
Threshold Signatures with
Private Accountability

Dan Boneh1 and Chelsea Komlo2

1 Stanford University
2 University of Waterloo

Abstract. Existing threshold signature schemes come in two flavors: (i)
fully private, where the signature reveals nothing about the set of signers
that generated the signature, and (ii) accountable, where the signature
completely identifies the set of signers. In this paper we propose a new
type of threshold signature, called TAPS, that is a hybrid of privacy and
accountability. A TAPS signature is fully private from the public’s point
of view. However, an entity that has a secret tracing key can trace a
signature to the threshold of signers that generated it. A TAPS makes
it possible for an organization to keep its inner workings private, while
ensuring that signers are accountable for their actions. We construct a
number of TAPS schemes. First, we present a generic construction that
builds a TAPS from any accountable threshold signature. This generic
construction is not efficient, and we next focus on efficient schemes based
on standard assumptions. We build two efficient TAPS schemes (in the
random oracle model) based on the Schnorr signature scheme. We con-
clude with a number of open problems relating to efficient TAPS.

1 Introduction

A threshold signature scheme [30] enables a group of n parties to sign a message
only if t or more of the parties participate in the signing process. There are two
types of threshold signature schemes:

- A private threshold signature (PTS) scheme: A signature σ on a message m
reveals nothing about the threshold t, and reveals nothing about the quo-
rum of t parties that generated the signature. The same holds even if the
adversary sees a sequence of signatures on messages of its choice. Examples
of PTS schemes include [56,34,26,38,15,57,45] and many others.

- An accountable threshold signature (ATS) scheme: A signature σ on a mes-
sage m reveals the identity of all t parties who participated in generating the
signature (and hence also reveals t). Moreover, it is not feasible for a quorum
of t parties to frame another quorum. An ATS scheme is closely related to
the notion of an accountable subgroup multisignature (ASM) [50,44,9,17,5,53].
However, we prefer the term ATS to contrast the two flavors of threshold sig-
natures: ATS vs. PTS. An ATS has also been described as Traceable Secret
Sharing (TSS) [42].

2 D. Boneh and C. Komlo

We will define these concepts more precisely in the next section.

A private threshold signature (PTS) scheme is used when there is a need to
hide the inner-workings of an organization. For example, an organization that
runs a web server may choose to split the server’s secret TLS key among n
machines so that at least t are needed to generate a signature and complete a
TLS handshake. By using a PTS, the organization can hide the threshold t from
the public, to avoid leaking the number of machines that an attacker needs to
compromise in order to forge a signature. Similarly, a signature should reveal
nothing about the set of t machines that participated in generating the signature
so that nothing is revealed about which machines are currently online.

In contrast, an accountable threshold signature (ATS) scheme is often used
in financial applications where there is a need for accountability. For example,
if three of five bank executives are needed to authorize a banking transfer, then
one wants full accountability in case a fraudulent transfer is approved. When
using an ATS scheme, the signature on a fraudulent transaction will identify the
three bank executives who authorized it.

The trivial t-out-of-n ATS scheme is one where every signing party locally
generates a public-private key pair. The complete public key is defined as the
concatenation of all n local public keys. When t parties need to sign a message m,
they each sign the message using their local secret key, and the final signature is
the concatenation of all t signatures. The verifier accepts such an ATS signature
if it contains t valid signatures. This trivial ATS is used widely in practice,
for example in Bitcoin multisig transactions [1]. While the scheme has many
benefits, its downside is that signature size and verification time are at least
linear in tλ, where λ is the security parameter. Several ATS constructions achieve
much smaller signature size and verification time [50,9,17,53].

In summary, existing threshold signatures offer either complete privacy or
complete accountability for the signing quorum, but cannot do both.

A new type of threshold signature. In this work we introduce a new type of
threshold signature scheme, called TAPS, that provides full accountability while
maintaining privacy for the signing quorum.

