
Maliciously Secure Massively Parallel
Computation for All-but-One Corruptions

Rex Fernando1, Yuval Gelles2, Ilan Komargodski3 , and Elaine Shi4

1 UCLA: rex1fernando@gmail.com.
2 Hebrew University: yuval.gelles@mail.huji.ac.il.

3 Hebrew University and NTT Research: ilank@cs.huji.ac.il.
4 Carnegie Mellon University: runting@gmail.com.

Abstract. The Massive Parallel Computing (MPC) model gained wide
adoption over the last decade. By now, it is widely accepted as the right
model for capturing the commonly used programming paradigms (such
as MapReduce, Hadoop, and Spark) that utilize parallel computation
power to manipulate and analyze huge amounts of data.

Motivated by the need to perform large-scale data analytics in a privacy-
preserving manner, several recent works have presented generic compilers
that transform algorithms in the MPC model into secure counterparts,
while preserving various efficiency parameters of the original algorithms.
The first paper, due to Chan et al. (ITCS ’20), focused on the honest ma-
jority setting. Later, Fernando et al. (TCC ’20) considered the dishonest
majority setting. The latter work presented a compiler that transforms
generic MPC algorithms into ones which are secure against semi-honest
attackers that may control all but one of the parties involved. The security
of their resulting algorithm relied on the existence of a PKI and also on
rather strong cryptographic assumptions: indistinguishability obfuscation
and the circular security of certain LWE-based encryption systems.

In this work, we focus on the dishonest majority setting, following Fer-
nando et al. In this setting, the known compilers do not achieve the
standard security notion called malicious security, where attackers can
arbitrarily deviate from the prescribed protocol. In fact, we show that
unless very strong setup assumptions as made (such as a programmable
random oracle), it is provably impossible to withstand malicious attackers
due to the stringent requirements on space and round complexity.

As our main contribution, we complement the above negative result by
designing the first general compiler for malicious attackers in the dis-
honest majority setting. The resulting protocols withstand all-but-one
corruptions. Our compiler relies on a simple PKI and a (programmable)
random oracle, and is proven secure assuming LWE and SNARKs. Inter-
estingly, even with such strong assumptions, it is rather non-trivial to
obtain a secure protocol.

https://orcid.org/0000-0002-1647-2112

2 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

1 Introduction

The Massively Parallel Computation (MPC5) model, first introduced by Karloff,
Suri, and Vassilvitskii [45], is widely accepted as the de facto model of computa-
tion that abstracts modern distributed and parallel computation. This theoretical
model is considered to best capture the computational power of numerous pro-
gramming paradigms, such as MapReduce, Hadoop, and Spark, that have been
developed to utilize parallel computation power to manipulate and analyze huge
amounts of data.

In the MPC model, there is a huge data-set whose size is N . There are M
machines connected via pairwise communication channels and each machine can
only store S = Nε bits of information locally for some ε ∈ (0, 1). We assume
that M ∈ Ω(N1−ε) so that all machines can jointly at least store the entire
data-set. This setting is believed to capture best large clusters of Random Access
Machines (RAMs), each with a somewhat considerable amount of local memory
and processing power, yet not enough to store the massive amount of available
data. Such clusters are operated by large companies such as Google or Meta.

The primary metric of efficiency for algorithms in the MPC model is their
round complexity. In general, the goal is to achieve algorithms which run in
o(log2N) rounds; Ideally, we aim for algorithms with O(1) or O(log logN) rounds.
The local computation time taken by each machine is essentially “for free” in
this model. By now, there is an immensely rich algorithmic literature suggesting
various non-trivial efficient algorithms for tasks of interest, including graph prob-
lems [1,2,3,5,6,7,8,10,15,14,26,29,39,34,48,49,56,60,43], clustering [11,13,31,38,62]
and submodular function optimization [59,32,47,53].

Secure MPC. The MPC framework enables the algorithmic study of the large-
scale data analytics commonly performed today. From a security point of view, a
natural question is whether it is possible to do so in a privacy-preserving manner.
This question is of increasing importance because numerous data analytics tasks
we want to perform on these frameworks involve sensitive user data, e.g., users’
behavior history on websites and/or social networks, financial transaction data,
medical records, or genomic data. Traditional deployment of MPC is often
centralized and typically hosted by a single company such as Google or Meta.
However, for various reasons, it may not be desirable for users to disclose sensitive
data in the clear to centralized cloud providers.

As a concrete motivating scenario, imagine that multiple hospitals each host
their own patient records, but they would like to join forces and perform some
clinical study on the combined records. In this case, each hospital contributes
one or more machines to the MPC cluster, and the challenge here is how the
hospitals can securely compute on their joint dataset without disclosing their
patient records. In this scenario, since the hospitals are mutually distrustful,
it is desirable to obtain a privacy guarantee similar to that of cryptographic
secure multi-party computation. That is, we would like to ensure that nothing

5 Throughout this paper, whenever the acronym MPC is used, it means “Massively
Parallel Computation” and not “Multi-Party Computation”.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 3

is leaked beyond the output of the computation. More specifically, just like in
cryptographic secure computation, we consider an adversary who can observe the
communication patterns between the machines and also control some fraction of
the machines. Note that all machines’ outputs can also be in encrypted format
such that only an authorized data analyst can decrypt the result; or alternatively,
secret shared such that only the authorized data analyst can reconstruct. In
these cases, the adversary should not be able to learn anything at all from the
computation. We call MPC algorithms that satisfy the above guarantee secure
MPC.

Why classical secure computation techniques fail. There is a long line of
work on secure multiparty computation (starting with [41,16]), and so it is natural
to wonder whether classical results can be directly applied or easily extended to
the MPC model. Unfortunately, this is not the case, due to the space constraint
imposed on each machine. Algorithms in the MPC model must work in as few
rounds as possible while consuming small space. Note that since the number M
of machines can be even larger than the space s of a machine, a single machine
cannot even receive messages from all parties at once, since it would not be able
to simultaneously store all such messages. This immediately makes many classical
techniques unfit for the MPC model. In many classical works, a single party must
store commitments or shares of all other parties’ inputs [41,46,57,4,54,30]. Also,
protocols that require simultaneously sending one broadcast message per party
(e.g., Boyle et al. [20]) are unfit since this also implies that each party needs to
receive and store a message from all other parties.6

State of the art. Chan, Chung, Lin, and Shi [25] put forward the challenge
of designing secure MPC algorithms. Chan et al.’s main result is a compiler
that takes any MPC algorithm and outputs a secure counterpart that defends
against a malicious adversary who controls up to 1/3− η fraction of machines
(for a small constant η). The round overhead of their compiler is only a constant
multiplicative factor, and the space required by each machine only increases
by a multiplicative factor that is a fixed polynomial in the security parameter.
Malicious security relies on the existence of a threshold FHE (TFHE) scheme,
(simulation-extractable multi-string) NIZKs, and the existence of a common
random string (CRS) that is chosen after the adversary commits to its corrupted
set. If the protocol specification can be written as a shallow circuit, then a
leveled TFHE scheme would suffice, and so the construction can be based on
LWE [61,4,19]. Otherwise, we need a non-leveled scheme which we can get by
relying on Gentry’s bootstrapping technique [36]. This requires the TFHE scheme
being “circular secure”.7

6 Some works design “communication preserving” secure computation protocols (for
example, [55,50,44]) where the goal is to eliminate input/output-size dependency in
communication complexity—all of these works only address the two parties setting.

7 In a leveled scheme the key and ciphertext sizes grow with the depth of the circuit
being evaluated. In contrast, in a non-leveled scheme these sizes depend only on the
security parameter. Gentry’s bootstrapping requires the assumption that ciphertexts

4 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

More recently, Fernando et al. [33] considered the dishonest majority setting
and presented two compilers. The first compiler only applies to a limited set of
MPC functionalities (ones with a “short” output) and the second applies to all
MPC functionalities. Both their compilers rely on a public-key infrastructure
(PKI) and they obtain security for a semi-honest attacker that controls all ma-
chines but one. The round overhead of their compilers is similarly only a constant
multiplicative factor, and the space required by each machine only increases by a
multiplicative factor that is a fixed polynomial in the security parameter. Their
first compiler is secure assuming a TFHE scheme and the second compiler is
secure assuming TFHE, LWE, and indistinguishability obfuscation [12,35]. Both
compilers require the TFHE scheme to be “circular secure”. This work leaves
two very natural open questions:

– Is it possible to get malicious security in the dishonest majority setting? Here,
no feasibility result is known under any assumption!

– Can we avoid non-standard assumptions in the dishonest majority setting?

1.1 Our Results

We make progress towards answering both of the above problems. Our contribu-
tions can be summarized as follows (with details following):

1. We prove that it is impossible to obtain a maliciously secure compiler for
MPC protocols, no matter what computational assumptions are used. Our
impossibility result works even if the compiler assumes a PKI, a common
reference string, or even a non-programmable random oracle.

2. We complement the above impossibility result by presenting a maliciously
secure compiler for MPC protocols, assuming a programmable random ora-
cle, zero-knowledge SNARKs, and LWE. This result is our main technical
contribution.

3. Lastly, we make a simple observation that allows us to get rid of the circular
security assumption on TFHE that was made by Fernando et al. [33], as long
as the protocol specification can be written as a shallow circuit. Thus, in
this case, our observation can be used to re-derive [33]’s semi-honest long
output protocol, relying only on LWE and indistinguishability obfuscation.
This is useful since many MPC algorithms have very low depth, usually at
most poly-logarithmic in the input size (e.g., [3,8,39,43] to name a few).

