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Abstract. The rotational differential-linear attacks, proposed at EURO-
CRYPT 2021, is a generalization of differential-linear attacks by replacing
the differential part of the attacks with rotational differentials. At EU-
ROCRYPT 2021, Liu et al. presented a method based on Morawiecki et
al.’s technique (FSE 2013) for evaluating the rotational differential-linear
correlations for the special cases where the output linear masks are unit
vectors. With this method, some powerful (rotational) differential-linear
distinguishers with output linear masks being unit vectors against FRIET,
Xoodoo, and Alzette were discovered. However, how to compute the
rotational differential-linear correlations for arbitrary output masks was
left open. In this work, we partially solve this open problem by presenting
an efficient algorithm for computing the (rotational) differential-linear
correlation of modulo additions for arbitrary output linear masks, based
on which a technique for evaluating the (rotational) differential-linear
correlation of ARX ciphers is derived. We apply the technique to Alzette,
SipHash, ChaCha, and SPECK. As a result, significantly improved (rota-
tional) differential-linear distinguishers including deterministic ones are
identified. All results of this work are practical and experimentally verified
to confirm the validity of our methods. In addition, we try to explain
the experimental distinguishers employed in FSE 2008, FSE 2016, and
CRYPTO 2020 against ChaCha. The predicted correlations are close to
the experimental ones.

Keywords: Rotational differential-linear, Correlation, ARX, Alzette,
SipHash, SPECK, ChaCha

1 Introduction

Building symmetric-key primitives with modulo additions, rotations, and XORs is
a common practice in the community of symmetric-key cryptography. The result-
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ing primitives are collectively referred as ARX designs and their representatives
can be found everywhere, including

• Block ciphers: FEAL [42], Bel-T [38], LEA [24], TEA [16], XTEA [41], HIGHT [25],
SPECK [6], SPARX [19];

• Stream ciphers: Salsa20 [11], ChaCha20 [10];
• Hash functions: SHA3 finalists Skein [22] and BLAKE [5];
• Cryptographic permutations: Alzette [7], Sparkle [8];
• MAC algorithms: SipHash [3], Chaskey [35].

Some ARX designs are standardized or widely deployed in real world appli-
cations. For example, HIGHT, LEA, and Chaskey are standardized in ISO/IEC
18033-3:2010, ISO/IEC 29192-2:2019, and ISO/IEC 29192-6:2019, respectively.
ChaCha is used with HMAC-SHA1 and Poly1305 in the transport layer security
(TLS) protocol. Chaskey is deployed in commercial products by some automotive
suppliers and major industrial control systems. Skein has been added to FreeBSD
and is optionally used for authentication tags in the ZRTP protocol. Variants of
BLAKE are included in OpenSSL and WolfSSL. In addition, instances of SipHash
are used in the dnscache instances of all OpenDNS resolvers and employed as
hash() in Python for all major platforms.

The popularity of ARX designs can be attributed to the following reasons.
Firstly, modulo additions provide both diffusion and confusion functionalities,
making it possible to construct secure primitives without relying on the table
look-ups associated with the S-box based designs, which increases the resilience
against timing side-channel attacks. Secondly, the native support of the modulo
additions in modern CPUs allows particularly fast software implementations
of ARX ciphers. Finally, the code describing an ARX primitive is relatively
simple and small, making this approach especially appealing for application
scenarios where the memory footprint is highly constrained. In a systematic work
for evaluating the performance and resource consumption of lightweight block
ciphers on three major micro-controller platforms (8-bit AVR, 16-bit MSP, and
32-bit ARM) [18], Dinu et al. concluded:

“... state-of-the art ARX and ARX-like designs are not only very fast,
but also extremely small in terms of RAM footprint and code size.”

Cryptanalysis of ARX Primitives. ARX designs hold a special position in
the development of techniques for analyzing symmetric-key primitives. The block
cipher FEAL [42], probably the first ARX cipher presented in the literature,
has acted as a catalyst in the discovery of differential and linear cryptanalysis.
However, compared to S-box based designs, the development of the theories
and tools for the analysis of ARX-like primitives tends to lag behind when the
involved additions operate on n-bit words with n ≥ 16.

In S-box based designs, typically the employed S-boxes are small permutations
(e.g., permutations over F4

2 or F8
2) whose differential property can be computed

by enumerating the input pairs. In contrast, the modulo additions often operate
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on large words (e.g., 32-bit or 64-bit words). In such cases, computing the
probability of a given differential (α, β)→ γ by enumeration is computationally
infeasible. The first algorithm for computing the differential probabilities of
modulo additions efficiently was not available until 2001 [31]. After two years,
Wallén showed how to compute the correlations of the linear approximations of
modulo additions efficiently [44]. Subsequently, alternative descriptions of the
cryptographic properties of modulo additions with S-functions [37] and finite
automaton [40] appeared. The development of the tools for constructing or finding
differential or linear trails of ARX-like ciphers has gone through multiple stages.
At first, tools working as helpers for manual analysis were developed [27–29].
Then, dedicated search algorithms are designed to identify differential trails with
high probabilities [12, 13]. Now, we have constraint-based (MILP, SAT, or SMT)
tools which are quite powerful and convenient in designing and analyzing ARX
primitives [23,36].

In recent years, we witness remarkable advancement in the cryptanalysis
of ARX primitives [2, 9, 15, 26, 30, 32, 33]. Nevertheless, there are full of open
problems concerning the cryptanalysis of ARX designs. For example, we do not
know how to compute the accurate probabilities or correlations of the differential
or linear approximations of a chain of modulo additions [21]. There are attacks
published at top crypto conferences relying on experimental distinguishers without
a theoretical interpretation [9, 15], and we refer the reader to Supplementary
Material H in the extended version of this paper [39] for a systematic summary of
these experimental distinguishers. Most recently, Liu et al. presented the so-called
rotational differential-linear cryptanalysis and proposed the open problem on
computing the (rotational) differential-linear correlations of modulo additions
with output linear masks of Hamming weight greater than one [32], which is the
major problem we are going to solve in this work.

Contribution. First of all, we solve the open problem proposed in [32]. We
present a method for computing the (rotational) differential-linear correlation
of the modulo addition for arbitrary output linear masks based on a delicate
partition of Fm

2 × Fm
2 into subsets, where the elements in each subset fulfill

certain equations. The method is extremely efficient, and the time complexity of
computing the (rotational) differential-linear correlation of x⊞ y mod 2n for a
specific rotational differential-linear approximation can be roughly estimated by
the complexity of n 4× 4 matrix multiplications.

Based on the above method and Morawiecki et al.’s technique [34], we propose
a method for computing the generalized (rotational) differential-linear correlation
of ARX ciphers with arbitrary output linear masks when the probabilities of
xi−t ̸= xi for all relevant i’s and a specific t are given. Compared with the formulas
given in [32], the new ones are not only applicable for output linear masks whose
Hamming weights are greater than one, but also weaken the assumptions required
for the formulas to hold. We apply the method to Alzette, SipHash, ChaCha, and
SPECK. We identify new and significantly improved (rotational) differential-linear
distinguishers. All the new distinguishers are highly biased or even deterministic,
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and all of them are experimentally verified. The results are summarized in Table 1.

Table 1: A summary of the results. R-DL = rotational differential-linear, DL =
differential-linear, RD = rotational differential, LC = linear characteristic, DC =
differential characteristic. We show differentials with probabilities and LC/DL/R-
DL with correlations. Note that the 10-round RD distinguisher for SPECK32 works
only for 228.10 weak keys, and the constants used in the experiments for Alzette
are 0xB7E15162 and 0x38B4DA56.

