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Abstract. Is it possible to convert classical reductions into post-
quantum ones? It is customary to argue that while this is problematic
in the interactive setting, non-interactive reductions do carry over. How-
ever, when considering quantum auxiliary input, this conversion results
in a non-constructive post-quantum reduction that requires duplicating
the quantum auxiliary input, which is in general inefficient or even im-
possible. This violates the win-win premise of provable cryptography: an
attack against a cryptographic primitive should lead to an algorithmic
advantage.
We initiate the study of constructive quantum reductions and present
positive and negative results for converting large classes of classical
reductions to the post-quantum setting in a constructive manner. We
show that any non-interactive non-adaptive reduction from assumptions
with a polynomial solution space (such as decision assumptions) can be
made post-quantum constructive. In contrast, assumptions with super-
polynomial solution space (such as general search assumptions) cannot
be generally converted.
Along the way, we make several additional contributions:
1. We put forth a framework for reductions (or general interaction) with

stateful solvers for a computational problem, that may change their
internal state between consecutive calls. We show that such solvers
can still be utilized. This framework and our results are meaningful
even in the classical setting.

2. A consequence of our negative result is that quantum auxiliary in-
put that is useful against a problem with a super-polynomial solu-
tion space cannot be generically “restored” post-measurement. This
shows that the novel rewinding technique of Chiesa et al. (FOCS
2021) is tight in the sense that it cannot be extended beyond a poly-
nomial measurement space.

1 Introduction

The notion of provable security in cryptography has had a great impact on
the field and has become a de-facto gold standard in evaluating the security of
cryptographic primitives. A provably secure cryptographic primitive is stated in

∗A full version of this work is available [3].
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the form of a computational problem P , whose hardness is related by means
of reduction to that of another problem Q which is either by itself considered
intractable or in turn can be further reduced down the line. The reduction is
an algorithm that solves the problem Q provided that it is given access to an
algorithm that solves the problem P .

This gives rise to the “win-win principle” which stands as one of the main
motivations for using provably secure cryptography. The logic is the following.
Either an algorithmic solution for P cannot be found, i.e. the cryptographic
primitive P is secure for all intents and purposes, or one can find an algorithmic
solution for P which would imply an algorithmic solution forQ, thus contributing
to the state of the art in algorithms design. Indeed, cryptographic reductions are
the main working tool for the theoretical cryptographer. Numerous reductions
between cryptographic primitives are known and hundreds of such reductions
are published in the cryptographic literature every year.

The emergence of the quantum era in computing poses a new challenge to
provable security and the win-win principle. Many existing reductions in the
“pre-quantum” world implicitly or explicitly relied on the P -algorithm being
classical. These reductions are thus a-priori invalid when considering quantum
algorithms. A central line of investigation in the domain of post-quantum security
is thus dedicated to the following question.

To what extent can pre-quantum reductions be ported to the post-quantum
setting?

Such conversion may not always be possible. This is particularly a concern
when considering interactive problems, i.e. ones where the solution to P involves
multiple messages being exchanged with the solver algorithm. Indeed, one of the
most prominent techniques for proving security in the interactive setting, namely
the notion of rewinding, does not directly translate to the quantum setting and
moreover one can explicitly show cases where pre-quantum reductions exist but
post-quantum ones do not. In fact, this property was actually used to construct
proofs of computational quantumness [5] in which a party proves that it is quan-
tum by succeeding in a task for which there is a classical impossibility result
(under computational assumptions). In a nutshell, the reason is that a quantum
algorithm may keep a quantum state between rounds of interaction, and this
quantum state is measured and thus potentially destroyed in order to produce
the next message of interaction. It is therefore not possible to naively “rewind”
the interaction back to a previous step as is customary in many classical proofs.

The focus of this work, therefore, is on non-interactive cryptographic assump-
tions. These are problems P whose syntax contains a (randomized) instance
generator which generates some instance x, and a verifier that checks whether
solutions y are valid (with respect to x or more generally the randomness that
was used to generate x). The role of the solver algorithm in this case is simply
to take x as input and produce a y that “verifies well” (we avoid getting into
the exact formalism at this point).

Contrary to the interactive case, it is customary to postulate (often with-
out proof) that classical reductions to non-interactive cryptographic assump-
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tions carry over straightforwardly to the post-quantum setting since there is no
rewinding. There is a simple challenge-response interface that on the face of it
“does not care” whether the underlying P -solver is implemented classically or
quantumly. This viewpoint, however, is overly simplistic, since the P solver may
use quantum auxiliary input : a quantum state |s⟩ that is used as a resource for
solving P . The state |s⟩ can be the result of some natural process upon which
we have no control, or a result of some exhaustive preprocessing, or generated
in the course of execution of some protocol. At any rate, the means to produce
|s⟩ are often not at our disposal, we just get a copy of the state.

In this case, similarly to the interactive setting, the quantum state is mea-
sured whenever the P -solver is called, and therefore, it potentially precludes us
from calling the P solver more than once. This issue is often addressed in the
literature by noticing that providing many copies of |s⟩ would allow to call the
P solver multiple times – namely there exists a quantum state |s⟩⊗t that allows
to solve Q given access to the P solver. Therefore, the existence of a classical re-
duction still implies that if Q is intractable even given arbitrary auxiliary input,
then the same holds for P .

We argue that the aforementioned common “solution” for post-quantum re-
ductions in the presence of quantum auxiliary input is unsatisfactory. First and
foremost, this solution violates the win-win principle. While the argument above
indeed implies that (some form of) intractability for P follows from (some form
of) intractability for Q, it does not allow to convert an auxiliary-input algorithm
for P into an auxiliary-input algorithm for Q in a constructive manner, since
the transformation |s⟩ → |s⟩⊗t is not an efficient one. An additional related con-
cern is the durability of such reductions. Namely, that if we wish to execute the
reduction more than once (i.e. solve multiple instances of Q) then we need to
duplicate the state |s⟩ an a-priori unbounded number of times.

Given this state of affairs, the question we are facing is the following.

To what extent can pre-quantum reductions to non-interactive assumptions be
ported to the post-quantum setting constructively and durably?

Naturally, we do not wish to redo decades of cryptographic work in re-proving
each result individually. Instead, we would like to identify the broadest class of
pre-quantum reductions that can be generically converted into the post-quantum
regime, and at the same time characterize the limitations where such generic
conversion is not possible. This is the focus of this work, and indeed we show a
generic transformation for a very broad class of reductions. Along the way we
develop an adversarial model for stateful adversaries that may be of interest in
its own right, even in the classical setting.

1.1 Our Main Results

We prove a general positive result for converting classical reductions into post-
quantum ones. In particular we consider non-adaptive reductions. In such reduc-
tions, the set of queries to the oracle is determined before any query is made. It
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turns out that an important parameter in our positive as well as our negative
result is the size of the solution space of the computational problem P (“the
cryptographic primitive”). Our positive results apply to cases where the solu-
tion space is polynomial.4 One notable example the case where P is a “decision
assumption”, namely the P solver is a distinguisher that returns a single bit as
output. Another notable example is the case where P is an NP search problem,
with unique solutions (e.g., injective one-way functions or unique signatures).
An informal result statement follows.

Theorem 1.1 (Positive result, informal). There exists an efficient trans-
formation for converting any classical non-adaptive black-box reduction from as-
sumption Q to assumption P , where P is a non-interactive assumption with a
polynomial solution space, into a constructive and durable post-quantum reduc-
tion from Q to P .

We prove a complementary negative result, for the case where P has a large
solution space. The negative result relies on the existence of classical indistin-
guishability obfuscation which is secure against quantum adversaries.

Theorem 1.2 (Negative result, informal). Assume the existence of post-
quantum secure indistinguishability obfuscation. Then there exist non-interactive
assumptions P , Q, where P has a super-polynomial solution space and the fol-
lowing hold. There exists a classical non-adaptive black-box reduction from as-
sumption Q to assumption P , but there is no such constructive post-quantum
reduction.

As explained above, in order to address the question of constructiveness,
we need to develop a new adversarial model and a host of tools to address this
question. An account of these intermediate contributions appears in the technical
overview below.

1.2 Our Techniques and Additional Contributions

Known approaches fall short of achieving constructiveness and durability since
they regard quantum auxiliary input similarly to its classical counterpart, despite
the inherent difference of the inability to duplicate or reuse quantum informa-
tion. We assert that the process of making multiple calls to an algorithm with
quantum side information is inherently stateful. Namely, the internal state of the
“oracle” changes and evolves over time. In this work we put forth a framework
for stateful solvers, namely algorithms that change their internal state and thus
their behavior over time.

