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Abstract. A succinct non-interactive argument of knowledge (SNARK)
allows a prover to produce a short proof that certifies the veracity of
a certain NP-statement. In the last decade, a large body of work has
studied candidate constructions that are secure against quantum attackers.
Unfortunately, no known candidate matches the efficiency and desirable
features of (pre-quantum) constructions based on bilinear pairings.
In this work, we make progress on this question. We propose the first
lattice-based SNARK that simultaneously satisfies many desirable proper-
ties: It (i) is tentatively post-quantum secure, (ii) is publicly-verifiable, (iii)
has a logarithmic-time verifier and (iv) has a purely algebraic structure
making it amenable to efficient recursive composition. Our construction
stems from a general technical toolkit that we develop to translate pairing-
based schemes to lattice-based ones. At the heart of our SNARK is a
new lattice-based vector commitment (VC) scheme supporting openings
to constant-degree multivariate polynomial maps, which is a candidate
solution for the open problem of constructing VC schemes with openings
to beyond linear functions. However, the security of our constructions
is based on a new family of lattice-based computational assumptions
which naturally generalises the standard Short Integer Solution (SIS)
assumption.
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1 Introduction

A succinct non-interactive argument of knowledge (SNARK) [45,58] allows a
prover to convince a verifier that they know a witness to an NP statement. The
succinctness property demands that the size of the proof and, after preprocessing,
the work of the verifier are sublinear in (ideally independent of) the time needed to
check the validity of the witness. Over the last decade, SNARKs have witnessed a
meteoric rise in their efficiency and applicability [11,13,62,9,22,30]. More recently,
SNARKs have found their way into real-world systems in the context of blockchain-
based cryptocurrencies [10,47,20,15,18].

The looming threat of quantum computers has given rise to a movement in
the cryptographic community to investigate cryptographic constructions from
assumptions that would plausibly withstand the presence of a quantum attacker.
Unfortunately, present SNARKs based on post-quantum assumptions are in many
ways inferior to pre-quantum constructions based on bilinear pairings. The goal
of this work is to make progress in this area.

1.1 The Seascape of SNARKs6

To put our work into context, we give a brief outline of the current seascape
of SNARK constructions. We split the schemes depending on the underlying
cryptographic assumptions used as the source of hardness.
Bilinear Pairings. To date, the most efficient and feature-rich SNARKs are
constructed over bilinear pairing groups (e.g. [42]) with a trusted setup. Typically,
a pairing-based SNARK proof consists of only a small constant number of base
group elements and is also publicly verifiable. Furthermore, offline preprocessing
can often be performed, such that the online verification time is sublinear in
the size of the statement being proved and the corresponding witness. Moreover,
pairing-based SNARKs are favourable because of their algebraic structures that
is known to enable proof batching [50,21] and efficient recursive composition [12].
However, due to their reliance on the hardness of problems related to discrete
logarithms, pairing-based SNARKs are not sound against a cheating quantum
prover.
Random Oracles. Promising post-quantum candidate for SNARKs are con-
structions based on Micali’s CS proofs paradigm: They are obtained by first
building an interactive argument using (generalisations of) probabilistically check-
able proofs (PCP) [45], then compiling it into a non-interactive one using the
Fiat-Shamir transformation [27] in the random oracle (RO) model.

A major difference between pairing-based and RO-based SNARKs, from both
theoretical and practical perspectives, is the algebraic structure of the verification
algorithm. In RO-based SNARKs, the verification algorithms query the RO, which
is a combinatorial object. This is especially important when recursively composing
the SNARK: On the theoretical side, proving the knowledge of a valid RO-based

6It can be succinctly verified that SNARKs, like sharks, are creatures of the sea.
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SNARK proof requires specifying the circuit computing the RO. This makes it
challenging to formally argue about soundness, even in the RO model. From a
practical perspective, the RO is instantiated with cryptographic hash functions,
which typically have high multiplicative degree.7 Since the multiplicative degree
of the relation being proven often dominates the prover computation complexity
in SNARKs, proving the satisfiability of a cryptographic hash function becomes
computationally expensive.
Lattices. A prominent source of hardness for post-quantum security are com-
putational problems over lattices. Not only do lattice-based assumptions allow
us to build most standard cryptographic primitives, e.g. [66,34], but also enable
new powerful primitives [33,38,72,39], which are currently out of the reach of
group-based assumptions. Unfortunately, in the context of SNARKs, lattices have
yet to be established as competitive alternatives to group-based constructions. So
far, lattice-based SNARKs either require designated verifiers [32,43] or linear-time
verification [6,19].

Beyond their theoretical appeal, one additional motivation for constructing
lattice-based SNARKs is that they are potentially more compatible with other
basic lattice-based primitives when composing them to construct more advanced
systems. More concretely, consider the task of proving the satisfiability of certain
algebraic relations over a ring R by a solution vector of norm bounded by some δ,
a language which arises naturally when composing lattice-based building blocks.
Using an argument system for proving algebraic relations over a finite field
without norm constraints, arithmetisation would be needed to express certain
witness component in, say, binary representation and translate the bounded-norm
condition to the satisfiability of a potentially-high-degree polynomial, depending
on the choice of the norm and the norm bound δ. In contrast, the bounded-
norm constraint could be proven natively if we have an argument system which
supports proving the satisfiability of algebraic relations over R by solutions of
norm bounded by some α ≤ δ. This is done by expressing the solution vector in
a likely more compact O(α)-ary representation such that, if the representation
has norm bounded by α, then the original solution has norm bounded by δ.

1.2 Our Contributions

In this work, we construct the first lattice-based SNARK for an NP-complete
language defined over a ring R. Specifically, the language being supported is
the satisfiability of polynomial maps over R by bounded-norm solutions. Our
construction qualitatively matches pairing-based SNARKs, i.e. it is publicly
verifiable and can achieve sublinear verification time given preprocessing, while
requiring a trusted setup. In addition, it is tentatively post-quantum secure.
Furthermore, our construction uses only algebraic operations over a ring R, and
is therefore friendly to recursive composition. The soundness of our scheme is
based on new lattice-based (knowledge) assumptions. The introduction of new

7Though we mention that there is recent progress [5,40] in crafting hash functions
that are friendlier to multiparty computation and argument systems.
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knowledge assumptions is, to some extent, necessary: The work of Gentry and
Wichs [35] shows that the soundness of any SNARK cannot be based on falsifiable
assumptions in a black-box manner. We summarise the main steps of our work
in the following.

(1) Translation Technique. We put forward a new paradigm for translating
pairing-based constructions to the lattice world. Our constructions stem from
techniques from the literature on pairing-based cryptography [53], while simulta-
neously exploiting the ring structure offered by the lattice setting. We develop
the necessary technical toolkit that helps us mimic operations of pairing-based
VC constructions in the lattice setting. We view this translation strategy as a
major conceptual contribution of our work and we expect it to be instrumental
in enabling new applications of lattice-based cryptography.

(2) Vector Commitments for Constant-Degree Polynomials. A vector
commitment (VC) allows a committer to commit to a vector of w values x :=
(x0, . . . , xw−1) ∈ Rw and then reveal selected portions of the input vector, or more
generically a function f : Rw → Rt over the input vector, along with a proof π that
can be publicly verified. We require both the commitment and the opening proof
to be compact. In terms of security, we want to ensure an adversary cannot output
a valid opening proof for an incorrect function evaluation of the input vector. VCs
have been established as a central primitive in cryptography [24,52,29,49,37,23].
As a central technical contribution, we present the first (lattice-based) VC that
supports openings beyond linear functions. Specifically, our VC commits to short
vectors of ring elements x ∈ Rw and supports openings to constant-degree d
multivariate polynomial maps. We then show how this VC is sufficient to construct
SNARKs for the satisfiability of degree-d polynomial maps (which is NP-complete
for d ≥ 2) by bounded-norm solutions.

(3) New Assumptions and Analysis. Our translation techniques (and conse-
quently the resulting cryptographic schemes) rely on a new family of assumptions
that we refer to as the k-Ring-Inhomogenous Short Integer Solution (or k-R-ISIS
for short) assumptions. Roughly, a k-R-ISIS assumption says that it is hard to find
a short preimage ug∗ satisfying ⟨a, ug∗⟩ = g∗(v) mod q, where g∗ is a Laurent
monomial8 and v is a random point, given short preimages of other Laurent
monomials G evaluated on the same random point. Our new assumptions can
be viewed as inhomogenous ring variants of the k-SIS assumption [17,54] (where
the rational functions are zeros). The key difference to k-SIS is that we allow to
hand out more preimages than the dimension of a but these preimages are all of
different images.

In fact, the assumptions we introduce, k-M -ISIS, are slightly more general in
being defined over modules rather than rings. Our generalisation to modules is
motivated by the knowledge assumptions that we also introduce. In the knowledge
assumptions images live in a moderately sized submodule.

8A Laurent monomial is a monomial where negative powers are allowed. Generally,
one could consider k-R-ISIS problems for rational functions.
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We consider the introduction and study of the k-R-ISIS assumptions as a
contribution to the programme of charting the territory between LWE and
multilinear maps assumptions called for in [1].

To gain confidence in our newly introduced assumptions, we initiate their
study. We show that certain subclasses of the k-R-ISIS problems (parameterised
by the algebraic structure on the k-R-ISIS images) are as hard as the R-SIS
problem. We show that, as expected, the k-M -ISIS problems are as hard as their
k-R-ISIS counterparts, although the former have slightly skewed parameters. We
also show that certain k-M -ISIS problems are as hard as the k-M -SIS problem,
the natural module variant of the k-SIS problem, where the former have higher
module ranks. Furthermore, we show that the k-M -ISIS problems for (G, g∗) is
as hard as those for (G, 0), and that the hardness is preserved when scaling both
G and g∗ multiplicatively by any non-zero Laurent monomial.