An impossibility result for semi-malicious compilers. We show an impossi-
bility result for a generic compiler that results with a semi-malicious secure MPC.
The impossibility result holds in the setting of Fernando et al. [33], where strong
cryptographic assumptions as well as a PKI were used. In fact, the impossibility
result shows that no matter what cryptographic hardness assumptions are used
and even if the compiler relies on a PKI, a common reference string (CRS), or

remain semantically secure even when we use the encryption scheme to encrypt the
secret decryption key.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 5

a (non-programmable) random oracle, then no generic compiler can result with
semi-malicious secure MPC protocols.

In more detail, we show that the restrictions imposed by the MPC model
(the near constant round complexity along with the space constraint) make
it impossible to implement certain functionalities in a (semi-malicious) secure
manner. Specifically, we design a functionality for which there is a party whose
outgoing communication complexity is roughly proportional to the number of
parties. This, in turn, means that either the round blowup or the space blowup
must be significant, leading to a contradiction. The functionality that we design
assumes the existence of a one-way functions.

This impossibility result is inspired by a related lower bound due to Hubáček
and Wichs [44] who showed that the communication complexity of any malicious
secure function evaluation protocol must scale with the output size of the function.
We extend their proof to the (multiparty, space constrained) MPC setting allowing
various trusted setup assumptions.

A malicious compiler. We observe that the above impossibility result does
not hold if the compiler relies on a programmable random oracle. To this end,
as our second and more technical result, we give a compiler which takes as
input any insecure MPC protocol and turns it into one that is secure against a
malicious attacker that controls all machines but one. This compiler relies on
a few assumptions: LWE, the existence of a programmable random oracle, and
a zero-knowledge succinct non-interactive arguments of knowledge (zkSNARK).
The compilation preserves the asymptotical round complexity of the original
(insecure) MPC algorithm. This is the first secure MPC compiler for the malicious,
all-but-one corruption setting, under any assumption.

Recall that a SNARK is a non-interactive argument system which is succinct
and has a strong soundness guarantee. By succinct we mean that the proof size
is very short, essentially independent of the computation time or the witness
size. The strong soundness guarantee of SNARKs is knowledge-soundness that
guarantees that an adversary cannot generate a new proof unless it knows a
witness. This is formalized via the notion of an extractor which says that if an
adversary manages to produce an acceptable proof, there must be an efficient
extractor which is able to “extract” the witness. A SNARK is said to be zero-
knowledge if the proof reveals “nothing” about the witness. There are many
onstructions of SNARKs with various trade offs between efficiency, security
guarantees, and the required assumptions, for example the works of [52,18,42].
All of these constructions can be used to instantiate our compiler, resulting in a
compact CRS with size independent of the number of parties and the input and
output size.

From semi-malicious to malicious. The above result is obtained in two
steps. First, we obtain a semi-malicious MPC compiler. This step builds on
the semi-honest (long output) protocol of Fernando et al. [33] and extends it to
the semi-malicious setting. Second, we generically transform any semi-malicious
MPC algorithm into a malicious one (both for all-but-one corruptions). The

6 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

transformation uses only zero-knowledge SNARKs and has only constant overhead
in its round complexity.

We remark that our semi-malicious protocol does not need a random oracle if
we only need semi-honest security. This result is interesting by itself since it gives
a strict improvement over the result of Fernando et al. [33]. Indeed, we get the
same result as that of [33] except that we use plain threshold FHE as opposed
to their result which relies on a novel circular security assumption related to
threshold FHE.

Recall that in semi-malicious security introduced by Asharov et al. [4], corrupt
parties must follow the protocol specification, as in semi-honest security, but can
use arbitrary values for their random coins. In fact, the adversary only needs to
decide on the input and the random coins to use for each party in each round at
the time that the party sends the first message.

Our semi-malicious to malicious compiler is essentially a GMW-type [41]
compiler but for the MPC setting, and therefore is of independent interest. Inter-
estingly, standard compilation techniques in the secure computation literature do
not apply to the MPC model. For example, it is well-known that in the standard
model, one can generically use non-interactive zero-knowledge proofs (NIZKs)
to compile any semi-malicious protocol into a malicious one (see e.g., [4,54])
without adding any rounds. However, this transformation relies on a broadcast
channel and is therefore inapplicable to the MPC model. We therefore present a
relaxation of semi-malicious security, called P2P semi-malicious security, which
fits better to a peer-to-peer communication network, and in particular, to the
MPC model. We show a generic transformation from P2P semi-malicious security
to malicious security, assuming LWE and a zkSNARK for NP. Our transformation
is much more involved than the classical one in the broadcast model (which uses
“only” zero-knowledge proofs) and requires us to design and combine several new
primitives. We believe that this relaxation of semi-malicious security and the
transformation themselves are of independent interest.

Paper Organization

In Section 2, we give an overview of the techniques used in obtaining our results.
In Section 3 we formally defined the model and the malicious and P2P-semi-
malicious security definitions. In Section 4 we prove the impossibility result of
generic (semi-)malicious compilers even using setup assumptions. In Section 5
we introduce two commonly used procedures. In Section 6 we give a P2P-semi-
malicious compiler for long-output MPC protocols. Lastly, in Section 7 we give
our P2P-semi-malicious-to-malicious compiler.

2 Overview of our Techniques

First, let us briefly recall the computational model. The total input size contains
N bits and there are about M ≈ N1−ε machines, each having space S = Nε.
The space of each machine is bounded by S and so in particular, in each round

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 7

each machine can receive at most S bits. We are given some protocol in the
MPC model that computes some functionality f : ({0, 1}lin)M → ({0, 1}lout)M ,
where lin, lout ≤ S, and we would like to compile it into a secure version that
computes the same functionality. We would like to preserve the round complexity
up to constant blowup, and to preserve the space complexity as much as possible.
Ultimately, we want to guarantee the strong notion of security against malicious
attackers that can arbitrarily deviate from the protocol specification.

Since our goal is to use cryptographic assumptions to achieve security for
MPC protocols, we introduce an additional parameter λ, which is a security
parameter. For a meaningful statement, one must assume that N = N(λ) is a
polynomial and that S is large enough to store O(λ) bits.

We assume that the communication pattern, i.e., the number of messages sent
by each party, the size of messages, and the recipients, do not leak anything about
the parties’ inputs. We call a protocol that achieves this property communication
oblivious. This assumption can be made without loss of generality due to a
result of Chan et al. [25] who showed that any MPC protocol can be made
communication oblivious with constant blowup in rounds and space.

It is instructive to start by explaining where classical approaches to obtaining
malicious security break down. A natural approach to bootstrap semi-honest to
malicious security is by enforcing honest behavior. A semi-honest compiler was
given by Fernando et al. [33] so this seems like a good starting point. Typically,
such a transformation is done first letting parties commit to their (secret) inputs
and running a coin-flipping protocol to choose randomness for all parties before
the beginning of computations, and then together with every message they send,
they attach a proof that the message is well formed and was computed correctly
using the committed randomness. The proofs must be zero-knowledge so that no
information is leaked about their input and randomness. This is the most common
generic approach, introduced already in the original work of Goldreich, Micali,
and Wigderson (GMW) [41]. It turns out that trying to adapt this approach to
the MPC setting runs into many challenges.

– GMW-type compilers usually rely on a multiparty coin-flipping protocol since
the underlying semi-honest protocol only guarantees security when parties
use fresh and uniform randomness to generate their messages. It is not clear
how to perform such a task while respecting the constraints of the MPC
model.

– GMW-type compilers usually rely on an all-to-all communication pattern.
That is, whenever a party Pi sends a message, it must prove individually
to each other party Pj that it acted honestly. This, of course, is completely
untenable in the MPC model, since it would mean an O(M) blowup in
communication. Specifically, assume party P1 sends a message m during
round 1. Even if the message is meant only for P2, the GMW compiler
requires P1 to broadcast a commitment cm of m to every other party too,
and prove that the message committed under cm is computed correctly. This
is necessary because other parties may later on receive messages from, say,
P2, that depend on m. This approach incurs O(M) communication blowup,

8 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

and this blowup must be charged either to round complexity or space in the
MPC model.

The impossibility result. It turns out that the above challenges are somewhat
inherent in the MPC setting in the sense that it is impossible to bypass them,
even if arbitrarily strong cryptographic assumptions are made or even if trusted
setup assumptions are used (e.g., a PKI or a non-programmable random oracle).
Specifically, it is impossible to obtain a maliciously-secure MPC compiler under
any cryptographic assumption and even if various setup assumptions are used.

The main idea for this impossibility result is to consider the following function-
ality: party 1 holds as input a PRF key k and the functionality is to send to party
i ∈ [M] the value of the PRF at point i, i.e., PRFk(i). The attacker will control
all parties but 1. We show that any malicious compiler for this functionality
must incur non-trivial overhead either in the round complexity or in the space
complexity, rendering it useless in the MPC setting. More specifically, we show
that the total size of outgoing communication from party 1 must be proportional
to the number of machines in the system, M , which in turn means it must store
this many bits in a small number of rounds, implying our result. The proof of this
lower bound on the outgoing communication complexity of party 1 is inspired
by a related lower bound due to Hubáček and Wichs [44] who showed that the
communication complexity of any malicious secure function evaluation protocol
(a 2-party functionality) must scale with the output size of the function. We
extend their proof to the (multiparty, space constrained) MPC setting and also
to capture various trusted setup assumptions.