Permutation Type # Round
Probability/Correlation

Ref.
Theoretical Experimental

Alzette

DC 4 2−6 – [7]
R-DL 4 2−11.37 2−7.35 [32]
DL 4 2−0.27 2−0.1 [32]
DC 8 ≤ 2−32 – [7]
DL 4 1 1 Sect. 6.1

R-DL 4 2−5.57 2−3.14 Sect. 6.1
DL 5 −2−0.33 −2−0.13 Sect. 6.1
DL 6 2−4.95 2−1.45 Sect. 6.1
DL 8 −2−8.24 −2−5.50 Sect. 6.1

SipHash

DC 4 2−35 – [20]
DL 3 2−2.19 2−0.78 Sect. 6.2
DL 4 2−12.45 2−6.03 Sect. 6.2

SPECK32

DC 8 2−24 – [1]
LC 9 2−14 – [23]
DC 10 2−31.01 – [43]
RD 10* 2−19.15 – [33]
DL 8 2−8.23 2−6.87 Sect. 6.3
DL 9 2−10.23 2−8.93 Sect. 6.3
DL 10 2−15.23 2−13.90 Sect. 6.3

ChaCha
DL 4 – 2−1.19 [14]
DL 4 2−0.02 2−0.98 Sect. 6.4

In addition, we attempt to give theoretical interpretations of the experimental
distinguishers employed in CRYPTO 2020 [9], FSE 2008 [4], and FSE 2016 [14]
against ChaCha. The results of the analysis are summarized in Table 13 in the
Supplementary Material G in the extended version [39], from which we can see
that the predicted correlations are close to the experimental ones.
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2 Notations and Preliminaries

For a finite set D, #D denotes the number of elements in D. Let F2 = {0, 1} be
the binary field. We denote by xi the i-th bit of a vector x = (xn−1, · · · , x0) ∈ Fn

2 .
In addition, ⌈x⌉(t) = (xn−1, · · · , xn−t) denotes the most significant t bits of x,
and ⌊x⌋(t) = (xt−1, · · · , x0) denotes the least significant t bits of x. Concrete
values in Fn

2 are specified in hexadecimal or binary notations. For example, we
use 0x1F12 or 1F12 to denote the binary string (0001 1111 0001 0010)2. Given
two n-bit vectors x = (xn−1, · · · , x0) and y = (yn−1, · · · , y0), the inner product
of x and y is defined as x · y = xn−1yn−1 ⊕ · · · ⊕ x0y0. For a constant vector
λ ∈ Fn

2 , λ
⊥ represents the set {x ∈ Fn

2 : λ ·x = 0}. Rotation of x by t bits to the
left is denoted by x ≪ t, and when t is clear from the context, x ≪ t is written
as ←−x for simplicity. The rotational-xor difference (RX-difference) with offset t of
two bit strings x and x′ in Fn

2 are defined as (x ≪ t)⊕ x′.

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. We use
←−
F to denote the

function mapping x to F (x) ≪ t for some non-negative integer t. The correlation
of the rotational differential-linear approximation of F with rotation offset t,
RX-difference α ∈ Fn

2 , and output linear mask λ ∈ Fm
2 is defined as

CR-DL
α,λ (F ) =

1

2n

∑
x∈Fn2

(−1)λ·((F (x)≪t)⊕F ((x≪t)⊕α)). (1)

When t = 0, Equation (1) computes the ordinary differential-linear correlation
of F , which is denoted by CDL

α,λ(F ). When F is clear from the context, we may

drop F and use CR-DL
α,λ and CDL

α,λ instead.

Let Mi for 0 ≤ i < n be k × k matrices, we use
∏n−1

i=0 Mi to denote the
product with the specified order Mn−1 · · ·M0.

2.1 Modulo Addition with an Initial Carry Bit

Let ⊞(n)
b : Fn

2 × Fn
2 → Fn

2 be the operation mapping (x,y) ∈ Fn
2 × Fn

2 to

x⊞(n)
b y = x+ y + b mod 2n,

where b ∈ F2. For the sake of simplicity, we may omit the subscript b when b = 0
or the superscript (n) when n is clear from the context.

Example 1. Let x = 0xE9 = (11101001)2 and y = 0xA3 = (10100011)2 be 8-bit

strings. Then, x⊞ y = x⊞(8)
0 y = 0x8C = (10001100)2, and x⊞(8)

1 y = 0x8D =
(10001101)2.

For (x,y) ∈ Fn
2 × Fn

2 , the carry vector of (x,y) with initial carry bit b ∈ F2 is
defined to be an (n+ 1)-bit vector cb(x,y) = (cn, cn−1, · · · , c0) such that

ci =

{
b, i = 0

xi−1yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1, 1 ≤ i ≤ n
.
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We call cb(x,y)[n] the most significant carry of x ⊞(n)
b y, denoted as ĉb(x,y).

Under these notations, x⊞(n)
b y = x⊕ y ⊕ ⌊cb(x,y)⌋(n−1). Moreover,

cb(⌊x⌋(k), ⌊y⌋(k)) = ⌊cb(x,y)⌋(k+1)

is a (k + 1)-bit vector, and ĉb(⌊x⌋(k), ⌊y⌋(k)) = cb(x,y)[k].

Example 2. Let x = 0xE9 = (11101001)2 and y = 0xA3 = (10100011)2 be 8-bit
strings. Then, c0(x,y) = (111000110)2 ∈ F9

2, c1(x,y) = (111000111)2 ∈ F9
2,

ĉ0(x,y) = ĉ1(x,y) = 1, c0(⌈x⌉(4), ⌈y⌉(4)) = c0((1110)2, (1010)2) = (11100)2 ∈
F5
2, and c1(⌊x⌋(4), ⌊y⌋(4)) = c1((1001)2, (0011)2) = (00111)2 ∈ F5

2. Moreover,
ĉ1(⌊x⌋(4), ⌊y⌋(4)) = 0, and ĉ0(⌈x⌉(4), ⌈y⌉(4)) = 1

Finally, the following lemma is frequently used in the subsequent sections.

Lemma 1. For (a, b) ∈ F2 × F2, (−1)a⊕b = (−1)a(−1)b.

2.2 Useful Partitions of Fk
2 × Fk

2

We now present some partition schemes of the sets Fk
2 × Fk

2 for k ≤ n. Note that
being familiar with these partition schemes is essential for understanding the
methodology of this paper.

Definition 1. Given (a, b) ∈ F2
2, (u, v) ∈ F2

2, and (α,β) ∈ Fn
2 ×Fn

2 , for 1 ≤ k ≤
n, we use D(k)

u◀a
v◀b

(α,β) ⊆ Fk
2 × Fk

2 to denote the set

{(x,y) ∈ Fk
2 × Fk

2 : (ĉa(x,y), ĉb(x⊕ ⌊α⌋(k),y ⊕ ⌊β⌋(k)) = (u, v)}.

Under this notation, we have

D(n)
u◀a
v◀b

(α,β) = {(x,y) ∈ Fn
2 × Fn

2 : (ĉa(x,y), ĉb(x⊕α,y ⊕ β) = (u, v)}.

and D(1)
u◀a
v◀b

(αi, βi) = {(x, y) ∈ F2
2 : (ĉa(x, y), ĉb(x⊕αi, y⊕βi) = (u, v)} ⊆ F2

2, which

is the solution set of the following system of equations{
xy ⊕ xa⊕ ya = u

(x⊕ αi)(y ⊕ βi)⊕ (x⊕ αi)b⊕ (y ⊕ βi)b = v
.

In our notation, D(k)
u◀a
v◀b

(α,β) only depends on the least significant k bits of

α and β, and thus some readers may think it is more natural to always write

D(k)
u◀a
v◀b

(⌊α⌋(k), ⌊β⌋(k)). However, to make the notations shorter, we prefer the

former one.

Example 3. D(1)
0◀0
1◀1

(0, 1) = {00, 10}, D(1)
1◀1
1◀1

(0, 0) = {01, 10, 11}, and D(1)
0◀0
0◀1

(1, 1) = ∅.
We refer the reader to Supplementary Material A in the extended version of this

paper [39] for D(1)
u◀a
v◀b

(α, β) with all combinations of (α, β, a, b, u, v) ∈ F6
2.
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Example 4. Let α = 011 and β = 100 ∈ F3
2. Then, D

(3)
0◀0
1◀1

(α,β) ⊆ F6
2 contains the

following twenty elements written as binary vectors:
000000, 000001, 000010, 000011, 001001, 001010, 001011, 010010, 010011, 011011,
100000, 100001, 100010, 100011, 101000, 110001, 101010, 110000, 101001, 111000,

D(2)
1◀1
1◀1

(α,β) = {0011, 0110, 0111, 1010, 1011, 1111}, and D(2)
0◀0
0◀1

(⌈α⌉(2), ⌈β⌉(2)) =

{0010, 0011, 0100, 0110}.
Lemma 2. For any fixed (a, b) ∈ F2

2 and (α,β) ∈ Fn
2 × Fn

2 ,

Fn
2 × Fn

2 =
⋃

(u,v)∈F2
2

D(n)
u◀a
v◀b

(α,β), (2)

and the necessary and sufficient condition for

D(n)
u◀a
v◀b

(α,β)
⋂

D(n)
u′◀a

v′◀b

(α,β) ̸= ∅

is (u, v) = (u′, v′).