In the post-quantum setting, reductions start from one-shot solvers. That is,
ones that have an initial state that allows them to provide an answer for a single

4They in fact apply even if the solution space is polynomial per instance (but the
space is not the same for all instances), and a certain natural verifiability property is
satisfied (see Definition 3.2).
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instance of P successfully, but afterwards all bets are off. It seems natural (and, as
we show, turns out to be useful) to consider stateful solvers that propagate their
P -solving property throughout an execution, we call this property persistence.
Persistent solvers evolve their state in an arbitrary way subject to being able,
at any point in their evolution, to successfully answer a P -query (with some
noticeable advantage).

A Framework for Stateful Solvers. Section 3 is dedicated to formally defining
the notion of a (potentially stateful) solver and quantifying its success probability
in solving a problem P . We accordingly provide definitions for a post-quantum
reduction in this setting, and more specifically the notion of a post-quantum
black-box reduction. The standard notion of a classical black-box reduction is
recovered as a special case of our definition, when specializing to so-called state-
less P -solvers.

Using our new formalism, the task at hand is to convert a reduction that
expects to be interacting with a stateless solver, into one that is successful even
when given a one-shot stateful solver.

One-Shot Solvers Imply Persistent Solvers. One-shot solvers may seem
quite useless, since on the face of it they may only successfully respond to a
single query. However, our first technical result, in Section 4, is that they can
in fact be converted generically (but in a non-black-box manner) into persistent
solvers. Namely, ones that can answer an a-priori unbounded number of queries
and maintain roughly the same success probability. The persistent solver has a
state of length that is polynomially related to that of the one-shot solver. The
running time of the persistent solver increases with each query it is being asked.
That is, the time complexity of answering the t-th query scales with poly(t) for
a fixed polynomial. This still ensures that for any polynomial-length sequence of
queries, the total time to answer all queries is bounded by a fixed polynomial.
The persistent value of the resulting solver (i.e. the value that is maintained
for an a-priori unbounded number of times) is itself a random variable that
is determined during the conversion process. The expectation of the persistent
value is equal to the one-shot value of the solver we start from. (We note that it
is inherently impossible to achieve a non-probabilistic behavior, i.e. to ensure a
persistent value that is always above some threshold.5)

Our transformation is an extension of the techniques in the recent work of
Chiesa, Ma, Spooner and Zhandry [7], that can be interpreted as showing such
a transformation for “public-coin” cryptographic assumptions (ones where the
instances are uniformly distributed and the verification requires only the in-

5To see this, consider the case where the one-shot auxiliary input |s⟩ is a super-
position giving weight

√
1− ε to a value |⊥⟩ that always makes the P -solver fail, and

giving weight
√
ε to a state that makes the P -solver perfectly successful. Then, by trace-

distance considerations, any processing of |s⟩ must be ε-statistically-indistinguishable
from a case where |s⟩ = |⊥⟩. Therefore, with probability at least 1 − ε the persistent
value will be trivial. Nevertheless, using a Markov argument, if we start from a one-shot
solver with a non-negligible advantage, we recover, with a non-negligible probability, a
many-shot solver with a non-negligible persistent advantage.
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stance and the solution, and not the randomness that was used to generate the
instance). It is only in this step that we have the restriction that the solution
space of the problem needs to be polynomial, due to limitations of the [7] tech-
nique. Our negative result (further discussed below) proves that these limitations
are inherent.

The conversion from one-shot to persistent is the only transformation that
uses the solver in a non-black-box manner. In the rest of our (positive) results
we take a persistent P -solver and a bound on the length of its auxiliary quantum
state and only make black-box use of this solver, i.e., provide instances as input
and receive solutions as output. We do not further intervene with the evolution
of the state between consecutive calls to the solver.

Once we transformed our solver to being persistent, we are guaranteed that
we can make multiple P queries, and each one will be answered by a “successful”
solver. It may seem that our mission is complete. However, this is far from being
the case. While all queries are answered by a successful solver, these solvers may
be arbitrarily correlated. For example, thinking about a simple linearity test
where a reduction queries x1, x2, x3 = x1⊕x2 and checks whether a linear relation
holds. It may be the case that for each query xi we get a response yi from an
approximately-linear function, and yet the solver “remembers” that x1, x2 were
previously made as queries, and deliberately fails on x1 ⊕ x2 in the next query.
Another example, that will be quite useful to illustrate our transformation is
that of the Goldreich-Levin (GL) hardcore bit [12], where queries take the form
(f(x), ri), always with the same f(x), and with additional correlations between
the ri values across different queries. In particular, it may be the case that once
a query with some value f(x) has been made, the solver refuses to meaningfully
answer any additional queries with the same f(x).6

We note that attributing adversarial behavior to the solver is done for pur-
poses of analysis. Our transformation from one-shot to persistent appears quite
“innocent” and we do not know whether it can actually generate such patho-
logical behavior that will prevent reductions from running. However, we cannot
rule it out and therefore we consider a worst-case adversarial model.

When described in this way, it seems that only very specialized reductions
can be carried over to the post quantum setting. For example, ones that employ
a strong form of random self reduction when making solver queries. One such
case is the search-to-decision reduction for the learning with errors problem [20].
However, as the GL hardcore bit example demonstrates, this doesn’t even extend
to all search to decision reductions. We must therefore find a new way to utilize
stateful solvers. Indeed, the handle that we use is that while the solver may
change its behavior adversarially, its adversarial behavior is constrained by the
length of the auxiliary state |s⟩ that it uses. We will indeed leverage the fact

6We note that while the classical GL reduction, falls under our umbrella of non-
adaptive reductions, in this specific case, it is in fact known how to devise a single-query
quantum reduction [1]. This, however, does not resolve the question of durability, and
more importantly does not provide a general framework for all non-adaptive reductions.
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that this state is polynomailly bounded to limit the adversarial powers of the
solver and handle more general reductions.

Before moving on to describe our techniques in this context, we notice that
while this adversarial model (of black-box access to a persistent solver) emerged
as a by-product of our work on quantum reductions, it is nevertheless a valid
model in its own right in both the quantum and classical setting. We may con-
sider interacting with an adversary/solver that is only guaranteed to be notice-
ably successful at every point in time but, unlike the standard notion of an
“oracle”, may change its behavior over time. In our case, we allow the behavior
to change arbitrarily, so long that the amount of information carried over be-
tween executions is bounded (in our case, by the length of the state, which is
polynomially bounded).

Memoryless Persistent Solvers. Our next step, in Section 5, is to show that
a persistent solver, even with adversarial behavior, can be effectively converted
into a more predictable form of solver that we call memoryless (note that this is
different from our final goal which is to achieve a stateless solver). A memoryless
solver keeps track of the sequence number of the question it is asked (e.g. it knows
that it is now answering query number 4) but it is not allowed to remember any
information about the actual content of the previous queries that were made.

We show that a combination of a non-adaptive reduction and a persistent
solver induce a memoryless (persistent) solver (more accurately a distribution
over memoryless solvers). These memoryless solvers are accessible using a simu-
lator that, given access to the reduction and the original solver, efficiently simu-
lates the interaction of the reduction with the induced memoryless solver, up to
inverse-polynomial statistical distance. Note that we require that the reduction
is non-adaptive. Namely, its queries to the solver can be arbitrarily correlated
(as in the GL case), but the identity of the queries must not depend on the
answers to previous queries.

The transformation relies on the fact that the solver has a bounded amount
of memory, say ℓ qubit of state that is propagated through the execution. Our
strategy is to dazzle the solver with an abundance of i.i.d dummy queries, that
are sampled from the marginal distribution of the “real” queries (for example,
in the GL case, each dummy query will have the form (f(xi), ri) where xi, ri are
both random). In between the dummy queries, in random locations, we plant our
real queries, in random order. We prove that the solver, having only ℓ qubits of
state, must answer our real queries as if they were dummy queries. This requires
us to develop a proper formalism and to prove a new lemma (Plug-In Lemma)
using tools from quantum information theory. See Section ?? for the full details.

Stateless Solvers at Last. Finally, we show in Section 6 that memoryless
solvers imply stateless solvers. This is again shown by means of simulation via
a similar formalism to the previous result. Recall that a stateless solver must
answer all queries according to the same distribution. This transformation again
relies on the non-adaptive nature of the reduction, namely on the ability to
generate all solver-queries ahead of time. To do this, we notice that we can think
of a memoryless solver simply as a sequence of stateless solvers that can be
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queried one at a time. Therefore, we can consider the induced stateless solver
that at every query picks a random solver from this collection and executes it on
the query. This indeed will result in a stateless solver. The solving probability of
the induced stateless solver is simply the average success probability of solvers in
the collection, which is concentrated due to persistence. Moreover, this behavior
can be simulated by randomly permuting the queries, while still calling the
solvers according to their order in the sequence.7

This way, asking the queries in a permuted order to the memoryless solver will
(almost) mimic the action of sampling a solver from the collection independently
for each query. The only reason why this mimic is not perfect is that permuted
queries are sampling “without repetition”, i.e. none of the solvers in the sequence
defined by the memoryless solver will be queried twice, whereas in the ideal
strategy we described above, it is possible that the same solver from the sequence
will be sampled more than once. We deal with this by making the number of
solvers in the sequence so big, that the probability of hitting the same solver
twice becomes very small (inversely polynomial for a polynomial of our choice).
We simply add to our queries of interest a large number of dummy “0 queries”,
and perform a random permutation on this extended set of queries.