The main idea of the proof is as follows. The view of the adversary in any
realization of the above protocol contains about M outputs of the PRF. By
security, these outputs should be efficiently simulatable. If the communication
complexity from party 1 is smaller than M , we can use the simulator to efficiently
compress about M PRF values. This contradicts the fact that the outputs of
a PRF are incompressible. The actual argument captures protocols that might
rely on setup which is chosen before the inputs, for instance, a PKI or a non-
programmable random oracle. Additionally, the above argument works even if
the underlying MPC is not maliciously secure but only “semi-malicious” or even
our new notion “P2P-semi-malicious” (both of which will be discussed below).

2.1 Our Malicious Compiler for Short Output Protocols

To explain the main ideas underlying our compiler we first focus on a simpler
setting where the given (insecure) MPC algorithm has an output that fits into the
memory of a single machine. Following the terminology of Fernando et al. [33],
we call such protocols short output. Recall that our impossibility result from
above basically says that the outgoing communication complexity from some
party must scale with the total output size. Since the latter is very small in our
case, we conclude that the impossibility result does not apply to short output
MPC protocols.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 9

Our starting point is the semi-honest compiler of Fernando et al. [33]: execute
Π under the hood of a homomorphic encryption (HE) scheme and eventually
(somehow) decrypt the result. If implemented correctly, intuitively, it is plausible
that such a protocol will guarantee security for any single party, even if all other
ones are colluding. The main question is basically how to decrypt the result
of the computation. Fernando et al. [33] relied on a threshold FHE scheme to
implement the above blueprint.

At this point we would like to emphasize that it is not immediately straightfor-
ward how to adapt existing threshold- or multi-key-based FHE [4,51,54,22,58,19,9]
solutions to the MPC model. At a high-level, using these tools, each party first
broadcasts an encryption of its input. Then each party locally (homomorphically)
computes the desired function over the combined inputs of all parties, and finally
all parties participate in a joint decryption protocol that allows them to decrypt
the output (and nothing else). However, the classical joint decryption protocols
are completely non-interactive but consume high space: each party broadcasts
a “partial decryption” value so that each party who holds partial decryptions
from all other parties can locally decode the final output of the protocol. If
the underlying MPC protocol is short output, then we can leverage the fact
that for known TFHE schemes, the joint decryption process can be executed
“incrementally” over a tree-like structure, making it perfectly fit into the MPC
model. Specifically, it is possible to perform a joint decryption protocol in the
MPC model to recover the output as long as it fits into the memory of a single
machine.

Avoiding Coin-Flipping (or: P2P Semi-Malicious Security). As men-
tioned, we do not know how to directly perform a multiparty coin-flipping protocol
in the MPC model. Many previous works, such as [4,54], bypass this problem in
the name of saving rounds of communication, by assuming that the underlying
protocol satisfies a stronger notion of security called semi-malicious security.

In semi-malicious security, the guarantee is similar to semi-honest security,
namely, that the attacker has to follow the protocol, except that it is free to
choose its own randomness. This is formalized by the requirement that after every
message the adversary sends on behalf of a corrupted party, it must explain all
messages sent up to this point by the party by providing an input and randomness
which is consistent with this party’s messages.

We do not know if the above semi-honest protocol can be proven to satisfy
semi-malicious security. This is because the classical definition of semi-malicious
security seems specifically defined to work in the broadcast model, and there
are subtle problems that arise when using it without broadcast. Nevertheless,
we manage to define a relaxation of semi-malicious security, we term P2P semi-
malicious security, which turns out to be easier to work with in the MPC
model. With this refine notion in hand, we show that the above-mentioned
semi-honest MPC compiler satisfies P2P semi-malicious security. This step is
rather straightforward once the right definition is in place. The main technical

10 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

contribution is a method to bootstrap this (weaker) notion of security to full-
fledged malicious security.

To explain what P2P semi-malicious security is, it is instructive to be more pre-
cise about what semi-malicious security means. Specifically, in the semi-malicious
corruption model the adversary is only required to give a local explanation of
each corrupted party’s messages. In the broadcast channel, this is not a problem
because all messages are public anyway, even those between corrupted parties.
However, absent a broadcast channel, the adversary need not explain messages
between corrupt parties as they can essentially be performed by the attacker,
outside of the communication model. (Recall that in the definition of secure
computation, an adversary is only required to furnish messages which honest
parties can see.) Thus, in the P2P semi-malicious security model, we require the
adversary to explain its behavior completely by also explaining the “hidden” mes-
sages sent amongst corrupt parties. While this gives a weaker security guarantee
than classical semi-malicious security it is still stronger than semi-honest security
and it turns out to be sufficient for us to go all the way to malicious security.

Enforcing P2P Semi-Malicious Behavior The next challenge is how to
compile our P2P semi-malicious protocol into a maliciously secure one. Recall that
classical GMW-type [41] compilers do not work in the MPC model since whenever
a party Pi sends a message, it must prove individually to each other party Pj
that it acted honestly. This, of course, is completely untenable in the MPC model,
since it would mean an O(M) blowup in communication. Specifically, assume
party P1 sends a message m during round 1. Even if the message is meant only for
P2, the GMW compiler requires P1 to broadcast a commitment cm of m to every
other party too, and prove that the message committed under cm is computed
correctly. This is necessary because other parties may later on receive messages
from, say, P2, that depend on m. This approach incurs O(M) communication
blowup, and this blowup must be charged either to round complexity or space in
the MPC model.

First attempt. We use a strong form of zero-knowledge proofs, known as succinct
non-interactive arguments of knowledge or zkSNARKs. These proofs have the
useful property that they can be recursively composed without blowing up the
size of the proofs. What this means is that if a verifier sees a proof π for some
statement x, it can then compute a new proof π′ that attests to knowledge of a
valid proof π for x. In our setting, this means that every party Pi can prove that
its (committed) new state and outgoing messages are computed correctly based
on its committed previous state and random coins, as well as a set of incoming
messages which themselves must carry valid zkSNARKs that vouch for their
validity.

Remark 1. Note that for this to work in the MPC model, we need that the
proofs are computable in space proportional to the space of the local round
computation. A SNARK that preserves the space bound in this way is called a

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 11

complexity-preserving SNARK, and generic transformations from any SNARK to
a complexity-preserving one are known [18].

Unfortunately, proving the security of this scheme turns out to be problem-
atic. In the security proof, we would need to recursively extract the composed
zkSNARK proofs in order to find the “cheating” proof (as some proofs along the
way could be correct). That is, we need to invoke the SNARK extractor over
an adversary that itself is an extractor. Unfortunately, performing this recursive
extraction näıvely blows up the running time of the extractor exponentially
with the depth of the recursion, and thus the recursive composition can only
be performed O(1) times. This means that we would be able to support only
constant-round MPC protocols. Some works bypass this problem by making the
very strong, non-standard assumption that there is a highly efficient extractor
(i.e., where the overhead is additive) and therefore recursive composition can be
performed for an unbounded number of times (for example, [18,28,17,21]). We
want to avoid such strong assumptions.

Remark 2. At a very high level, proofs carrying data (PCDs) [27,18,24,23] are a
generalization of classical proofs that allow succinctly proving honest behavior
over a distributed computation graph. While the communication underlying an
MPC algorithm can be viewed as a specific distributed computation, we cannot
use them directly to get malicious security. The main problem is that PCDs
only exist for restricted classes of graphs, unless very strong assumptions are
made. Known PCDs (e.g., the one of Bitansky et al. [18] which in turn relies on
SNARKs) only support constant-depth graphs or polynomial-depth paths. Our
protocol does not fit into either of these patterns. It is possible to get PCD for
arbitrary graphs from SNARKs where the extractor has an additive polynomial-
time overhead, but as mentioned we want to avoid such strong assumptions.
Second, note that we require privacy when compiling a malicious-secure protocol,
which PCDs alone do not guarantee.

Our solution. Our goal is however to support an arbitrary round MPC protocol.
To this end, we devise a method for verifying P2P-semi-malicious behavior by
ensuring consistency and synchrony of intermediate states after every round,
instead of throughout the whole protocol. We want that at the end of each round,
the parties collectively hold a succinct commitment to the entire current state
of all parties in the protocol. Given this commitment and a commitment to the
previous round’s state, the parties then collectively compute a proof that the
entire current-round state has been obtained via an honest execution of one round
of the protocol with respect to the previous-round state. This is implemented
by recursively composing succinct proofs about the local state of each machine
(using its limited view of the protocol execution) into a conjunction of these
statements which proves global honest behavior. We implement this sub-protocol
by composing zkSNARKs in a tree-like manner so that we only have constant
blow up in round complexity.

To describe our approach, we first design a few useful subprotocols:

12 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

1. CalcMerkleTree sub-protocol: every party i ∈ [M] has an input xi, and they
run an MPC protocol such that everyone learns the root digest τ of a Merkle
tree over {xi}i∈[M], and moreover, every party learns an opening that vouches
for its own input xi w.r.t. to the Merkle root τ . We make the arity γ of the
Merkle tree as large as λ, i.e., the security parameter, and therefore the depth
of the tree is a constant. The protocol works in the most natural manner
by aggregating the hash over the γ-fan-in Merkle tree: in every level of the
tree, each group of γ parties send their current hash to a designated party
acting as the parent; and the parent aggregates the hashes into a new hash.
At this moment, we can propagate the opening to each party, this time in
the reverse direction: from the root to all leaves. The protocol completes in
constant number of rounds.