Proof. According to Definition 1, Equation (2) is obvious. The second part holds
because the solution sets of{

ĉa(x,y) = u

ĉb(x⊕α,y ⊕ β) = v
and

{
ĉa(x,y) = u′

ĉb(x⊕α,y ⊕ β) = v′

have a common solution if and only if (u, v) = (u′, v′). ⊓⊔
Lemma 3. Let D(t)

b◀u
v◀0

∥ D(n−t)
u◀0
a◀v

(α,β) be the set of all (x,y) ∈ Fn
2 × Fn

2 such that(⌈x⌉(t), ⌈y⌉(t)) ∈ D(t)
b◀u
v◀0

(⌊α⌋(t), ⌊β⌋(t))
(⌊x⌋(n−t), ⌊y⌋(n−t)) ∈ D(n−t)

u◀0
a◀v

(⌈α⌉(n−t), ⌈β⌉(n−t))
. (3)

Then, the necessary and sufficient condition for(
D(t)

b◀u
v◀0

∥ D(n−t)
u◀0
a◀v

(α,β)

)⋂(
D(t)

b′◀u′
v′◀0

∥ D(n−t)
u′◀0

a′◀v′
(α,β)

)
̸= ∅ (4)

is (a, b, u, v) = (a′, b′, u′, v′). Moreover, we have⋃
(a,b)∈F2

2

⋃
(u,v)∈F2

2

(
D(t)

b◀u
v◀0

∥ D(n−t)
u◀0
a◀v

(α,β)

)
= Fn

2 × Fn
2 .

Proof. Equation (4) implies that
D(t)

b◀u
v◀0

(⌊α⌋(t), ⌊β⌋(t))
⋂

D(t)

b′◀u′
v′◀0

(⌊α⌋(t), ⌊β⌋(t)) ̸= ∅

D(n−t)
u◀0
a◀v

(⌈α⌉(n−t), ⌈β⌉(n−t))
⋂

D(n−t)

u′◀0
a′◀v′

(⌈α⌉(n−t), ⌈β⌉(n−t)) ̸= ∅
,

which in turn implies v = v′, u = u′, a = a′, and b = b′ according to Definition 1.
The second part of the lemma comes from the fact that any element in F2n

2 must
satisfy Equation (3) for some (a, b, u, v). ⊓⊔
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Remark 1. To make the description of our methods compact and expressive,
the symbols employed in this work are complex. Therefore, we accompany the
paper with a SageMath Notebook file at https://github.com/ZhongfengNiu/
rot-differential-linear to help the readers to familiarize with the notations.

3 Ordinary Differential-Linear Correlation of ⊞
Before diving into the details, we emphasize that this section is the key part of the
paper, and there is no essential difference between the methods for computing the
ordinary differential-linear correlation and the rotational differential-linear corre-
lation. For the ease of the reader, we single out this section to avoid the technical
complexities introduced by the rotational differentials. We strongly encourage
the reader to go through the details of the proofs in this section. Moreover,
we provide a SageMath Notebook file at https://github.com/ZhongfengNiu/
rot-differential-linear for computing the correlations of ordinary and ro-
tational differential-linear approximations of modulo additions with arbitrary
output linear masks.

Definition 2. The differential-linear correlation of S(x,y) = x⊞ y with input
difference (α,β) ∈ Fn

2 × Fn
2 , and output linear mask λ ∈ Fn

2 is defined as

CDL
(α,β),λ(S) =

1

22n

∑
(x,y)∈F2n

2

(−1)λ·(S(x⊕α,y⊕β)⊕S(x,y)).

Let F
(k)
α,β,λ(x,y) = (−1)⌊λ⌋(k)·

(
⌊S(x⊕α,y⊕β)⌋(k) ⊕ ⌊S(x,y)⌋(k)

)
for 1 ≤ k ≤ n.

Thus, F
(k)
α,β,λ(x,y) can be fully determined by the least significant k-bits of α,

β, λ, x, and y. Under this notation, we have

22nCDL
(α,β),λ(S) =

∑
(x,y)∈F2n

2

F
(n)
α,β,λ(x,y), (5)

In addition, according to the partition given by Equation (2),∑
(x,y)∈F2n

2

F
(n)
α,β,λ(x,y) =

∑
(u,v)∈F2

2

∑
(x,y)∈D(n)

u◀0
v◀0

(α,β)

F
(n)
α,β,λ(x,y),

or in the matrix notation, we have

∑
(x,y)∈F2n

2

F
(n)
α,β,λ(x,y) =

(
1 1 1 1

)



∑
(x,y)∈D(n)

0◀0
0◀0

(α,β)

F
(n)
α,β,λ(x,y)

∑
(x,y)∈D(n)

0◀0
1◀0

(α,β)

F
(n)
α,β,λ(x,y)

∑
(x,y)∈D(n)

1◀0
0◀0

(α,β)

F
(n)
α,β,λ(x,y)

∑
(x,y)∈D(n)

1◀0
1◀0

(α,β)

F
(n)
α,β,λ(x,y)


. (6)
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For 1 ≤ k ≤ n, let V(k) be the column vector

∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

0◀0
0◀0

(α,β)

F
(k)
α,β,λ(x,y)

∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

0◀0
1◀0

(α,β)

F
(k)
α,β,λ(x,y)

∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

1◀0
0◀0

(α,β)

F
(k)
α,β,λ(x,y)

∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

1◀0
1◀0

(α,β)

F
(k)
α,β,λ(x,y)


.

Then, according to Equation (5) and Equation (6),

22nCDL
(α,β),λ(S) = (1, 1, 1, 1)V(n).

Now, we are going to derive a recursive relationship between V(k) and V(k−1).

Lemma 4. For α, β, λ, x and y in Fn
2 , Let z = x⊞ y and z′ = x′ ⊞ y′, where

x′ = x⊕α and y′ = y ⊕ β. Then we have

F
(k)
α,β,λ(x,y) = (−1)λk−1·(αk−1⊕βk−1⊕u⊕v)F

(k−1)
α,β,λ (x,y),

where u = ĉ0(⌊x⌋(k−1), ⌊y⌋(k−1)) and v = ĉ0(⌊x′⌋(k−1), ⌊y′⌋(k−1)).

Proof. It comes from the fact that

F
(k)
α,β,λ(x,y) = (−1)⌊λ⌋(k)·(⌊z⌋(k)⊕⌊z′⌋(k))

= (−1)λk−1·(zk−1⊕z′
k−1)(−1)⌊λ⌋(k−1)·(⌊z⌋(k−1)⊕⌊z′⌋(k−1))

= (−1)λk−1·(zk−1⊕z′
k−1)F

(k−1)
α,β,λ (x,y),

and zk−1 ⊕ z′k−1 = αk−1 ⊕ βk−1 ⊕ ĉ0(⌊x⌋(k−1), ⌊y⌋(k−1))⊕ ĉ0(⌊x′⌋(k−1), ⌊y′⌋(k−1)). ⊓⊔

For (a, b, u, v) ∈ F4
2, let

π2a+b,2u+v(αt, βt, λt) = (−1)λt(αt⊕βt⊕u⊕v)#D(1)
a◀u
b◀v

(αt, βt).

and

Mαt,βt,λt =

π0,0(αt, βt, λt), π0,1(αt, βt, λt), π0,2(αt, βt, λt), π0,3(αt, βt, λt)
π1,0(αt, βt, λt), π1,1(αt, βt, λt), π1,2(αt, βt, λt), π1,3(αt, βt, λt)
π2,0(αt, βt, λt), π2,1(αt, βt, λt), π2,2(αt, βt, λt), π2,3(αt, βt, λt)
π3,0(αt, βt, λt), π3,1(αt, βt, λt), π3,2(αt, βt, λt), π3,3(αt, βt, λt)

 .

Note that #D(1)
a◀u
b◀v

(αt, βt) can be derived from Table 8 in Supplementary Material A

in the extended version [39], and the concrete values for Mαt,βt,λt
for all possible

(αt, βt, λt) ∈ F2 × F2 × F2 are listed in Supplementary Material C in the extended
version [39]. Then, we have the following two lemmas.
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Lemma 5. V(1) = Mα0,β0,λ0(1, 0, 0, 0)
T .

Proof. Since F
(1)
α,β,λ(x,y) = (−1)λ0·((x0⊕α0)⊕(y0⊕β0)⊕(x0⊕y0)) = (−1)λ0·(α0⊕β0),

V(1) is equal to

∑
(x0,y0)∈D(1)0◀0

0◀0

(α0,β0)

F
(1)
α,β,λ(x,y)

∑
(x0,y0)∈D(1)0◀0

1◀0

(α0,β0)

F
(1)
α,β,λ(x,y)

∑
(x0,y0)∈D(1)1◀0

0◀0

(α0,β0)

F
(1)
α,β,λ(x,y)

∑
(x0,y0)∈D(1)1◀0

1◀0

(α0,β0)

F
(1)
α,β,λ(x,y)


=


(−1)λ0·(α0⊕β0)#D(1)

0◀0
0◀0

(α0, β0)

(−1)λ0·(α0⊕β0)#D(1)
0◀0
1◀0

(α0, β0)

(−1)λ0·(α0⊕β0)#D(1)
1◀0
0◀0

(α0, β0)

(−1)λ0·(α0⊕β0)#D(1)
1◀0
1◀0

(α0, β0)

 = Mα0,β0,λ0

(
1
0
0
0

)
.