Putting Things Together. In Section 7 we put all of the components together
and prove our main positive result, that any classical non-adaptive reduction
which relies on a non-interactive polynomial-solution-space assumption can be
made post quantum. This requires putting together the components in a careful
manner.

The fact that the first step in our transformation was to produce a persistent
P , allows us to continue using it even after having solved a Q instance. This
means that we can solve additional instances of Q, or use it to solve additional
instances of P or any other problem Q′ for which a non-adaptive reduction to
P exists. In particular, this property implies that our reduction is durable.

A Negative Result for Search Assumptions. We show in Section 8 that
a generic conversion from classical to constructive quantum reductions is not
always possible, even for the case of non-adaptive reductions to non-interactive
assumptions. In particular, if P is an assumption with a large solution space
(intuitively, a search assumption) this may not be possible.

We show our negative result by relying on a recently introduced primitive
known as tokenized signatures [2]. These are signature schemes with the standard
classical syntax, but for which it is possible to produce a quantum signature
token. The signature token allows to generate a single classical signature for
a message of the signer’s choice, but only one such signature can be created.
Tokenized signatures have been constructed relative to a classical oracle [2] or
based on cryptographic assumptions [8].

7Remember that we have access to the memoryless solver which only allows to make
queries in order.
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We can define an “assumption” which is essentially the task of signing a ran-
dom message using a tokenized signature scheme.8 In the classical world, there is
a trivial reduction between the task of signing one random message and the task
of signing two random messages. However, if we consider a quantum solver that
holds the token as auxiliary input, then by definition it should not be possible
to use it to obtain two signatures for two different messages. Our negative result
holds for any conversion process that is constructive, and in particular does not
obtain any implicit non-uniform advice about the assumption.

1.3 Other Related Work

The question of which reductions can be translated from the classical to the
post-quantum setting also received significant attention in the context of the
random-oracle model (ROM), starting from the work of Boneh et al. [4]. The
question asked in these works is whether it is possible to convert reductions in
the classical ROM into ones the quantum ROM (QROM, where the adversary
is allowed to make quantum queries to the oracle). There are several results
proving that specific schemes that are secure in the ROM are also secure in
the QROM [23, 21, 14, 15, 24, 11, 17, 10, 16]. Recently, a more general “lifting
theorem” was given in [22], showing how to convert a proof in the ROM to
one in the QROM for any “search-type game” where a challenger makes only
a constant number of queries to the random oracle. This work also presented a
negative result, showing that there are schemes that are secure in the ROM yet
are insecure in the QROM. While the general motivation in these works is similar
to ours, the question they ask is quite different from ours. In the ROM/QROM,
the solver is allowed to make queries to the oracle (which is simulated by the
reduction), which is more similar to the setting where interactive-assumptions
are used.

Our memoryless transformation (Section 5) relies heavily on the state of
the solver being bounded in length. The idea that bounded quantum memory
can be used to restrict an otherwise all powerful adversary is at the core of the
bounded quantum storage model. It can be shown (see, e.g., [9]) that it is possible
to achieve cryptographic abilities against strong adversaries while relying only
on a limit on the amount of quantum storage they can use. This setting is
quite different from ours, though, since the quantum bounded storage model
allows an unbounded amount of classical memory, which in our setting would
make it impossible to achieve any result. Indeed, the bounded storage model
requires quantum communication (whereas our reduction-solver communication
is completely classical), and thus the set of tools and techniques that are used
in both settings are completely different.

8The assumption is instantiated by a verification key which we can think of as
non-uniformity of the assumption, see discussion in Section 8.
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2 Preliminaries and Tools

We say that a given function f(x1, . . . , xk) is poly(x1, . . . , xk), if there exist
constants c, C such that (x1 · x2 · . . . · xk)

c ≤ f ≤ (x1 · x2 · . . . · xk)
C .

We denote by TD the trace distance between two matrices.

Algorithms. By default, when referring to an algorithm we mean a classical
probabilistic (resp. quantum) algorithm. Algorithms may be uniform or non-
uniform, meaning that they have classical advice related to the input size (we
specify when uniformity matters). An efficient algorithm is also polynomial time.

Quantum Notation. We use standard quantum information in Dirac notation.
We denote quantum variables in boldface x and classical variables in lowercase x.
The density matrix of x is denoted ρx. Classical variables may also have (diago-
nal) density matrices. Quantum variables x,y have a joint density matrix ρx,y if
they can be jointly produced by an experiment. As usual, x,y are independent
if ρx,y = ρx ⊗ ρy. We never assume that quantum variables are independent
unless we explicitly say so. Quantum registers are denoted in capital letters. We
also sometimes use capital letters to denote distributions, where it is clear from
the context. For a finite Hilbert space H we denote by S(H) the set of density
matrices over quantum states in H.

A quantum procedure is a general quantum algorithm that can apply uni-
taries, append ancilla registers in 0 state, perform measurements in the compu-
tational basis and trace out registers. The complexity of F is the number of local
operations it performs (say, operations on up to 3 qubits are considered local).
If F is a quantum procedure then we denote by F (x) the application of F on x.
Any unitary induces a quantum procedure that implements this unitary, which
does not perform measurements or trace out registers, we call this procedure “a
unitary quantum circuit”.

Purification of Quantum Procedures and States. A quantum procedure
may introduce new ancilla qubits, perform intermediate measurement through-
out its computation and discard registers or parts thereof. However, any quantum
procedure can be purified into unitary form without much loss in complexity [19].
This is formally stated below.

Proposition 2.1. Let C be a general quantum procedure of complexity s. Then
it is possible to efficiently generate a unitary quantum circuit Ĉ of size O(s),

such that for any quantum state (x,a), setting (y, z) = Ĉ(x,0), it holds that
(y,a) has identical density matrix to (C(x),a).

Likewise, any quantum state can be viewed as a reduced density matrix of
the output of a unitary (which may be inefficient to implement) .

Proposition 2.2. Let x be a variable with density matrix ρx. Then there exists
a unitary U over registers XY such that applying U(0,0), the reduced density
matrix of the value in the X register has density matrix ρx.
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2.1 The Plug-In Lemma

The following lemma is another manifestation of information incompressibility
in the quantum setting. Specifically, we are interested in an experiment in which
an all powerful compressing procedure attempts to compress t samples which
are arbitrarily distributed into ℓ quantum bits. We show that this is infeasible
even in the weak sense in which a decoder receives the compressed value, and a
(j − 1)-prefix of the sequence, and is required to identify the j-th element. We
show that as t increases, the probability of succeeding in the experiment drops.
A formal statement follows.

Lemma 2.3 (Plug-In Lemma). Let Y⃗ = (Y1, . . . , Yt) be a joint distribution

over t classical random variables. Let y⃗ be distributed according to Y⃗ . Let s be
an ℓ-qubit random variable that has arbitrary dependence on y⃗. We let y⃗i denote
the prefix y⃗i = (y1, . . . , yi) for 1 ≤ i ≤ t, and y⃗0 is the empty vector (and

likewise for Y⃗ ). Let J be the uniform distribution over [t] and let j ← J . Define

y′ ← Yj |(Y⃗j−1 = y⃗j−1). Then it holds that

TD((j, y⃗j−1, yj , s), (j, y⃗j−1, y
′, s)) ≤

√
ℓ/(2t) . (1)

Note that the above two distributions are not identical even though (j, y⃗j−1, yj)
and (j, y⃗j−1, y

′) are identically distributed. The reason is that in both cases, s
is always generated as a function of y⃗, i.e. using yj and not y′j .

The lemma is proven in the full version of this paper [3].

3 Assumptions, Stateful Solvers, and Reductions

In this section, we formally define the concepts of non-interactive cryptographic
assumptions, stateful solvers, and their value and advantage in breaking an as-
sumption.

3.1 Non-Interactive Assumptions

We define the notion of a non-interactive (falsifiable) cryptographic assumption
as in [18, 13]. While we frame the notion as “cryptographic”, it can be viewed
more generally as a notion for average-case problems where the solution can be
verified.

Definition 3.1 (Non-Interactive Assumption). A non-interactive assump-
tion is associated with polynomials d(λ), n(λ),m(λ) and a tuple P = (G,V, c)
with the following syntax. The generator G takes as input 1λ and r ∈ {0, 1}d, it
returns x ∈ {0, 1}n. The verifier V takes as input 1λ and (r, y) ∈ {0, 1}d×{0, 1}m
and returns a single bit output. (Both G and V are deterministic.) c(λ) is the
assumption’s threshold.