2. Agree sub-protocol: every party i ∈ [M] has an input xi, and they run a secure
MPC protocol to decide if all of them have the same input. To accomplish
this in constant number of rounds in the MPC model without blowing up the
space, we use a special threshold signature scheme that allows for distributed
reconstruction. We build such a signature scheme by adapting a scheme of
Boneh et al. [19] to our setting. Crucially, the signature scheme of [19] has a
reconstruction procedure which is essentially linear. In this way, the parties can
aggregate their signature shares over a wide-arity, constant-depth tree (where
the arity is again λ). If all parties do not have the same input, disagreement
can be detected during the protocol. Otherwise, the party representing the
root obtains a final aggregated signature which is succinct. It then propagates
the signature in the reverse direction over the tree to all parties.

3. RecCompAndVerify subprotocol: every party i ∈ [M] holds a zkSNARK proof
πi to some statement stmti. They run an MPC protocol to compute a recur-
sively composed proof π for a statement that is the conjunction of all stmtis.
This is also performed by aggregating the proofs over a wide-arity, constant-
depth tree (where the arity is again λ); and the aggregation function in this
case is the recursive composition function of the zkSNARK. The aggregated
proof is propagated in the reverse direction over the tree to all parties.

In the first phase, before the protocol begins, each party holds an input
and randomness for the underlying protocol which is being compiled. First,
the parties engage in a “commitment phase”: (1) each party computes a non-
interactive hiding and binding commitment to their input and randomness, and
then (2) the parties collectively generate a Merkle root τ0 which commits to
these commitments. This step can be accomplished by 1) calling CalcMerkleTree
subprotocol, at the end of which every party receives a Merkle root τ0 and its
own opening, and 2) calling Agree to ensure everyone agrees on τ0.

The next phase is used to simulate the first round of the underlying protocol.
Recall that at this point all parties have a consistent Merkle root τ0 which
commits to their inputs and randomnesses, so in other words, τ0 commits to the
global starting state of the protocol. Each party executes the underlying protocol
to obtain a new private state sti,1 and a list msgouti,1 of its outgoing messages.
It then sends these outgoing messages to the recipient parties, and also stores

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 13

any messages it received in a list msgini,1. Every party now has a combined local

state (sti,1,msgini,1,msgouti,1). All parties now collectively compute a Merkle root
τ1 of all their combined states, again by calling the CalcMerkleTree and Agree
sub-protocols. The parties now need to compute a new succinct proof π1 that the
entire round-1 state committed to by τ1 has been honestly computed with respect
to τ0. For this to be true, each party Pi must not only prove that (sti,1,msgouti,1)
was honestly computed, but also that its outgoing messages have been properly
received by its recipients. At this point, each party Pi replies to every party Pj
that sent a message that it received with an opening in the global state τ1 that
proves that it has recorded the message correctly in its list msgini,1. Now, each
party Pi can compute a proof that (sti,1,msgouti,1) has been computed honestly, and
in addition, that every message in msgouti,1 has been copied to msgj,1, where Pj is
the recipient of the message. These proofs are again aggregated using a recursive
composition tree into a single succinct proof, by calling RecCompAndVerify.

The rounds which follow proceed in essentially the same way. The only
difference is that in successive rounds, the input to each party’s local computation
also includes the incoming messages msgini,r. In this way, the parties incrementally
verify that the protocol is being performed honestly, without ever having to store
a full transcript of the execution.

In terms of efficiency, the above compiler essentially replaces each round of
the underlying protocol with a constant number of rounds, therefore the round
blowup is constant. Moreover, the extra local space per party needed to carry
out this transformation is only poly(λ) · S, where λ is the security parameter and
S is the space bound of the underlying protocol.

Technicalities in the proof. The most interesting challenge that arises is handling
the recursive composition of the SNARKs. In particular, we are in the context of
secure computation, and therefore we are required to exhibit a simulator which
can replicate the behavior of an adversary in the ideal world. This means we
will need to simulate the honest parties’ SNARKs, so we will require SNARKs
with a zero-knowledge property, or zkSNARKs. Moreover, we need to extract the
corrupted parties’ witnesses. Since the recursive composition tree in the simulated
world will include a combination of real and simulated proofs, it is not clear
how to use a standard SNARK extractor to extract in this setting. To overcome
this, we use a stronger notion of extraction, known as identity-based simulation
extractability, which works even in the presence of simulated proofs [21]. At a
high level, in this type of SNARK, each party receives an identity and proves
statements with respect to that identity. Then, during extraction, the adversary
receives a restricted trapdoor which allows it to simulate any proof with an
honest id. The extractor is then guaranteed to extract valid witness for any proof
generated with an id that is not in the honest set. Crucially, this notion is implied
by the existence of vanilla SNARKs for NP along with one-way functions, as
shown by Boyle et al. [21]. (Note that the transformation of [18] for complexity
preserving SNARKs also preserves the identity-based simulation extractability
property.)

14 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

Using the simulation-extractability property of a SNARK in the context of
secure computation protocols is trickier than the analogous usage of (non-succinct)
non-interactive arguments. In particular, the extractor needs to make non-black-
box use of the adversary [37]. A naive way for the simulator to use this property
would be to extract the witnesses used by the corrupted parties in every round,
and then to verify using the witnesses that the round was computed honestly.
Unfortunately, it is not clear how to run the extractor in every round without
recursively composing the extractor with itself R times. This is problematic
in super-constant round protocols, because the extraction time could depend
double-exponentially in the number of rounds. This appears to be even more of
a problem for the following reason. Since we are using recursively composable
SNARKs, soundness of our proofs are only guaranteed by exhibiting an extractor,
and thus it seems like extraction in every round is inevitable. However, we bypass
this problem by forcing the corrupted parties to commit at the very beginning
to all randomness which they use in the protocol, even the randomness used to
commit to their private state in each round. This allows us to write a simulator
which only extracts in the first “commit phase” round, and also allows us to
guarantee soundness via a reduction which only extracts in the first round and
some other arbitrarily chosen round (the reduction is to the collision-resistance
of the hash function or the binding property of the commitment scheme). See
details in Appendix 7.

2.2 Our Malicious Security for Long Output Protocols

Now, we consider general MPC protocols. Due to our impossibility result, ob-
taining an analogous result for general MPC protocols necessarily requires a new
approach, even if we only want to get (P2P) semi-malicious security. To put
things in context, it is useful to recall the semi-honest MPC compiler for general
MPC protocols of Fernando et al. [33].

Recall that the main challenge is to perform joint decryption of threshold
FHE ciphertexts where each party eventually wants to learn its own output. Here
is where Fernando et al. [33] used indistinguishability obfuscation: they generate
an obfuscated circuit that has the master secret key hardwired and only agrees
to decrypt the given M ciphertexts. Ensuring that this circuit itself is succinct
requires careful use of SSB hashing [44] among other techniques. Once the circuit
is small enough, they invoked their short output protocol to generate it securely
and then distribute to all parties.8

This MPC compiler provably (due to our impossibility result) does not result
in P2P-semi-malicious MPC protocols. Moreover, it is not a matter of throwing
in more cryptographic assumptions or modifying the protocol in some clever
way—any such modification will still result with an insecure protocol against
semi-malicious attackers. Our main observation used to bypass this is that the

8 Recall that no party knows the master secret key and so an inner short-output
protocol is executed. Its inputs include the shares of the master secret key and it
outputs an obfuscation of the aforementioned circuit.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 15

impossibility result fails for protocols where the simulator can program the setup
adaptively, depending on the private inputs of the parties. To this end, we rely on
a programmable random oracle to “program” a specific uniformly-looking value,
tying the hands of semi-malicious attackers.

In more detail, at the end of the evaluation phase, each party holds an
encryption of its output. These outputs are (homomorphically) padded, and
then all of these padded ciphertexts are used in a joint protocol to compute a
“restricted decryption” obfuscated circuit. Additional randomness is generated
by each party by querying the random oracle and is hardwired (in a hashed
manner) in the restricted decryption circuit; this randomness is generally ignored
throughout the protocol. The simulator will use these random values to program
the “right” values to be output by the restricted decryption circuit. Specifically,
in semi-malicious security, after each party commits to its input and randomness,
the simulator knows the private inputs and pads of malicious parties. At this
point, it can program the random oracle at the appropriate location so that using
it to mask the padded output gives the right output. We refer to Section 6 for
the precise details.

From semi-malicious to malicious. To compile the above semi-malicious protocol
into a malicious one, we essentially use the same compiler that we described in
Section 2.1. Indeed, that compiler did not rely on the underlying MPC being short
output at any point. The only technical issue is that we need to address the fact
that the underlying semi-malicious MPC compiler uses a random oracle which
makes it delicate in combination with SNARKs whose goal is to enforce honest
behaviour. To overcome this problem, we carefully design the semi-malicious
protocol in a way that allows us to separate the random oracle-related computation
from the statement that is being proven via the SNARKs. Specifically, we design
the semi-malicious MPC compiler so that the “important” points of the random
oracle are known to all parties and so parties can locally verify that part of the
computation without using a SNARK, and the SNARK will only apply to the
other part of the computation which is in the plain model.

3 The MPC Model and Security Definitions

In this section we formally define the MPC model and then define appropriate
security definitions. The model is defined in Section 3.1. The security of MPC
algorithms is defined in a standard way, following the security definition in multi-
party computation literature. We focus on the strongest notion of security called
malicious security but we also define a weaker notion called semi-malicious secu-
rity which we use as a stepping stone towards malicious security (see Sections 3.2
and 3.3, respectively).