⊓⊔
Lemma 6. For 1 ≤ k < n, V(k+1) = Mαk,βk,λk

V(k).

Proof. We only need to prove

V(k+1)[i] =

3∑
j=0

Mαk,βk,λk
[i][j]V(k)[j] =

3∑
j=0

πi,j(αk, βk, λk)V
(k)[j] (7)

for 0 ≤ i < 4. Here, we only show that Equation (7) holds for i = 0. For 1 ≤ i < 4,
the proof is similar. Let u = ĉ0(⌊x⌋(k), ⌊y⌋(k)) and v = ĉ0(⌊x′⌋(k), ⌊y′⌋(k)). Then,
we have

V(k+1)[0] =
∑

(x,y)∈D(k+1)
0◀0
0◀0

(α,β)

F
(k+1)
α,β,λ(x,y)

=
∑

(x,y)∈D(k+1)
0◀0
0◀0

(α,β)

(−1)λk·(αk⊕βk⊕u⊕v)F
(k)
α,β,λ(x,y)

=
∑

(u,v)∈F22

∑
(xk,yk)∈D

(1)

0◀u
0◀v

(αk,βk)

∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

u◀0
v◀0

(α,β)

(−1)λk·(αk⊕βk⊕u⊕v)F
(k)
α,β,λ(x,y)

=
∑

(u,v)∈F22

(−1)λk·(αk⊕βk⊕u⊕v)

 ∑
(xk,yk)∈D

(1)

0◀u
0◀v

(αk,βk)

1

 ∑
(⌊x⌋(k),⌊y⌋(k))∈D(k)

u◀0
v◀0

(α,β)

F
(k)
α,β,λ(x,y)

=
∑

(u,v)∈F22

(−1)λk·(αk⊕βk⊕u⊕v)#D(1)
0◀u
0◀v

(αk, βk)
∑

(⌊x⌋(k),⌊y⌋(k))∈D(k)
u◀0
v◀0

(α,β)

F
(k)
α,β,λ(x,y)

=

3∑
j=0

π0,j(αk, βk, λk)V
(k)[j].

⊓⊔
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Theorem 1. The differential-linear correlation of the modulo addition CDL
(α,β),λ =

1
22n ·

∑
(x,y)∈F2n

2
F

(n)
α,β,λ(x,y), can be computed as

1

22n
(
1, 1, 1, 1

)
V(n) =

1

22n
(
1, 1, 1, 1

)
M

(n−1)
αn−1,βn−1,λn−1

· · ·M(0)
α0,β0,λ0


1
0
0
0

 .

Proof. It comes from Lemma 5 and Lemma 6. ⊓⊔
Next, we present two simple corollaries to show the applications of Theorem 1.

Note that these corollaries can also be proved by Definition 2.

Corollary 1. For any given (α,β) ∈ Fn
2 ×Fn

2 , and λ ∈ Fn
2 such that ⌈λ⌉(n−1) =

0n−1. The absolute differential-linear correlation of ⊞(n) is |CDL
(α,β),λ| = 1.

Proof. Since (1, 1, 1, 1)Mαt,βt,0 = 22 · (1, 1, 1, 1) for arbitrary (αt, βt) ∈ F2
2,

(
1, 1, 1, 1

)
V(n) =

(
1, 1, 1, 1

)
Mαn−1,βn−1,0 · · ·Mα1,β1,0Mα0,β0,λ0


1
0
0
0



= 22(n−1)
(
1, 1, 1, 1

)
Mα0,β0,λ0


1
0
0
0

 = ±22n.

⊓⊔
Corollary 2. For any λ ∈ Fn

2 , and (α,β) ∈ F2n
2 such that ⌊α⌋(n−1) = ⌊β⌋(n−1) =

0n−1, The absolute differential-linear correlation of ⊞(n) is |CDL
α,β,λ| = 1.

Proof. Let r be a real number. Then,

M0,0,λt(r, 0, 0, 1− r)T = 22 · (r′, 0, 0, 1− r′)T ,

for some real number r′. Therefore,

(
1, 1, 1, 1

)
V(n) =

(
1, 1, 1, 1

)
Mαn−1,βn−1,λn−1

M0,0,λn−2
· · ·M0,0,λ0


1
0
0
0



= 22(n−1) ·
(
1, 1, 1, 1

)
Mαn−1,βn−1,λn−1


p
0
0

1− p



= ±22n ·
(
1, ±1, ±1, 1

)
p
0
0

1− p

 = ±22n.

⊓⊔
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Next, we give some concrete analysis of differential-linear approximations of
modulo additions over 32-bit integers with output linear masks being ei ⊕ ei+1

whose Hamming weights are 2, where ei denotes the ith unit vector. Note that in
this work the least significant bit is indexed by 0, and thus e0 = 00 · · · 001. The
analysis of 64-bit and 128-bit modulo additions can be found in Supplementary
Material E in the extended version of this paper [39].

Table 2: The correlations of example differential-linear approximations of ⊞(32)
0 .

i 0 1 2 3 4 5 6 7 8 9 10 11
CDL
(α,β),ei⊕ei+1

0 1
2

3
4

7
8

15
16

31
32

1
64
− 65

128
0 1

2
− 3

4
0

i 12 13 14 15 16 17 18 19 20 21 22 23
CDL
(α,β),ei⊕ei+1

0 − 1
2

0 0 0 0 1
2

1
4
− 5

8
0 0 0

i 24 25 26 27 28 29 30
CDL
(α,β),ei⊕ei+1

− 1
2

0 0 0 0 0 1
2

Example 5. Consider the 32-bit modulo addition. Let (α,β) ∈ F32 × F32
2 be the

input difference{
α = (10111010110001000011011111000001)2

β = (10000100001001111110111011000000)2
.

Then, the differential-linear correlations CDL
(α,β),ei⊕ei+1

can be computed with
Theorem 1, and the results are listed in Table 2.

4 Rotational Differential-Linear Correlation of ⊞
Definition 3. According to Equation (1), the correlation of the modulo addition
S(x,y) = x⊞ y with input difference (α,β) and output linear mask λ is

CR-DL
(α,β),λ(S) =

1

22n

∑
(x,y)∈F2n

2

(−1)λ·
[
(((x≪t)⊕α)⊞((y≪t)⊕β))⊕((x⊞y)≪t)

]
.

Lemma 7. The rotational differential-linear correlation of ⊞ with rotational
offset t, rotational difference (α,β), and linear mask λ can be computed as

1

22n

∑
(x,y)∈F2n2

(−1)λ·∆ =
1

22n

∑
(x,y)∈F2n2

(−1)⌈λ⌉
(n−t)·⌈∆⌉(n−t)

(−1)⌊λ⌋
(t)·⌊∆⌋(t) ,

where
∆ =

(
((x ≪ t)⊕α)⊞ ((y ≪ t)⊕ β)

)
⊕

(
(x⊞ y) ≪ t

)
⌈∆⌉(n−t) =

(
(⌊x⌋(n−t) ⊕ ⌈α⌉(n−t))⊞v (⌊y⌋(n−t) ⊕ ⌈β⌉(n−t))

)
⊕

(
⌊x⌋(n−t) ⊞ ⌊y⌋(n−t)

)
⌊∆⌋(t) =

(
(⌈x⌉(t) ⊕ ⌊α⌋(t))⊞ (⌈y⌉(t) ⊕ ⌊β⌋(t))

)
⊕

(
⌈x⌉(t) ⊞u ⌈y⌉(t)

) ,
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and {
u = c0(⌊x⌋(n−t), ⌊y⌋(n−t))
v = c0(⌈x⌉(t) ⊕ ⌊α⌋(t), ⌈y⌉(t) ⊕ ⌊β⌋(t))

.

Proof. Let z = (x⊞ y) ≪ t and z′ = ((x ≪ t)⊕α)⊞ ((y ≪ t)⊕ β). Then,{
⌈z⌉(n−t) = ⌊x⌋(n−t) ⊞ ⌊y⌋(n−t)
⌊z⌋(t) = ⌈x⌉(t) ⊞u ⌈y⌉(t)

,

where u = c0(⌊x⌋(n−t), ⌊y⌋(n−t)). Similarly,{
⌈z′⌉(n−t) = (⌊x⌋(n−t) ⊕ ⌈α⌉(n−t))⊞v (⌊y⌋(n−t) ⊕ ⌈β⌉(n−t))
⌊z′⌋(t) = (⌈x⌉(t) ⊕ ⌊α⌋(t))⊞ (⌈y⌉(t) ⊕ ⌊β⌋(t)) ,

where v = c0(⌈x⌉(t) ⊕ ⌊α⌋(t), ⌈y⌉(t) ⊕ ⌊β⌋(t)). Consequently,
λ ·∆ = (⌈λ⌉(n−t) · ⌈∆⌉(n−t))⊕ (⌊λ⌋(t) · ⌊∆⌋(n−t)).