We say that P is falsifiable if G,V are uniform polynomial-time algorithms
(in their input size).
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We also define a property called verifiably-polynomial image that roughly
speaking requires that any instance has at most polynomial many solutions and
that this can be verified in some weak sense. The property in particular captures
problems where the solution space {0, 1}m is of polynomial size such as decision
problems (where m = 1), and problems in NP where there are a few solutions
per instance (such as injective one-way functions).

Definition 3.2 (Verifiably-Polynomial Image). A non-interactive assump-
tion P has a verifiably-polynomial image if there exists an efficient verifier K
and a polynomial k = poly(λ), such that for any instance x ∈ {0, 1}n, the set
Yx := {y : K(1λ, x, y) = 1} of K-valid solutions is of size at most k and for any
valid instance x = G(1λ, r) and solution y such that V (1λ, r, y) = 1, it holds that
y ∈ Yx.

The traditional notion of the advantage in solving an assumption P is measured
in terms of the distance between the solving probability (which we term the
value) and the threshold c.

Definition 3.3 (Value and Advantage of Classical Functions). Let P =
(G,V,C) be a non-interactive assumption and let f = { fλ : {0, 1}n → {0, 1}m }λ
be a family of (possibly randomized) functions. For every λ ∈ N, we define the
corresponding value and advantage:

valP [f ](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)
y ← fλ(x)

 , aP [f ](λ) := |valP [f ](λ)− c(λ)| ,

where the probability is also above the randomness of fλ in case it is randomized.

3.2 Stateful Solvers

The premise of our work is that in the quantum setting, one ought to think
about stateful solvers, which generalizes the standard treatment of a solver as a
one-shot algorithm. We now define this formally.

Definition 3.4 (Stateful Solvers: Syntax). Let P be a non-interactive as-
sumption.
Let ℓ = ℓ(λ) be a function. A classical (resp. quantum) ℓ-stateful solver B =
(B, state0 = {stateλ,0}λ) is defined as follows.

– B is a classical (resp. quantum) algorithm that takes as input 1λ, 1t, x ∈
{0, 1}n and state which is an ℓ-bit (resp. qubit) string, and outputs a value
y ∈ {0, 1}m and state′ which is an ℓ-bit (resp. qubit) next-state. We let
B(· · · )y denote the y output and B(· · · )st denote the state′ output.

– state0 = {stateλ,0}λ is a sequence of classical (resp. quantum) states consist-
ing of ℓ = ℓ(λ) bits (resp. qubits).

We say that B is efficient if B runs in time poly(λ, t, n); i.e., in polynomial time
in the lengths of its inputs.
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Remark 3.5 (Non-uniformity). The algorithm B may have a non-uniform clas-
sical advice. It does not have any additional quantum advice.

Remark 3.6 (Dependence on Runtime). Our definition allows the running time
of efficient stateful solvers to depend polynomially on the “iteration” t. In par-
ticular, for any polynomial number of solving attempts t = poly(λ), the overall
running of the solver is polynomial. One could also consider a more stringent defi-
nition that requires that each call runs in fixed polynomial time independently of
the iteration number t. Jumping forward, we will show how a solver can preserve
its solving ability through time, but at the cost of running for longer in each step.
Doing this according to the more stringent time-independent definition remains
an open question.

It will be useful to define some properties of solvers with respect to an ex-
tension of the sovler’s execution transcript. The extension corresponds to the
would-be transcript of a purified version of the solver, running on a purified ver-
sion of the initial state. This will allow us to get a precise well-defined handle
on the evolution of quantum states throughout the lifetime of the solver. The
extended transcript will only be used for purposes of definition and analysis and
will never be required algorithmically.

Definition 3.7 (Stateful Solvers: Purifying Values). Consider a solver
B = (B, state0 = {stateλ,0}λ). Let Bλ,t,x denote the quantum procedure that
takes s as input and produces B(1λ, 1t, x, s) over registers SY . By Proposi-

tion 2.1, we can consider its purification B̂λ,t,x which acts on registers SY Ŷ

and takes as input (s,0,0). Then define B̂(1λ, 1t, x, s) as the algorithm that

computes (s′,y, ŷ) = B̂λ,t,x(s,0,0), measures (y, ŷ) in the computational basis
to obtain (y, ŷ), and then outputs s′ as the state output, y as the solution output,
and ŷ as the purifying output.

In addition, by Proposition 2.2, there exists a (possibly inefficient) unitary

B̂0,λ that operates on two registers SŶ such that when applying (s0, ŷ0) ←
B̂0,λ(0,0), the reduced density matrix of s0 is identical to that of state0. Then

define B̂0(1
λ) as the quantum procedure that computes (s0, ŷ0) ← B̂0,λ(0,0),

measures ŷ0 in the computational basis, and then outputs s0 as state0 and ŷ0 as
the purifying initial value.

We refer to the collection B̂ = { B̂i,λ,x } as a purification of B (it is not
unique).

Remark 3.8. We note that the purifying values can be arbitrarily long. These
values will only be used for analysis purposes and are never produced in an
actual execution, and hence we do not require any bound whatsoever on the
length of the purifying values or the complexity of producing them.

We now define the concept of a solver interaction, which captures the process
of repeatedly invoking a stateful solver by a given algorithm.
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Definition 3.9 (Solver Interaction). Let P = (G,V, c) be a non-interactive
assumption. For any stateful solver B = (B, state0) and corresponding purifi-

cation B̂, and any algorithm A with input z ∈ {0, 1}∗, we consider the process
AB(1λ, z) of the algorithm interacting with the solver. We define this process
in two different yet equivalent manners: one which is efficient given the ability
to execute B, and one which may be inefficient but implies an identical output
distribution. The latter will include a production of all purifying values (Defini-
tion 3.7) which will be useful for definitions and analysis.

– We let state0 be as defined in B.
Equivalently: We let (state0, ŷ)← B̂0(1

λ).

– A is invoked on input (1λ, z) and at every step i ≥ 1:

1. A submits a query xi ∈ {0, 1}n.
2. (yi, statei)← B(1λ, 1i, xi, statei−1) is invoked.

Equivalently: (ŷi, yi, statei)← B̂(1λ, 1i, xi, statei−1) is invoked.

3. A obtains yi, and proceeds to the next step.

– At the end of the interaction A may produce an output w.

We sometimes refer to A as a solver-aided algorithm and use the shorthand ABz
for the solver interaction and AB̂z for the purified solver interaction. We refer
to the random variables state0, state1, state2, . . . as the state random variables of
the interaction. We refer to the list of pairs of generated instances and solutions
(xi, yi) as the transcript of the interaction and denote it by ts. We also define
the extended transcript t̂s of the execution as consisting of the value ŷ0 followed
by a list to triples (xi, yi, ŷi). Given an extended transcript t̂s, we can produce
the standard transcript ts by removing all purifying values. We call this action
redaction and say that ts is the redacted transcript induced by t̂s. Generating an

extended transcript according to the purified solver interaction AB̂z and redacting
it produces an identical distribution to the generation of the redacted transcript by
direct interaction ABz . The length of a transcript/extended-transcript is the num-
ber of pairs/triples it contains (this means that an extended transcript of length
0 is not empty since it still contains ŷ0 . The i-prefix of a transcript/extended-
transcript is denoted tsi/t̂si and contains the first i pairs/triples (and also ŷ0 in
the extended case).

We show that the purifying values indeed purify the entire solver interaction,
in the sense that they determine all states statei as pure states for any solver
interaction.

Proposition 3.10. Let B = (B, state0) be a solver with purification B̂ and con-

sider the extended transcript t̂s of the solver interaction AB̂z and let t be its
length. Then for all i ≤ t, the state statei is pure conditioned on t̂si. Specifically,
it has density matrix |st̂si⟩ ⟨st̂si | that is completely determined by t̂si (and there-

fore by the classical string t̂s) and does not depend on any other parameter of
the execution.
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Proof. We consider the purifying description of the solver interaction AB̂z and
prove by induction. For t = 0, we recall that the pair (state0, ŷ) is generated

by applying B̂0,λ on the zero state, followed by measuring the Ŷ register. The

pre-measurement state over registers SŶ is therefore pure, and can always be
written as ∑

ŷ

αŷ |sŷ⟩S ⊗ |ŷ⟩Ŷ , (2)

where αŷ are non-negative real values with
∑

ŷ α
2
ŷ = 1, and |sŷ⟩ are fully specified

unit vectors. Therefore, post-selecting on having measured the value ŷ0 in register
Ŷ , we have that the state in register S is exactly state0 = |sŷ0⟩ ⟨sŷ0 |, which
completes the base step of the proof.

Now assume that the above holds for all i < t. Consider a transcript t̂s of
length t s.t. t̂s = t̂st−1∥(x, y, ŷ) for some t̂st−1, x, y, ŷ.

