradigm implemented in practice. In this work, we follow
previous works and focus on the cleanest variant for concreteness. One prominent
variant withstands length extension attacks by padding the input message with
its length. (In fact, this is the version suggested by Merkle and Damg̊ard.) We
remark that our results directly apply to this padded variant. Specifically, the
“STB” attack finds a collision with the same number of blocks, so it readily
extends to this padded variant. Our bounds on the best possible attacks also
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extend to this setting since the argument did not use any specific property on
the collision blocks. It is interesting to study other practically used variants and
understand if similar results can be obtained. To this end, we hope that the
techniques we develop in this work will be helpful.

From a theoretical perspective, no single function can be collision-resistant
(in the plain model), as a non-uniform attacker can trivially hardwire a collision.
This is why collision resistance is considered with respect to a family of hash
functions indexed by a key called salt. The salt is chosen after the attacker is
fixed (and so is the non-uniform advice about the family of functions). Still, in
practice, a single hash function is typically defined by fixing an IV, making it
insecure against non-uniform attackers. This contrasts with how we define the
collision resistance game, where the IV is chosen randomly after the prepro-
cessing phase. Thus, it may seem that the expensive preprocessing needed for
attacks in our model does not represent real-life scenarios. However, often the
hash function used in a particular application (relying on collision-resistance)
is salted by prepending a random salt value to the input. One such well-known
application is password hashing [29]. Such salting essentially corresponds to the
random-IV setting considered here, and, therefore, the attack becomes relevant
again.

The primary motivation for our work is to make progress towards the STB
conjecture, which we view as a fundamental problem. To this end, we focused
on asymptotic bounds as a function of S, T , and B. We hope that the concrete
bounds could be improved in future works, affecting design choices of real-life
hash functions.

Follow up work. A recent work of Akshima, Guo, and Liu [4] proved a new
bound on the maximal possible advantage in finding B-block collisions. Their
bound is overall incomparable to ours: it is better than our Theorem 1.2 but
worse than Theorem 1.1. Also, Freitag et al. [17] studied related problems in the
context of sponge hashing, an alternative to the Merkle-Damg̊ard paradigm that
underlies (for instance) the SHA-3 standard.

2 Our Techniques

In this section, we provide a high-level overview of our techniques. Both of our
results follow a similar high-level rationale, and thus throughout this overview,
we mainly focus on the techniques for proving the STB conjecture whenever
B P Op1q (Theorem 1.1). Towards the end, we describe the additional ideas
needed to obtain the result for SB ! T (Theorem 1.2).

Before explaining the ideas, let us describe the challenge more precisely. We
are given a compressing function h : rN s � rM s Ñ rN s, modeled as a random
oracle, and we want to upper bound the probability of a non-uniform attacker
in finding a collision in an MDh instance with a random salt. We model non-
uniform attackers by thinking of them as two-stage adversaries A � pA1,A2q.
The offline part A1 is unbounded in running time, and its only restriction is
that it can output only S bits. This output is the non-uniform advice given to
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the online part A2 which is then allowed to make up to T queries after which it
must output a B-block collision for MDh and terminate. We assume unbounded
running time for both parts A1 and A2 and only restrict the output-size for
A1 and the number of queries for A2. We refer to such a two-stage adversary
pA1,A2q as a pS, T q-adversary. In the context of length-B collisions in MDh, the
game is as follows:

– A1 has unbounded access to h and it outputs σ P t0, 1uS .
– A2 gets σ as input along with a random salt a P rN s.
– A2 outputs α, α1.
– A wins if α � α1, α, α1 consist of ¤ B blocks, and MDhpa, αq � MDhpa, α

1q.

There are essentially two main generic approaches known in the literature
for proving bounds of this sort. The first is the so-called pre-sampling technique,
originally due to Unruh [30], and the second is a compression argument. The
first technique reduces the problem from considering general hash functions and
adversaries pA1,A2q as above to a simpler model (and associated attacker) called
the bit-fixing model. The advantage of the latter model is that it is typically
easier to analyze and results in clean proofs. The second technique is based on a
simple information-theoretic idea that random bits cannot be compressed.7 Thus,
an attacker that succeeds in finding collisions is used to compress some random
information that is used in the game, and thereby contradiction is reached.
This technique, while being extremely influential in many fields and problems in
computer science (e.g., “Algorithmic Lovász Local Lemma” [27], lower bounds
on cryptographic constructions [18,13,20], analyzing hardness of problems in the
non-uniform setting [15,10] and time-space tradeoffs for quantum algorithms [7]),
often results in technical and complex proofs.

It would have been convenient if any non-trivial bound on our problem could
be obtained using the bit-fixing technique. Unfortunately, Akshima et al. [3]
observed that finding short collisions is relatively easy in the bit-fixing model.
Hence, the only remaining potentially helpful technique is based on compression.
Indeed, Akshima et al. [3], as their primary technical contribution, managed to
carry out such an argument for the particular case of B � 2, and already then
their proof is highly non-trivial and consists of a tedious case analysis. We distill
some of the main ideas underlying their general framework approach8 next—this
will be useful for us, as well.

The framework. We reduce the task of handling arbitrary pS, T q-adversaries to
the problem of handling pS, T q-adversaries, where the preprocessing part A1 is
degenerate and outputs a fixed string σ, independent of h. Specifically, we define
a game, parameterized by u P N¡0, where A2 has an arbitrary size S string σ
hard-coded, and its goal is to find a collision relative to a given salt. A2 wins
the game if it succeeds in finding a collision when executed with every one of u
uniformly random salts (there is no A1 in this game). The reduction shows that

7 Specifically, it is impossible to save w bits of information about a random string,
except with probability 2�w.

8 We note that [7] introduced an equivalent framework in independent work.
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if A2 has advantage ε in the modified game, then the best advantage of an pS, T q-
adversary in the original game is (roughly) Opε1{uq for u � S. This reduction,
formalized in Lemma 4.1, is adapted from Akshima et al. [3] and it uses the
beautiful “constructive Chernoff bound” of Impagliazzo and Kabanets [22].9

The advantage of considering the new game is that there is no A1, so it is
easier to handle. But, to obtain a meaningful result for the original pS, T q game,
say an upper bound of ε, we need to prove a somewhat stronger upper bound for
the new game, that is, roughly εu. This means, in other words, that we need to
show how to compress about logp1{εq bits per each one of the u salts. (Actually,
keep in mind that it suffices to achieve this on average!) For our target ε, we
therefore have the following goal.

Main challenge: For every one of the u salts, we need to “save/compress” (on
average) roughly the following number of bits:

log

�
min

"
N

uT plog uq2pB�2qB2
,
N

T 2

*

.

By impossibility of non-trivial compression, this would imply that A2 must suc-
ceed with probability at most

ε ¤ O

��
uT plog uq2pB�2qB2

N
�
T 2

N


u�
,

which would give our result when plugged into the framework.

The compression argument. The random string that we shall compress con-
sists of the set of salts denoted U , as well as the function h. We give encoding and
decoding algorithms that use A2 first to encode the pair pU, hq and then use the
result to fully decode them whenever A2 wins the game. If A2 wins with good
enough probability, the output of the encoding procedure will be non-trivially
short with good probability, which is a contradiction.