Applying Lemma 1 to (−1)λ·∆ gives the proof. ⊓⊔
Lemma 8. Let u = c0(⌊x⌋(n−t), ⌊y⌋(n−t)) and v = c0(⌈x⌉(t) ⊕ ⌊α⌋(t), ⌈y⌉(t) ⊕
⌊β⌋(t)). Then, ∑

(x,y)∈Fn
2

(−1)λ·∆ =
∑

(u,v)∈F2
2

Ψ(u, v)Φ(u, v),

where Ψ(u, v) equals to∑
b∈F2

∑
(⌈x⌉(t),⌈y⌉(t))∈D(t)

b◀u
v◀0

(⌊α⌋(t),⌊β⌋(t))

(−1)⌊λ⌋(t)·⌊∆⌋(t) ,

and Φ(u, v) equals to∑
a∈F2

∑
(⌊x⌋(n−t),⌊y⌋(n−t))∈D(n−t)

u◀0
a◀v

(⌈α⌉(n−t),⌈β⌉(n−t))

(−1)⌈λ⌉(n−t)·⌈∆⌉(n−t)

.

Proof. See Supplementary Material B in the extended version [39]. ⊓⊔
Theorem 2. The rotational differential-linear correlation of ⊞ with rotational
offset t, rotational difference (α,β), and linear mask λ can be computed as

CR-DL
(α,β),λ =

1

22n
(
1, 0, 1, 0

)
Cα,β,λ


1
0
0
0

+
1

22n
(
0, 1, 0, 1

)
Cα,β,λ


0
1
0
0


where

Cα,β,λ =

t−1∏
i=0

Mαi,βi,λi


1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

 n−1∏
j=t

Mαj ,βj ,λj
.
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Proof. Applying similar techniques used in the proof of Theorem 1, for (u, v) =
(0, 0), we can derive that{

Ψ(0, 0) = (1, 0, 1, 0)Mαt−1,βt−1,λt−1 · · ·Mα0,β0,λ0(1, 0, 0, 0)
T

Φ(0, 0) = (1, 1, 0, 0)Mαn−1,βn−1,λn−1 · · ·Mαt,βt,λt(1, 0, 0, 0)
T .

For (u, v) = (0, 1), we have{
Ψ(0, 1) = (0, 1, 0, 1)Mαt−1,βt−1,λt−1 · · ·Mα0,β0,λ0(1, 0, 0, 0)

T

Φ(0, 1) = (1, 1, 0, 0)Mαn−1,βn−1,λn−1 · · ·Mαt,βt,λt(0, 1, 0, 0)
T .

For (u, v) = (1, 0), we have{
Ψ(1, 0) = (1, 0, 1, 0)Mαt−1,βt−1,λt−1 · · ·Mα0,β0,λ0(0, 0, 1, 0)

T

Φ(1, 0) = (0, 0, 1, 1)Mαn−1,βn−1,λn−1 · · ·Mαt,βt,λt(1, 0, 0, 0)
T .

For (u, v) = (1, 1), we have{
Ψ(1, 1) = (0, 1, 0, 1)Mαt−1,βt−1,λt−1 · · ·Mα0,β0,λ0(0, 0, 1, 0)

T

Φ(1, 1) = (0, 0, 1, 1)Mαn−1,βn−1,λn−1 · · ·Mαt,βt,λt(0, 1, 0, 0)
T .

According to Definition 3 and Lemma 8, 22nCR-DL
α,β,λ =

∑
(u,v)∈F2

2
Ψ(u, v)Φ(u, v)

can be computed as(
Ψ(0, 0)Φ(0, 0) + Ψ(1, 0)Φ(1, 0)

)
+
(
Ψ(0, 1)Φ(0, 1) + Ψ(1, 1)Φ(1, 1)

)
,

which is equal to(
1, 0, 1, 0

)
Cα,β,λ(1, 0, 0, 0)

T +
(
0, 1, 0, 1

)
Cα,β,λ(0, 1, 0, 0)

T .

⊓⊔

Next, we give some concrete rotational differential-linear analysis of modulo
additions over 32-bit integers, where ei denotes the ith unit vector. The analysis
of 64-bit and 128-bit addition can be found in Supplementary Material F in the
extended version of this paper [39].

Example 6. Consider the 32-bit modulo addition. Let (α,β) ∈ F32
2 × F32

2 be the
input difference such that{

α = (10110000000100100101100000110010)2

β = (10100001011101110100110001110011)2
.

Then, the rotational differential-linear correlations CR-DL
(α,β),ei⊕ei+1

with rotation
offset t = 30 can be computed with Theorem 1, and the results are listed in
Table 3.
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Table 3: The correlations of example rotational differential-linear approximations

of ⊞(32)
0 with rotation offset t = 30.

i 0 1 2 3 4 5 6 7
CR-DL
(α,β),ei⊕ei+1

0 1
2

1
4

5
8

3
16

− 19
32

0 1
2

i 8 9 10 11 12 13 14 15
CR-DL
(α,β),ei⊕ei+1

3
4

− 7
8

0 − 1
2

0 1
2

1
4

− 3
8

i 16 17 18 19 20 21 22 23
CR-DL
(α,β),ei⊕ei+1

0 − 1
2

0 1
2

− 1
4

0 0 − 1
2

i 24 25 26 27 28 29 30
CR-DL
(α,β),ei⊕ei+1

0 1
2

3
4

− 7
8

0 1
4294967296

1073741825
2147483648

Remark 2. Theorem 1 and Theorem 2 completely generalize the formulas pre-
sented in [32]. More importantly, the formulas presented in Theorem 1 and
Theorem 2 efficiently compute the exact correlations of arbitrary rotational
differential-linear distinguishers of modulo additions, while the formulas in [32]
can only compute approximations of the correlations of rotational differential-
linear distinguishers of modulo additions with output linear masks being unit
vectors. The formulas given in [32] are not exact since they rely on certain
statistical assumptions that may not hold perfectly in practice. This difference
can be observed in Example 7.

Example 7. Consider the 32-bit modulo addition. Let (α,β) ∈ F32
2 × F32

2 be the
input difference{

α = (01100011101110001111101101010111)2

β = (01010011001111111101001111100111)2
.

Then, the rotational differential-linear correlations CR-DL
(α,β),ei

with rotation offset

t = 30 can be computed with the formula presented in [32] or Theorem 1 in this
work, and the results are listed in Table 4.

Table 4: The correlations CR-DL
(α,β),ei

of example rotational differential-linear ap-

proximations of ⊞(32)
0 with rotation offset t = 30 and output masks being unit

vectors

i 0 1 2 3 4 5 6 7

[32] 0 −0.5 −0.75 −0.875 −0.0625 0 0 0.5
This work 0.25 −0.375 −0.6875 −0.84375 −0.078125 0 0 0.5
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5 Computing the (Rotational) Differential-Linear
Correlation of Iterative ARX Primitives

Previous sections focus on the analysis of the local properties of modulo additions.
In this section, we show how to efficiently compute the (rotational) differential-
linear correlations of ARX primitives based on the theories developed in previous
sections and Morawiecki’s technique [34].

To extend Morawiecki’s technique to evaluate the correlations of arbitrary
rotational differential-linear approximations of a cipher, one must be able to
compute the rotational differential-linear correlation (with an arbitrary output
linear mask) of each building block F : Fm

2 → Fn
2 of the cipher being analyzed

with the knowledge of Pr[xi−t ⊕ x′i] for all 0 ≤ i < m and some integer t. In the
following, we provide the formulas for accomplishing this task.

Lemma 9. Let F : Fm
2 → Fn

2 be a vectorial Boolean function. Assume that the
input pair (x,x′) ∈ Fm

2 × Fm
2 satisfies Pr[xi ⊕ x′i = 1] = Pr[xi ̸= x′i] = pi for

0 ≤ i < m, and the events xi ̸= x′i and xj ̸= x′j for different i and j are mutually
independent. Then, for λ ∈ Fn

2 , the differential-linear correlation of F can be
computed as

CDL
λ = Pr[λ · (F (x)⊕ F (x′)) = 0]− Pr[λ · (F (x)⊕ F (x′)) = 1]

=
∑
u∈Fm

2

1

2m

∑
x∈Fm

2

(−1)λ·(F (x)⊕F (x⊕u))
m−1∏
i=0

((1− ui)− (−1)uipi).