3.1 The Massively Parallel Computation Model

We briefly recall the massively parallel computation (MPC) model, following
Chan et al. [25] and refer to their work for a more detailed description. In the

16 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

MPC model, there are M parties (also called machines) and each party has a
local space of S bits. The input is assumed to be distributively stored in each
party, and let N denote the total input size in bits. It is standard to assume
M ≥ N1−ε and S = Nε for some small constant ε ∈ (0, 1). Note that the total
space is M · S which is large enough to store the input (since M · S ≥ N), but at
the same time it is not desirable to “waste” space and so it is commonly further
assumed that M · S ∈ Õ(N) or M · S = N1+θ for some small constant θ ∈ (0, 1).
Further, assume that S = Ω(logM).

At the beginning of a protocol, each party receives an input, and the pro-
tocol proceeds in rounds. During each round, each party performs some local
computation given its current state, and afterwards may send messages to some
other parties through private authenticated pairwise channels. An MPC protocol
must respect the space restriction throughout its execution—namely, each party
may store at any point in time during the execution of the protocol at most S
bits of information (which in turn implies that each party can send or receive
at most S bits in each round). When the protocol terminates, the result of the
computation is written down by all machines to some designated output tape, and
the output of the protocol is interpreted as the concatenation of the outputs of all
machines. In particular, an output of a given machine is restricted to at most S
bits. An MPC algorithm may be randomized, in which case every machine has a
sequential-access random tape and can read random coins from the random tape.
The size of this random tape is not charged to the machine’s space consumption.

In this paper, we will be compiling MPC algorithms into secure counterparts
and so it will be will be convenient to make several assumptions about the
underlying (insecure) MPC, denoted Π:

– In protocol Π, each party Pi takes a string xi of size lin as input and outputs
a string yi of size lout, where lin, lout ≤ S. It follows that N = lin ·M .

– Let R be the number of rounds that the protocol takes. In each round r ∈ [R],
the behavior of party i ∈ [M] is described as a circuit NextSti,r. We assume
that NextSti,r takes a string sti,r−1||msgini,r−1 as an input and outputs string

sti,r||msgouti,r , where sti,r is the state of party i in round r and msgini,r−1, the
incoming messages to party i in round r − 1, and msgouti,r are the outgoing
messages of party i in round r. Note that the space of each party is limited
to S bits, so in particular |sti,r|≤ S for each i ∈ [M] and r ∈ [R].

– The protocol is communication-oblivious: in round r ∈ [R], each party Pi
sends messages of a prescribed size to prescribed parties. In particular, this
means that the communication pattern of the protocol is independent of the
input and therefore does not leak any information about it. This assumption
is without loss of generality due to a transformation from the work of Chan
et al. [25] who showed that any MPC protocol can be transformed into a
communication-oblivious one with only a constant multiplicative factor in
the number of rounds.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 17

3.2 Malicious Security for MPC protocols

We now define malicious security for MPC protocols following the general real-
ideal framework (given e.g., in [40]) for defining secure protocols. We consider
protocols assuming a PKI and a random oracle. Security is shown by exhibiting a
simulator which can generate a view that is indistinguishable from the adversary’s
real-world view. We want to handle adversaries which can cause the corrupted
parties to deviate arbitrarily from the protocol specification. To do that, we
define real-world and ideal-world executions as follows. We consider an MPC
protocol Π which realizes a functionality f(x1, . . . , xM)→ (y1, . . . , yM).

Communication model and setup. Our protocols will assume authenticated
pairwise channels between parties, such that a message sent from an honest party
Pi to an honest party Pj is always received by Pj at the end of the round in which
it was sent. We assume that the adversary can see all messages sent between
honest parties. On the other hand, we do not assume honest parties can see
messages between corrupted parties. We note that since our security definition
will allow aborts, it is not necessary to prevent “flooding” attacks.

Furthermore, our protocol will rely on trusted setup, i.e., a PKI and a random
oracle. The public key of the PKI is denoted pk and the random oracle is
denoted O. Every party in the protocol (including the adversary) has query
access to O.

The real-world execution. In the real-world execution, the protocol Π is carried
out among the M parties, where some subset C of corrupted parties is controlled
by the adversary A. realΠA(1λ, 1M , {xi}i∈[M]) a random variable whose value is the
output of the execution which is described as follows. First, A is initialized with
security parameter 1λ. A first chooses an input size (the length of x1||. . . ||xM).
After receiving the public key pk and the number M of parties, A chooses a set C,
and then receives the set {(xi, ski)}i∈C of the corrupted parties’ inputs and secret
keys. The honest parties are then initialized with the inputs {xi}i∈[M]\C , and then
A performs an execution of Π with the honest parties, providing all messages on
behalf of the corrupted parties. Note that A does not need to provide messages
sent between corrupted parties, since the honest parties do not see these messages.
At the end of the protocol execution, A may output an arbitrary function of its
view. Note that throughout the experiment A may perform arbitrary queries
to the oracle O. The output of realΠA(1λ, 1M , {xi}i∈[M]) is defined to be a tuple
consisting of the output of A, a sequence of input-output pairs corresponding to
the oracle queries that were made, along with the outputs of all honest parties.

The ideal-world execution with abort. The ideal-world execution is given with
respect to the function f which is computed by an honest execution of Π.
In the ideal world, an adversary S, called the simulator, interacts with an

ideal functionality Ff . Denote with idealF
f

S (1λ, 1M , {xi}i∈[M]) the output of the
execution which is defined as follows:

18 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

– Choosing input size and the corrupted set: First, S chooses an input
size. After receiving M , S chooses the set C of corrupted parties, and receives
the set {xi}i∈C . The honest parties {Pi}i∈[M]\C, are each initialized with
input xi.

– Sending inputs to the trusted party: Every honest party sends its input
xi to Ff , and Ff records x̃i = xi. S sends a set {x̃i}i∈C of arbitrary inputs,
where each x̃i is not necessarily equal to xi.

– Trusted party sends the corrupted parties’ outputs to the adversary:
Ff now computes f(x̃1, . . . x̃M)→ (y1, . . . , yM). It sends {yi}i∈C to S

– Adversary chooses which honest parties will abort: S now sends
the set {instri}i∈[M]\C to Ff , where for each i, instri is either “continue”

or “abort”. Ff then sends output yi to each honest party Pi where instri
is “continue”, and sends output ⊥ to each honest party Pi where instri is
“abort”.

– Outputs: S outputs an arbitrary function of its view. The output of the
execution is defined to be a tuple consisting of S’s output along with all
outputs of the honest parties.

We now define malicious security for MPC protocols formally in terms of the
real-world and ideal-world executions.

Definition 1. We say that an MPC protocol Π for a functionality f is ma-
licious secure in the PKI model and random oracle model if for every non-
uniform polynomial-time adversary A there exists a non-uniform polynomial-
time simulator S such that for every ensemble {xi}i∈[M] of poly-size inputs,

realΠA(1λ, 1M , {xi}i∈[M]) is computationally indistinguishable from idealF
f

S (1λ, 1M ,
{xi}i∈[M]).

Remark 3 (Programmability). The above definition allows the simulator S to
“program” the random oracle answers in its simulation. To allow this, the distin-
guisher in Definition 1 must not have access to this oracle.

Alternatively, sometimes a non-programmable variant is used. Specifically,
here the distinguisher in Definition 1 does have access to this oracle and so S
cannot program answers to its choice.

3.3 P2P Semi-Malicious Security for MPC protocols

We define a variant of semi-malicious security which is designed to be more
suitable for models other than the broadcast model. We first explain why the
original semi-malicious definition yields subtle problems when we do not assume
the existence of a broadcast channel, and then we describe our modification to
the definition.

In the original definition of semi-malicious security given by [4], a semi-
malicious adversary is only required to give a local explanation of its behavior.
Namely, whenever the adversary sends a message on behalf of a corrupted party
Pi, the adversary must write to the witness tape an input-randomness pair for

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 19

Pi. It must be the case that the message just sent by Pi, along with all previous
messages sent from Pi, are consistent with the input and randomness given by
the adversary. Note that the adversary gives such an input-randomness pair
whenever any corrupted party sends a message that is visible to honest party.

If we assume all communication takes place via a broadcast channel, this
means that all messages are visible to honest parties, even messages between
corrupted parties. Thus, an adversary is restricted to following the protocol
specification honestly, with the proviso that it can change the input/randomness
pairs for the corrupted parties partway through the protocol.

In the case of point-to-point channels, adversary is not required to furnish
messages between corrupted parties, because they are not assumed to be visible
to the honest parties. So although the adversary must explain any message sent
from a corrupted party Pi to an honest party Pj with an input/randomness
pair which is consistent with Pi’s message, it is not required to explain the
messages which were received by Pi from other corrupted parties. Since it can lie
about the messages received by Pi from corrupted parties in previous rounds, the
adversary can behave very differently from the honest protocol behavior. Thus,
point-to-point channels offer much more freedom to a semi-malicious adversary
than the standard case of a broadcast channel.

Our variant of this definition is designed to fix this problem and to bring the
adversary’s behavior back to what semi-malicious security is intuitively supposed
to guarantee, namely that the adversary must act according to the honest protocol
specification, modulo choosing the randomness for the corrupted parties and
choosing different input/randomness pairs in different rounds.

We define our variant of semi-malicious security, which we call security against
P2P semi-malicious adversaries, or P2P semi-malicious security for short. Like in
malicious security definition, we use the real-ideal paradigm, the “semi-malicious”
real-world execution is defined below, and the ideal-world execution is the same
as in the malicious security definition from Section 3.2. Again, as before, we
consider protocols in the PKI model and also in the presence of a random oracle
that all participating parties (including the adversary) can query at any point in
time. (Note that Remark 3 about programmability of the random oracle applies
here as well.)