Let us consider the state of the system right before the t-th query to the
solver. At this point, t̂st−1 was already determined, and thus by induction we
know that statet−1 = |st̂st−1

⟩ ⟨st̂st−1
| is a pure state. At this point x has also been

determined.
By definition, statet is produced by executing a unitary B̂λ,t,x (that acts on

registers SY Ŷ ) on (statet−1,0,0), which is pure by the induction hypothesis,
and measuring the Y Ŷ registers. The analysis here is similar to the base case.
The pre-measurement state is pure (since it is induced by applying a unitary on
a pure state) and thus can always be written as∑

y,ŷ

αy,ŷ |sy,ŷ⟩S ⊗ |y, ŷ⟩Y Ŷ , (3)

and as above αy are non-negative real values with
∑

y α
2
y = 1, and |sy,ŷ⟩ are fully

specified unit vectors. Post selecting on y, ŷ leaves us with register S containing
statet = |sy,ŷ⟩ ⟨sy,ŷ|, which completes the proof.

We are now ready to define the concepts of value and advantage of stateful
solvers. Traditionally, when thinking about stateless solvers, we consider their
one shot value, namely the probability that they solve the problem on a random
instance. Since they are stateless this probability does not change over time. In
the case of stateful solvers, this probability may change over time. Our definition
of the many shot values aims to capture exactly this. For any solver interaction
ABz , the value at time t, captures the probability that the solver B successfully
solves a random instance at this time, after a given t-round interaction with
Az. This value is, in fact, a random variable that depends on the history of
the interaction. To make this precise, we consider any purification B̂, and define
these values as a function of the extended transcript.

Definition 3.11 (Stateful Solvers: Value and Advantage). Let P be a
non-interactive assumption, B = (B, state0) be a corresponding stateful solver,

B̂ a corresponding purification, and A a solver-aided algorithm with input z. For
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every λ, i ∈ N, let statei be the i-th pure state random variable of the solver

interaction AB̂z (determined by t̂si). The corresponding value random variables
are:

valP [i, A
B̂
z ](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

(ŷi+1, y, statei+1)← B̂(1λ, 1i, x, statei)

 ,

where the probability is over the choice of r and the measurement of ŷi+1, y.

The one-shot value of B is

valP [0,B](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

(y, state1)← B(1λ, x, state0)

 ,

where the probability is over the choice of r, measurements of B, and (the possibly
mixed) state0. Note that this is in fact a number, independent of any A or the

choice of purification B̂.
The corresponding advantage random variables are:

aP [i, A
B̂
z ](λ) :=

∣∣∣valP [i, AB̂z ](λ)− c(λ)
∣∣∣ aP [0,B](λ) := |valP [0,B](λ)− c(λ)| .

For a distribution B on solvers {Bα }α, we define the one-shot value of the
distribution as:

valP [0,B](λ) = Eα←B[valP [0,Bα](λ)] .

The corresponding advantage is aP [0,B](λ) = |c(λ)− valP [0,B](λ)|.

As the solver’s state evolves over time, its advantage in solving an assumption
may reduce or disappear altogether. This is in particular relevant to the quantum
setting, where when a solver is invoked its internal state is disturbed. Aiming to
capture solvers that remain useful over time, we next define the notion of solvers
with persistent value, namely, solvers whose value in solving a given assumption
is preserved through time. We define it more generally for distributions over
solvers; single solvers are a special case.

Definition 3.12 (Persistent Value). Let P be a non-interactive assumption.
A distribution B on solvers {Bα }α is η-persistent if there exist purifications

{ B̂α }α such that for any algorithm A with input z, with probability 1− η over
the choice of solver α ← B and over an extended transcript t̂s in the solver

interaction process AB̂α
z , there exists a value p such that:

max
i

∣∣∣valP [i, AB̂α
z ]− p

∣∣∣ ≤ η . (4)

We call p a persistent value. Given a random variable p∗(α) ⊆ [0, 1], we say that
a solver distribution is (p∗, η)-persistent if the condition holds for p∗(α).
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We next define the notion of a persistent advantage. This aims to capture
the case that solvers maintain a lower bound on their advantage through time.

Definition 3.13 (Persistent Advantage). Let P be a non-interactive as-
sumption with threshold c. A distribution B on solvers {Bα }α has ε-persistent

advantage if there exist purifications { B̂α }α such that for any algorithm A with
input z:

E
[
min
i

valP [i, A
B̂α
z ]

]
≥ c+ ε , (5)

where the expectation is over the choice of solver α ← B and over an extended

transcript t̂s in the solver interaction process AB̂α
z .

In the above, We require that the advantage has a consistent sign (for sim-
plicity, positive). Intuitively, the reason we focus on persistence of the positive
advantage vt− c at time t, rather than the absolute advantage |vt− c|, is that if
the sign of vt− c arbitrarily changes after each solver invocation, then the solver
may not be as useful. (As a simple example, take a deterministic distinguisher
and turn it into a stateful distinguisher that flips the output of the original dis-
tinguisher at random with each invocation, deeming it useless.) We note that η
persistent solvers in particular preserve the sign of their advantage (up to η).

Memoryless and Stateless Solvers. A special case of the above definitions
is that of memoryless and stateless solvers.

Definition 3.14. A solver B = (B, state0) is memoryless if the size of its state
is ℓ = 0. The solver is stateless if in addition (to being memoryless), the algo-
rithm B does not depend on 1t (in functionality or runtime).

Remark 3.15 (Persistent Value for Stateless and Memoryless Solvers). Note that
in the case of stateless solvers, successive invocations of the solver will always
result in the same output distribution. Here the one-shot (and many-shot) ad-
vantage coincide with the standard notion of advantage for functions (Definition
3.3) and values are persistent (Definition 3.12). Accordingly, stateless solvers
exactly capture the traditional notion of classical solvers, given by a randomized
function.

Moreover, even for memoryless solvers, when considering the definition of

persistent solvers the value valP [i, A
B̂
z ] does not depend on Az at all (only on i),

and therefore it is a fixed number rather than a random variable. It follows that
for (p, η)-persistent memoryless solvers, Eq. (4) holds with probability 1.

3.3 Reductions

We now define the notion of a reduction. A reduction is a way to prove a claim
of the form “if there exists a successful solver for assumption P then there exists
a successful solver for an assumption Q”. We consider constructive reductions
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in the sense that they are an explicit uniform algorithm that takes as input a
successful solver for P and efficiently solves the problem Q.

The default notion of a reduction in the literature is one shot. In pparticular,
a given quantum P -solver is only assumed to have a meaningful one-shot ad-
vantage in solving P , and there is no a priori guarantee on its advantage in any
many shot solving process, in particular there may not be any value persistence.
Likewise, the produced solver for the assumption Q is only required to have a
meaningful one-shot advantage. Below we define both the default notion of one-
shot reductions as well as the stronger notion of durable reductions requiring
that the resulting Q-solver also has persistent advantage, meaning that with no-
ticeable probability, the reduction can go on solving for an arbitrary polynomial
number of times.

Definition 3.16 (Reduction). A reduction from classically (resp. quantumly)
solving a non-interactive assumption Q to classically (resp. quantumly) solving
a non-interactive assumption P is an efficient classical (resp. quantum) uniform
algorithm R with the following guarantee. For any solver BP = (BP , state0) for P
with one-shot advantage ε and running time T , let state′0 = (state0, BP , 1

1/ε, 1T ).
Then BQ = (R, state′0) is a solver for Q with one-shot advantage ε′ =
poly(ε, T−1, λ−1) and running-time poly(T, ε−1, λ). We say that the reduction
is durable if BQ has poly(ε, T−1, λ−1)-persistent advantage.

We refer to a reduction from solving Q to classically (resp. quantumly) solving
P as a classical-solver (resp. quantum-solver) reduction.

Remark 3.17 (Many Shot Reductions). There could be several conceivable ex-
tensions of the above definition that also account for the many-shot advantage.
One such natural extension is requiring that the reduction works only given a
solver with a persistent value (as in Definition 3.12). Jumping ahead, in sec-
tion 4, we show that under certain conditions, persistent solving can in fact be
reduced to one-shot solving, even in the quantum setting.

Remark 3.18 (The Loss). We allow for a (fixed) polynomial loss in the advantage
and running time. One could naturally extend it to more general relations.

Classical Black-Box Reductions. In this work, we prove that several gen-
eral classes of classical reductions that a priori are only guaranteed to work for
classical solvers, can be enhanced efficiently to also work for quantum solvers.
Our focus is on black-box reductions; that is, reductions that are oblivious of
the representation and inner workings of the solver that they use (in contrast
to the above Definition 3.16, where the reduction obtains the full description of
the solver BP ).

We next formally define such black box reductions, using the terminology we
have already developed. Specifically, we capture the notion of a classical solver
for a given problem P as a stateless (classical) solver.