However, since none of the reductions from well-established problems cover
the case we rely upon in our constructions, we perform cryptanalysis to assess the
hardness of general k-M -ISIS problems. While we did not identify any structural
weaknesses, we encourage independent analysis to gain confidence in or invalidate
our assumptions.
(4) Post-Quantum Security. As a contribution of independent interest, we
show that our VC satisfies a strong notion of binding known as collapsing (as
an ordinary commitment, not with respect to functional openings), a recently
introduced security notion in the quantum setting [70]. For this, we introduce a
new technique of embedding NTRU ciphertexts into the public parameters of
our VC. To the best of our knowledge, this is the first VC not based on Merkle
trees that is shown to satisfy such a notion.
(5) New Applications. Our SNARK supports proving the satisfiability of
polynomial maps over R by bounded-norm solutions, a language which directly
captures those statements which naturally arise in lattice-based cryptographic
constructions. We highlight two native applications of our SNARK which do not
rely on expensive conversions between different NP-complete languages.

The first application is the recursive composition of our SNARK, which refers
to the process of using the SNARK to prove knowledge of another SNARK
proof and the satisfiability of a polynomial map; for details see the full version.
This is natively supported because the verification algorithm of our SNARK
construction is itself checking the satisfiability of certain algebraic relations over
R by a bounded-norm solution. Recursive composition of SNARKs is a general
purpose technique for aggregating proofs or proving complex statements in a
piece-by-piece fashion. The technique is also useful for constructing incremental
verifiable computation [71] and verifiable delay functions [14,41].

The second application is the aggregation of GPV signatures [34]. While
it is folklore that any signatures can be aggregated by a SNARK for an NP-
complete language, we stress that the GPV verification algorithm, again, checks
the satisfiability of certain algebraic relations over R by a bounded-norm solution
which our SNARK natively supports. We discuss how to handle relations in Rq

in the full version of this work. Apart from obtaining short aggregated GPV
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signatures, in the setting where a set of n signers are signing a common message
at a time, the verification of the aggregated signatures could be preprocessed,
resulting in an online verification time sublinear in n. As a bonus result on GPV
signatures, we further show how to construct lattice-based adaptor signatures [7]
based on the GPV paradigm. Combining the two results, we obtain the first
aggregatable adaptor signatures from any assumption.
Open Problems. Our work paves the way for what we believe to be an exciting
line of research. As we initiate the study of inhomogenous variants of the k-SIS
assumptions, we ask whether better (possibly quantum) algorithms can be found
for solving this problem that exploit the additional algebraic structure. We also
presume that for further families of rational functions the k-R-ISIS assumption
can be shown to be as hard as standard hard lattice problems. Another compelling
question is to study new cryptographic applications of the k-R-ISIS family. We
expect that such an abstraction will be useful in transferring techniques from
pairing-based cryptography into the lattice world.

1.3 Technical Overview

We give a concise overview of the process of obtaining our lattice-based SNARK.
From Vector Commitments to SNARKs. In this work, we are interested
in VCs supporting openings to constant-degree-d w-variate t-output polynomial
maps with bounded coefficients. The standard properties of interest for VCs are:

Compactness. Commitments and opening proofs are of size poly(λ, log w, log t).
Binding. It is infeasible to produce a commitment c and proofs for polynomials

maps, such that the system of equations induced by them is not satisfiable.9

In addition, we require the following stronger notion of binding.

Extractability. To produce a commitment c and a proof that the image of a
polynomial map f at the committed vector is y, one must know a preimage x
such that c is a commitment of x and f(x) = y.

It is well known that one can construct SNARKs from VCs supporting linear
openings in the RO model [49]. However, in this work we take a different route
and adopt a more structured approach to construct SNARKs. Specifically, recall
that the satisfiability of systems of degree-d polynomials is NP-complete for any
constant d ≥ 2. As such, a SNARK can be trivially constructed from a compact
and extractable VC for degree-d polynomials: The prover simply commits to
the root of the system (f, y) and immediately produces an opening proof for
(f, y). As a concrete example, a popular NP-complete language supported by
existing SNARKs is rank-1 constraint satisfiability (R1CS). An R1CS instance
consists of three matrices (A, B, C) over a field or in general a ring. The instance
is satisfied by a vector x if (A · (1, x)) ◦ (B · (1, x)) = (C · (1, x)), where ◦
denotes the Hardamard product. It is easy to see that an R1CS instance is

9This generalises position binding.
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a special case of an instance (f, y) of degree-2 polynomial satisfiability where
f(X) := (A · (1, X)) ◦ (B · (1, X))− (C · (1, X)) and y = 0. For a full description
of our SNARK we refer the reader to the full version of the paper.

Throughout the rest of this overview, we therefore focus on constructing
lattice-based VCs supporting degree-d openings. Since known constructions are
restricted to positional openings, we turn our attention to pairing-based schemes
(which support linear openings) and develop a new strategy to translate them
into lattice-based VCs and simultaneously to extend the degree to d > 1.
General Translation Strategy. Our strategy for constructing a lattice-based
VC is a novel translation technique that lets us port techniques from the pairing-
land to the lattice-land. We describe a general translation strategy for translating
not only VC but also potentially other pairing-based constructions to the lattice
setting. For the group setting, we adopt the implicit notation for bilinear groups
G1, G2, and Gt of prime order q, i.e. the vector of elements in Gi with (entry-wise)
discrete logarithm x ∈ Zq base an arbitrary fixed generator of Gi is denoted by
[x]i, with group operations written additively, and the pairing product between
[x]1 and [y]2 is written as ⟨[x]1, [y]2⟩. For the lattice setting, we let R be a
cyclotomic ring, q ∈ N be a large enough rational prime such that random
elements in Rq := R/qR are invertible with non-negligible probability.

Consider a pairing-based construction where the elements { [1]1, [g(v)]t }g∈G
are publicly available to all parties, where G is a set of linearly-independent
rational functions and v is a vector of secret exponents. An authority, knowing
the secret exponents v, is responsible for giving out secret elements { [g(v)]2 }g∈G
to user A. In turn, user A can compute [u]2 :=

∑
g∈G cg · [g(v)]2 and present it

to user B, who can then check the correctness of [u]2 by checking

⟨[1]1, [u]2⟩
?=
∑
g∈G

cg · [g(v)]t.

Note that in this check one side of the pairing (i.e. [1]1) is public, while the other
side (i.e. [u]2) is computed from secrets delegated by the authority to user A.
This property will be crucial for our translation technique to apply.

The above structure can be seen in many pairing-based constructions. For
example, the secret vector v could be a trapdoor, a master secret key of an identity-
based encryption scheme, or a signing key; the delegated secrets { [g(v)]2 }g∈G
could be hints given alongside the public parameters of a VC, an identity-based
secret key, or a signature; and the pairing-product check could be for opening
proof verification, decryption, or signature verification.

Our strategy of translating the above to a lattice-based construction is as
follows. First, the public elements { [1]1, [g(v)]t }g∈G over G1 and Gt are translated
to the public vector and elements {a, g(v) }g∈G , where a and v are random
vectors over Rq and R×

q respectively. Since { g(v) }g∈G does not necessarily hide
v in the lattice setting (e.g. when G consists of many linear functions), the
authority might as well publicly hand out the vectors {a, v } directly. Next, the
secret elements { [g(v)]2 }g∈G are translated to the short secret vectors {ug }g∈G
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satisfying ⟨a, ug⟩ = g(v) mod q. These short preimages can be sampled given
a trapdoor of a, which the authority should have generated alongside a. Given
{ug }g∈G , user A can similarly compute u :=

∑
g∈G cg ·ug, although the coefficients

cg are now required to be short. The pairing-product check is then translated to
checking

⟨a, u⟩ ?≡
∑
g∈G

cg · g(v) mod q and u is short.

The same strategy can also be used to translate (conjectured-)hard com-
putational problems over bilinear groups to the lattice setting to obtain also
seemingly-hard problems. For example, consider a variant of the ℓ-Diffie-Hellman
Exponent problem, which asks to find [vℓ]2 given ([1]1, [1]2, [v]2, . . . , [vℓ−1]2).
A natural lattice-counterpart of the problem is to find a short preimage uℓ

satisfying ⟨a, uℓ⟩ ≡ vℓ mod q given short preimages (ui)i∈Zℓ
each satisfying

⟨a, ui⟩ = vi mod q.
We remark that a direct translation of pairing-based constructions does not

necessarily yield the most efficient lattice-based scheme. For this reason, it will
be useful to generalise pairing-based constructions into a family parameterised
by the function class G. We will then have the freedom to pick G to optimise the
efficiency of translated lattice-based scheme.
Translating Vector Commitments. We next demonstrate how the above
translation strategy can be applied to translate pairing-based VCs, using the
following pairing-based VC with openings to linear forms f : Zw

q → Zq adapted
from [24,52,49] as an example.

– Public parameters:
(

[1]1, [1]2, ([vi]1)i∈Zw
, ([v̄j ]2)j∈Zw

, ([vi · v̄j ]2)i,j∈Zw:i ̸=j , [v̄]t
)

where v̄ =
∏

k∈Zw
vk and v̄j = v̄/vj .

– Committing x ∈ Zq: [c]1 :=
∑

i∈Zw
xi · [vi]1 = ⟨[v]1, x⟩

– Opening f : [u]2 :=
∑

i,j∈Zw:i̸=j fj · xi · [vi · v̄j ]2
– Verifying (f, y): ⟨[1]1, [u]2⟩

?=
〈

[c]1,
∑

j∈Zw
fj · [v̄j ]2

〉
− y · [v̄]t

The weak binding property of the scheme, i.e. the infeasibility of opening a
commitment c to both (f, y) and (f, y′) with y ̸= y′, relies on the hardness of
computing [v̄]2, whose exponent corresponds to evaluating the “target monomial”∏

k∈Zw
Xk at v. Notice that the target monomial is set up in such a way that

[v̄]t = [vi]1 · [v̄i]2 holds for all i ∈ Zw, where [v̄i]2 can be viewed as a “complement”
of [vi]1. Consequently, the value y = ⟨f , x⟩ appears as the coefficient of [v̄]t in
the inner product

〈∑
i∈Zw

xi · [vi]1,
∑

j∈Zw
fj · [v̄j ]2

〉
.