The real-world execution. In the real-world execution, the protocol Π is carried
out among the M parties, where some subset C of corrupted parties is controlled
by a P2P semi-malicious adversary A. Denote smRealΠA(1λ, 1M , {xi}i∈[M]) a
random variable whose value is the output of the execution which is described
as follows. The real-world execution is similar to the real-world execution in
the case of malicious security, except that we restrict the set of adversaries
to P2P-semi-malicious ones. Such an adversary is required to have a special
output tape called the “witness tape”, and after each round ` it must write
explanation of it behavior to this tape. That is, the adversary must write to
the witness tape a set {(xi, ri)}i∈C consisting of an input and randomness for
every corrupted party. (This is in contrast to standard semi-malicious security,
where the adversary need only write the input and randomness (xj , rj) of each

20 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

corrupted party which sent a message to an honest party.) Observe that the
messages sent by any party in C in the honest protocol specification up to and
including round ` are uniquely determined by {(xi, ri)}i∈C and the setup (PKI
and random oracle queries determined by the honest protocol specification) along
with all messages sent from [M] \ C to C in previous rounds. Note that the
witnesses given in different rounds not need be consistent. Also, we assume that
the attacker is rushing and hence may choose the corrupted messages and the
witness {(xi, ri)}i∈C in each round adaptively, after seeing the protocol messages
of the honest parties in that round. Lastly, the adversary may also choose to
abort the execution on behalf of {Pi}i∈C in any step of the interaction. At the end
of the protocol execution, A may output an arbitrary function of its view. Note
that throughout the experiment A may perform arbitrary queries to the oracle
O. The output of smRealΠA(1λ, 1M , {xi}i∈[M]) is defined to be a tuple consisting
of the output of A, a sequence of input-output pairs corresponding to the oracle
queries that were made, along with the outputs of all honest parties.

Definition 2. We say that an MPC protocol Π for a functionality f is P2P
semi-malicious secure in the PKI model and random oracle model if for every
non-uniform polynomial-time P2P semi-malicious adversary A there exists a
non-uniform polynomial-time S such that for every ensemble {xi}i∈[M] of poly-

size inputs, smRealΠA(1λ, 1M , {xi}i∈[M]) is computationally indistinguishable from

idealF
f

S (1λ, 1M , {xi}i∈[M]).

4 Impossibility of a (Semi-)Malicious Secure Compiler

In this section we prove that there is no generic compiler from insecure MPC
protocol to semi-malicious secure counterparts. Our impossibility works even
in the presence of various setup models. For instance, even if there is a PKI, a
common reference string, and a (non-programmable) oracle, our result rules out
a generic compiler.

Theorem 4.1. Assume that there is a pseudorandom function family (PRF).
Then, there is no generic compiler that takes as input an MPC protocol and
outputs a P2P-semi-malicious MPC protocol that realizes the same functionality,
unless the round complexity depends polynomially on the number of machines.
This is true even if the compiler relies on a PKI or a (non-programmable) random
oracle.

Overview. The proof relies on the fact that a too-good-to-be-true compiler could
be used to efficiently “compress” the outputs of a PRF. This is inspired by a result
of Hubáček and Wichs [44] who showed that the communication complexity of
any malicious secure function evaluation protocol must scale with the output size
of the function. We extend their proof to the (multiparty, space constrained) multi
party computation setting and also to capture various trusted setup assumptions.

More specifically, the hard functionality is one where party P1 has, as in-
put, a PRF key k and it wants to transmit the value of the PRF at location

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 21

i ∈ {2, . . . ,M} to party Pi. The insecure implementation of this functionality
is obtained by sending the PRF key to each party to locally evaluate the PRF
at its own index location. For ε ∈ (0, 1) and S = M ε, this can be implemented
in constant number of rounds by distributing the PRF key in a (arity

√
S)

tree-like manner. This protocol is clearly insecure (w.r.t any reasonable notion of
security). We are going to show that in any semi-malicious implementation of
this functionality, party P1 must send Ω(M) bits of information throughout the
execution.

The formal proof of the above intuition shows that any generic semi-malicious
compiler must incur non-trivial overhead either in space or in the round complexity
(thereby making our protocol not in the MPC model). This is formalized in the
full version of our paper, and Theorem 4.1 is a direct corollary of it. The proof is
an adaptation of [44] and is given for completeness.

We refer to the full version for the proof of Theorem 4.1.

5 Common Subprotocols

We introduce two common subprotocols that take O(logγM) rounds and the
communication is O(S · γ) per round for each machine, implement useful func-
tionalities.

5.1 The Distribute Subprotocol

Consider the simple distribution functionality: P1 has some string x and it wants
to distribute x to all the other parties. In the normal model with point-to-point
channels, P1 can just send x to every other party which can be done in a single
round. However, is problematic since it requires P1 to send messages of Ω(M)
bits in a single round. The following protocol implements this functionality by
delivering x along a “tree”.

Protocol 1 Distributeγ(x)

Input: P1 holds a string x where |x|≤ S.
Output: Each party holds x.
1: Let t = dlogγMe. We refer to a party Pi as being on the level k if (i− 1) is

a multiple of γk.
2: For each round k ∈ [t], all the parties on level t+ 1− k send x to the parties

on level t− k.

5.2 The Combine Subprotocol

The protocol Combine (described in Protocol 2) implements the following func-
tionality. Initially, each party i ∈ [M] has an input xi, and they want to jointly
compute opMi=1xi = x1 op x2 op . . . op xM , where op is some associative operator.
Note that if each party i sends xi to the recipient P1 in a single round, P1 receive
messages of Ω(M) bits in a single round. In protocol Combine, we use the similar

22 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

trick to ask parties aggregate the values in a tree fashion and in each round, all
child nodes send the values they aggregate in their own subtree to their parent
nodes.

Protocol 2 Combineγ(op, {xi}i∈[M])

Input: Party Pi holds xi where γ · |xi|≤ S, and the parties agree on an
associative operator op.

Output: P1 holds opMi=1xi.
1: Let t = dlogγMe. We refer to a party Pi as being on the level k if (i− 1) is

a multiple of γk. Each node Pi sets xi,0 ← xi.
2: For each round k ∈ [t], for each party i on level k, Pi computes
xi,k = opγj=1 xj′,k−1 where j′ = i+ γk−1(j − 1).

3: After t rounds, P1 has x1,t = x1 op . . . opxM .

6 Semi-Malicious Secure MPC for Long Output

In this section, we give a semi-malicious compiler for general MPC protocols.
The compiler takes as input an arbitrary (possibly insecure) MPC protocol and
transforms it into a semi-malicious counterpart.

Theorem 6.1 (Semi-Malicious Secure MPC for Long Output). Let
λ ∈ N be a security parameter. Assume that we are given a deterministic MPC
protocol Π that completes in R rounds in which each of the M machines utilizes
at most S local space. Assume that M ∈ poly(λ) and λ ≤ S. Further, assume
that there is a (non-leveled) threshold FHE scheme .

Then, there is a compiler that transforms Π into another protocol Π̃ which
assumes a PKI and a (programmable) random oracle, and furthermore realizes Π
with P2P semi-malicious security in the presence of an adversary that statically
corrupts up to M − 1 parties. Moreover, Π̃ completes in R + O(1) rounds and
consumes at most S · poly(λ) space per machine.

Property of our compiler is that for every message m, that sent in the original
protocol, the size of the corresponding message in compiled protocol is |m|·poly(λ),
and the size of every additional message in the compiled protocol is poly(λ).

Our compiler also support different space per machine. Specifically, let Si
be the space of the corresponding machine in the original protocol, then this
machine consumes at most Si · poly(λ) space in the compiled protocol. Similarly,
the communication complexity of each machine is also preserved, up to the same
multiplicative security parameter blowup.

We refer to the full version for the proof of Theorem 6.1.

7 Malicious-Secure MPC

This section is devoted to presenting and analyzing our P2P-semi-malicious to
malicious compiler. The formal statement is given next.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 23

Theorem 7.1 (P2P-Semi-malicious to malicious compiler). Assume
hardness of LWE and the existence of a SNARK scheme for NP. Let λ ∈ N
be a security parameter. Assume that we are given a P2P-semi-malicious MPC
protocol Π secure against up to M − 1 corruptions in the PKI model. Suppose
that it consumes R rounds in which each of the M machines utilizes at most S
local space. Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which is maliciously secure against up
to M − 1 corruptions in the PKI model which realizes the same functionality.
Moreover, the compiled protocol completes in O(R) rounds and consumes at most
S · poly(λ) space per party.

Combining Theorem 7.1 together with our short output semi-malicious com-
piler (which is given in the full version of the paper), we obtain a maliciously
secure compiler for short output deterministic MPC protocols. Combining Theo-
rem 7.1 together with our long output semi-malicious compiler from Theorem 6.1
we obtain a maliciously secure compiler for arbitrary deterministic MPC protocols.
Full details are given in Section 7.3.

The rest of the section is organized as follows. In Section 7.1, we define several
subprotocols which we will use. In Section 7.2, we give the formal description of
the compiler and analyze its efficiency. Finally, in Section 7.3 we describe how to
put all the pieces together to obtain a long-output malicious-secure compiler. We
defer a formal proof of security to the full version of our paper.

7.1 The Subprotocols

We mention the subprotocols which will be used. These subprotocols enable
the parties to compute and agree upon a Merkle root which commits to a
concatenation of all parties’ inputs, and to compute a succinct proof of honest
behavior for each round of the underlying protocol. Note that the compiler
and its subprotocols both use the Distribute and Combine subprotocols defined
in Section 5. Due to lack of space, we briefly explain the subprotocols here and
refer to the full version for full details.