Definition 3.19 (Classical Black-Box Reduction). A classical black-box re-
duction, from solving a non-interactive assumption Q to solving a non-interactive
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assumption P , is an efficient classical solver-aided uniform algorithm R with the
following syntax and guarantee. R takes as input a security parameter 1λ, pa-
rameter 11/ε, and instance x ∈ {0, 1}nQ of Q. It interacts with a solver B for
P (per Definition 3.9) and produces an output y ∈ {0, 1}mQ . We require that
for any distribution B over stateless classical solvers {Bα }α such that B has
advantage at least ε in solving P , the corresponding solver distribution R over
solvers {RBα(1λ, 11/ε, ·) }α has advantage at least poly(ε, λ−1) in solving Q. The
advantage of R is positive if its value is always at least cQ (above the assumption
Q’s threshold), regardless of any P -solver.

We further say that the reduction R is non-adaptive if R produces all of
its oracle queries x1, . . . , xk ∈ {0, 1}nP to B in one shot, obtains all answers
y1, . . . , yk, and then produces its output y.

Remark 3.20. In our definition of solver interaction, a given solver B is only ever
invoked for the instance size nP (λ). Accordingly, the above definition restricts
attention to classical reductions that in order to solve problem Q for instance
size nQ(λ) make queries to a P -solver on a specific related input size np(λ).
While this is not without loss of generality, it does capture natural reductions.
(In fact, we are not aware of important reductions that do not adhere to this.)

Remark 3.21 (Deterministic Solver Reductions, Positive Advantage, and Re-
peated Queries). We consider classical reductions that ought to work when given
a stateless solver from a distribution B over solvers {Bα }. (As a matter of fact in
our model, even once a stateless solver Bα is fixed, the process of answering any
given query is randomized, but this can be modeled as sampling a deterministic
stateless solver from another distribution B with the same advantage.) A weaker
notion of classical reductions only requires that the reduction works for deter-
ministic solvers. In the classical setting, this is typically not an issue, as long as
the reduction has the power to fix the solver’s randomness and repeatedly re-
place it as needed. Jumping forward, when considering quantum reductions, the
randomness of a given solver may arise from the quantum nature of the solving
process, and the reduction may not be able to control it. Accordingly, in our
transformations from classical-solver reductions to quantum-solver reductions,
we will naturally need the classical reduction we start from to also be able to
deal with distributions over solvers.

We note that for typical assumptions Q such as search problems (with triv-
ial threshold c = 0) or decision problems (with solution length m = 1 and
trivial threshold c = 1/2), a classical reduction R from Q-solving to determin-
istic P -solving implies a classical reduction R’ from Q-solving to distributional
P -solving. Here two subtleties should be addressed. The first issue that could
preventR from working for distributional P -solvers is that the sign of the advan-
tage of RB as a Q-solver may depend on the randomness of B and may cancel
out in expectation. For search assumptions Q, where c = 0, this cannot hap-
pen as any advantage is positive. For decision problems, this can be avoided by
slightly augmenting R to make sure that the advantage is always positive using
standard black-box techniques [6]. This incurs only a polynomial overhead in
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solving queries, or even just a single query, at the cost of quadratically decreas-
ing the advantage. The second issue concerns the running time of the reduction.
Specifically a reduction that works for deterministic oracles, excepts to get their
advantage 11/ε as input, where ε is the P -solver’s advantage. When executing
such a reduction with a solver distribution, we are given 11/ε, where ε is the
average advantage. Nevertheless, we can run the original reduction with input
12/ε. Note that the probability that that the advantage of a sampled oracle is at
least ε/2 is at least ε/2, and since the reduction has positive advantage, we are
overall guaranteed to maintain a noticeable advantage.

Following the above, for typical assumptions Q, we can in particular assume
w.l.o.g positive advantage. For simplicity, we also assume throughout that clas-
sical reductions We do not repeat queries. This is w.l.o.g as given a deterministic
oracle, the reduction can simply store previous answers and answer consistently
by itself.

4 Persistent Solvers in the Quantum Setting

In this section, invoking state restoration techniques from [7], we prove that
any one-shot solver for an assumption P with a verifiably-polynomial image (in
particular, decision problems) can be converted into a persistent solver for P .

Theorem 4.1 (Persistence Theorem). Let P be a non-interactive falsifiable
assumption with a verifiably-polynomial image. For any inverse polynomial func-
tion η, there exist efficient quantum algorithms S,R with the following syntax
and guarantee. SB(state0) takes as input a quantum algorithm B and state state0
and outputs a state state∗0 and a value p∗ ∈ [0, 1]. RB(1

λ, 1i, x, state∗i−1) takes as
input B, a security parameter 1λ, step 1i, input x ∈ {0, 1}n, and state state∗i−1
and outputs a solution y ∈ {0, 1}m and state state∗i .

For any solver B = (B, state0) with one-shot value p = valP [0,B], considering
the random variable (state∗0, p

∗)← SB(state0), it holds that:

1. E [p∗] = p.
2. R∗ = (RB , state

∗
0) sampled in this process is a distribution over efficient

stateful solvers that is (p∗, η)-persistent.

Remark 4.2. The efficiency of the algorithms S,R is also polynomial in the run-
ning time of B. We avoid passing explicitly the running time bound as input to
simplify notation.

The proof relies on techniques from [7] and can be found in the full version
of this work [3].

5 Stateful Solvers To Memoryless Solvers

The following theorem shows that it is possible to convert stateful solvers into
memoryless solvers with the same value, albeit with a few caveats. First, the
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distribution of queries that is to be made to the memoryless solver needs to
be known ahead of time (i.e. it needs to be decided upfront in a non-adaptive
manner). Second, the resulting memoryless solver might not be efficiently exe-
cutable. Instead, we provide a simulator that can emulate its behavior, but only
once, and only on an input that comes from the prescribed distribution. The
simulator only manages to simulate the execution up to some statistical error,
and its running time is polynomial in the inverse of this error. A formal theorem
statement follows.

Theorem 5.1. There exists a polynomial time oracle-aided simulator
SimMemless with the following properties. Let B be a (p, η)-persistent ℓ-
stateful solver for a falsifiable non-interactive assumption P and let D = {Dλ}λ
be an efficiently samplable distribution ensemble over k-tuples of P instances.
Finally, let δ be some parameter. Then there exists a (p, η)-persistent (but
possibly inefficient) distribution over memoryless solvers B′ = B′ℓ,D,δ = (B′, ∅)
for P such that the following holds.

Consider sampling x⃗ ← Dλ, and let B′(1λ, x⃗) be the transcript of the
process that feeds the elements of x⃗ into B′ one-by-one in order (i.e. exe-
cutes B′(1λ, 1i, xi, ∅) in order). Then SimMemlessB,D(1λ, 1ℓ, 11/δ, x⃗) makes non-
adaptive black-box access to B and produces a distribution that is within at most
δ statistical distance from B′(1λ, x⃗).

We note that our simulator is “almost” a black-box algorithm in B in the sense
that it takes the size of the state 1ℓ as input, but otherwise it only makes black-
box queries to B. We also emphasize that the simulator does not depend at all
on p, η or any other property of B (other than ℓ).

5.1 The Simulator SimMemless

We start by describing the simulator that will be used to prove Theorem 5.1.
The simulator SimMemless simply “floods” the solver B with queries from a fixed
distribution, and plants the elements of x⃗ in random positions.

Specifically, SimMemlessB,D(1λ, 1ℓ, 11/δ, x⃗) works as follows. Let t be such
that k

√
ℓ/2t ≤ δ, i.e. t = O(ℓ(k/δ)2). The simulator is also going to generate a

non-adaptive sequence of queries. We start by defining our “flooding” distribu-
tion.

Definition 5.2 (Random Marginal). Let D be a distribution over Xk, i.e.
k-tuples over a domain X. Then the random marginal distribution DU over X
is a distribution obtained by sampling (x1, . . . , xk) according to D, sampling a
random i in [k], and outputting xi as the final sample.

The simulator starts by sampling the following values.

1. A vector z⃗ of k · t samples zj,i ← DU , where j ∈ [k], i ∈ [t].
2. k uniform samples ij ← [t], where j ∈ [k].
3. A uniform permutation π over [k].
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It then generates a sequence of queries z⃗∗ by taking the vector z⃗ and, for all
j ∈ [k], replacing zj,ij with xπ(j). Namely, thinking of z⃗ as containing k sequences
of queries of length t each, we plug in a random element from x⃗ in a random
location in each sequence.

The simulator then calls B on the queries in z⃗∗ in order, to obtain a sequence
of responses y⃗. Let yj,i be the (j, i) element in this sequence. We define y∗j = yj,ij .
The simulator returns the transcript ((x1, y

∗
π−1(1)), . . . , (xk, y

∗
π−1(k))). Namely, we

output a transcript that pairs each xi with the response that B produces when
introduced to the query zj,ij = xi, namely π(j) = i.