Remark 1. Akshima et al. [3] used the same approach for B � 2, but their proof
does not seem to scale for larger values of B. Specifically, their proof involves
an exhaustive case analysis. It seems like a naive attempt to generalize their
bound to larger values of B would proliferate the number of cases needed to
be analyzed, making it unmanageable. One of our key conceptual insights is a
structural characterization of collisions in MDh that prevents this explosion in
the number of cases needed to be handled. While our analysis applies to any B,
the number of total cases we consider is roughly the same as Akshima et al.

A first attempt and a glimpse at the challenge. Let us make a strong
(and typically false) assumption: the adversary A2 never repeats any query to h

9 The use of this reduction is the main (and perhaps only) point of similarity between
our proof and [3]’s.
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tip

bottom bodytail

top body

Fig. 1: A mouse structure. For ease of visual representation we do not draw the
nodes and edges of the graph, instead represent it as a continuous structure.

across all the u runs.10 Since we can assume (w.l.o.g) that if A2 outputs pα, α1q
when run on salt a, it has queried h at all values needed to compute MDhpa, αq
and MDhpa, α

1q, we are guaranteed that for each of the salts u P U there are
at least two distinct queries which have the same answer, i.e., a collision. The
indices of these queries reside in rT s as this is the query complexity of A2 when
executed on the particular salt a. Thus, we could avoid encoding the answer
of the second query and instead encode these two indices in T and remove the
answer of the second query from evaluations of h. This saves us logpN{T 2q bits
for every salt, giving us even more savings than what we are aiming for. Such
compression, in turn, would imply that the birthday attack is optimal, no matter
what B is (which makes sense given our assumption but is clearly false for general
attackers).

A naive way to get rid of the assumption (that queries never repeat across
different u runs) would be to encode the index of the other query among all
uT queries made (instead of T ). But, this would eventually result in another
multiplicative S term in our bound. Namely, we would only be able to save
logpN{pST 2qq bits per salt which is too little for us (as it leads to a trivial upper
bound). This motivates us to look more closely at how MD collisions are formed,
what kind of queries could be involved, and how we could leverage the fact that
collisions are short to get more efficient encoding.

The mouse structure and query types. We consider the graph implicitly
formed through the queries made by A2 when running on salts a1, . . . , au P U .
The nodes of the graph are the possible salts and there is a directed edge from
salt a to a1 with label α if hpa, αq � a1 and this query was made by A2.

Suppose that A2, when run on salt ai, outputs pα, α1q. Since A2 wins on every
salt in U , its output on salt ai, denoted α, α1 must satisfy: (1) MDhpai, αq �
MDhpai, α

1q, (2) α � α1, and (3) α, α1 are at most B blocks long. Without
loss of generality we can assume that the adversary A2 outputs a “minimal”
collision, i.e., one that does not contain a prefix which is a collision by itself.

10 While we can assume without loss of generality that A2 does not repeat queries
within a single execution (since it is not memory-bounded), it is not very reasonable
to assume that it will never repeat queries across different executions on different
salts.
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For instance, say the collision is x1, x2, x3, x4, x5, x6 and y1, y2, y3, y4, y5, y6 (wrt
salt a) and it happens that x1, x2, x3, x4 and y1, y2, y3, y4 already collide (wrt
same salt a), we can simply ignore x5, x6, y5, y6. Considering the core sub-graph
of the query graph that is induced by queries made by A2 that are required to
evaluate MDhpa, αq and MDhpa, α

1q, we obtain a structure that we call a mouse
structure. Important parts of the mouse structure are the tail, top and bottom
body, and the tip, as depicted in Fig. 1. Our entire approach is based on studying
these mouse structures to come up with encoding strategies.

Given the concept of a mouse structure and our discussion from above about
the adversary, possibly repeating queries motivates us to classify each query into
one of three types. The first is called new and refers to queries made for the first
time. The rest of the queries are called repeated, and they are further classified
into two types, depending on whether they previously appeared in some mouse
structure or not. Specifically, a repeated query is called repeatedMouse if the
same query was already made by A2 when executed on a previous salt, and
otherwise, a repeated query is called repeatedNonMouse.

Intuitively, we want to save bits when the answer of a new query was the
input salt of a repeated query. A repeatedMouse query facilitates such savings
since we can encode the answer to the query by storing its index along with
the index of the previous query and the corresponding index within the mouse
structure—a total of � logpuTBq bits instead of logN—which eventually turns
into an STB{N term in the upper bound, as conjectured. The problem is with
encoding repeatedNonMouse queries—there seems to be no trivial way to
write the index of the previously-made query with less than logpuT 2q bits, which
is too much (since it will eventually turn into a ST 2{N term in the upper bound).

Some “easy” mouse structures. We observe that some cases of mouse struc-
tures readily give us a way to have efficient encoding and save sufficiently many
bits. We offer three examples to convey intuition on how our analysis is done.
Throughout, let us assume that every mouse structure contains at least one new
query—otherwise, we will ignore this mouse structure altogether.11

As a first example, if two new queries form the tip of the mouse structure
of salt aj , we can simply encode the index of these queries within the queries
made while handling this salt—this uses 2 log T bits instead of logN bits which
is sufficient. As another example, if a self-loop forms the body of the mouse
structure and the self loop query is new or repeatedNonMouse, we can simply
encode the index of the self loop query in the list of queries used to handle this
salt and avoid encoding the answer of the query—this uses logpuT q bits instead
of logN which is again sufficient. As the last example, suppose the answer to
a new query is a salt that appeared in some earlier mouse structure. In this
case, we can avoid encoding the answer of the new query and instead encode

11 In the technical section, we refer to salts aj in U that were not the input salt of a
query when running A2 on ai for i   j as fresh. It follows that mouse structures for
fresh salts will always have a new query. For salts that are not fresh, it is relatively
straightforward to achieve some compression by avoiding storing these salts in the
encoding of U . For now, the reader can imagine that all salts are fresh for simplicity.
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a2

a1

Fig. 2: An example of a “hard” mouse structure. The new queries are drawn in
red, repeatedMouse queries are drawn in blue and the repeatedNonMouse
queries are drawn in green.

the index of the query and which of the salts in the previous mouse structures
is the answer—this uses logp2uBq bits (because there are at most 2B salts in
mouse structures and at most u mouse structures) instead of logN which is also
sufficient.

Some “hard” mouse structures. The aforementioned easy cases give rise
to a relatively easy encoding that results in an optimal STB{N term. Next,
we focus on the more complex cases, which cause our bound to have the extra
� B � plogSqB factor.

Assume that there is a mouse structure where there are two salts a1 and a2

such that a1 is the input salt to a repeatedMouse query, a2 is the answer
to a new query, and the path from a2 to a1 in the mouse structure consists of
only repeatedNonMouse queries (as shown in Figure 2). By definition, the
distance between a1 and a2 is at most B.12 Potential savings could be achieved by
not encoding a2, the answer of the new query, as it can essentially be extracted
from already-observed queries. We can easily encode the appropriate index of
the query in the mouse structure and the salt a1 using roughly logpuBq bits, but
how can we encode the information about the path back from a1 to a2?