While the above pairing-based scheme is ready to be translated to the lattice
setting using our translation strategy, to prepare for our generalised scheme for
higher-degree polynomials, we divide the target and complement monomials
by
∏

k∈Zw
Xk. The complement of Xi becomes X−1

i and the target monomial
becomes the constant 1. Concretely, we divide the opening and the verification
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equation by v̄ to obtain

[u′]2 :=
∑

i,j∈Zw:i ̸=j

fj · xi · [vi/vj ]2

⟨[1]1, [u′]2⟩
?=
〈

[c]1,
∑

j∈Zw

fj · [v−1
j ]2

〉
− y · [1]t.

Recall that in the VC construction above we relied on the hardness of com-
puting [v̄]2. What we have done here might seem absurd, since the element [1]2
now is given in the group setting, but finding a short pre-image of a fixed image,
say 1, is seemingly hard in the lattice setting. Indeed, translating the modified
scheme, we derive the following lattice-based scheme.

– Public Parameters:
(

a, v, (ui,j)i ̸=j∈Zw

)
where ⟨a, ui,j⟩ ≡ vi/vj , ui,j are short

– Committing x ∈ Rw: c := ⟨v, x⟩ mod q
– Opening f : u :=

∑
i,j∈Zw:i ̸=j fj · xi · ui,j

– Verifying (f, y): ⟨a, u⟩ ?≡
(∑

j∈Zw
fj · v−1

j

)
· c− y mod q and u is short

For correctness, we require that the committed vector x and the function f
both have short coefficients.

The weak binding property of the translated lattice-based scheme relies on
the hardness of finding a short preimage of (a small multiple of) 1 given short
preimages of vi/vj for all i, j ∈ Zw with i ≠ j – a new computational assumption
obtained by translating its pairing-counterpart, which belongs to a new family of
assumptions called the k-R-ISIS assumption family.

Furthermore, the computation of
∑

j∈Zw
fj · v−1

j in the verification equation
can be preprocessed before knowing the commitment c and the opening proof u,
such that the online verification can be performed in time sublinear in w.
Supporting Higher-Degree Polynomials. Notice that in the group setting
the (modified) verification algorithm can be seen as evaluating the linear form f
at ([v−1

0 ]2 · [c]1, . . . , [v−1
w−1]2 · [c]1) where [c]1 supposedly encodes x. In the group

setting, f has to be linear since we cannot multiply two G1 elements together to
get an encoding of the Kronecker product x⊗ x.

In the lattice setting, however, the commitment c is a ring element and thus
we can evaluate a non-linear polynomial f at (v−1

0 · c, . . . , v−1
w−1 · c). Moreover,

we notice that each degree-d monomial xe is encoded in cd as (a factor of) the
coefficient of ve, which has a natural complement v−e satisfying (ve) · (v−e) = 1,
our modified target monomial. This suggests the possibility of generalising the
translated lattice-based scheme above to support openings to higher-degree
polynomials. Indeed, this technique allows us to generalise the scheme to support
bounded-coefficient polynomials of degrees up to a constant, whose weak binding
property is now based on another member of the k-R-ISIS assumption family.
Achieving Compactness and Extractability. The VC scheme obtained
above achieves succinctness, i.e. commitments and opening proofs are of size
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sublinear in w (not t), and weak binding, which fall short of the compactness and
extractability required to construct a SNARK. Indeed, a black-box construction
of SNARK using this VC is unlikely since, so far, we are only relying on falsifiable
assumptions. To resolve this problem, we propose a knowledge version of the
k-R-ISIS assumptions. For concreteness, we will use the following member of the
knowledge k-R-ISIS assumption family:

Let a′ ←$Rℓ
q and v←$Rw

q be random vectors and t←$Rq be a random
element such that |t · Rq| is super-polynomial in λ and |t · Rq|/|Rq| is
negligible in λ. If there exists an efficient algorithm A which, given short
vectors u′

i satisfying ⟨a′, u′
i⟩ = vi · t mod q for all i ∈ Zw, produces (c, u′)

such that u′ is a short vector satisfying ⟨a′, u′⟩ = c · t mod q, then there
exists an efficient extractor EA which extracts a short vector x ∈ Rw such
that ⟨v, x⟩ = c mod q.

Equipped with this k-R-ISIS of knowledge assumption, we can upgrade our
VC construction to achieve extractability as follows. First, we let the public
parameters to additionally include (a′, (u′

i)i∈Zw
, t). Here t generates an ideal that

is small enough for random elements in Rq not to be contained within it, but
big enough to provide sufficient entropy. Next, we let the committer also include
u′ =

∑
i∈Zw

xi · u′
i in an opening proof. Finally, we let the verifier additionally

check that u′ is short and ⟨a′, u′⟩ = c · t mod q.
To see why the modified scheme is extractable, suppose an adversary is

able to produce a commitment c and a valid opening proof for (f, y). By the
k-R-ISIS of knowledge assumption, we can extract a short vector x ∈ Rw such
that ⟨v, x⟩ = c mod q. Now, if f(x) = y′ ≠ y, we can use the extracted x to
compute a valid opening proof for (f, y′). However, being able to produce valid
opening proofs for both (f, y) and (f, y′) with y ̸= y′ violates the weak binding
property. We therefore conclude that f(x) = y.

It remains to show how we can achieve compactness. Since our lattice-based
VC schemes preserve the property of the original pairing-based schemes that the
verification algorithm is linearly-homomorphic in the opening proofs, a natural
strategy towards compactness is to aggregate multiple opening proofs into one
using a random linear combination, with coefficients generated using a random
oracle. The binding property of an aggregated opening proof can be proven using a
classic rewinding argument which involves inverting a Vandermode matrix defined
by the randomness used for aggregation. This strategy works particularly well in
the prime-order group setting since scalars are field elements and Vandermonde
matrices defined by distinct field elements are always invertible. In the lattice
setting, however, the coefficients used for aggregation have to be chosen from a
set where the difference between any pair of elements is (almost) invertible (over
R) for an analogous argument to go through. This is a severe limitation since
sets satisfying this property cannot be too large [4].

To achieve compactness in the lattice setting, we are forced to use a different
strategy. Specifically, the coefficients h = (hi)i∈Zt ∈ R that we use to aggregate
opening proofs are given by an instance of the R-SIS problem over Rp (taking
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smallest R-representatives of Rp elements) sampled as part of the public param-
eters, where p is chosen such that the R-SIS assumption is believed to hold over
Rp while p is small relative to q.

To see why extractability still holds, suppose an adversary is able to produce
a commitment c and a valid opening proof for (f, y) where f =

∑
i∈Zt

hi · fi and
y =

∑
i∈Zt

hi ·yi. By our previous argument, we can extract x satisfying f(x) = y.
Suppose it is not the case that fi(x) = yi for all i ∈ Zt, then (fi(x) − yi)i∈Zt

is a short vector satisfying
∑

i∈Zt
hi · (fi(x) − yi) = 0 over R, which implies∑

i∈Zt
hi · (fi(x)− yi) = 0 mod p, breaking the R-SIS assumption over Rp.

Discussion and Generalisations. We discuss the resulting VC scheme obtained
through the aforementioned series of transformations. Our VC scheme supports
openings to w-variate t-output constant-degree polynomial maps with bounded
coefficients. The scheme achieves compactness and extractability, where the latter
is based on the standard R-SIS assumption over Rp and our two new assumptions:
k-R-ISIS and the k-R-ISIS of knowledge assumption over Rq, where p is short
relative to q. The construction uses only algebraic operations over R and Rq.
Furthermore, a major part of the verification equation can be precomputed, so
that the online verification time is sublinear in w and t.

Our construction and the k-R-ISIS (of knowledge) assumption families admit
natural generalisations to the module setting, where the vector a is replaced by a
matrix A and other components are modified accordingly. Expectedly, we show
that the module versions of the k-R-ISIS assumptions are at least as hard as the
ring versions for certain parameter choices.

In many applications (e.g. aggregating signatures), often only a main part
(e.g. a set of signature verification keys) of the function-image tuple (f, y) is
known in advance, while the remaining small part (e.g. a message signed by all
parties) is known when it comes the time to perform verification. It is desirable to
preprocess the main part of (f, y) offline, so that the online verification cost is only
dependent on the size of the small part. In our formal construction, we capture
this flexibility by considering y itself to be a polynomial map, and allowing f
and y to take an (additional, for f) public input z. This allows the maps (f, y)
to be preprocessed, such that the online cost depends mostly on z.

1.4 Application

We highlight an application of interest of our VC, and in particular of the resulting
SNARK, in aggregating GPV signatures [34]. As a bonus result, we also show
how to build adaptor signatures [7] based on GPV signatures while preserving
aggregatability. For more comprehensive details we refer the reader to the full
version of the paper.
Aggregate GPV Signatures. GPV signatures [34] are a lattice-based signature
scheme paradigm of which an instantiation is a finalist in the NIST Post-Quantum
Process (Falcon [65]). On a high level, a GPV signature on a message m is a
short vector u such that A · u ≡ v mod q, where A is the public key, v = H(m)
with the hash function H modelled as a random oracle in the security analysis.

11



The verification is simply the check of the linear relation A · u ≡ v mod q and
that u is short.

Our SNARK can be used to prove knowledge of GPV signatures natively
given the signature verification involves algebraic operations only. For instance,
to aggregate n signatures (ui)i∈Zn

on the same message m (a scenario that arises
in a PoS consensus protocol [26]), the aggregator can compute a SNARK proof
of knowledge of short (ui)i∈Zn

satisfying Ai · ui = v mod q, where Ai is the
public key of the i-th signer. The aggregated signature i.e. the SNARK proof, can
be verified in time sublinear in the number of signers and signatures n by first
preprocessing the part of the verification equation depending on (Ai)i∈Zn

. In
fact, this preprocessing step is one-time for the given set of signers, and the online
verification after knowing m is only logarithmic in n. If the signers sign different
messages, a similar SNARK but now over the different messages results in a
compact proof, but with verification time linear in n (similar to the case of BLS
signatures [16]). Such aggregation can result in compact blocks in a blockchain as
shown for the case of BLS signatures [16], but now with post-quantum security.