Proof. Let Su = {(x,x′) ∈ Fm
2 × Fm

2 : x⊕ x′ = u} with #Su = 2m. Then

CDL
λ =

∑
v∈λ⊥

Pr[F (x)⊕ F (x′) = v]−
∑

v∈Fn2 \λ⊥

Pr[F (x)⊕ F (x′) = v]

=
∑
v∈Fn2

(−1)λ·v Pr[F (x)⊕ F (x′) = v]

=
∑
v∈Fn2

(−1)λ·v
∑

u∈Fm2

Pr[F (x)⊕ F (x′) = v|(x,x′) ∈ Su] Pr[(x,x′) ∈ Su]

=
∑

u∈Fm2

∑
v∈Fn2

(−1)λ·v Pr[F (x)⊕ F (x′) = v|(x,x′) ∈ Su] Pr[(x,x′) ∈ Su]

=
∑

u∈Fm2

1

2m

∑
x∈Fm2

(−1)λ·(F (x)⊕F (x⊕u))
m−1∏
i=0

((1− ui)− (−1)uipi).

⊓⊔
Theorem 3. Let x, x′, y, and y′ be random n-bit strings such that Pr[xi⊕x′i =
1] = pi and Pr[yi ⊕ y′i = 1] = qi for 0 ≤ i < n. In addition, the events xi ⊕ x′i = 1
and yj ⊕ y′j = 1 for 0 ≤ i, j < n are mutually independent. For λ ∈ Fn

2 , the
differential-linear correlation of F (x,y) = x⊞ y can be computed as

CDL
λ =

1

22n
(1, 1, 1, 1)

n−1∏
i=0

Hpi,qi
λi

(1, 0, 0, 0)T ,

16



where Hpi,qi
λi

is a 4× 4 matrix and is defined as

Hpi,qi
λi

=
∑

a,b∈F2

((1− a)− (−1)api)((1− b)− (−1)bqi)Ma,b,λi
.

Proof. Let p̂i(αi) = ((1 − αi) − (−1)αipi) and q̂i(βi) = ((1 − βi) − (−1)βiqi).
According to Lemma 9 and Theorem 1, 22nCDL

λ can be computed as∑
(α,β)∈F2n2

∑
(x,y)∈F2n2

(−1)λ·(S(x⊕α,y⊕β)⊕S(x,y))
n−1∏
i=0

p̂i(αi)q̂i(βi)

=
∑

(α,β)∈F2n2

(1, 1, 1, 1)

n−1∏
i=0

Mαi,βi,λi(1, 0, 0, 0)
T

n−1∏
i=0

p̂i(αi)q̂i(βi)

= (1, 1, 1, 1)
∑

(α,β)∈F2n2

n−1∏
i=0

p̂i(αi)q̂i(βi)Mαi,βi,λi(1, 0, 0, 0)
T

= (1, 1, 1, 1)

n−1∏
i=0

∑
(a,b)∈F22

p̂i(a)q̂i(b)Ma,b,λi(1, 0, 0, 0)
T

= (1, 1, 1, 1)

n−1∏
i=0

Hpi,qi
λi

(1, 0, 0, 0)T .

⊓⊔
Lemma 10. Let F : Fm

2 → Fn
2 be a vectorial Boolean function and 0 ≤ t ≤

m − 1 be an integer. Assume that the input pair (x,x′) ∈ Fm
2 × Fm

2 satisfies
Pr[xi−t ⊕ x′i = 1] = pi for 0 ≤ i < m, and the events xi−t ̸= x′i and xj−t ≠ x′j
for different i and j are mutually independent. Then, for λ ∈ Fn

2 and rotation
offset t, the rotational differential-linear correlation of F can be computed as

CR-DL
λ = Pr[λ · (←−F (x)⊕ F (x′)) = 0]− Pr[λ · (←−F (x)⊕ F (x′)) = 1]

=
∑
u∈Fm

2

1

2m

∑
x∈Fm

2

(−1)λ·(
←−
F (x)⊕F (←−x⊕u))

m−1∏
i=0

((1− ui)− (−1)uipi).

Proof. Let Su = {(x,x′) ∈ Fm
2 × Fm

2 :←−x ⊕ x′ = u} with #Su = 2m. Then,

CR-DL
λ =

∑
v∈λ⊥

Pr[
←−
F (x)⊕ F (x′) = v]−

∑
v∈Fn2 \λ⊥

Pr[
←−
F (x)⊕ F (x′) = v]

=
∑
v∈Fn2

(−1)λ·v Pr[
←−
F (x)⊕ F (x′) = v]

=
∑
v∈Fn2

(−1)λ·v
∑

u∈Fm2

Pr[
←−
F (x)⊕ F (x′) = v|(x,x′) ∈ Su] Pr[(x,x′) ∈ Su]

=
∑

u∈Fm2

∑
v∈Fn2

(−1)λ·v Pr[F (x)⊕ F (x′) = v|(x,x′) ∈ Su] Pr[(x,x′) ∈ Su]

=
∑

u∈Fm2

1

2m

∑
x∈Fm2

(−1)λ·(
←−
F (x)⊕F (←−x⊕u))

m−1∏
i=0

((1− ui)− (−1)uipi).
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⊓⊔
Theorem 4. We use x, x′, y, and y′ to represent random n-bit strings such
that Pr[xi−t ⊕ x′i = 1] = pi and Pr[yi−t ⊕ y′i = 1] = qi for 0 ≤ i < n. In addition,
the events xi−t⊕x′i = 1 and yj−t⊕y′j = 1 for 0 ≤ i, j < n are mutually statistical
independent. Let S(x,y) = x⊞ y and W be

t−1∏
i=0

 ∑
(c,d)∈F2

2

ζ(c, d, pi, qi)Mc,d,λi

(1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

)
n−1∏
i=t

 ∑
(a,b)∈F2

2

ζ(a, b, pi, qi)Ma,b,λi

 ,

where ζ(a, b, p, q) = ((1− a)− (−1)ap)((1− b)− (−1)bq). Then, for λ ∈ Fn
2 and

rotation offset t, the rotational differential-linear correlation of S(x,y) can be
computed as

CR-DL
λ = (1, 0, 1, 0)W(1, 0, 0, 0)T + (0, 1, 0, 1)W(0, 1, 0, 0)T .

Proof. See Supplementary Material D in the extended version [39]. ⊓⊔
The above theorems only consider standalone modulo additions. In practice,

we may tweak these theorems to make them suitable for use in specific applications.
In what follows, we demonstrate a case where linear and nonlinear operations are
considered as a whole. Note that in the remainder of this section, x ∈ Fn

2 and
F (x) for some vectorial Boolean function F : Fn

2 → Fn
2 are regarded as column

vectors. Therefore, a linear transformation of y ∈ Fn
2 can be written as Ly, where

L is an n× n binary matrix.

Lemma 11. Let F : Fn
2 → Fn

2 be a vectorial Boolean function mapping x ∈ Fn
2 to

L◦S(x)⊕c, where c ∈ Fn
2 is a constant, S : Fn

2 → Fn
2 is a nonlinear permutation,

and L is an n × n binary matrix such that L(y ≪ t) = (Ly) ≪ t for all
y ∈ Fn

2 and integer t. Then, the correlation of the rotational differential-linear
approximation of F with rotation offset t, RX-difference ∆, and output linear
mask λ ∈ Fn

2 can be computed as

CR-DL
∆,λ (F ) = (−1)λ·(c⊕←−c )CR-DL

∆,LTλ(S).

Proof. According to the definition of CR-DL
∆,λ (F ), we have

CR-DL
∆,λ (F ) =

1

22n

∑
x∈Fn2

(−1)λ·(
←−
F (x)⊕F (←−x⊕∆))

=
1

22n

∑
x∈Fn2

(−1)λ·(L(
←−
S (x)⊕S(←−x⊕∆))⊕←−c⊕c)

=
1

22n

∑
x∈Fn2

(−1)λ·(
←−c⊕c)⊕λ·(L(

←−
S (x)⊕S(←−x⊕∆)))

=
1

22n
(−1)λ·(

←−c⊕c)
∑
x∈Fn2

(−1)(L
Tλ)·(

←−
S (x)⊕S(←−x⊕∆))

= (−1)λ·(c⊕
←−c )CR-DL

∆,LTλ(S).

⊓⊔
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In the analysis of Alzette, SipHash, ChaCha, and SPECK, we will instantiate
the nonlinear permutation S in Lemma 11 with S(x,y) = (x⊞ y,y), while for
ChaCha, we will consider S(x,y, z,w) = (x⊞ y,y, z,w). Next, we only consider
S(x,y) = (x⊞ y,y), and the generalization to the latter case is trivial.