The non-triviality is that for each node on this path, there might be many
possible ways to reach it among all the different queries that have been already
made, i.e., if each node on this path has fan-in m, namely an m-multi-collision,
then the natural encoding of the path back would cost at most logpmBq bits,
specifying which back edge to take for every node. Here, m could be very large,
e.g., as large as S or even larger, making the whole result meaningless for most
reasonable parameters settings. (We also need to encode the length of the path,
which would lead to the additional multiplicative B factor, but we ignore it in
the discussion here.)

We get around this problem of m potentially being very large by observing
that one of the following two cases holds:

– Many small multi-collisions: either the fan-in of every node along the path
(i.e., the number of previously-made queries whose result is a node on this
path) is smaller than log u, or

– One large multi-collision: there is (at least one) node on the path where the
fan-in is at least log u.

12 By being slightly more careful, we can show that the distance is B�2 but we ignore
this fact for the overview.



12 Ashrujit Ghoshal and Ilan Komargodski

In the earlier case, we encode the path back as mentioned above, where we
write the index of each back edge. This costs us B �log log u bits, which eventually
translates to an extra plogSqB term,13 as we have in our main theorem. The
question is, what do we do when the second case occurs.

The idea is to leverage the fact that there is a large multi-collision and ob-
tain our savings from a completely different place. Specifically, we remember the
index of all the queries involved in the multi-collision and the common answer.
A calculation reveals that if the collision consists of � log u edges, we can al-
ready save enough. One subtlety is that the same multi-collision might repeat
throughout many different mouse structures, and we need to make sure not to
double count the savings from a single multi-collision more than what we get.
The reason why we do not double count is that a single large-enough (i.e., with
log u edges) multi-collision saves us enough bits for about log u different struc-
tures, and at the same time, such a multi-collision can appear in at most log u
mouse structures.14

Let us finally remark that while the above description conveys the main idea
underlying our compression strategy, it is somewhat simplified and glossed over
many technicalities and the complete specification of all possible cases that our
full proof covers. We refer to Section 5 for full details.

Proving the STB conjecture for S �B ! T . The proof of our second upper
bound follows the same overall structure. The only difference is, naturally, in the
way we encode reverse paths in mouse structures that have nodes corresponding
to repeatedNonMouse queries between the output a2 of a new query and a
node a1 corresponding to a repeatedMouse query.

In the earlier proof, when we needed to locate the salt a2 from salt a1, we
encoded the number of edges in between and all the edges on the path. Here, we
prove a purely graph-theoretic lemma saying that if for salt a1 there are more
than � u2 salts a2 such that there are d ¡ 0 edges on the shortest path back
from a1 to a2 in the query graph, then there must be t ¥ 1 multi-collisions in the
graph, such that the total number of edges involved in the t multi-collisions is
at least � u2. While the proof of this lemma is a simple inductive argument, it
turns out to be extremely helpful for us. Specifically, if there are t ¥ 1 different
multi-collisions such that a total of at least � u2 different queries are involved in
the t multi-collisions, we can save enough by only encoding these multi-collisions
and nothing else. To prove this fact, we consider the minimum savings we can get
from encoding these t multi-collisions. We show using some elementary calculus
that if there are � u2 queries involved in t different multi-collisions, the minimum
saving is more than the total amount of savings we need.

Equipped with this fact, we split our analysis into the two following scenarios.

13 Remember that the actual term is plogSqB�2 and that is why the proof of Akshima
et al. [3], in which it was assumed that B � 2, did not have an extra term that
depends on S.

14 We mention that multi-collisions in hash functions have been studied on their own
right (e.g., [23,14]), but our context is totally different.
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Game Gai-cr
N,M,BpA � pA1,A2qq

1. hÐ$ FcsprN s � rM s, rN sq
2. aÐ$ rN s
3. Return AI-CRh,apAq

Subroutine AI-CRh,apA � pA1,A2qq

1. σÐ$ A1phq
2. pα, α1q Ð$ Ah

2 pσ, aq
3. Return true if:

(a) α � α1,
(b) α, α1 consist of ¤ B blocks from rM s,
(c) MDhpa, αq � MDhpa, α

1q
4. Else, return false

Fig. 3: The bounded-length collision resistance game of salted MD hash in the
AI-ROM, denoted Gai-cr

N,M,B .

1. The first is where for each case where we need to encode the location of a2

from a1 at a distance d, there are at most � u2 salts – here we simply encode
the index of the “right” a2 using � log u2 bits.

2. The other scenario is when for at least one case, there are more than � u2

salts. Here we can save enough by encoding the t multi-collisions involving at
least � log u2 that the graph-theoretic lemma guarantees us. We get enough
savings by only encoding these t multi-collisions.

The u2 term from the first scenario above turns into an additional factor of
the form S2 in the final bound. Due to additional technicalities that we glossed
over during this overview, we suffer another multiplicative factor S in our bound,
which amounts to having an S4 term. Full details appear in Section 6.

3 Preliminaries

For a positive integer N P N¡0, let rN s � t1, 2, . . . , Nu and for k P N such that

k ¤ N , let
�
rNs
k

�
denote the set of k-sized subsets of rN s. For a set X, let |X|

be its size and X� denote one or more elements of X. We denote FcspD,Rq the
set of all functions mapping elements in D to the elements of R. We let xÐ$ D
denote sampling x according to the distribution D. We let � denote a wildcard
element. For example p�, zq P L is true if there is an ordered pair in L where z
is the second element (the type of the wildcard element shall be clear from the
context). If D is a set, we overload notation and let xÐ$D denote uniformly
sampling from the elements of D. For a bit-string s we use |s| to denote the
number of bits in s.

When referring to directed graphs in this paper, we mean directed multi-
graphs, i.e., these directed graphs might have parallel edges. All logarithms in
this paper are for base 2 unless otherwise stated.

Auxiliary-input Random Oracle Model (AI-ROM). We use the Auxiliary-
Input Random Oracle Model (AI-ROM) introduced by Unruh [30] to study non-
uniform adversaries in the Random Oracle Model. This model is parameterized
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by two non-negative integers S and T and an adversary A is divided into two
stages pA1,A2q. Adversary A1, referred to as the preprocessing phase of A, has
unbounded access to the random oracle h and outputs an S-bit auxiliary input
σ. Adversary A2, referred to as the online phase, gets σ as input and can make
T queries to h, attempting to accomplish some goal involving the function h.
Formally, we say that A � pA1,A2q is an pS, T q-AI adversary if A1 outputs S
bits and A2 issues T queries to its oracle. We next formalize the salted-collision
resistance of MD hash functions in AI-ROM.

Salted short collision resistance of MD in AI-ROM. We formalize the
hardness of bounded-length collision resistance of salted MD hash functions in
the AI-ROM. The game is parametrized by N,M , and B. The game first samples
a function h uniformly at random from FcsprN s�rM s, rN sq and a salt a uniformly
at random from rN s. Then, A1 is given unbounded access to h, and it outputs
σ. At this time, A2 is given the auxiliary input σ, a salt a, as well as oracle
access to h, and it needs to find α � α1 such that (1) |α|, |α1| ¤ B �M , and (2)
MDhpa, αq � MDhpa, α

1q. This game, denoted Gai-cr
N,M,B , is explicitly written in

Fig. 3. In Fig. 3, we write the adversary’s execution in its own subroutine only
for syntactical purposes (as we shall use it later in our proof).