Aggregate Adaptor Signatures. Adaptor signatures [7] let a user generate
an encryption σ̂ of a signature σ on a message m with respect to an instance Y
of a hard language L. Here σ̂ is also referred to as a pre-signature. Given the
public key, it is efficient to verify if a given pre-signature σ̂ is indeed valid with
respect to the instance and the message. One can adapt the pre-signature σ̂ into
a valid signature σ given the witness y for the instance Y , and given σ̂ and σ
one can efficiently extract the witness y. The primitive has found itself useful in
enhancing efficiency and privacy of conditional payments in cryptocurrencies [7],
and aggregation of signatures adds clear benefits to this primitive. In the following
we discuss how GPV signatures can be turned into adaptor signatures, which
consequently implies that they can be aggregated via our newly constructed
SNARK.

We consider the lattice trapdoor from [61] for our GPV signatures, and
view the GPV signatures as follows. The public parameters are given by a
uniformly random matrix A, the signing key is sk := X, where X is a short norm
matrix such that the public key, Y := A ·X, is distributed statistically close
to random. The signature is simply (z, c) such that during verification we have
[A|G + Y] · [z|c]T = H(m) and ∥(c, z)∥ is small as stipulated by GPV signatures.
Here G is the gadget matrix. We choose the hard language

L := {(A, v′) : ∃ u′ s.t. A · u′ = v′ ∧ ∥u′∥ ≤ β∗},

where A ∈ Rη×ℓ
q , v′ ∈ Rη

q . A pre-signature σ̂ is simply (c, ẑ) with v′ as the hard
instance, such that during pre-signature verification, it holds that [A|G + Y] ·
[ẑ|c]T = H(m)− v′ and ∥(c, ẑ)∥ is small. It is easy to adapt σ̂ given the witness
u′ by setting z := ẑ + u′ and σ := (c, z). To extract a witness one can simply
compute u′ := z− z′. Wehave that the extracted u′ has a slightly higher norm
than that was used to adapt the pre-signature. The security of our scheme only
relies on the M -SIS problem and the RO model.
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1.5 Related Work

Apart from applications to succinct arguments [49], VCs have found numer-
ous applications, such as verifiable databases [24], verifiable decentralized stor-
age [23], updatable zero-knowledge sets [59,55], keyless Proofs of Retrievability
(PoR) [28,29], pseudonymous credentials [44], and cryptocurrencies with stateless
transaction validation [25]. Several works have studied various extensions to VC,
with updatable commitments and proofs [24], aggregatable opening proofs for
different commitments [37], and incremental aggregatable proofs [23].

Libert, Ramanna, and Yung [52] showed that a VC for linear functions over
Zq implies a polynomial commitment for polynomials over Zq. The result was
obtained by VC-committing to the coefficient vector of the polynomial and
opening it to a linear function whose coefficients are evaluations of monomials
at the evaluation point. Since our VC only allows committing to a short vector
x ∈ Rw and opening to a polynomial map f with short coefficients, we need
to suitably tune the norm bound α of f and x to obtain similar applications.
Concretely, by setting α ≈ δd+1 · γd

R where γR is the ring expansion factor of
R, we obtain a polynomial commitment for degree-d multivariate polynomials
with coefficients bounded by δ which supports evaluations at vectors of norm
also bounded by δ. Note that only constant-degree polynomials are supported by
our polynomial commitment since α depends exponentially on d.

In the same work [52], Libert, Ramanna, and Yung also showed that the
polynomial commitment constructed from a VC for linear functions over Zq

implies an accumulator for Zq elements, the construction requires committing
to the polynomial p(X) =

∏
a∈A(X − a) encoding the set A of elements to be

accumulated. The polynomial commitment obtained via our VC unfortunately
does not support committing to p(X) since its degree is as large as |A|.

In a recent work [63], Peikert, Pepin, and Sharp proposed a VC for positional
openings based on the standard SIS assumption. Relative to our construction
outlined in Section 1.3, their construction can be interpreted as follows. Instead
of handing out preimages ui,j with ⟨a, ui,j⟩ = vj/vi mod q, they sample multiple
ai for i ∈ Zw and let ui,j satisfy ⟨ai, ui,j⟩ = vj mod q. To verify an opening to
position i, the vector ai is used. The removal of the non-linear term vj/vi allows
proving security from the SIS assumption. On the flip side, using a different
vector ai to verify openings to different positions i forbids the standard technique
of aggregating openings using a random linear combination. Furthermore, there
seems to be no natural way of generalising their construction to support func-
tional openings without significantly changing the VC model, e.g. introducing
an authority responsible for issuing functional opening keys [63]. Even if we
consider the model with an authority, the resulting VC only satisfies weak binding
(using the terminology of our work) making it unsuitable to be transformed into
a SNARG: There is in fact an explicit attack when compiling their VC (with
authority) into a SNARG.10

10We stress that this does not contradict any of the claims made in [63], but rather
exemplifies the difference between their approach and ours.
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Prior to our work, all lattice-based SNARKs were in the designated-verifier
setting. These constructions [32,43] are based on “linear-only” assumptions which
are similar in spirit to the knowledge k-M -ISIS assumptions introduced in this
work but with a key difference: While linear-only assumptions are with respect to
specific encryption schemes, our assumptions are with respect to general rings. In
terms of applications, linear-only encryption has always been used to construct
designated-verifier primitives. In contrast, knowledge k-M -ISIS naturally leads
to constructions of publicly verifiable primitives.

2 Preliminaries

Let λ ∈ N denote the security parameter. Define N0 := N∪ { 0 }. Let R be a ring.
We writeR[X] for the (multivariate) polynomial ring overR andR(X) for the ring
of (multivariate) rational functions over R with intermediates X = (Xi : i ∈ Zw).
We write ⟨G⟩ for the ideal resp. module spanned by the elements of the set G ⊂ Rη

for η ∈ N. When G is a singleton set we may suppress the { · } notation. We write
|⟨G⟩| for size of the ideal ⟨G⟩ as a set.

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote
by K = Q(ζm) the cyclotomic field of order m ≥ 2 and degree n = φ(m), and
by R = Z[ζm] its ring of integers, called a cyclotomic ring for short. We have
R ∼= Z[x]/ ⟨Φm(x)⟩, where Φm(x) is the m-th cyclotomic polynomial. If m is a
power of 2, we call R a power-of-2 cyclotomic ring. If m is a prime-power, we
call R a prime-power cyclotomic ring. Let q ∈ N be prime, we write Rq := R/qR
and R×

q for all invertible elements in Rq. We have that Rq splits into f fields
of degree ϕ(m)/f . We write vec(r) ∈ Zn for the coefficient vector of r (with the
powerful basis). For any r ∈ R there exists a matrix rot(r) ∈ Zn×n s.t. ∀s ∈ R
we have vec(r · s) = rot(r) · vec(s). For elements x ∈ R we denote the infinity
norm of its coefficient vector as ∥x∥ := ∥ vec(x)∥. If x ∈ Rℓ we write ∥x∥ for the
infinity norm of x. We write ∥ · ∥p for the ℓp-norm, e.g. ∥ · ∥2 for the Euclidean
norm. We writeMG(·) for a function that takes vectors indexed by G and returns
a matrix where each column corresponds to one such vector. We write In for the
identity matrix of dimension n over whatever ring is clear from context.

For w ∈ N, x = (xi : i ∈ Zw) ∈ Rw, and e = (ei : i ∈ Zw) ∈ Zw, we write
xe :=

∏
i∈Zw

xei
i whenever it is defined. For v = (vi : i ∈ Zw) ∈ (R×

q )w, we
write v̄ := (v−1

i : i ∈ Zw) for the entry-wise inverse of v. A Laurent monomial
g(X) ∈ R(X) is an expression g(X) = Xe :=

∏
i∈Zw

Xei
i with exponent vector

e = (ei : i ∈ Zw) ∈ Zw.
We may suppress arbitrary subscripts and superscripts from problem and

advantage notations when those are clear from context. We write x ← D for
sampling from the distribution D and x ←$ S to sample an element from the
finite space S uniformly at random. We write U(S) for the uniform distribution
over S and {uG } := {ug }g∈G .

Definition 1 (Ring Expansion Factor). Let R be a ring. The expansion
factor of R, denoted by γR, is γR := maxa,bR

∥a·b∥
∥a∥·∥b∥ .
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Proposition 1 ([4]). If R = Z[ζm] is a prime-power cyclotomic ring, then
γR ≤ 2 n. If R = Z[ζm] is a power-of-2 cyclotomic ring, then γR ≤ n.

Proposition 2. Let q = ω((w · f)f/ϕ(m)) be a rational prime such that Rq splits
into f fields each of size qφ(m)/f . For v ←$ Rw

q , we have v ∈ (R×
q )w with

non-negligible probability.

Proof. The probability that v ∈ (R×
q )w is (1− 1/qφ(m)/f )w·f ≥ 1−(w·f)/qφ(m)/f

which is non-negligible. ⊓⊔

For the rest of this work, we implicitly assume q is large enough so that a
uniformly random v←$Rw

q satisfies v ∈ (R×
q )w with non-negligible probability.