The CalcMerkleTree Subprotocol. The purpose of this protocol is for all parties
to know a Merkle root τ with respect to some hash function h which commits
to their collective inputs, and for each party Pi to know an opening θi for its
respective input. We will perform this process over a tree with arity γ. The
process completes within 2dlogγMe rounds, where in each round the current
layer calculates new labels and sends them to the new layer of parents, and each
layer sends any opening θi,j received from its parent to all its children. At the
end, each party Pi will know the root τ and an opening πi to xi.

The Agree Subprotocol. When using the CalcMerkleTree subprotocol in the mali-
cious setting, it is not guaranteed that all honest parties will receive a consistent
Merkle root τ . Indeed, the corrupted parties could cause different honest parties
to receive different roots, or could prevent some honest parties from learning

24 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

the openings for their inputs. Because of this, we need a way for all parties to
agree on a single root, and for parties to be able to force an abort if they did
not receive valid openings. To that end, we define the subprotocol Agree. In this
subprotocol, each party Pi has as input a string xi. The subprotocol aborts if
there exists i, j where xi 6= xj . The main primitive used is a threshold signature
scheme with distributed reconstruction (TSDR), see the full version of the paper
for a formal definition. The distributed reconstruction property is used to achieve
the required space efficiency properties.

The SNARK statements and the RecCompAndVerify subprotocol. The last subpro-
tocol, RecCompAndVerify, deals with recursive composition and verification of the
zkSNARKs that prove honest behavior during the commitment phase and during
each round of the underlying protocol. The subprotocol recursively composes
proofs of honest behavior of each party in a given round to get a succinct joint
proof of all parties’ honest behavior in that round. The parties then verify the
proof and abort if the proof fails to verify.

The statements used when computing zkSNARKs is Φ((i, r, 0, τr−1, τr), w). It
proves that Pi’s state in τr was computed honestly with respect to its state in
τr−1, and that it sent honest messages to every party it was supposed to send
messages to during round r. The security properties needed for RecCompAndVerify
are defined via a game RCVSecurity. In this game, a nonuniform PPT adversary
A invokes R sequential instances of RecCompAndVerify. The game takes two
parameters r1 and r2; the challenger will try to extract from the proofs produced
by A during the r1-th and r2-th RecCompAndVerify instances. The game is defined
this way to support the extraction requirements during the proof of security of
the main compiler, which is designed to only need to extract twice during the
protocol.

7.2 The Compiler

We now give the formal description of the compiler.

Protocol 3 Malicious-Secure Compiler

Setup: Each party Pi knows the verification key vk along with secret key sski,
where (vk, ssk1, . . . , sskm)← Sig.Setup(1λ, 1M) are the setup parameters for the
TSDR scheme. The parties also know a hash function h and a SNARK CRS crs.
Finally, the parties know the P2P semi-malicious setup: every party knows the
semi-malicious public key smpk, and each party Pi knows its semi-malicious
secret key smski.

Input: Party Pi has input xi and randomness ri to the underlying MPC
protocol.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 25

Commitment Phase:

1. Each party Pi chooses a PRF key ki and computes a commitment
cki ← C.Commit(ki;αki). It then computes
csti,0 ← C.Commit((xi, ri);PRFki(0)).

2. The parties run the subprotocol CalcMerkleTreeh({csti,0 ||cki}i∈[n]), so that
each party Pi obtains a Merkle commitment τ0 and an opening θi,0 to
csti,0 ||cki . Party Pi aborts if its opening is not valid.

3. The parties run the subprotocol Agreeλ((0, τ0), vk, {sski}i∈[M]) and abort if
the subprotocol aborts.

4. Each party Pi calculates a SNARK π0,r ← Π.P(crs,Φ(i, 0,⊥, τ0),
(⊥,⊥,⊥, csti,0 ,⊥,⊥, θi,0, ki, cki , αki ,⊥, sti,0,⊥), (i, 0)).

5. All parties run RecCompAndVerify(crs,⊥, τ0, {πi,0}i∈[M]) to obtain and
verify π0, a SNARK for the statement Φ(0, 0, t,⊥, τ0). If the subprotocol
aborts then all parties abort and stop responding.

Evaluation Phase: The evaluation phase is divided into steps corresponding to
the rounds of the original protocol. Each step consists of several rounds in the
new protocol. For each of the R steps, the behavior of each party Pi is as follows:

– For round r of the underlying protocol: Pi starts with a state
(sti,r−1,msgini,r−1,msgouti,r−1), a Merkle root τr−1 for the previous round’s

global state, and an opening θi,r−1 for csti,r−1 ||msgini,r−1||msgouti,r−1||cki with
respect to τr−1, where csti,r−1

= C.Commit(sti,r−1;PRFki(r − 1)).

1. Compute (sti,r,msgouti,r)← NextSti,r(smpk, smski, sti,r−1,msgini,r−1).

2. For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), send msgouti,r [sj : ej] to
party Pj .

3. Initialize msgini,r as an empty string of the appropriate size.

4. For each message m received from party j during the last step, write m
to msgini,r at location IncomingMessageLoc(j, i, r).

5. Compute csti,r ← C.Commit(sti,r;PRFki(r)).

6. Run CalcMerkleTreeh({csti,r ||msgini,r||msgouti,r ||cki}i∈[M]) with all other
parties to obtain τr, the Merkle root of the transcript, along with θi,r,
an opening to sti,r||msgini,r||msgouti,r ||cki with respect to τr. Abort if the
opening is not valid.

7. Run Agreeλ((r, τr), vk, {sski}i∈[M]) and abort if the subprotocol aborts.

8. For each party that sent a message to Pi, send θmi,r
, an opening to

position IncomingMessageGlobalLoc(j, i, r) in τr.

9. Calculate a SNARK πr,i ← Π.P(crs,Φ((i, r, 0, τr−1, τr), (csti,r−1
,

msgini,r−1,msgouti,r−1, θi,r−1, csti,r ,msgini,r,msgouti,r , θi,r, ki, cki , αki , sti,r−1, sti,r,
{(mj,r, θmj,r)}j)), (i, 0)).

10. All parties run RecCompAndVerify(crs, τr−1, τr, {πi,r}i∈[M]) to obtain
πr, a SNARK for statement Φ(0, r, t, τr−1, τr). If the subprotocol aborts,
then all parties abort and stop responding.

26 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

Output Phase: At the end of round R, each player Pi has a state
(sti,R,msgini,r,msgouti,r). Pi does the following to compute its final output:

1. Compute yi ← NextSti,R(smpk, smski, sti,R,msgini,r).
2. Output yi.

Correctness and efficiency. Correctness of the compiler follows directly from
the correctness of the underlying building blocks. To analyze the efficiency of
the compiler, we first recall that during the sub-protocols CalcMerkleTree, Agree,
and RecCompAndVerify, each machine takes local space bounded by S · poly(λ).
Moreover, the complexity-preserving efficiency property of the idse-zkSNARK
scheme guarantees that Π.P(crs, φ, w) is proportional to poly(λ) · (|φ|+|w|+s),
where s is the maximum space of the verification procedure for φ. Finally, when
carrying over between rounds, the parties only need to remember the previous
round’s Merkle root and an opening of size poly(λ) · S along with ki and the
randomness used to generate the commitment cki . It follows from these three facts
that if the total local space used by each machine during the original protocol
Π is S, then the total local space used by each machine during the compiled
protocol Π̃ is at most S · poly(λ).

7.3 Putting it All Together

Given a short output MPC protocol, we can directly compile it into a P2P semi-
malicious secure protocol with our short output “insecure to P2P semi-malicious
secure” compiler. Then, we can compile it into a maliciously secure protocol
with our “P2P semi-malicious to malicious secure” compiler from Section 7.
The resulting maliciously secure protocol has only constant overhead in round
complexity and a poly(λ) blowup in space. This lead to the following corollary:

Corollary 1. Assume the existence of a (non-leveled) threshold FHE system,
LWE, and a SNARK scheme for NP. Let λ ∈ N be a security parameter. Assume
that we are given a (insecure) deterministic short output MPC protocol Π.
Suppose that it consumes R rounds in which each of the M machines utilizes at
most S local space. Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which realizes the same functionality as
Π and which is malicious secure against up to M − 1 corruptions in the PKI
model. Moreover, the compiled protocol completes in O(R) rounds and consumes
at most S · poly(λ) space per party.

Given any long output protocol, we can compile it into a P2P semi-malicious
secure protocol with our long output “insecure to P2P semi-malicious secure”
compiler from Section 6. This results with a protocol in the random oracle model
(which is somewhat inherent due to our lower bound). Unfortunately, we cannot
directly use our “P2P semi-malicious to malicious secure” compiler since in the
description of the latter we did not capture input protocols that rely on a random
oracle. The reason is that SNARKs do not compose well with random oracles.

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 27

More specifically, in the long output compiled protocol all the parties calculate
a shared string denoted rseed , then each party calculates offline the root of a
Merkle tree of the values {O(rseed||i)}i∈[M] which we denoted zr . Our goal is to
prove that zr is correctly calculated.

Note that zr is a deterministic function of rseed (since the random oracle
is deterministic during the execution of the protocol). So, zr can be calculated
offline and its size is poly(λ). Now, in the “P2P semi-malicious to malicious
secure” compiler, after round r that corresponds to the end of in the long output
compiled protocol, we perform the following steps:

1. (Recall that τr is the Merkle tree root of states and messages of all parties
at round r.) In addition to storing τr, we also store zr. Denote τ∗r = (τr, zr)
and from now on, use τ∗r instead of τr.