Definition 1 (AI-CR Advantage). For parameters N,M,B P N, the advan-
tage of an adversary A against the bounded-length collision resistance of salted
MD in the AI-ROM is

Advai-crMD,N,M,BpAq � Pr
�
Gai-cr
N,M,BpAq � true

�
For parameters S, T P N, we overload notation and denote

Advai-crMD,N,M,BpS, T q � max
A

!
Advai-crMD,N,M,BpAq

)
,

where the maximum is over all pS, T q-AI adversaries.

The compression lemma. Our proof uses the well-known technique of finding
an “impossible compression”. The main idea, formalized in the following propo-
sition, is that it is impossible to compress a random element in set X to a string
shorter than log |X | bits long, even relative to a random string.

Proposition 1 (E.g., [13]). Let Encode be a randomized map from X to Y
and let Decode be a randomized map from Y to X such that

Pr
xÐ$ X

rDecodepEncodepxqq � xs ¥ ε.

Then, log |Y| ¥ log |X | � logp1{εq.

4 The Framework: Reducing the Problem to a
Multi-instance Collision Finder

Our task here is to upper-bound the advantage of an adversary in finding a short
collision in a salted MD, according to the game Gai-cr

N,M,B described in Figure 3.
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First, without loss of generality, in what follows, we assume that the adversary
is deterministic. This follows since we can transform any probabilistic attacker
into a deterministic one by hard-wiring the best randomness (see Adleman [2]).

We reduce the task of bounding the advantage of an attacker in finding a short
collision in a salted MD, according to the game Gai-cr

N,M,B , to a “multi-instance”
game where the adversary does not have a preprocessing phase but instead
only has a non-uniform auxiliary input, chosen before the random oracle h. The
latter game is easier to analyze. Although the statement and reduction below
were implicit in the work of Akshima et al. [3], we make it formal and hopefully
useful for future works.

We define the following “multi-instance” game Gmi-cr
N,M,B,upσ,A2q, where the

preprocessing part of the adversary A1 is degenerate and outputs the fixed string
σ. More precisely, the game has the following steps:

1. hÐ$ FcsprN s � rM s, rN sq

2. U Ð$

�
rNs
u

�
3. Define A1 to be the algorithm that always outputs the string σ.
4. Return true if AI-CRh,apA � pA1,A2qq � true for every a P U . Otherwise,

return false.

For a string σ and an adversary A2, define

Advmi-cr
MD,N,M,B,upσ,A2q � Pr

�
Gmi-cr
N,M,B,upσ,A2q

�
.

Lemma 4.1. Fix N,M,B, S, T, u P N¡0. Then,

Advai-crMD,N,M,BpS, T q ¤ 6 �

�
max
σ,A2

!
Advmi-cr

MD,N,M,B,upσ,A2q
)
 1

u

� 2S�u,

where the maximum is taken over all σ P t0, 1uS and T -query algorithms A2.

The proof of this lemma is similar to a proof that appears in [3]. For complete-
ness, we provide the full details in the full version [19].

5 Proving the STB Conjecture for B P Op1q

This section proves an upper bound on the advantage of any auxiliary-input
adversary in the bounded-length collision resistance game of salted MD hash in
the AI-ROM. The main theorem is stated next.

Theorem 5.1. Let C � 216 � 6 � e2. For any N,M,B, S, T P N¡0 and fixing
Ŝ :� S � logN , it holds that

Advai-crMD,N,M,BpS, T q ¤ C �max

$'&
'%
�
�� ŜTB2

�
3e log Ŝ

log log Ŝ

	2pB�2q

N

�
�
,�T 2

N


,/.
/-�

1

N
.
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Theorem 5.1 follows as a direct corollary of Lemma 4.1 together with the
following lemma and setting u � S � logN .

Lemma 5.1 (Hardness for a multi-instance collision finder). Fix N ,
M , B, S, T , u P N¡0 and σ P t0, 1uS. Then, for any A2 that makes at most T
queries to its oracle, it holds that

Advmi-cr
MD,N,M,B,upσ,A2q ¤�

216e2 �max

"�
uTB2p3e log u{ log log uq2pB�2q

N



,

�
T 2

N


*
u
.

The rest of this section is devoted to the proof of Lemma 5.1. Unlike the proof
of Lemma 4.1, the proof of this lemma is novel and differs completely from that
of Akshima et al. [3]. The key conceptual insight is a structural characterization
of collisions in MDh that prevents the explosion in the number of cases that [3]
faced during the case analysis.

We are interested in bounding the advantage of the best strategy, i.e., a
pair pσ,A2q where σ P t0, 1uS is a fixed string and A2 is a T -query algorithm,
of finding bounded-length collisions in a salted MD with respect to the game
Gmi-cr
N,M,B,upσ,A2q. Recall that in this game, A2 needs to find proper collisions for

u randomly chosen salts, denoted U . The main idea in the proof is to use any
such adversary pσ,A2q to represent the function h as well as the set of random
salts U with as few bits as possible. If the adversary is “too good to be true,”
we will get an impossible representation, contradicting Proposition 1.

Non-trivial range. If either

T 2

N
¡ 1 or

uTB2p3e log u{ log log uq2pB�2q

N
¡ 1,

then Lemma 5.1 is trivially true. Hence, from now on we assume that both of
the above left hand side terms are upper bounded by 1.

Setup. Denote

ζ� :�

�
216e2 �max

"�
uTB2p3e log u{ log log uq2pB�2q

N



,

�
T 2

N


*
u
.

Assume the existence of an adversary A � pσ,A2q, where σ P t0, 1uS is a string
and A2 is a T -query adversary, that contradict the inequality stated in the
lemma. That is, there is ζ ¡ ζ� such that

Advmi-cr
MD,N,M,B,upAq :� ζ ¡ ζ�. (1)

Define G to be the set of functions-sets of salts pairs for which the attacker
succeeds in winning the game for every salt in the set relative to the function,
That is,

G �

#
pU, hq

����� U P
�
rNs
u

�
,

h P FcsprN s � rM s, rN sq,
@a P U : AI-CRh,apAq � true

+
.
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Recall that ζ is defined to be the advantage of A in the game Gmi-cr
N,M,B,upAq in

which h and U are chosen uniformly, and then A needs to find a collision with
respect to every one of the u salts in U . Therefore,

|G| � ζ �

�
N

u



�NMN .

In what follows we define an encoding and a decoding procedure such that the
encoding procedure gets as input U, h such that U P

�
rNs
u

�
and h P FcsprN s �

rM s, rN sq, and it outputs an L bit string, where L � log
�
ζ� �

�
N
u

�
�NMN

	
. The

decoding procedure takes as input the string L and outputs U�, h�. It will hold
that U� � U and h� � h with probability ζ.15 Using Proposition 1, this would
give us that

log ζ ¤ L� log

��
N

u



�NMN



ùñ ζ ¤ ζ�

which is a contradiction to the assumption (see (1)).