2.1 Lattices

We write Λ(B) for the Euclidean lattice generated by the columns of B ∈ Zn×d =
[b0| . . . bd−1], i.e. { zi · bi | zi ∈ Z }. When B has full rank we call it a basis and
when n = d we say that Λ(B) has full rank. The determinant of a full rank lattice
is the absolute value of the determinant of any of its bases. Minkowski’s theorem
implies that there is a vector x ∈ Λ ⊂ Rd of (infinity) norm ∥x∥ ≤ det(Λ)1/d

when Λ has full rank. The Gaussian heuristic predicts that a random full-rank
lattice Λ contains a shortest vector of (Euclidean) norm ≈

√
d

2π e · det(Λ)1/d.
For any c ∈ Rn and any real σ > 0, the (spherical) Gaussian function with

standard deviation parameter σ and centre c is:

∀x ∈ Rn, ρσ,c(x) = exp
(
−π · ∥x− c∥2

2
σ2

)
.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn. The (spherical) discrete
Gaussian distribution over a lattice Λ ∈ Rn, with standard deviation parameter
σ > 0 and centre c is:

∀x ∈ Λ,DΛ,σ,c = ρσ,c(x)
ρσ,c(Λ) ,

where ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x). When c = 0 we omit the subscript c. We may
write DR,σ where we interpret R to be the lattice spanned by R.

The dual of a lattice Λ is defined by Λ∗ = {y ∈ Rn : yT · Λ ⊆ Z}. The smooth-
ing parameter of an n-dimensional lattice Λ with respect to ϵ > 0, denoted ηϵ(Λ),
is the smallest σ > 0, such that ρ1/σ(Λ∗ \ { 0 }) ≤ ϵ.

Lattice reduction with parameter κ returns a vector of Euclidean norm
≈ δd−1 · det(Λ)1/d where δ is the root Hermite factor δ and a function of κ.11

A root Hermite factor δ ≈
(

κ
2 π e

)1/(2κ) can be achieved in time 20.292 κ+o(κ)

classically using the BKZ algorithm [67] with block size κ and sieving as the
SVP oracle [8] (quantum algorithms do not promise a sufficiently substantial
speed-up [48,3]). Concretely, for λ = 128 we require κ ≥ 484 and thus δ ≤ 1.0034.

11The literature routinely simplifies the first expression to ≈ δd · det(Λ)1/d
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2.2 Sampling Algorithms

The following relies on analogues of the Leftover Hash Lemma over rings attesting
that given ai ←$ U(Rη

q ) and ri ←$ D where D is a small uniform [60,69] or discrete
Gaussian distribution [68,57], we have that

(
a0, . . . , aℓ−1,

∑
0≤i<ℓ ai · ri

)
is close

to uniform. In what follows, we will write lhl(R, η, q,D) for an algorithm that
outputs a minimal ℓ ∈ N ensuring that the resulting distribution is within negl(λ)
to uniform. We may also write lhl(R, η, q, β) for some D outputting elements
bounded by β (with overwhelming probability). In many cases the reader may
think ℓ ∈ O(η logβ(q)). Let (TrapGen, SampD, SampPre) be PPT algorithms with
the following syntax and properties [34,61,31]:

– (A, td)← TrapGen(1η, 1ℓ, q,R, β) takes dimensions η, ℓ ∈ N, a modulus q ∈ N,
a ring R, and a norm bound β ∈ R. It generates a matrix A ∈ Rη×ℓ

q and a
trapdoor td. For any n ∈ poly(λ) and ℓ ≥ lhl(R, η, q, β), the distribution of A
is within negl(λ) statistical distance of U(Rη×ℓ

q ).
– u← SampD(1η, 1ℓ,R, β′) with ℓ ≥ lhl(R, η, q, β) outputs an element in u ∈ Rℓ

with norm bound β′ ≥ β. We have that v := A · u mod q is within negl(λ)
statistical distance to U(Rη

q ).
– u ← SampPre(td, v, β′) with ℓ ≥ lhl(R, η, q, β) takes a trapdoor td, a vector

v ∈ Rη
q , and a norm bound β′ ≥ β. It samples u ∈ Rℓ satisfying A · u ≡

v mod q and ∥u∥ ≤ β′. Furthermore, u is within negl(λ) statistical distance
to u← SampD(1η, 1ℓ,R, β′) conditioned on v ≡ A · u mod q. The syntax can
be extended in the natural way for SampPre to take a matrix V as input, in
which case SampPre is run on each column of V and the output vectors are
concatenated column-wise to form a matrix.

For all algorithms we may replace β by D where it is understood that D outputs
samples bounded by β (with overwhelming probability).

2.3 Hard Problems

The Short Integer Solution problem was introduced in the seminal work of Ajtai [2].
It asks to find a short element (of Euclidean norm β2) in the kernel of a random
matrix mod q. An inhomogeneous version, asking to find a short solution to a
linear algebra problem mod q was formalised later [60].

For both problems, it was shown [34] that solving the problem for q ≥
β2 · ω(

√
n · log n) implies solving certain presumed hard lattice problems (finding

a short basis) to within approximation factor β2 · Õ(
√

n). Thus, since β2 ≥ β∞,
an appropriate choice of parameters is n = poly(λ), q ≥ β∞ · n · log n and
ℓ ≥ 2 n logβ∞

q. An algorithm solving ISIS can be used to solve SIS (by making
one of the columns of A the target) and solving ISIS twice allows to solve SIS
by considering the difference of these solutions. Ring variants were introduced
in [60,64,56]; module variants in [51].

Definition 2 (M-SIS, adapted from [51]). Let R, η, q, ℓ, β depend on λ. The
Module-SIS (or M-SIS) problem, denoted M -SISRq,η,ℓ,β∗ , is: Given a uniform
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A ←$ Rη×ℓ
q , t ≡ 0 mod q find some u ≠ 0 ∈ Rℓ such that ∥u∥∞ ≤ β∗ and

A·u ≡ t mod q. We write Advm-sis
Rq,η,ℓ,β∗(λ) for the advantage of any algorithm A in

solving M -SISRq,η,ℓ,β∗ . We assume Advm-sis
Rq,η,ℓ,β∗,A(λ) ≤ negl(λ) for appropriately

chosen Rq, η, ℓ, β∗ and PPT A. When t ̸= 0 we speak of the Module-ISIS or
M-ISIS problem, denoted M -ISISRq,η,ℓ,β∗ . When η = 1 we speak of Ring-(I)SIS
or R-(I)SIS, denoted R-SISRq,ℓ,β∗ or R-ISISRq,ℓ,β∗ .

In [51] it was shown that solving Module-SIS is as hard as finding a short basis
in modules. In [56,64] it was shown that solving Ring-SIS is as hard as find a
short vector in any ideal in R. A similar result was established for Ring-ISIS [60].
From a cryptanalytic perspective, no known algorithm solves Ring/Module-(I)SIS
significantly faster than those solving (I)SIS. Our assumption is a generalisation
and adaptation to more general rings of the k-SIS assumption.

Definition 3 (k-M-SIS, generalised from [17,54]). For any integer k ≥ 0,
an instance of the k-M -SISRq,η,ℓ,β,β∗ problem is a matrix A ∈ Rη×ℓ

q and a set
of k vectors u0, . . . uk−1 s.t. A · ui ≡ 0 mod q. A solution to the problem is a
nonzero vector u ∈ Rℓ such that

∥u∥∞ ≤ β, A · u ≡ 0, and u /∈ K- span({ui }0≤i<k).

If B is an algorithms that takes as input a matrix A ∈ Rη×ℓ
q and vectors ui ∈

Rℓ for 0 ≤ i < k, we define Advk-m-sis
Rq,η,ℓ,β,β∗,B(λ) to be the probability that B

outputs a solution to the k-M -SISRq,η,ℓ,β,β∗ problem instance A, u0, . . . , uk−1 over
uniformly random A ∈ Rη×ℓ

q and ui drawn from SampD(1η, 1ℓ,R, β) conditioned
on A · ui ≡ 0 mod q.

In [17,54] it is shown that if SIS is hard for Zn×(ℓ−k)
q and norm bound β then

k-M -SISZq,n,ℓ,β′,β′′ is hard for any k < ℓ, and certain β′, β′′ ∈ poly(β). Looking
ahead, here we are interested in k-R-SISRq,ℓ,β,β∗ := k-M -SISRq,1,ℓ,β,β∗ .

3 The k-M -ISIS Assumption

We first introduce a family of assumptions over modules – k-M -ISIS – which we
then specialise to rings to obtain k-R-ISIS mentioned above.

We note that the most immediate candidate notion for k-ISIS, i.e. generalising
k-SIS, is to simply hand out short preimages of random images and then ask
the adversary to solve ISIS. This notion is trivially equivalent to ISIS since short
preimages of random images can be efficiently sampled by sampling short u ∈ Zℓ

and computing t := A · u. The same reasoning can be lifted to R. On the other
hand, k-SIS is trivially insecure when k ≥ ℓ in the intuitive sence since then
{ui } constitutes a trapdoor for A when the ui are linearly independent [34].
Formally, the problem as stated is impossible to solve since all vectors will be in
Q- span({ui }0≤i<k), i.e. there are no valid solutions.

Our variants are neither trivially equivalent to M -ISIS nor immediately broken
when k > ℓ by imposing on the images an algebraic structure which is independent
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of the challenge matrix A. Before stating our family of assumptions, we define a
notion of admissibility to formally rule out trivial wins.

Definition 4 (k-M-ISIS-Admissible). Let g(X) ∈ R(X) be a Laurent mono-
mial, i.e. g(X) = Xe :=

∏
i∈Zw

Xei
i for some exponent vector e = (ei : i ∈

Zw) ∈ Zw. Let G ⊂ R(X) be a set of Laurent monomials with k := |G| and let G
be a vector of those monomials. Let g∗ ∈ R(X) be a target Laurent monomial.
We call a family G k-M -ISIS-admissible if (i) all g ∈ G have constant degree,
i.e. ∥e∥1 ∈ O(1); (ii) all g ∈ G are distinct, i.e. G is not a multiset; and (iii) 0 ̸∈ G.
We call a family (G, g∗) k-M -ISIS-admissible if G is k-M -ISIS-admissible, g∗ has
constant degree, and g∗ /∈ G.

Remark 1. Condition (i) rules out monomials that depend on the ring R, such
as Xϕ(m). Condition (ii) rules out that trivial linear combinations of known
preimages produce a preimage for the target. Condition (iii) rules out trivially
producing multiple preimages of the same image. On the other hand, we do not
target full generality here but restrict ourselves to a slight generalisation of what
we require in this work. It is plausible that we can replace Laurent monomials by
Laurent “terms”, i.e. with coefficients ̸= 1 in Rq, or rational functions.