5.2 Proving Theorem 5.1

We now turn to prove the theorem. We start by defining a hybrid distribution
which is defined with respect to purifying executions of B. This will allow us
to make claims about extended transcripts, and finally to redact to standard
transcript and derive the proof of the theorem.

A Hybrid Distribution. To prove the theorem, we define the hybrid distri-
bution Sh, defined for every h ∈ {0, 1, . . . , k}.

1. Sample a uniform permutation π over [k].
2. For all j ∈ [k], sample a random index ij ∈ [t].
3. Sample x⃗ from D.
4. Generate a sequence of queries zj,i for all j ∈ [k], i ∈ [t] as follows.

(a) For all j > h, set zj,ij = xπ(j).
(b) Otherwise sample zj,ij from DU .

5. Generate the extended transcript t̂s of executing B (in a purifying manner)
on the entries zj,i in lexicographic order (i.e. starting with (1, 1), . . . , (1, t)
and concluding with (k, 1), . . . , (k, t)). We let t̂sj,i denote the prefix of the
transcript prior to making the (j, i) query. We let |sj,i⟩ denote the solver state
respective to t̂sj,i, as guaranteed by Proposition 3.10. Notice that |s1,1⟩ is
the initial state state0 of B conditioned on t̂s0 = ŷ0.

6. The output of the hybrid Sh then consists the following values, for all j ∈ [k]:

(a) The values ij , π(j).
(b) The quantum state in the beginning of the j-th run: |sj,1⟩.
(c) The quantum state right before the ij-th query in the j-th sequence is

made: |sj,ij ⟩.
(d) The value xπ(j), which is the ij-th query in the j-th sequence if j > h.
(e) An answer (yπ(j), ŷπ(j)) computed as follows.

– If j > h then set (yπ(j), ŷπ(j)) = (yj,ij , ŷj,ij ) (i.e. the (y, ŷ)-part of

the (j, ij)-th triple in t̂s).
– Otherwise generate (yπ(j), ŷπ(j)) as

B̂(1λ, 1t(j−1)+ij , xπ(j), |sj,ij−1⟩)y,ŷ.

In what follows, we will prove that the distributions induced by the first and
last hybrids are close in trace distance, as formalized below.
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Lemma 5.3. It holds that TD(S0,Sk) ≤ k
√

ℓ/(2t).

Before proving Lemma 5.3, we argue that it implies the validity of Theo-
rem 5.1. Indeed, we observe that the output of the simulator SimMemless can be
extracted from S0 by simply outputting all of the pairs ((x1, y1), . . . , (xk, yk)).
Applying the same extraction procedure on the last hybrid Sk will lead to a se-
quence ((x1, y1), . . . , (xk, yk)) in which yπ(j) = B(1λ, 1t(j−1)+ij , xπ(j), |sj,ij−1⟩)y.
However, in the hybrid Sk, the transcript t̂s, and therefore all states |sj,i⟩, are
generated independently of x⃗. Therefore, for every values of π, t̂s one could define
a memoryless adversary B′ = (B′

π,t̂s
, ∅), defined by

B′
π,t̂s(1

λ, 1j , x, ∅) = B(1λ, 1t(j
′−1)+ij′ , x, |sj′,ij′−1⟩)y , (6)

with j′ = π−1(j). Note that the sequence of states is hard-wired into B′ and it
does not require to propagate a state throughout the execution.

We therefore indeed have that the solver B′ is a distribution over memory-
less solvers indicated by sampling π, t̂s from their respective distributions and
executing B′

π,t̂s
. Since B is (p, η)-persistent, we have that with probability 1− η

over t̂s, all invocations of B(1λ, 1t(j
′−1)+ij′ , x, |sj′,ij′−1⟩) have value p± η, which

would imply that (B′
π,t̂s

, ∅) is (p, η)-persistent. Therefore, the distribution B′ is
also, by definition, (p, η)-persistent.

The proof of Lemma 5.3 will follow from a standard hybrid argument, given by
the following lemma.

Lemma 5.4. For all h ∈ {0, 1, . . . , k − 1} it holds that

TD(Sh,Sh+1) ≤
√
ℓ/(2t) . (7)

Proof. We will show that the lemma holds true even when conditioning both
Sh,Sh+1 on any value for t̂sh,1 (the (h · t)-prefix of the transcript t̂s).

We will show that the lemma follows from the following claim.

Claim 5.5. Conditioning on any value of t̂sh,1 for both Sh,Sh+1, the joint dis-
tribution of:

(ih, t̂sh,ih , |sh+1,1⟩ , (xπ(h), yπ(h), ŷπ(h))) (8)

is within trace distance
√
ℓ/(2t) between Sh,Sh+1.

Given Claim 5.5, Lemma 5.4 follows since all other elements
of the two distributions Sh,Sh+1 can be sampled given t̂sh,1 and
(ih, t̂sh,ih , |sh+1,1⟩ , (xπ(h), yπ(h), ŷπ(h))), as follows.

1. Sample the permutation π and the query vector x⃗ conditioned on the value
xπ(h).

2. For very j ∈ [k] \ {h}, sample ij uniformly in [t].
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3. For all j < h, the transcript prefix t̂sh,1 determines all states |sj,i⟩ (for
all i ∈ [t]), which in turn, together with x⃗, determines the distribution of
yπ(j), ŷπ(j) for all j < h (since this distribution is specified by applying the
solver B on xπ(j) with quantum state that is determined by the h-prefix).

4. For all j > h the outputs of both Sh,Sh+1 are determined as the outcomes of
an identical quantum process applied to the state |sh+1,1⟩ (the initial state
of the (h+1)-th sequence), considering that π and x⃗ have been determined.

We now proceed to prove Claim 5.5, and focus on the distribution of
(ih, t̂sh,ih , |sh+1,1⟩ , (xπ(h), yπ(h), ŷπ(h))) in the two hybrids, given that t̂sh,1 is
fixed. The claim follows straightforwardly from our information theoretic Plug-
In Lemma (Lemma 2.3), where the classical values yi in the lemma corresponds
to pairs (zh,i, yh,i, ŷh,i) generated in the h’th round in the hybrid experiment.
Note that since we fixed t̂sh,1, the distribution over these classical values is also
fixed, and indeed the value s = |sh+1,1⟩ depends on this sequence of t values.
The triple (xπ(h), yπ(h), ŷπ(h)) differs between Sh and Sh+1 since in the former it
is exactly equal to the ih+1 element in the h-th sequence, and in the latter it is
sampled from the marginal distribution of this element. We can therefore apply
the plug-in lemma directly to obtain the

√
ℓ/(2t) bound on the trace distance

as Claim 5.5 requires. This completes the proof of the claim and thus also of the
lemma.

6 Memoryless Solvers To Stateless Solvers

Theorem 6.1. There exists a polynomial-time oracle-aided simulator
SimStateless with the following properties. Let B be a (p, η)-persistent memory-
less solver for a falsifiable non-interactive assumption P and let {Dλ}λ be an
efficiently samplable distribution ensemble over k-tuples of P instances. Let δ
be some parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) stateless solver
B′′ = B′′δ = (B′′, ∅) for P such that the following holds. Consider sampling x⃗←
Dλ, and let B′′(1λ, x⃗) be the transcript of the process that feeds the elements of
x⃗ into B′′ (i.e. executes B′′(1λ, xi, ∅) for all xi). Then SimStatelessB(1λ, 11/δ, x⃗)
makes non-adaptive black-box access to B and produces a distribution that is
within at most δ statistical distance from B′′(1λ, x⃗).

Proof. The simulator SimStatelessB runs as follows. Given x⃗ as input, it generates
a query vector x⃗′ of length t = k2 as follows. It samples, without repetitions, k
indices i1, . . . , ik and sets x′j = xij . All other values of x′ are set to 0 (or some
other fixed value).

After making the queries in z⃗ to B and receiving an output vector y⃗′, the
simulator sets yj = yij returns ((x1, y1), . . . , (xk, yk)).

Let us now define the stateless adversary B′′. On input x, B′′(1λ, x) samples
j ← [t] uniformly, and outputs y = B(1λ, 1j , x, ∅)y. The solver B′′ is also (p, η)-
persistent; indeed, its value is the average of values, which are all η-close to
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p. (Recall Remark 3.15 about persistent values for stateless and memoryless
solvers.)

To bound the statistical distance between SimStatelessB(1λ, 11/δ, x⃗) and
B′′(1λ, x⃗), we consider the case where in the course of the execution of B′′(1λ, x⃗),
all j’s that are sampled are distinct. This happens with probability at least
1− k2/t = 1− δ. Conditioned on this event, B′′(1λ, x⃗) is identically distributed
as SimStatelessB(1λ, 11/δ, x⃗). It follows that in general the statistical distance is
bounded by δ.