Notation and Definitions. Fix pU, hq P G. Let U � ta1, . . . , auu where the ai’s
are ordered lexicographically. Let Qrspaq P prN s � rM sqT be the list of queries
that A2 makes to h when executed with input pσ, aq. Namely, for a P rN s,

Qrspaq �
 
pa1, α1q P rN s � rM s | A2pσ, aq queries h on pa1, α1q

(
.

Note that Qrspaq is indeed a set as we can assume (without loss of generality)
that A2 never repeats queries in a single execution (since A2 can just store all
of its past queries).

We say that a1 P Sltspaq if there is some α1 P rM s such that pa1, α1q is an
entry in Qrspaq. Namely, for a, a1 P rN s,

a1 P Sltspaq ðñ Dα1 P rM s s.t. pa1, α1q P Qrspaq.

We define the set of fresh salts in U . A salt ai for i P rus is called fresh if it was
never used as the salt in any query performed by A2 while being executed on
salts aj for j ¤ i�1 which are fresh. The first salt a1 is always fresh. A salt ai for
i ¥ 2 is fresh if for any fresh aj for j ¤ i� 1, ai R Sltspajq. Namely, denoting the
set of fresh salts by Ufresh, we have the following inductive (on i P rus) definition:

ai P Ufresh ðñ @j ¤ i� 1, aj P Ufresh : ai R Sltspajq.

Looking ahead, we define Ufresh like this because we run A2 on the salts in Ufresh

in lexicographical order, and this definition ensures that each salt that A2 is
executed on was not queried by it previously. Denote

F :� |Ufresh| and Ufresh � ta11, . . . , a
1
F u (ordered lexicographically).

15 Essentially, we will show that for all pU, hq P |G|, if the encoding procedure produces
output L, then the decoding procedure on input L outputs U�, h� such that U� � U
and h� � h.
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Denote

@i P rF s : Qi :� Qrspa1iq and Qfresh :� Q1 } . . . }QF ,

where } is the concatenation operator. Let Qfreshrrs be the rth query in the list
Qfresh. Note that r P rF � T s. For every a P UzUfresh, let ta be the minimum value
such that Qfreshrtas is a query with salt a. Define the set of prediction queries as

P :� tta | a P UzUfreshu.

The encoding algorithm will output Ufresh,P, which suffices to recover the set U
by running A2.

We let h̃ be the list of hpa, αq values when executed on distinct queries in
Qfresh, in the same order as they appear in Qfresh, followed by the evaluation of
h on the following values in lexicographical order of the inputs.

tpa, αq : a P rN s, α P rM suzQfresh .

Therefore, h̃ is initialized to contain the evaluation of h at all points in its domain.
Looking ahead, in the encoding procedure, we will remove elements from h̃ as
needed to compress h.

Function and Query graphs. A notion that will be useful is that of a “function
graph”.

Definition 2 (Function graph). For a function h : rN s�rM s Ñ rN s, consider
the following directed graph: it has N nodes labelled with elements of rN s and
each node has exactly M outgoing edges, each labelled with elements of rM s.
There is an edge from node ai to aj labelled α if and only if hpai, αq � aj.

We define the notion of query graph for an adversary as follows.

Definition 3 (Query graph). Execution of an adversary A2 on salts a11, . . . , a
1
F

defines a query graph as follows. Initially the graph is empty. Whenever A2

queries pa, αq to h, we add a node with label a if not already present and add an
edge pa, hpa, αqq with label α if not already present.

Fact 5.2 The query graph is always a sub-graph of the function graph of h.

Structure of collisions: The mouse structure. Since adversary A2 succeeds
on all of the salts in U , it holds that for every j P rF s, the output of the
adversary is pαj , α

1
jq such that αj � α1j , MDhpaj , αjq � MDhpaj , α

1
jq and both

αj , α
1
j are at most B blocks long. We can assume without loss of generality

that the colliding messages αj and α1j are “minimal” (because otherwise, we
can trim αj , α

1
j to obtain a shorter collision). The evaluations of h in order to

compute MDhpa
1
j , αjq and MDhpa

1
j , α

1
jq induce a structure that we call a mouse

structure as shown in Fig. 4. More explicitly, suppose the output of the A2 is
pαj � pαj,1, . . . , αj,B1

q, α1j � pα1j,1, . . . , α
1
j,B2

qq for B1, B2 ¤ B such that αj,i �
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α1j,i for all 1 ¤ i ¤ k where k ¥ 0. Define px1, . . . , xk, y1, . . . , yk1 , z1, . . . , zk2q
where k1 � B1 � k, k2 � B2 � k as follows.

x1 � hpa1j , αj,1q , xi � hpxi�1, αj,iq for 1   i ¤ k

y1 �

#
hpa1j , αj,1q if k � 0

hpxk, αj,k�1q otherwise
, yi � hpyi�1, αj,i�kq for 1   i ¤ B1 � k

z1 �

#
hpa1j , α

1
j,1q if k � 0

hpxk, α
1
j,k�1q otherwise

, zi � hpzi�1, α
1
j,i�kq for 1   i ¤ B2 � k

Then px1, . . . , xk, y1, . . . , yk1 , z1, . . . , zk2q form a mouse structure as specified in

tip

z1, . . . , zk2
bottom body

x1, . . . , xk
tail

y1, . . . , yk1
top body

Fig. 4: A mouse structure. For ease of visual representation we do not draw the
nodes and edges of the graph, instead represent it as a continuous structure.

Figure 4. Without loss of generality, we can assume that the mouse structure is
present in the query graph of A2 before it outputs the answer for salt a1j . We
refer to this structure as the mouse structure for salt a1j .

We define MouseQrsj to be the set of queries in the mouse structure. Similarly,
we define MouseSltsj as the set of salts that comprise the mouse structure. By
definition, 1 ¤ |MouseQrsj |, |MouseSltsj | ¤ 2B.

Classifying queries. We classify every one of the queries in Qfresh into one
of 3 types by scanning through them in order. Recall that Qfresh consists of F
blocks, each consisting of T queries. Each block contains a mouse structure as in
Figure 4. The first type of query is called new. A new query did not appear in
any previous block. Non-new queries are called repeated and they are classified
further into one of 2 types: repeatedMouse, and repeatedNonMouse. A
query pa, αq would be a repeatedMouse query if it was made as part of a mouse
structure during some earlier salt in Ufresh. Lastly, a repeatedNonMouse query
is one that was made before but is not part of any mouse structure. That is,

1. new: A query with index r P rF � T s is new if there does not exist r1   r
such that Qfreshrr

1s � Qfreshrrs.
2. A non-new queries is called repeated. We classify the latter into two subcat-

egories:
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(a) repeatedMouse: A query in Qj with index s P rT s such that hpQjrssq �
a is repeatedMouse if it is not new and Qjrss P MouseQrsi for some
i   j.

(b) repeatedNonMouse: A query in Qj with index s P rT s such that
hpQjrssq � a is repeatedNonMouse if it is not new, Qjrss R MouseQrsi
for all i   j.

Note that this classification covers all queries made during execution. The fol-
lowing is a simple observation.