Definition 5 (k-M-ISIS Assumptions). Let ℓ, η ∈ N. Let q be a rational
prime, R the m-th cyclotomic ring, and Rq := R/qR. Let T ⊂ Rη

q be such that,
for any t = (ti)i∈Zη

∈ T , ⟨{ ti }⟩ = Rq. Let G ⊂ R(X) be a set of w-variate
Laurent monomial. Let g∗ ∈ R(X) be a target Laurent monomial. Let (G, g∗) be
k-M -ISIS-admissible. Let Ḡ := G ∪ { g∗ }. Let β ≥ 1 and β∗ ≥ 1 be reals. For
η, ℓ ∈ N, g ∈ Ḡ, ℓ ≥ lhl(R, η, q, β), A ∈ Rη×ℓ

q , t ∈ T , and v ∈ (R×
q )w, let Dg,A,t,v

be a distribution over

{ug ∈ Rℓ : A · ug ≡ g(v) · t mod q, ∥ug∥ ≤ β } .

Let D := {Dg,A,t,v : η, ℓ ∈ N, g ∈ Ḡ, A ∈ Rη×ℓ
q , v ∈ (R×

q )w } be the family of these
distributions. Write pp := (Rq, η, ℓ, w,G, g∗,D, T , β, β∗). The k-M -ISISpp assump-
tion states that for any PPT adversary A we have Advk-r-isis

pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr


A · ug∗ ≡ s∗ · g∗(v) · t
∧ 0 < ∥s∗∥ ≤ β∗

∧ ∥ug∗∥ ≤ β∗

∧ (g∗, ug∗) ̸= (0, 0)

∣∣∣∣∣∣∣∣∣∣
A←$Rη×ℓ

q mod q

t←$ T ; v←$ (R×
q )w

ug ←$ Dg,A,t,v, ∀ g ∈ G
(s∗, ug∗)← A (A, t, {uG } , v)

 .

Remark 2. Since for any t′ ∈ T there exist matrices X, Y s.t. X · Y ≡ I,
X · t′ ≡ (1, 0, . . . , 0)T mod q and Y · (1, 0, . . . , 0)T ≡ t′ mod q, we can assume that
T = { (1, 0, . . . , 0)T } without loss of generality.

Definition 6 (k-R-ISIS). When η = 1 we may write

k-R-ISISRq,ℓ,w,G,g∗,D,T ,β,β∗ := k-M -ISISRq,1,ℓ,w,G,g∗,D,T ,β,β∗ .
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Remark 3. Analogous to the ℓ-Diffie-Hellman exponent assumption, an example
of (w,G, g∗) is w = 1, G = { 1, X, . . . , Xℓ, Xℓ+2, . . . , X2ℓ }, and g∗(X) = Xℓ+1

for some ℓ ∈ N.

As written above we have a separate assumption for each family of (G, g∗)
which are application dependent. As we will show below, there are (G, g∗) that are
as hard as M -ISIS and our discussion of admissibility indicates that some (G, g∗)
are trivially insecure. However, to encourage analysis and to avoid “bodacious
assumptions” [46] we make the following, strong, meta assumption.

Definition 7 (k-M-ISIS Meta Assumption). For any k-M -ISIS-admissible
(G, g∗), k-M -ISISpp is hard.

3.1 Knowledge Variants
We next propose a “knowledge” version of the k-M -ISIS assumption. It captures
the intuition that if the images are restricted to scalar multiples of t then the only
way to produce preimages of them under A is to perform a linear combination of
the given preimages under A with small coefficients.

Definition 8 (Knowledge k-M-ISIS Assumption). Adopt the notation from Def-
inition 5, but let pp := (Rq, η, ℓ, w,G,D, T , α, β, β∗) where α ≥ 1 is real and η > 1.
The knowledge k-M -ISISpp assumption states that for any PPT adversary A there
exists a PPT extractor EA such that Advk-m-isis

pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr



A · u ≡ c · t mod q

∧ ∥u∥ ≤ β∗

∧ ¬


c ≡

∑
g∈G

xg · g(v)

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A←$Rη×ℓ
q

t←$ T ; v←$ (R×
q )w

ug ←$ Dg,A,t,v, ∀ g ∈ G(
(c, u), (xg)g∈G

)
← (A∥EA) (A, t, {uG } , v)


where the notation (A∥EA) means that A and EA are run on the same input
including the randomness, and (c, u) and (xg)g∈G are the outputs of A and EA
respectively.

The knowledge k-M -ISIS assumption, as stated, only makes sense for η ≥ 2,
i.e. not for k-R-ISIS. To see this, consider an adversary A which does the following:
First, it samples random short u and checks whether A ·u is in the submodule of
Rη

q generated by t. If not, A aborts. If so, it finds c such that A · u = c · t mod q
and outputs (c, u). When η = 1 and assuming without loss of generality that
T = { (1, 0, . . . , 0)T }, we observe that t = 1 generates Rq, which means A never
aborts. Clearly, when A does not abort, it has no “knowledge” of how c can
be expressed as a linear combination of { g(v) }g∈G . Note that when η ≥ 2 the
adversary A aborts with overwhelming probability since A · u is close to uniform
over Rη

q but the submodule generated by t is only a negligible faction of Rη
q .

However, in order to be able to pun about “crises of knowledge”, we also define a
ring version of the knowledge assumption. In the ring setting, we consider proper
ideals rather than submodules.
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Definition 9 (Knowledge k-R-ISIS Assumption). Let the parameters pp
be as in Definition 5 except that η = 1 and T contains elements t ∈ Rq s.t.
1/| ⟨t⟩ | = negl(λ) and | ⟨t⟩ |/|Rq| = negl(λ).12 The knowledge k-R-ISISpp assump-
tion states that for any PPT adversary A there exists a PPT extractor EA such
that Advk-r-isis

pp,A (λ) ≤ negl(λ), where

Advk-r-isis
pp,A (λ) := Pr



⟨a, u⟩ ≡ c · t mod q

∧ ∥u∥ ≤ β∗

∧ ¬


c ≡

∑
g∈G

xg · g(v)

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a←$Rℓ
q

t←$ T ; v←$ (R×
q )w

ug ←$ Dg,a,t,v, ∀ g ∈ G(
(c, u), (xg)g∈G

)
← (A∥EA) (a, t, {uG } , v)


.

Definition 10 (k-M-ISIS Meta Knowledge Assumption). For any k-M -ISIS-
admissible G, the knowledge k-M -ISISpp assumption holds.

We provide reductions for some parameter regimes and some preliminary
cryptanalysis of our assumption in the full version of this work.

4 Compact Extractable Vector Commitments

We construct compact extractable vector commitments with openings to constant-
degree multivariate polynomial maps from the knowledge k-M -ISIS assumption.

4.1 Definitions

We define a non-interactive variant of vector commitments with preprocessing.

Definition 11 (Vector Commitments (VC)). A (preprocessing non-interactive)
vector commitment (VC) scheme is parameterised by the families

F = {Fs,w,t ⊆ { f : Rs ×Rw → Rt } }s,w,t∈N and
Y = {Ys,t ⊆ { y : Rs → Rt } }s,t∈N

of functions over R and an input alphabet X ⊆ R. The parameters s, w, and t are
the dimensions of public inputs, secret inputs, and outputs of f respectively. The
VC scheme consists of the PPT algorithms (Setup, Com, Open, PreVerify, Verify)
defined as follows:

– pp← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parameters
on input the security parameter λ ∈ N and the size parameters s, w, t ∈ N.
12Concretely, let T be the set of all Rq elements t where half of the components of t

in the Chinese remainder theorem (CRT) representation are zero and the other half are
non-zero. Note that this is well-defined only when ⟨q⟩ is not a prime ideal in R.
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– (c, aux)← Com(pp, x): The commitment algorithm generates a commitment c
of a given vector x ∈ Xw with some auxiliary opening information aux.

– π ← Open(pp, f, z, aux): The opening algorithm generates a proof π for f(z, ·)
for the public input z ∈ X s and function f ∈ Fs,w,t.

– ppf,y ← PreVerify(pp, (f, y)): Given functions f ∈ Fs,w,t and y ∈ Ys,t, the
verification preprocessing algorithm generates the preprocessed public parameters
ppf,y for verifying proofs for (f, y).

– b← Verify(ppf,y, z, c, π): The verification algorithm inputs a preprocessed public
parameters ppf,y, a public input z ∈ X s, a commitment c, and an opening
proof π. It outputs a bit b deciding whether to accept or reject that the vector
x committed in c satisfies f(z, x) = y(z).

Definition 12 (Correctness). A VC scheme for (F ,X ,Y) is said to be cor-
rect if for any λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z, x, y) ∈
Fs,w,t × X s × Xw × Ys,t satisfying f(z, x) = y(z), any (c, aux) ∈ Com(pp, x),
any π ∈ Open(pp, f, z, aux), and any ppf,y ∈ PreVerify(pp, (f, y)), it holds that
Verify(ppf,y, z, c, π) = 1.

Informally, a VC scheme is extractable if, whenever an adversary A is able to
produce a commitment c and a valid opening proof π for some (f(z, ·), y(z)), then
it must “know” a preimage x which is committed in c and satisfies f(z, x) = y(z).
Clearly, an extractable VC must also be binding, i.e. it is infeasible to open a
commitment c to a set { (fi(zi, ·), yi(zi)) }i of inconsistant function-image tuples.

Definition 13 (Extractability). Let κ : N4 → [0, 1]. A VC scheme for
(F ,X ,Y) is said to be κ-extractable if for any PPT adversary A there exists a
PPT extractor EA such that the following probability is at most κ(λ, s, w, t):

Pr


(
Verify(ppf,y, z, c, π) = 1

)
∧ ((f, z, x, y) /∈ Fs,w,t ×X s ×Xw × Ys,t

∨ c′ ̸= c ∨ f(z, x) ̸= y(z))

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, 1s, 1w, 1t)
(f, y, z, c, π)← A(pp; rA)
(x, r)← EA(pp; rA)
(c′, aux′)← Com(pp, x; r)
ppf,y ← PreVerify(pp, (f, y))

 .