Lemma 12. The correlation of the differential-linear approximation of S(x,y) =
(x ⊞ y,y) with x and y ∈ Fn

2 , input difference (α,β) ∈ Fn
2 × Fn

2 , and output
linear mask (λ,γ) ∈ Fn

2 × Fn
2 can be computed as

CDL
(α,β),(λ,γ)(S) =

1

22n
(1, 1, 1, 1)

n−1∏
i=0

(−1)γiβiMαi,βi,λi


1
0
0
0

 .

Proof. Let x′ = x⊕α and y′ = y ⊕ β. Then,

CDL
(α,β),(λ,γ)(S) =

1

22n

∑
(x,y)∈F2n

2

(−1)(λ,γ)·(S(x,y)⊕S(x′,y′))

=
(−1)γ·β
22n

∑
(x,y)∈F2n

2

(−1)λ·((x⊞y)⊕(x′⊞y′)).

Applying Theorem 1 to
∑

(x,y)∈F2n
2
(−1)λ·((x⊞y)⊕(x′⊞y′)) gives the proof. ⊓⊔

Similarly, based on Theorem 2, we can derive the following Lemma.

Lemma 13. The correlation CR-DL
(α,β),(λ,γ)(S) of the rotational differential-linear

approximation of S(x,y) = (x⊞y,y) with rotational offset t, input RX-difference
(α,β) ∈ Fn

2 × Fn
2 , and output linear mask (λ,γ) ∈ Fn

2 × Fn
2 can be computed as

(
1, 0, 1, 0

)
C(α,β),(λ,γ)


1
0
0
0

+
(
0, 1, 0, 1

)
C(α,β),(λ,γ)


0
1
0
0

 ,

where

C(α,β),(λ,γ) = 2−2n
t−1∏
i=0

(−1)γiβiMαi,βi,λi


1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

 n−1∏
j=t

(−1)γjβjMαj ,βj ,λj
.

Lemma 12 and Lemma 13 lead to the following generalizations of Theorem 3
and Theorem 4.

Corollary 3. Let x, x′, y, and y′ be random n-bit strings such that Pr[xi⊕x′i =
1] = pi and Pr[yi ⊕ y′i = 1] = qi for 0 ≤ i < n. In addition, the events xi ⊕ x′i = 1
and yj ⊕ y′j = 1 for 0 ≤ i, j < n are mutually independent. For output linear
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mask (λ,γ) ∈ Fn
2 × Fn

2 , the differential-linear correlation of F (x,y) = (x⊞ y,y)
can be computed as

CDL
(λ,γ) =

1

22n
(1, 1, 1, 1)

n−1∏
i=0

Hpi,qi
λi,γi

(1, 0, 0, 0)T ,

where Hpi,qi
λi,γi

is a 4× 4 matrix defined as

Hpi,qi
λi,γi

=
∑

a,b∈F2

(−1)γib((1− a)− (−1)api)((1− b)− (−1)bqi)Ma,b,λi
.

Corollary 4. We use x, x′, y, and y′ to represent random n-bit strings such
that Pr[xi−t ⊕ x′i = 1] = pi and Pr[yi−t ⊕ y′i = 1] = qi for 0 ≤ i < n. In addition,
the events xi−t⊕x′i = 1 and yj−t⊕y′j = 1 for 0 ≤ i, j < n are mutually statistical
independent. Then, for output linear mask (λ,γ) ∈ Fn

2 × Fn
2 , rotational offset

t, the rotational differential-linear correlation of F (x,y) = (x ⊞ y,y) can be
computed as

CR-DL
(λ,γ) (S) = (1, 0, 1, 0)W


1
0
0
0

+ (0, 1, 0, 1)W


0
1
0
0

 ,

where ζ(a, b, p, q) = ((1− a)− (−1)ap)((1− b)− (−1)bq), and W is

t−1∏
i=0

 ∑
(c,d)∈F22

(−1)γidζ(c, d, pi, qi)Mc,d,λi


1 1 0 0

0 0 0 0
0 0 1 1
0 0 0 0

 n−1∏
i=t

 ∑
(a,b)∈F22

(−1)γibζ(a, b, pi, qi)Ma,b,λi

 .

6 Applications to ARX Primitives

In this section, we apply the new technique for (rotational) differential-linear
cryptanalysis proposed in Section 5 to the ARX primitives Alzette, SipHash,
SPECK, and ChaCha. The source code for experimental verification is available at
https://github.com/ZhongfengNiu/rot-differential-linear.

6.1 Cryptanalysis of Alzette

Alzette [7] is a 64-bit ARX-based S-box designed by Beierle et al., which is the
main building block of the Sparkle-suite [8], a collection of lightweight symmetric
cryptographic algorithms (AEADs and hash functions) currently in the final
round of the NIST lightweight cryptography standardization effort. An instance
of Alzette with an input (x, y) ∈ F32

2 × F32
2 is depicted in Figure 1. To apply

Corollary 3 and Corollary 4 developed in Section 5, we convert the Alzette

round function into its equivalent form illustrated in Figure 2.
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≫ 31

≫ 24

c

≫ 17

≫ 17

c

≫ 0

≫ 31

c

≫ 24

≫ 16

c

x← x� (y ≫ 31), y ← y � (x ≫ 24), x← x⊕ c

x← x� (y ≫ 17), y ← y � (x ≫ 17), x← x⊕ c

x← x� (y ≫ 0), y ← y � (x ≫ 31), x← x⊕ c

x← x� (y ≫ 24), y ← y � (x ≫ 16), x← x⊕ c

Fig. 1: The Alzette instance with c = B7E15162

≫ r

≫ s

c

≫ r

≪ r

≫ s

c

x← x� (y≫ r), y ← y � (x≫ s), x← x⊕ cm

Fig. 2: An equivalent transformation of the round function of Alzette

Rotational differential-linear distinguishers. We use the same input RX-difference
(7ffffffc, 3fffffff) employed in [32]. Then, we evaluate the correlations of the
4-round rotational differential-linear approximations of Alzette for all possible
output linear masks with Hamming weight 2. The best distinguisher has a theo-
retical correlation of 2−5.57 (see the first row of Table 5), whose experimental
correlation with 226 random input pairs with the predefined input RX-difference
is about 2−3.14.

Differential-linear distinguishers. According to Corollary 2, we choose (80000000,
00000000) to be the input difference. Then, we evaluate the correlations of the
differential-linear approximations of 4-, 5- and 6-round Alzette for all possible
output linear masks with Hamming weight 2.

For 4-round Alzette, we identify a deterministic differential-linear approxi-
mation (see the second row of Table 5). For 5-, and 6-round Alzette, the best
differential-linear distinguishers have a theoretical correlation of −2−0.33 and
2−4.95, respectively. The experimental correlations given in Table 5 are obtained
with 226 random input pairs with the predefined input differences.
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Table 5: Rotational differential-linear distinguishers for round-reduced Alzette,
where the constants used are 0xB7E15162 and 0x38B4DA56.

#Rnd ≪ γ Input Difference Output Mask
Correlation

Theory Experiment

4 30 (7ffffffc, 3fffffff) (00004000, 40000000) 2−5.57 2−3.14

4 0 (80000000, 00000000) (00080000, 00000008) 1 1
5 0 (80000000, 00000000) (00000080, 00008000) −2−0.33 −2−0.13

6 0 (80000000, 00000000) (00000040, 00200000) 2−4.95 2−1.45

8 0 (80020100, 00010080) (80000000, 00008000) −2−8.24 −2−5.50

Extending the distinguisher. For 4-round Alzette, we can identify two optimal
differential trails with a common input difference (80020100, 00010080) whose
probabilities are 2−6:

(80020100, 00010080)→ (01010000, 00030101),

(80020100, 00010080)→ (03010000, 00030301).

Moreover, we find two 4-round differential-linear approximations sharing a
common output linear mask (80000000, 00008000) whose input differences are
the two output differences of the above two differential trails respectively:

(01010000, 00030101)→ (80000000, 00008000),

(03010000, 00030301)→ (80000000, 00008000).

The theoretical correlations of the differential-linear approximations are −2−2.90
and −2−3.69, respectively. Combining the 4-round differential trials with the
4-round differential-linear approximations leads to an 8-round differential-linear
distinguisher with theoretical correlation 2−6 · (−2−2.90 − 2−3.69) ≈ −2−8.24 (see
the last row of Table 5). The experimental correlation with 226 random input
pairs with the predefined input difference is 2−5.50.