Claim 5.3 Every mouse structure has at least one new query.

Proof. For every j P rF s, the queries in Qj with salt a1j are necessarily new
because we defined Ufresh to contain a1j ’s that were not queried earlier by A2

when run on a1i for i   j, and also assumed that A2 does not repeat queries
during a single execution.

5.1 The Compression Argument

As mentioned, our goal is to compress pU, hq, and we will achieve this by using
our collision finding adversary A2. The encoding procedure shall output the set
Ufresh, the set P, the list h̃ with some entries removed and additional lists and
sets. We will be describing the details of these lists and sets below and which
entries we remove from h̃. Our main goal is to show that we are compressing
when we remove entries of h̃ and instead use additional lists and set. Our ways to
compress will depend on the induced mouse structure in each Qj for j P rF s. To
this end, we first classify the mouse structures into six broad cases. We classify
the jth mouse structure for each j P rF s into the first of the following six cases
it satisfies, e.g., if a mouse structure satisfies both cases 2 and 3, we categorize
it into 2.

1. There is a new query pa, αq such that hpa, αq � a.
2. There are two distinct new queries pa1, α1q, pa2, α2q such that hpa1, α1q �
hpa2, α2q.

3. There is a new query pa, αq such that hpa, αq � a1 and a1 P MouseSltsi for
some i   j.

4. There is a repeatedNonMouse query pa, αq such that hpa, αq � a.
5. There is at least one salt a such that a P MouseSltsi for some i   j and there

is a path of at most B � 2 edges in the mouse structure from a back to a1

where a1 is an answer to a new query.
6. There are no repeatedMouse queries in the mouse structure.

Note that these cases cover all mouse structures.

Claim 5.4 Every mouse structure can be categorized into one of the cases 1
to 6.
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Proof. We will show that if a mouse structure does not satisfy case 6, it has
to satisfy case 5, which suffices to prove our claim. Since the mouse structure is
not in 6, it has a repeatedMouse query. Let the input salt of this query be
a. Moreover, since the first query of the mouse structure has to be new, let the
answer salt of this query be a1. Since the longest path in the mouse structure is
of length B, it follows that there are at most B�2 edges in the mouse structure
between a and a1. Hence, case 5 is satisfied.

Compression budget. Recall that we need to prove that the size of the output
of the encoding procedure is

L � log

��
216e2 �max

#�
uTB2m

2pB�2q
0

N

�
,

�
T 2

N


+�u
�

�
N

u



�NMN

�

bits, where m0 � 3e log u{ log log u. In other words, we need to show that the
encoding procedure saves at least

u � log

�
min

#
N

4T 2
,

N

4uTB2m
2pB�2q
0

+�
� 2u log e� 14u (2)

bits overall.

Required savings in h̃. As mentioned earlier, the output of the encoding
algorithm will consist of Ufresh,P, h̃, and some additional sets and lists. The lists
Ufresh and P will suffice to recover the set U . The list h̃ and the additional sets
and lists are used to recover h.

Denoting |Ufresh| � F and |U | � u, we can describe P using
�
FT
u�F

�
bits.

Therefore, U , which is trivially described using log
�
N
u

�
bits, can be encoded

using log
��

FT
u�F

��
N
F

�	
bits.Therefore, the saving in bits in the description of U

is at least
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where the first inequality uses the basic bounds for binomial coefficients pn{rqr ¤�
n
r

�
¤ pen{rqr, and the last inequality follows since @x ¥ 0: x ¤ 2x, and u ¥ F .
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By subtracting (3) (how much we save in U) from (2) (how much we need to
save in total), it suffices to show that we save at least

u � log

�
min

#
N

4T 2
,

N

4uTB2m
2pB�2q
0

+�
� 2u log e

� 14u� pu� F q log

�
N

uT



� u log 4e

bits while encoding h. Since logpN{uT q ¥ log
�

min
!
N{4T 2, N{4uTB2m

2pB�2q
0

)	
,

this is at most the following number of bits.

F � log

�
min

#
N

4T 2
,

N

4uTB2m
2pB�2q
0

+�
� u log e� 12u (4)

To show that the compression indeed achieves the savings from (4), we will
show that for every salt in Ufresh, we can save at least the following number of
bits, except for a few cases.

log
�

min
!
N{4T 2, N{4uTB2m

2pB�2q
0

)	
.

In the rare cases where we cannot save as much, we will incur a small penalty.
We will show that the cumulative penalty we incur is at most 7u� u log e bits.
Additionally, we will label each of the salts in F with a few bits that describe its
“type” (according to the cases described above – case 5 will have 3 subcategories,
and case 6 will have 10 subcategories), and for this 5 bits will suffice. This will
cost, in total, another 5u bits, and therefore the total size of the encoding will
indeed be bounded by the term from (4).

We now describe the details of how we handle each case. Assuming that the
mouse structure for salt a1j satisfies a particular case, we describe the encoding
procedure, calculate the amount of compression we get, and then explain how
decoding would work. In Section 5.2 we handle Cases 1 to 4, in Section 5.3,
we handle case 5, and lastly in the full version [19], we handle case 6. Here we
describe the details such that they are locally verifiable. We do provide the full
pseudocode of encoding and decoding in the full version [19].

5.2 Handling Cases 1 to 4

In each of the four cases below, we will be saving more bits than we need, i.e.,

more bits than log
�

min
!
N{4T 2, N{4uTB2m

2pB�2q
0

)	
.

Case 1. The jth mouse structure contains a new query pa, αq such that hpa, αq �
a, as depicted in Fig. 5a. The encoding procedure stores the index of the query
pa, αq in Qj in a list L1 and removes the entry hpa, αq from h̃.

In decoding, if the current (jth) salt is categorized as case 1, then it removes
the front index in the list L1, and denote the index by i. It answers the ith h
query, denoted pa, αq, with a and sets hpa, αq � a.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 5: Cases 1 to 4. The new queries are drawn in red, the repeatedMouse
queries are drawn in blue, and the repeatedNonMouse queries are drawn in
green. The black dashed lines indicate zero or more queries of any type.

Since the index of the query pa, αq in Qj is in rT s, and we remove one element

of h̃, we save logpN{T q which is more than what we need to save.

Case 2. The jth mouse structure contains two distinct new queries pa1, α1q,
pa2, α2q such that hpa1, α1q � hpa2, α2q, and pa1, α1q is queried before pa2, α2q.
This is depicted in Fig. 5b. The encoding procedure stores the pair indices of
the queries pa1, α1q, pa2, α2q in Qj in a list L2 and removes the entry hpa2, α2q

from h̃.
In decoding, if the current (jth) salt is categorized as case 2, then it removes

the front element pi1, i2q in the list L2. Suppose that the i1th h query while
running on salt a1j is on pa1, α1q. The decoding procedure gets the answer to this

query from h̃. It answers the i2th h query on pa2, α2q with hpa1, α1q and sets
hpa2, α2q � hpa1, α1q.

Since the pair of indices of the queries pa1, α1q, pa2, α2q in Qj are in rT s, and

we remove one element of h̃, we save logpN{T 2q bits which is more than what
we need to save.