In case Com is deterministic, we suppress the output r of EA. We say that the
scheme is extractable if it is κ-extractable and κ(λ, s, w, t) is negligible in λ for
any s, w, t ∈ poly(λ).

Definition 14 (Compactness). A VC scheme for (F ,X ,Y) is said to be
compact if there exists p(λ, s, w, t) ∈ poly(λ, log s, log w, log t) such that for any
λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z, x, y) ∈ Fs,w,t×X s×Xw×
Ys,t, any (c, aux) ∈ Com(pp, x), and any π ∈ Open(pp, f, z, aux), it holds that
max{|c|, |π|} ≤ p(λ, s, w, t), where | · | denotes the description size.

4.2 Construction

A formal description of our VC construction is in Fig. 1 where important param-
eters and shorthands are listed and explained in Table 1.
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Table 1. Parameters and shorthands with λ as security parameter.

s ∈ N Dimension of public input z

w ∈ N Dimension of v and secret input x

t ∈ N Number of outputs

d ∈ N O(1) Degree of polynomial maps

n ∈ N poly(λ) Degree of R

α ∈ R poly(λ) Norm bound for f and x

β ∈ R poly(λ) Norm bound for public preimages

δi ∈ R poly(λ, s, w, t) (Theorem 1) Norm bound for opening proof ui

δp ∈ R (s + w + d)d αd+1 γd n Norm bound of evaluation of a degree-d (s+w)-variate
polynomial with coefficients of norm bounded by α at
a point of norm bounded by α

p ∈ N ≥ δp n log n Moduli for Rp

q ∈ N ≥ max { δ0, δ1 } · n log n Moduli for Rq

ηi ∈ N O(1) Number of rows of Ai

ℓi ∈ N ≥ lhl(R, ηi, q, β) Number of columns of Ai

X ⊆ R { x ∈ R : ∥x∥ ≤ α } R elements with norm bound α

Fs,w,t Degree-d (s + w)-variate t-output homogeneous poly-
nomial maps over X

Ys,t s-variate t-output polynomial maps over X

Ek ⊆ Nw
0 { e ∈ Nw

0 : ∥e∥1 = k } Non-negative integer vectors of 1-norm k, for k ∈ [d]

G0 ⊆ R(X)
⋃d

k=1
{ Xe′−e : e′ ̸= e ∈ Ek } Laurent monomials expressible as ratios of distinct

degree-k monomials, for k ∈ [d]

G1 ⊆ R(X) { Xi : i ∈ Zw } Degree-1 monomials(
k
e

) (
k

e0,...,ew−1

)
Multinomial coefficient, for e ∈ Ek and k ∈ [d]

Ti Subset of Rηi
q (Definition 5)

fi,e For f(Z, X) ∈ Fs,w,t, fi,e(Z) is the coefficient of the
monomial Xe of the i-th output

The public parameters consists of a k-M -ISIS instance (A0, t0, v, (u0,g)g∈G0
)

over Rq, a correlated k-M -ISIS of knowledge instance (A1, t1, v, (u1,g)g∈G1
) over

Rq sharing the same v as the k-M -ISIS instance, and a R-SIS instance h over Rp,
where p is short relative to q. Intuitively, the k-M -ISIS instance is for weak binding,
the knowledge k-M -ISIS instance is for upgrading weak binding to extractability,
and the R-SIS instance is for compactness. The commitment c to a vector x is
simply c := ⟨v, x⟩ mod q.

We next explain the opening and verification mechanism. Suppose for the
moment that f(z, ·) is a single-output polynomial, i.e. t = 1. Consider the commit-
ment c of x and the evaluation of f(z, ·) at (v−1

0 · c, . . . , v−1
w · c) as polynomials in

v. The value f(z, x) is encoded as the constant term in the evaluation polynomial.
To open the commitment c of x to a function f(z, ·), the committer computes the
coefficient of each non-zero Laurent monomial g ∈ G0 in the evaluation polyno-
mial, and use these coefficients to compute a linear combination of (u0,g)g∈G0 to
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Setup(1λ, 1s, 1w, 1t)

v←$ (R×
q )w

h←$Rt
p

for i ∈ {0, 1} do

(Ai, tdi)← TrapGen(1ηi , 1ℓi , q,R, β)
ti ←$ Ti

ui,g ← SampPre(tdi, g(v) · ti, β), ∀g ∈ Gi

return pp :=

A0, t0, (u0,g)g∈G0
,

A1, t1, (u1,g)g∈G1
,

v, h



Open(pp, f, z, aux)

u0 :=
∑
i∈Zt

d∑
k=1

∑
e∈Ek

hi · fi,e(z) · u0,e

return π := (u0, u1)

Verify(ppf,y, z, c, π)

b0 :=
(

A0 · u0
?
≡ f̂y(z, c) · t0 mod q

)
b1 :=

(
A1 · u1

?
≡ c · t1 mod q

)
b2 :=

(
∥u0∥

?
≤ δ0

)
; b3 :=

(
∥u1∥

?
≤ δ1

)
return b0 ∧ b1 ∧ b2 ∧ b3

Com(pp, x)

c := ⟨v, x⟩ mod q; u1 :=
∑

Xi∈G1

xi · u1,Xi

for e ∈
⋃

k∈[d]

Ek do u0,e := d! ·
∑

e′∈Ek\{ e }

(
k
e′

)(
k
e

) · xe′
· u0,Xe′−e

aux :=
(

(u0,e)e∈
⋃

k∈[d]
Ek

, u1

)
return (c, aux)

PreVerify(pp, (f, y))

if (f, y) /∈ Fs,w,t × Ys,t then return ⊥

f̂y(Z, C) := d! ·

(∑
i∈Zt

hi ·

(
d∑

k=1

∑
e∈Ek

(
k

e

)−1

· fi,e(Z) · v−e · Ck − yi(Z)

))
ppf,y :=

(
A0, t0, A1, t1, f̂y

)
return ppf,y

Fig. 1. Our VC Construction.

produce u0. In general, for t ≥ 1, the committer further compresses the multiple
instances of u0 into a single one using a linear combination with coefficients given
by h. To enable extraction (in the security proof), the committer also provides
u1 which is a linear combination of (u1,g)g∈G1 using x as coefficients. Given the
above, the meaning behind the verification algorithm is immediate.

Finally, we explain the choice of p and q in Table 1. First, p is chosen such
that the element f(z, x) − y(z) is considered short (in the context of R-SIS
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problems) relative to p for all f ∈ Fs,w,t, y ∈ Ys,t, z ∈ X s, and x ∈ Xw. By
some routine calculations, we can see that for such choice of (f, z, x, y), we have
∥f(z, x)− y(z)∥ ≤ (s + w + d)d ·αd+1 ·γd

R. A standard choice for R-SIS problems
over Rp is for p to be at least n log n times the norm bound; we thus simply pick
this. Similarly, q is chosen such that δ0 and δ1 are both considered short relative
to q, concretely by setting q to be n log n times the maximum among them.13

Remark 4 (Updating Commitments and Opening Proofs). We discuss the cost
of updating a commitment of x to that of x′, and an opening proof for f(z, x)
to that of f ′(z′, x′), omitting fixed poly(λ) factors. Due to the linearity of the
commitment c = ⟨v, x⟩ mod q and opening proof component u1 =

∑
i∈Zw

xi·u1,Xi

in the committed vector x, they can be updated for a new committed vector x′

easily by adding ⟨v, x′ − x⟩ mod q and
∑

i∈Zw
(x′

i − xi) · u1,Xi respectively. The
computation complexity of the update is O(∆), where ∆ is the Hamming distance
between x and x′. Updating the u0,e terms is more computationally expensive
due to its non-linearity in x. The cost of computing the difference term for u0,e
is linear in

(
w
k

)
−
(

w−∆
k

)
= O(∆k) for each e ∈ Ek and each k ∈ [d]. The total

work needed for updating {u0,e }e∈Ek,k∈[d] is thus O(wd ·∆d). For fixed x and
hence fixed {u0,e }e∈Ek,k∈[d], updating u0 by the same method costs computation
linear in the Hamming distance between the coefficient vector of f(z, ·) and that
of f ′(z′, ·).

We show that our VC construction is correct, extractable under a knowledge
k-M -ISIS assumption, and compact. The formal analysis of the theorems are
deferred to the full version.

Theorem 1. For d = O(1), ℓ0 := ℓ1 := lhl(R, η, q, β),

δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R and δ1 = w · α · β · γR,

our VC construction in Fig. 1 is correct.

Theorem 2. Our VC construction for (F ,X ,Y) is extractable if it is correct, β ≥
α, ℓi ≥ lhl(R, ηi, q, β) for i ∈ {0, 1}, and the k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0

assumption, the knowledge version k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1 assumption,
and the R-SISRp,t,2δp

assumption hold, where Di is such that the distribution{
(Ai, ti, {uGi

} , v)

∣∣∣∣∣Ai ←$Rηi×ℓi
q ; ti ←$ Ti; v←$ (R×

q )w

ug ←$ D0,g,Ai,ti,v, ∀g ∈ Gi

}

is statistically close to the distribution{
(Ai, ti, {uGi

} , v)

∣∣∣∣∣Ai ←$Rηi×ℓi
q ; ti ←$ Ti; v←$ (R×

q )w

ug ←$ SampD(1ηi , 1ℓi ,R, β) : Ai · ug ≡ g(v) · ti mod q, ∀g ∈ Gi

}
.

13In practice the gap may be smaller or larger and when picking parameters we
optimise over these gaps.
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Fig. 2. Combined size (in KB) of a commitment and an opening proof for the concrete
parameters chosen in Theorem 3, setting λ = 128, optimising for ρ and comparing with
SNARK proof sizes in prior works [36, Fig. 5]. We picked α = s.