6.2 Cryptanalysis of SipHash

SipHash [3] is a family of ARX-based pseudorandom functions optimized for
short inputs. As mentioned in the introduction, instances of SipHash are widely
deployed in real-world applications. The round function of SipHash is illustrated
in Figure 3.

Aumasson and Bernstein proposed two specific instances for use, which
are SipHash-2-4 and SipHash-4-8. Here we focus on the finalization process of
SipHash-2-4, where four rounds are applied and the output branches are XORed
together. In [20], Dobraunig, Mendel and Schläffer found a 4-round differential
distinguisher for the finalization (see the last row of Table 6). According to
Corollary 2, we choose 8000000000000000 to be the input difference of branch a.
Then, we evaluate the correlations of all 3-round differential-linear approximations
of SipHash for all possible output linear masks with Hamming weight 2. We
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b

a

c

d

≪ 13

≪ 16

≪ 32

≪ 17

≪ 21

≪ 32

Fig. 3: The round function of SipHash

Table 6: Differential-linear distinguishers for the finalization of SipHash. Note
that the 4-round distinguisher from [20] is a differential one.

#Rnd Input Difference Mask / Difference
Correlation / probability

Ref.
Theory Experiment

3

0000000000000000 0000400000004000

2−2.19 2−0.78 Sect. 6.2
8000000000000000

0000000000000000

0000000000000000

4

0000000000040000 2000000020000000

2−12.45 2−6.03 Sect. 6.2
0000000080040000

0000000000000000

0000000000000000

4

0014002020010000 2011421120010200

2−35 – [20]
8010042000010000

0402200000000002

0402200000000000

find a 3-round distinguisher given in the first row of Table 6 with theoretical
correlation 2−2.19 and experimental correlation 2−0.78.

If we choose 8000000000000000 to be the input difference of branch a and
branch d, we find the following 3-round differential-linear distinguisher

0000000000000000

8000000000000000

0000000000000000

8000000000000000

→ 2000000020000000

with theoretical correlation 2−10.45. Extending this distinguisher backwards with
the following differential

0000000000040000

0000000080040000

0000000000000000

0000000000000000

→
0000000000000000

8000000000000000

0000000000000000

8000000000000000
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with probability 2−2, we obtain a 4-round differential-linear distinguisher for the
finalization of SipHash-2-4 with theoretical correlation 2−12.45 and experimental
correlation 2−6.03.

6.3 Cryptanalysis of SPECK

SPECK [6] is a family of ARX block ciphers designed by the U.S. National Security
Agency (NSA). In this work, we focus on the version with a 32-bit block size,
whose round function is depicted in Figure 4.

≫ 7

≪ 2k

Fig. 4: The SPECK instance

As discussed in [32], it is difficult to apply rotational differential-linear attacks
with nonzero rotation offset on keyed primitives due to the peculiarities of the RX-
difference, and thus for SPECK we only consider ordinary differential-linear attacks
(rotational differential-linear attacks with zero rotation offset). For SPECK32, we
start with a 4-round differential trail:

(0211, 0a04)→ (8100, 8102)

with probability 2−7. Then, setting the input difference to (8100, 8102), we
evaluate the correlations of the differential-linear approximations of 4-round
SPECK32 for all possible output linear masks with Hamming weight 2, and find
one: (8100, 8102) → (0008, 0008) with correlation 2−1.23. At this point, we
obtain an 8-round differential-linear distinguisher for SPECK32 with theoretical
correlation 2−8.23. By extending this distinguisher forward by a 1-round linear
approximation (0008, 0008)→ (5820, 4020) with correlation 2−1 and backwards
by a differential trail

(0a20, 4205)→ (0211, 0a04)

with probability 2−5 we get a 10-round differential-linear distinguisher for SPECK32
with a theoretical correlation of 2−15.23, while previous best 10-round distinguisher
for SPECK32 is a differential one with probability 2−31.01 [43] (too close to 2−32

to be valid in practice). Moreover, experimental results indicate that the actual
correlation of our distinguisher is higher than expected. We random chose 100
master keys. For each key, we compute the experimental correlation of the
distinguisher by going through the full plaintext space. The average correlation
over the 100 keys is about 2−13.90.
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Table 7: Differential-linear distinguishers for round-reduced SPECK32

#Rnd ≪ γ Input Difference Output Mask
Correlation

Theory Experiment

8 0 (0211, 0a04) (0008, 0008) 2−8.23 2−6.87

9 0 (0211, 0a04) (5820, 4020) 2−10.23 2−8.93

10 0 (0a20, 4205) (5820, 4020) 2−15.23 2−13.90

6.4 Cryptanalysis of ChaCha

As the default replacement for RC4 in the TLS protocol, ChaCha [10] is one of the
most important ARX primitives. ChaCha operates on a 4× 4 matrix of sixteen
32-bit words written as 

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 .

In each round, four parallel applications of a nonlinear transformation depicted
in Figure 5 are performed on four 128-bit tuples formed by the words of the
state matrix. Specifically, in odd-numbered rounds, the nonlinear transforma-
tion is applied to columns (x0,x4,x8,x12), (x1,x5,x9,x13), (x2,x6,x10,x14),
(x3,x7,x11,x15). In even-numbered rounds, the nonlinear operation is applied
to (x0,x5,x10,x15), (x1,x6,x11,x12), (x2,x7,x8,x13), (x3,x4,x9,x14).

Rotational differential-linear distinguishers. In [45], Xu et al. presented a 1-round
rotational differential-linear distinguisher for ChaCha (see the first row of Table 13
in Supplementary Material G in the extended version of this paper [39]) with
an experimental correlation 2−0.01. The lower bound of the correlation of this
differential-linear distinguisher is estimated to be 2−2 in [45]. We re-evaluate the
correlation of this distinguisher with the method proposed in Section 5, and the
obtained theoretical correlation is 2−0.01, perfectly matching the experimental
result.

d

c

b

a

≪ 16

≪ 12

≪ 8

≪ 7

Fig. 5: The quartered round function of ChaCha
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Differential-linear distinguishers. At CRYPTO 2020, Beierle et al. employed a
series of 2.5-round differential-linear distinguishers (starting form even round) to
perform key-recovery attacks on ChaCha [9] (see Table 13 in Supplementary Mate-
rial G in the extended version of this paper [39]) whose experimental correlations
are 2−8.3. With the method presented in Section 5, the predicted correlations are
2−12.14. Concerning this result, we would like to mention that the result obtained
by Dey, Dey, Sarkar, and Meier [17] is better than ours. However, if the readers
take a look at [17], it is easy to find that our method is more generic. Also, we
evaluate the correlation of the 3-round differential-linear approximation used in
FSE 2008 [4] and FSE 2016 [14] with an experimental correlation 2−5.25, and
the obtained theoretical correlation is 2−9.88 (see the last row of Table 13 in
Supplementary Material G in the extended version of this paper [39]).

Moreover, for 2.5-round ChaCha, we find a differential-linear distinguisher

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 20000000

→

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000001 00000000

00000000 00000000 00000000 00000000

whose theoretical correlation is 2−0.02. Since
x2.5
10 [0] = x3

10[0]⊕ x3
14[0]

x3
10[0] = x4

0[0]⊕ x4
10[0]⊕ x4

15[0]⊕ x4
15[8]

x3
14[0] = x4

3[0]⊕ x4
3[16]⊕ x4

4[7]⊕ x4
9[0]⊕ x4

14[24]

,

extending the 2.5-round distinguisher gives a 4-round differential-linear distin-
guisher

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 20000000

→

00000001 00000000 00000000 00010001

00000080 00000000 00000000 00000000

00000000 00000001 00000001 00000000

00000000 00000000 01000000 00000101

with a theoretical correlation of 2−0.02 and experimental correlation of 2−0.98.

7 Conclusion, Discussion, and Open Problems

We present a method for evaluating the rotational differential-linear correlations
of ARX ciphers for arbitrary output linear masks, partially solve the open problem
proposed by Liu et al. at EUROCRYPT 2021. We apply the method to some
ARX ciphers and obtain significantly improved results. Finally, we would like to
give some open problems deserving further investigations.

Firstly, it seems that the formulas presented in this paper involving a chain
of matrix multiplications cannot be translated into a compact finite automaton
to be modeled with the MILP methodology. Therefore, we feel that the major
pain spot of the current development is that there is no effective tool that can
automatically search for good (rotational) differential-linear approximations, and
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thus in practice the search space is severely limited to low Hamming weight
output masks. Secondly, can we weaken or avoid the independence assumptions
used in the method for evaluating the rotational differential-linear correlations?
Remembering that we still have difficulties in explaining the experimental dis-
tinguishers listed in Supplementary Material H in the extended version of this
paper [39], a solution to the independence problem may completely solve this
problem.
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