Case 3. The jth mouse structure contains a new query pa, αq such that hpa, αq �
a1 and a1 P MouseSltsi for some i   j. This is depicted in Fig. 5c. The encoding
procedure stores the tuple consisting of i, the index of the query pa, αq in Qj ,
and the lexicographical order of a1 in MouseSltsi in a list L3 and removes the
entry hpa, αq from h̃.

In decoding, if the current (jth) salt is categorized as case 3, it removes the
front element pi1, i2, i3q in the list L3. Suppose the i2th h query while running
on salt a1j is on pa, αq. It answers the query with a1 such that a1 is the salt in
MouseSltsi1 whose lexicographical order is i3. It sets hpa, αq � a1.

Since i P rF s, F ¤ u, the index of pa, αq in Qj is in rT s, the lexicographical

index of a1 in MouseSltsi is in r2Bs, and we remove one element of h̃, we save
logpN{p2uTBqq bits which is more than what we need to save.

Case 4. The jth mouse structure contains a repeatedNonMouse query pa, αq
such that hpa, αq � a. This is depicted in Fig. 5d. The encoding procedure stores
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the smallest index of the query pa, αq in Qfresh in a set S and removes the entry
hpa, αq from h̃. Note that we never add an index corresponding to the same
query multiple times to S. Indeed, if an index associated with pa, αq already
appears in S, the next query on pa, αq will be a repeatedMouse query and not
a repeatedNonMouse one, meaning that it cannot be added to S again.

In decoding, if the current (jth) salt is categorized as case 4, it checks for
every h query on pa, αq whether S contains the index of the query in Qfresh. If so
it answers with a and sets hpa, αq � a.

Since the smallest index of the query pa, αq in Qfresh is in rFT s, and we remove
one element of h̃, we save at least logpN{puT qq which is more than necessary.

5.3 Handling Case 5

In this section, we describe our compression strategy in case the jth mouse
structure for salt a1j is categorized as case 5. That is, there is at least one salt d
such that d P MouseSltsi for some i   j and there are at most B�2 edges in the
mouse structure between d and s where s is an answer to a new query. If there
are several possible candidate pairs, we choose one where the number of edges
is the smallest between the source and the destination salt.

Intuition. We refer to the salt s in the answer to the new query as the source
salt, and the salt that appears in some earlier mouse structure as the destina-
tion. We are guaranteed that the path in the mouse structure from the source
salt to the destination salt consists of at most B � 2 edges that are repeated-
NonMouse queries. (There is at least one intermediate edge between the source
and the destination because otherwise, the answer of a new query will be the
input of a repeatedMouse query, in which case this scenario would have been
classified into case 3. Additionally, all the intermediate edges must be repeat-
edNonMouse since we consider the shortest possible path from such source to
such destination.)

Let the new query, whose answer is s, be pa, αq. Suppose the path from
the s to the d in the mouse structure consists of repeatedNonMouse queries
pa1, α1q, . . . , pap, αpq where a1 � s, p ¤ B � 2. The main idea is to avoid en-
coding s � hpa, αq and recover it by encoding the lexicographical order of d in
MouseSltsi and encoding the path required to backtrack from d to s in the query
graph at the time pa, αq is queried, i.e., encoding which of the past queries were
pap, αpq, . . . , pa1, α1q (in this order). The problem is that, in general, the path
back from d to s might be too expensive to encode. This depends on the number
of “other” edges incident on the nodes on the real path back from t to s. If
all nodes on the path have very few edges incident on them, say less than m0

of them, we encode each back edge using logm0 bits per node, which requires
with at most logpBpm0q

B�2q bits for the whole path back (the term B comes
from encoding the length of the path). But, if some node has many adjacent
edges, namely a multi-collision with more than m0 edges, we will need to take
advantage of this fact to obtain our savings (and not encode the path back from
d to s).
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Definition 4 (Large multi-collision). We say that queries q1, � � � , qm form
an m-way multi-collision if all the qi’s are distinct and all the hpqiq are equal. We
say that the multi-collision is large if m ¥ m0, where m0 :� 3e log u{ log log u.

If any of the queries in pap, αpq, . . . , pa1, α1q are involved in a large multi-collision
of repeatedNonMouse queries in the query graph so far, we say we have
“encountered a large multi-collision”. In what follows, we explain how to obtain
the required compression if a large multi-collision was not encountered.

Encoding when no large multi-collision. Suppose that the new query whose
answer is the source salt s is pa, αq, the destination salt is d and d P MouseSltsi
for some i   j. The path back from d to s contains only nodes that have at
most m0 adjacent edges in the corresponding query graph since we have not
encountered a large multi-collision. The encoding procedures constructs a tuple
consisting ofthe index i, the index of query pa, αq in Qj , the lexicographical index
of d in MouseSltsi, and the path back from d to s in the query graph when pa, αq
is queried. It stores the tuple in a list L5. Finally, it removes the entry hpa, αq
from h̃.

In decoding, if the current (jth) salt is categorized as case 5 without a large
multi-collision, it detects the query pa, αq from its index in Qj , then finds the
salt d using the index i and the lexicographical order of d in MouseSltsi, and
finally finds s using the path back from d to s. It answers the query with s.

Since i P rF s, the index of pa, αq in Qj is in rT s, the lexicographical in-
dex of a1 in MouseSltsi is in r2Bs, the path back from d to s can be en-
coded in logpBpm0q

B�2q bits, and we remove one element of h̃, we save at least
logpN{p2uTB2pm0q

B�2qq bits which is more than necessary.

Encoding with large multi-collision. Suppose that the new query whose
answer is the source salt s is pa, αq, the destination salt is d and d P MouseSltsi
for some i   j. Suppose further that the path back from d to s contains at least
one node that has m ¥ m0 adjacent edges in the corresponding query graph (i.e.,
an m-multi-collision) such that these m edges are repeatedNonMouse queries
when running A2 on aj . First, observe that the multi-collision does not involve a
self-loop. Indeed, if any node in the mouse structure has a repeatedNonMouse
query whose answer is itself, the mouse structure would be classified into case 4,
and therefore we will never reach this case.

At this point, we argue that we can record the multi-collision by encoding
the indices of all queries associated with the multi-collision and the center, and
remove their answers from h̃. To this end, we store logN � log

�
FT
m

�
bits and

remove m logN bits. We have that the saving is at least

m logN � logN � log

�
FT

m
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bits, where the first inequality follows by using the binomial inequality
�
FT
m

�
¤

peFT {mqm, the second inequality follows since F ¤ u, and the last inequality
follows since for m ¥ m0 � 3e log u{ log log u it holds that mm ¥ emu2. Thus,

Claim 5.5 The number of bits saved is at least

pm� 1q � log

�
min

#
N

T 2
,

N

uTB2m
2pB�2q
0

+�
.

Proof. The claim follows since the minimum between the two terms is always
upper bound by N{puT q and upper bounded by N{T 2.

Thus, every m-multi-collision we record allows us to save the number of bits
corresponding to m � 1 mouse structures. It is left to argue that we do not
over-count, namely, that we do not count the removal of the same element from
h̃ twice. Indeed, the same multi-collision may be encountered in several mouse
structures. To this end, observe that if a salt in a mouse structure is the center
of a large multi-collision which we had recorded earlier, we will be in one of the
following two cases:

1. There is a query in this mouse structure whose answer is the center of the
multi-collision, and this query was in an earlier mouse structure.