Theorem 3. For n ∈ poly(λ), q, δ0, δ1 ∈ poly(λ, s, w, t), and ℓ0, ℓ1 ∈ Θ(log q) =
polylog(λ, s, w, t), covering the choices of parameters in Theorems 1 and 2, the
VC construction in Fig. 1 is compact.

Concretely, let R be a power-of-2 cyclotomic ring so that γR = n. For s =
w = t ≥ n and for the following choices of parameters,

d, η0, η1 = O(1), β ≥ α

δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

δ1 = w · α · β · γR,

p ≈ δp · n · log n, q ≈ δ0 · n · log n, and
ℓ0 = ℓ1 = lhl(R, 1, q, β) ≈ 2 logβ q,

a commitment and openings are of size O(n log s), and O(n·(log s + log β)2
/ log β),

respectively. The minimum is attained at β = Θ(s), where an opening proof is of
size O(n log s).

To translate these into concrete sizes we need to pick n such that solving
k-R-ISIS and R-SIS costs ≈ 2λ operations. Here it can be beneficial to set q = δρ

0 ·
n · log n for some parameter ρ ∈ N. Specifically, we require that R-SISRq,ℓ0,2·

√
n·δ0 ,

R-SISRq,ℓ1,2·
√

n·δ1 and R-SISRp,t,2·
√

n·δp
are hard where δp := (s + w + d)d ·αd+1 ·

γd
R. The factor of two arises from our reduction and the factor

√
n translates

between ℓ∞ and ℓ2. In Fig. 2 we report the concrete combined size (in KB)
of a commitment and an opening proof for the concrete parameters chosen
in Theorem 3, specifically setting d = 2, η0 = η1 = 1, and β = s = w = t ∈
{ 210, 211, . . . , 240 }.14

To analyse compution complexity, we assume the concrete parameter choices
in Theorem 3 with the exception that s, w, t are treated as free variables for

14 and embedded.
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from sage.all import ceil, log, pi, e, sqrt, RR


class SNARKParams:
    def __init__(self, s, w, t, alpha=2, beta=2, d=2, power=1):
        self.s = s
        self.w = w
        self.t = t
        self.alpha = alpha
        self.beta = beta
        self.d = d
        self.power = power

    def gamma(self, n):
        return n

    def dp(self, n):
        s, w, alpha, d, gamma = self.s, self.w, self.alpha, self.d, self.gamma(n)
        return (s + w + d) ** d * alpha ** (d + 1) * gamma ** d

    def p(self, n):
        return self.dp(n) * n * log(n, 2)

    def d0(self, n):
        s, w, t, alpha, beta, d, gamma = (
            self.s,
            self.w,
            self.t,
            self.alpha,
            self.beta,
            self.d,
            self.gamma(n),
        )
        return ceil(
            2
            * self.p(n)
            * t
            * (s + d) ** d
            * (w + d) ** (2 * d)
            * alpha ** (2 * d + 1)
            * beta
            * gamma ** (2 * d + 2)
        )

    def d1(self, n):
        w, alpha, beta, gamma = self.w, self.alpha, self.beta, self.gamma(n)
        return w * alpha * beta * gamma

    def q(self, n):
        return self.d0(n) ** self.power * n * log(n, 2)

    def l(self, n):
        return ceil(2 * log(self.q(n)) / log(self.beta))

    def c(self, n):
        return ceil(n * log(self.q(n)))  # commitment size

    def u0(self, n):
        return ceil(n * self.l(n) * log(self.d0(n), 2))  # proof size

    def u1(self, n):
        return ceil(n * self.l(n) * log(self.d1(n), 2))  # proof size

    def size(self, n):
        """
        Combined commitment and opening size in bits.
        """
        return RR(ceil((self.c(n) + self.u0(n) + self.u1(n))))

    def rhf(self, secparam):
        kappa = ceil(secparam / 0.292)
        rhf = RR(sqrt(kappa / 2 / pi / e) ** (1 / 2 / kappa))
        return rhf

    def __call__(self, secparam=128):
        rhf = self.rhf(secparam)
        n = 2 ** 8
        while n < 2 ** 20:
            n = 2 * n
            N = n
            q = self.q(n)
            dim = ceil(sqrt(N * log(q) / log(rhf)))

            # |u_0| < δ_0
            t0 = RR(sqrt(dim) * 2 * self.d0(n))
            s0 = RR(rhf ** (dim) * q ** ((N) / dim))
            if t0 > s0:
                continue

            # |u_1| < δ_1
            t1 = RR(sqrt(dim) * 2 * self.d1(n))
            s1 = RR(rhf ** (dim) * q ** ((N) / dim))
            if t1 > s1:
                continue

            # |extr| < δ_p
            p = self.p(n)
            dim = ceil(sqrt(N * log(p) / log(rhf)))
            t2 = RR(sqrt(dim) * 2 * self.dp(n))
            s2 = RR(rhf ** (dim) * p ** ((N) / dim))
            if t2 > s2:
                continue

            # print(
            #     f"t_0/s_0: 2^{log(t0/s0,2):.2f}, t_1/s_1: 2^{log(t1/s1,2):.2f}, t_2/s_2: 2^{log(t2/s2,2):.2f}"
            # )
            return n, self.size(n)


def snark_params(s, alphaf=None, betaf=None, d=2):
    best, n, size = None, None, None

    if alphaf is None:

        def alphaf(s):
            # somewhat arbitrary
            return ceil(s)

    if betaf is None:

        def betaf(s):
            # numerically optimised
            return ceil(alphaf(s) ** (6 * d))

    for power in range(1, 17):
        res = SNARKParams(s, s, s, alpha=alphaf(s), beta=betaf(s), d=d, power=power)()
        if (best, n, size) == (None, None, None):
            n, size = res
            best = power
        if size > res[1]:
            n, size = res
            best = power
    return best, n, size


def snark_table(log_S, alphaf=None, betaf=None, d=2):
    R = []

    for log_s in log_S:
        s = 2 ** log_s
        best, n, size = snark_params(s, alphaf=alphaf, betaf=betaf, d=d)
        print(f"s: 2^{log_s}, n: {n:6d}, size: {size / 8.0 / 1024 ** 2:7.1f}MB, power: {best}")
        R.append((2 ** log_s, size))
    return R


SNARKTables = {
    "1/2 Shockwave 256": list(
        zip(
            [2 ** i for i in range(10, 27)],
            [
                72,
                95,
                122,
                160,
                210,
                284,
                386,
                523,
                721,
                990,
                1384,
                1914,
                2695,
                3751,
                5309,
                7415,
                10522,
            ],
        )
    ),
    "1/2 Brakedown 256": list(
        zip(
            [2 ** i for i in range(10, 27)],
            [
                1279,
                1597,
                1974,
                2200,
                2710,
                3165,
                3926,
                4824,
                6122,
                7899,
                10230,
                13737,
                18145,
                25068,
                33685,
                47385,
                64399,
            ],
        )
    ),
    "Aurora": list(
        zip(
            [2 ** i for i in range(10, 21)],
            [447, 510, 610, 717, 810, 931, 1069, 1179, 1315, 1473, 1603],
        )
    ),
    "Ligero": list(
        zip(
            [2 ** i for i in range(10, 21)],
            [546, 628, 1076, 1169, 2100, 3169, 5788, 5662, 10527, 10736, 19828],
        )
    ),
}


def python_plot(fn=None):
    import matplotlib.pyplot as plt

    krisis = snark_table(range(10, 51, 5))
    plt.plot([x for x, y in krisis], [y / 8 / 1024 for x, y in krisis], label="kRISIS of Knowledge")

    for name, data in SNARKTables.items():
        plt.plot([x for x, y in data], [y for x, y in data], label=name)

    plt.xlabel("Statement Size")
    plt.ylabel("Proof Size in KB")
    plt.xscale("log", base=2)
    plt.yscale("log", base=2)
    plt.xticks([2 ** i for i in range(10, 50, 5)])
    plt.yticks([2 ** (2 * i + 6) for i in range(0, 8)])
    plt.rcParams["figure.figsize"] = (15, 10)
    plt.legend()
    if fn:
        plt.savefig(fn)
    else:
        plt.show()


def latex_plot(fn):
    import csv

    with open(fn, "w") as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(["s"] + list(SNARKTables.keys()) + ["kRISIS"])
        for i in range(1, 41):
            row = [2 ** i]

            for scheme in SNARKTables:
                d = dict(SNARKTables[scheme])
                row.append(d.get(2 ** i, ""))
            power, n, size = snark_params(2 ** i)
            print(f"s: 2^{i}, n: {n:6d}, size: {size / 8.0 / 1024 ** 2:7.1f}MB, power: {power}")
            row.append(ceil(size / 8 / 1024))
            writer.writerow(row)




Table 2. Computation complexities (in number of R or Rq operations) of our VC.

Com O(w2d · (log s + log w + log t + log β)/ log β)

Open O(t · (s + w)d · (log s + log w + log t + log β)/ log β)

PreVerify O(t · (s + w)d)

Verify O(sd + (log s + log w + log t + log β)/ log β)

more fine-grained complexity measures and to highlight the benefits of pre-
processing. For simplicity, we assume max { s, w, t } ≥ n. The computation
complexities (in number of R or Rq operations) of Com, Open, PreVerify, and
Verify are reported in Table 2. Note that each R or Rq operation takes at most
poly(λ, log s, log w, log t) time. In summary, the combined time needed to commit
to x and open to f(z, ·) is quasi-quadratic in the time needed to compute f(z, x),
and the time needed to pre-verify (f, y) is quasi-linear in the time needed to com-
pute f(z, x). We highlight that the online verification cost, i.e. the computation
complexity of Verify, is dominated additively by sd where s is the dimension of the
public input. In applications where sd = O(log w+log t) and setting β = Θ(w+t),
the online verification cost (in number of bit operations) is O(n log w + n log t).
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