We conclude with a corollary that combines Theorem 5.1 and Theorem 6.1.

Corollary 6.2. There exists a polynomial-time simulator Sim with the follow-
ing properties. Let B be a (p, η)-persistent ℓ-stateful solver for a falsifiable non-
interactive assumption P and let {Dλ}λ be an efficiently samplable distribution
ensemble over k-tuples of P instances. Finally, let δ be some parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) distribution over
stateless solvers B′′ = B′′ℓ,D,δ = (B′′, ∅) for P . Consider sampling x⃗∗ ← Dλ, and

let B′′(1λ, x⃗∗) be the transcript of the process that feeds the elements of x⃗∗ into
B′′ (i.e. executes B′′(1λ, x∗i , ∅) for all x∗i ). Then SimB,D(1λ, 1ℓ, 11/δ, x⃗∗) makes
non-adaptive black-box access to B and produces a distribution that is within at
most δ statistical distance from B′′(1λ, x⃗∗).

The proof can be found in the full version of the paper [3].

7 Classical Non-Adaptive Reductions and Quantum
Solvers

In this section, we show that a wide class of classical reductions can be translated
to the quantum setting. Specifically we start from any non-adaptive black-box
reductions from classically solving P with a verifiably-polynomial image (Defi-
nition 3.2), to classically solving Q. We transform it into a quantum reduction
from quantumly solving P to quantumly solving Q.

Theorem 7.1. Assume there exists a classical non-adaptive black-box reduc-
tion from solving a non-interactive assumption Q to solving a non-interactive
assumption P with a verifiably-polynomial image. Then there exists a quantum
reduction from solving Q to quantumly solving P . This reduction is durable if
the original classical reduction has positive advantage.

Proof. Let R be a classical non-adaptive black-box reduction from solving a
non-interactive assumption Q = (GQ, VQ, cQ) to solving a non-interactive as-
sumption P = (GP , VP , cP ). We present a quantum reduction R′ from solving
Q to quantumly solving P . We start by describing and analyzing R′ with a one-
shot advantage, and then extend it to address durability in the case that R has
positive advantage. We assume w.l.o.g that R never makes the same query twice
to its oracle function (see Remark 3.21).
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Recalling Definition 3.16, R′ takes as input (1λ, 1t, xQ, state), where xQ ∈
{0, 1}nQ is potentially an instance of Q, and its initial state is state′0 =
(state0, B, 11/ε, 1T ), where we are guaranteed that B = (state0, B) is a P solver
with advantage at least ε that runs in time at most T .

We let ε′ denote the advantage of R in solving Q when given access to
an oracle that solves P with advantage at least ε/2. We are guaranteed that
ε′ = poly(ε, λ−1). We set δ = ε′/2 and η = min{ε/4, ε′/2}.

We define a distribution D over ({0, 1}nP )k as the distribution over the set of
oracle queries produced by first sampling a uniform r′Q and using it to generate

x′Q = GQ(1
λ, r′Q), and finally executing R(1λ, 14/ε, x′Q) to produce a k-tuple of

P -instances.
Having all of these definitions in place, we can now introduce the execution

of R′(1λ, 10, xQ, state
′
0). Namely, we start by analyzing the one-shot execution

of R′ (the case t = 0).

1. Let R,S be the state restoration algorithms with respect to P as guaran-
teed by Theorem 4.1, with parameter η as defined above. Set (state∗0, p

∗)←
SB(state0). Define B0 = R∗ = (RB , state

∗
0) and recall that B0 is (p∗, η)-

persistent, and that E[p∗] = p.
2. Execute R(1λ, 13/ε, xQ) to obtain the sequence of queries x⃗.
3. Recall the simulator Sim guaranteed by Corollary 6.2. Execute

SimB0,D(1λ, 1ℓ, 11/δ, x⃗) to obtain a transcript ts.
4. Extract the responses to x⃗ from ts and resume the execution R from step 2

with these responses. Once the execution of R completes and a value yQ is
output, output yQ as the output of R′.

To analyze the one-shot value and advantage of R′, we start by analyzing
the performance of R′ conditioned on obtaining a fixed value p∗ in step 1 of the
execution. In this case B0 is (p∗, η)-persistent, and we can invoke Corollary 6.2 to
conclude that there exists a (p∗, η)-persistent distribution over stateless adver-
saries B′′p∗ s.t. the output of R′ is within statistical distance δ from the execution

of RB
′′
p∗ (1λ, 14/ε, xQ).

In turn, the execution of RB
′′
p∗ (1λ, 10, xQ, state

′
0) is equivalent to executing

RB′′
(1λ, 14/ε, xQ), where B′′ is a distribution over stateless solvers defined as

follows. First sample p∗ from its designated distribution, then sample B′′p∗ from
the (p∗, η)-persistent distribution of stateless solvers. Recall that with probability
1 − η over the sampling of B′′p∗ , it holds that the outcome is a (single) (p∗, η)-

persistent stateless solver and therefore that
∣∣valP [0,B′′p∗

]
− p∗

∣∣ ≤ η. It follows
that with probability at least 1− η:

|E[valP [0,B′′]]− p| =
∣∣E [

valP [0,B′′p∗

]
− p∗

]∣∣
≤ E

[ ∣∣valP [0,B′′p∗

]
− p∗

∣∣ ]
≤ η .

It follows that B′′ has advantage at least ε − 2η ≥ ε/2 in solving P . We have
therefore that RB′′

has advantage at least ε′ in solving Q. Since the output of
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R′ is within δ = ε′/2 statistical distance from RB′′
, we conclude that R′ has

advantage at least ε′/2. We therefore established the one-shot value of R′.
In the full version [3] we further show that R′ is durable.

8 An Impossibility Result for Search Assumptions

Our result in Section 7 transforms a classical non-adaptive reduction R from
solving Q to classically solving P into a reduction R to quantumly solving P .
It is restricted to assumptions P with a verifiably-polynomial image. While this
captures a large class of assumptions, such as all decision assumptions, it cer-
tainly does not capture all assumptions of interest. In particular, it does not
capture search assumptions where the number of possible solutions per instance
could be super polynomial, such as say the hardness of inverting a one-way
function where the preimage size could be super-polynomial.

In this section we show that this is somewhat inherent. We prove that for
search assumptions, such a transformation cannot exist as long as the resulting
reduction R′ is explicit in the assumptions P,Q. In particular, it may obtain as
input the code of the algorithms describing P,Q, but does not get any implicit
non-uniform advice regarding these assumptions. Indeed, the transformation in
Section 7 (from classical non-adaptive reductions to quantum ones) as well as
the Persistence Theorem 4.1 on which it relies, the resulting quantum reduction
R′ is in fact black-box in the assumptions P,Q, and in particular explicit.

Definition 8.1 (Assumption Pair Colletion). An assumption pair collec-
tion PQ consists of pairs of assumptions (P,Q), each given by its corresponding
(possibly non-uniform) algorithms (GP , VP , cP ) and (GQ, VQ, cQ).

Definition 8.2 (Explicit Reduction). An explicit quantum reduction for
assumption pair collection PQ is an efficient algorithm R with the follow-
ing guarantee. For any (P,Q) ∈ (P,Q) and any quantum solver BP =
(BP , state0) for P with one-shot advantage ε and running time T , let state′0 =
(state0, (P,Q), BP , 1

1/ε, 1T ). Then BQ = (R, state′0) is a solver for Q with one-
shot advantage poly(ε, T−1, λ−1) and running-time poly(T, ε−1, λ).

We say that the reduction is strongly explicit, instead of being given the ex-
plicit description of (P,Q) as part of its input, it is given oracle access to its
corresponding algorithms.

Note that in the above definition state′0 is formally a sequence

state′0,λ = (state0,λ, (P,Q)λ, BP,λ, 1
1/ε(λ), 1T (λ)) ,

where (P,Q)λ consist of their corresponding algorithms (possibly along with
their corresponding non-uniform advice) restricted to security parameter λ
(w.l.o.g circuits).

Restating our result from Section 7, we proved that for any pair collection
PQ, if for any (P,Q) ∈ P,Q, P has verifiably-polynomial image, and there exists



28 Nir Bitansky, Zvika Brakerski, and Yael Tauman Kalai

a classical non-adaptive black-box reduction RP,Q from solving Q to solving P ,
then there also exists a strongly explicit quantum reductionR′ for PQ. We prove
that if P does not have a verifiably-polynomial image this may not be the case.

Theorem 8.3. There exists an assumption pair collection PQ, such that for
any (P,Q) ∈ P,Q, there exists a classical non-adaptive black-box reduction RP,Q

from solving Q to solving P , but there is no strongly explicit reduction R′ for PQ.
Assuming also post-quantum indistinguishability obfuscation, there also does not
exist an explicit reduction R′.

The theorem is proven in the full version of the paper [3].
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