2. There is a query in this mouse structure whose answer is the center of the
multi-collision, and this query was not in any earlier mouse structure. (Note
that by the structure of collisions, i.e., a mouse structure, there could be
either one such query or two.)

Case 1 need not be handled. The reason is that if the condition in it holds,
then the multi-collision is, in fact, outside of the (shortest) path from the source
to the destination. Therefore the scenario will either be classified as a mouse
structure without a large multi-collision or a different large multi-collision will
be encountered for this mouse structure.

In case 2, first note that when we encounter a multi-collision, we add the
relevant queries to the multi-collision if they were not already recorded and only
then remove the corresponding entry from h̃. Therefore, we never remove any-
thing twice. The last point we need to argue is that the we get enough savings.
Above we showed that we have sufficient saving for m � 1 mouse structures.
Recall that we defined that we encounter a large multi-collision if at least m0

repeatedNonMouse queries are involved in a multi-collision on some path
we care about. It follows from this that a multi-collision of size m will be rele-
vant in at most m �m0 mouse structures- beyond that, it will no longer be a
multi-collision because there will be less than m0 repeatedNonMouse queries
among the queries of the multi-collision. Since m0 ¥ 1, savings for m� 1 mouse
structures is sufficient for us.

Overall, as claimed earlier, case 5 has 3 different further categorizations– no
multi-collisions and the two cases for multi-collisions.

The general ideas required for handling case 6 are similar to what we have
already presented, but there are some subtleties. See full details in the full ver-
sion [19].
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6 Proving the STB Conjecture for SB ! T

This section proves another upper bound on the advantage of any auxiliary-input
adversary in the bounded-length collision resistance game of salted MD hash in
the AI-ROM. The main theorem is stated next.

Theorem 6.1. Let C � 29 � 6 � e4. For any N,M,B, S, T P N¡0 and fixing
Ŝ :� S � logN , it holds that

Advai-crMD,N,M,BpS, T q ¤ C �max

#�
T 2

N



,

�
Ŝ4TB2

N

�+
�

1

N
.

The proof of this theorem mostly mirrors that of Theorem 5.1, except in the
way that few of the cases are handled in the compression argument. Technically,
we derive the following Lemma 6.1 (an analogue of Lemma 5.1), and combine it
with Lemma 4.1 to get the claimed bound in Theorem 6.1.

Lemma 6.1. Fix N,M,B, S, T, u P N¡0, σ P t0, 1uS. Then, for any A2 that
makes at most T queries to its oracle, it holds that

Advmi-cr
MD,N,M,B,upσ,A2q ¤

�
29e4 max

"�
u4TB2

N



,

�
T 2

N


*
u
.

The proof of this lemma is in the same spirit as the proof of Lemma 5.1 with
several key differences. The main difference is how we encode the path back from
a given destination node to the associated source node. In Section 5, we do this
in a somewhat straightforward manner by encoding the length of the path and
then the index of every edge to take, where the index might be large if there is
a large multi-collision associated with that node. Large-enough multi-collisions
were handled separately, so we had a bound (m0 � log u{ log log u) for the range
of the index of each back-edge. In this section, we encode the source node by just
writing its lexicographic index among all possible sources within a given distance
in the query graph. Of course, there might be too many possible sources at a
given distance, making it too expensive to encode. But, and this is our main
technical observation in this section, if there are too many possible sources, then
there must be many large multi-collision, and therefore we can save enough bits
by taking advantage of it.

We proceed by setting up the graph-theoretic definitions and lemmas. In the
lemma below, we show that if in the query graph there is a node v such that
there are at least p nodes which have a shortest path of length d to the node
v, then there must be at least p � 1 edges involved in a multi-collision in the
induced sub-graph.

Definition 5 (d-neighborhood of a vertex). Let G � pV,Eq be a directed
graph. We say that a node v1 P V is in the d-neighborhood of v2 P V if the
shortest directed path from v1 to v2 in G consists of (exactly) d edges.
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Definition 6 (multi-collision of edges in a graph). For an edge e � pa, bq,
we refer to b as the target of the edge. We say that edges e1, � � � , em form a
m-multi-collision if all of them share a common target. We refer to the common
target as the center of the multi-collision. We refer to m as the size of the multi-
collision.

Lemma 6.2. Let G � pV,Eq be a directed graph. Let d P N¡0 and p P N¡0 such
that p ¥ 2. Suppose that there is a node v P V such that there are p distinct
nodes in its d-neighborhood. Then, there are t ¥ 1 distinct nodes in G, such that
each of them have in-degree βi ¥ 2 for i � 1, . . . , t, and

°t
i�1pβi � 1q ¥ p� 1.

The proof of this lemma is via an inductive argument and appears in the full
version [19].

A direct corollary is that in the query graph, if for any salt s there are at least
p�1 salts in its d-neighborhood, then there must be p queries involved in multi-
collisions on the paths from the nodes in its d-neighborhood to s. We obtain
non-trivial compression for large enough p by encoding those multi-collisions.

Non-trivial encoding for multiple multi-collisions. We consider t multi-
collisions of sizes β1, . . . , βt. We encode these t multi-collisions by encoding the
t centers of the multi-collision, and for each center, we encode the index of the
queries in Qfresh that form the multi-collision in a set. Recall that the indices of
the queries in Qfresh are in rFT s. The total number bits we need to encode is

log

��
N

t


�
FT

β1
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�
FT �

°t�1
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�
¤ log
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N tpuT q
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, (6)

where the inequality follows by using
�
n
r

�
¤ nr

r! and F ¤ u, and the equality

follows by letting β �
°t
i�1 βi and rearranging.

Claim 6.2 If β ¥ e3u2{2, then Eq. (6) ¤ log
�
N tpu4T qβ�2tT 2t

�
.

We defer the proof of this claim to the full version [19]. From this claim it follows
that when β ¥ e3u2{2, by storing the multi-collisions as above, the amount of
bits saved is at least

logNβ � log
�
N tpu4T qβ�2tT 2t
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� t log
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where the second inequality follows since t ¤ β{2, and β{2 ¥ e3u2{4 ¥ u2 ¥ u.
For the bound that we want to get in this section, the amount of bits we need

to save per mouse structure is log
�
min

 
N
T 2 ,

N
u4TB2

(�
(see explanation below),

and so we indeed save enough from encoding one such set of multi-collisions.
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The compression argument. We encode a source node from a destination
node by encoding the distance and which of the nodes at the given distance from
the destination node is the source node. If the number of candidate nodes at the
specified distance is larger than e3u2{2, by Lemma 6.2, we are guaranteed that
there exist t multi-collisions of size β1, β2, . . . , βt such that β ¥

°t
i�1pβi � 1q ¥

e3u2{2. This implies, by Claim 6.2, that we can already save enough by only
encoding this set of multi-collisions. Using this argument we prove Lemma 6.1
which in turn implies Theorem 6.1, as explained above. We defer the proof of
Lemma 6.1 to the full version [19].
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