2. The parties run Agreeλ(τ∗r , vk, {sski}i∈[M]) and abort if the sub-protocol
aborts.

The above steps guarantee that all of the parties use the same zr. In round r + 1
of the malicious compiled protocol, whenever a SNARK is computed , it proved
that if we know that τ∗r is correctly calculated, then it must also be the case
that τr+1 is correctly calculated. In particular, the SNARK is never applied on a
statement that contains a random oracle query.

A different way to interpret the above is to imagine the statement provided
to the SNARK as composed of two parts: one that depends on a short seed rseed
(that all parties know) and consists of random oracle queries which eventually
result with a small digest zr, and the other is a plain model computation that
only depends on zr. The point is that since zr is deterministic function of rseed,
the random-oracle dependent calculation can be locally computed by each party
(and so zr can be verified) and the SNARK can be applied only to the plain model
computation that depends on zr. Overall, we obtain the following corollary.

Corollary 2. Assume the existence of a (non-leveled) threshold FHE system,
LWE, a SNARK scheme for NP, and iO. Let λ ∈ N be a security parameter.
Assume that we are given a (insecure) deterministic MPC protocol Π. Suppose
that it consumes R rounds in which each of the M machines utilizes at most S
local space. Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which realizes the same functionality as
Π and which is malicious secure against up to M −1 corruptions, in the PKI/RO
model. Moreover, the compiled protocol completes in O(R) rounds and consumes
at most S · poly(λ) space per party.

Acknowledgements. Rex Fernando is supported in part from a Simons Investigator
Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955,
BSF grant 2018393, a Xerox Faculty Research Award, a Google Faculty Research
Award, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through
Award HR00112020024. Yuval Gelles and Ilan Komargodski are supported in
part by an Alon Young Faculty Fellowship, by a JPM Faculty Research Award,

28 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

by a grant from the Israel Science Foundation (ISF Grant No. 1774/20), and by
a grant from the US-Israel Binational Science Foundation and the US National
Science Foundation (BSF-NSF Grant No. 2020643). Elaine Shi is supported in
part by the US National Science Foundation (NSF awards 2044679 and 2128519).

References

1. Ahn, K.J., Guha, S.: Access to data and number of iterations: Dual primal algorithms
for maximum matching under resource constraints. TOPC (2018)

2. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: STOC (2014)

3. Andoni, A., Stein, C., Zhong, P.: Log diameter rounds algorithms for 2-vertex and
2-edge connectivity. In: ICALP (2019)

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold FHE. In: EUROCRYPT. pp. 483–501 (2012)

5. Assadi, S.: Simple round compression for parallel vertex cover. CoRR
abs/1709.04599 (2017)

6. Assadi, S., Bateni, M., Bernstein, A., Mirrokni, V., Stein, C.: Coresets meet
edcs: algorithms for matching and vertex cover on massive graphs. arXiv preprint
arXiv:1711.03076 (2017)

7. Assadi, S., Khanna, S.: Randomized composable coresets for matching and vertex
cover. In: SPAA (2017)

8. Assadi, S., Sun, X., Weinstein, O.: Massively parallel algorithms for finding well-
connected components in sparse graphs. CoRR abs/1805.02974 (2018)

9. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Threshold multi-key fhe and
applications to round-optimal mpc. IACR Cryptology ePrint Archive p. 580 (2018)

10. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment 5(5), 454–465 (2012)

11. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-
means++. Proceedings of the VLDB Endowment 5(7), 622–633 (2012)

12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM (2012)

13. Bateni, M., Bhaskara, A., Lattanzi, S., Mirrokni, V.: Distributed balanced clustering
via mapping coresets. In: in NeurIPS (2014)

14. Behnezhad, S., Brandt, S., Derakhshan, M., Fischer, M., Hajiaghayi, M., Karp,
R.M., Uitto, J.: Massively parallel computation of matching and MIS in sparse
graphs. In: PODC (2019)

15. Behnezhad, S., Hajiaghayi, M., Harris, D.G.: Exponentially faster massively parallel
maximal matching. In: FOCS (2019)

16. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

17. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2017)

18. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In: STOC (2013)

19. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R., Sahai,
A.: Threshold cryptosystems from threshold fully homomorphic encryption. In:
CRYPTO. pp. 565–596 (2018)

https://orcid.org/0000-0002-1647-2112

Maliciously Secure MPC for All-but-One Corruptions 29

20. Boyle, E., Chung, K., Pass, R.: Large-scale secure computation: Multi-party com-
putation for (parallel) RAM programs. In: CRYPTO (2015)

21. Boyle, E., Jain, A., Prabhakaran, M., Yu, C.: The bottleneck complexity of secure
multiparty computation. In: ICALP (2018)

22. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Advances in Cryptology - CRYPTO. pp. 190–213 (2016)

23. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Advances in Cryptology - CRYPTO. pp. 681–710 (2021)

24. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Theory of Cryptography - TCC. pp. 1–18 (2020)

25. Chan, T.H., Chung, K., Lin, W., Shi, E.: MPC for MPC: secure computation on a
massively parallel computing architecture. In: ITCS (2020)

26. Chang, Y., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of (∆+1)
coloring in congested clique, massively parallel computation, and centralized local
computation. In: PODC (2019)

27. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Innovations in Computer Science - ICS. pp. 310–331 (2010)

28. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Ad-
vances in Cryptology - EUROCRYPT. pp. 371–403 (2015)

29. Czumaj, A., La̧cki, J., Ma̧dry, A., Mitrović, S., Onak, K., Sankowski, P.: Round
compression for parallel matching algorithms. In: STOC (2018)

30. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its
applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO (2016)

31. Ene, A., Im, S., Moseley, B.: Fast clustering using mapreduce. In: SIGKDD (2011)
32. Ene, A., Nguyen, H.: Random coordinate descent methods for minimizing decom-

posable submodular functions. In: ICML (2015)
33. Fernando, R., Komargodski, I., Liu, Y., Shi, E.: Secure massively parallel computa-

tion for dishonest majority (2020)
34. Gamlath, B., Kale, S., Mitrovic, S., Svensson, O.: Weighted matchings via un-

weighted augmentations. In: PODC (2019)
35. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

36. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium
on Theory of Computing, STOC. pp. 169–178 (2009)

37. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC (2011)

38. Ghaffari, M., Lattanzi, S., Mitrović, S.: Improved parallel algorithms for density-
based network clustering. In: ICML (2019)

39. Ghaffari, M., Uitto, J.: Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. In: SODA (2019)

40. Goldreich, O.: Foundations of cryptography: volume 2. Cambridge university press
(2009)

41. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

42. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT
(2016)

43. Hajiaghayi, M., Seddighin, S., Sun, X.: Massively parallel approximation algorithms
for edit distance and longest common subsequence. In: SODA (2019)

44. Hubáček, P., Wichs, D.: On the communication complexity of secure function
evaluation with long output. In: ITCS. pp. 163–172 (2015)

30 Rex Fernando, Yuval Gelles, Ilan Komargodski , and Elaine Shi

45. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
SODA (2010)

46. Katz, J., Ostrovsky, R., Smith, A.D.: Round efficiency of multi-party computation
with a dishonest majority. In: Eurocrypt (2003)

47. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. TOPC 2(3), 14:1–14:22 (2015)

48. La̧cki, J., Mirrokni, V.S., Wlodarczyk, M.: Connected components at scale via local
contractions. CoRR abs/1807.10727 (2018)

49. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving
graph problems in mapreduce. In: SPAA (2011)

50. Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party
computation. In: Advances in Cryptology - ASIACRYPT. pp. 421–440 (2013)

51. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

52. Micali, S.: CS proofs (extended abstracts). In: FOCS (1994)
53. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular

maximization: Identifying representative elements in massive data. In: NeurIPS
(2013)

54. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J. (eds.) Eurocrypt (2016)

55. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: STOC. pp. 590–599 (2001)

56. Onak, K.: Round compression for parallel graph algorithms in strongly sublinear
space. CoRR abs/1807.08745 (2018)

57. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Babai, L. (ed.) STOC (2004)

58. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: TCC (2016)
59. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for

distributed submodular maximization. In: FOCS. pp. 645–654 (2016)
60. Rastogi, V., Machanavajjhala, A., Chitnis, L., Sarma, A.D.: Finding connected

components in map-reduce in logarithmic rounds. In: ICDE (2013)
61. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.

J. ACM 56(6), 34:1–34:40 (2009)
62. Yaroslavtsev, G., Vadapalli, A.: Massively parallel algorithms and hardness for

single-linkage clustering under `p-distances. In: ICML (2018)

https://orcid.org/0000-0002-1647-2112

	Maliciously Secure Massively Parallel Computation for All-but-One Corruptions
	Introduction
	Our Results

	Overview of our Techniques
	Our Malicious Compiler for Short Output Protocols
	Avoiding Coin-Flipping (or: P2P Semi-Malicious Security).
	Enforcing P2P Semi-Malicious Behavior

	Our Malicious Security for Long Output Protocols

	The MPC Model and Security Definitions
	The Massively Parallel Computation Model
	Malicious Security for MPC protocols
	P2P Semi-Malicious Security for MPC protocols

	Impossibility of a (Semi-)Malicious Secure Compiler
	Common Subprotocols
	The Distribute Subprotocol
	The Combine Subprotocol

	Semi-Malicious Secure MPC for Long Output
	Malicious-Secure MPC
	The Subprotocols
	The Compiler
	Putting it All Together