A Threshold, Accountable, and Private Signature scheme, or simply
a TAPS, works as follows: (i) a key generation procedure generates the public
key pk and the n private keys sk1, . . . , skn for the signers, (ii) a signing protocol
among some t signers is used to generate a signature σ on a message m, and
(iii) a signature verification algorithm takes as input pk , m, and σ and outputs
accept or reject. Signatures generated by the signing protocol reveal nothing to
the public about t or the quorum that generated the signature. In addition, the
key generation procedure outputs a tracing key sk t. Anyone in possession of
sk t can reliably trace a signature to the quorum that generated it. For security
we require that a set of signers should be unable to frame some other set of
signers by fooling the tracing procedure. We define the precise syntax for a
TAPS scheme, and the security requirements, in Section 3.

Threshold Signatures with Private Accountability 3

If the tracing key sk t is made public to all, then a TAPS is no different than
an ATS scheme. Similarly, if sk t is destroyed, then a TAPS is no different than
a PTS scheme. However, if sk t is known to a trusted tracing party (or secret
shared among several parties), then the tracing party can provide accountability
in case of a fraudulent transaction, while keeping all other information about
the inner-workings of the organization private.

Applications. Consider an organization that holds digital assets that are man-
aged on a public ledger (e.g., a blockchain). A digital signature must be recorded
on the ledger in order to transfer an asset. The organization can protect the as-
sets by requiring t-out-of-n trustees to sign a transfer request. It can use an ATS
scheme, but then the threshold t and the set of signers will be public for the
world to see. Or it can use a PTS scheme to secret share a single signing key
among the n trustees, but then there is no accountability for the trustees.

A TAPS provides a better solution: the organization can hold on to the
tracing key sk t so that the threshold and the set of signers remain private, but
the trustees are accountable in case of a fraudulent transfer. The value of n and
t are typically relatively small, say less than twenty.

The same applies in the web server setting. The web server’s TLS secret
signing key could be shared among t-out-of-n machines so that t machines are
needed to complete a TLS handshake. The tracing key would be kept in offline
storage. If at some point it is discovered that the web server’s secret key has been
compromised, and is being used by a rogue web server, then the tracing key could
be applied to the rogue server’s signatures to identify the set of machines that
were compromised by the attacker.

Constructing TAPS. We provide a number of constructions for TAPS schemes.
In Section 4 we present a generic construction that shows how to construct a
TAPS from any ATS scheme. The construction is quite inefficient since it makes
use of general zero knowledge. While there are several important details that are
needed to obtain a secure construction, the high level approach for generating a
TAPS signature is as follows: (i) the signing parties generate an ATS signature
σ on a message m, (ii) they encrypt σ using a public key encryption scheme to
obtain a ciphertext ct , and (iii) the final TAPS signature is σ′ = (ct , π), where π
is a non-interactive zero knowledge proof that the decryption of ct is a valid ATS
signature on m. To verify a signature, one verifies that π is valid. The tracing
key sk t is the decryption key that lets one decrypt ct . Then, using sk t one can
decrypt ct , and run the ATS tracing algorithm on the resulting ATS signature σ.
The description here is only meant as an outline, and is not secure as is. The
complete construction is provided in Section 4.

Next, we turn to constructing a practical TAPS scheme. In Section 5 we build
two efficient TAPS schemes from Schnorr signatures [55]. To do so, we modify
the generic construction so that the statement that needs to be proved in zero
knowledge is as simple as possible. We then use either a Sigma protocol [27] or
Bulletproofs [20,22] to prove the statement. The resulting public key and signa-
ture sizes are summarized in Table 1. For small n, both schemes have reasonable

4 D. Boneh and C. Komlo

performance. As n grows, signatures produced by the Bulletproofs scheme are
about 40 times shorter.

Public Key Size Signature Size Verify Time
(group ops)

Trace Time
(group ops)G Zq G Zq

Sigma 2n+ 4 0 n+ 4 2n+ 5 O(n) O(n)

Bulletproofs n+ n
e

+O(1) 0 n
e

+O(logn) 4 O(n) O(n · 2e/2)

Table 1. An n-party TAPS based on the Schnorr signature scheme in a group G of
order q. The construction uses either a Sigma protocol or Bulletproofs. The Bulletproofs
TAPS signature is shorter by a factor of about e, but tracing time is higher. Taking
e := 40 is a reasonable choice.

We note that due to the traceability and privacy requirements, a TAPS signa-
ture must encode the signing quorum while hiding the threshold t, and therefore
must be at least n bits long. In Section 6 we discuss relaxing the full tracing
requirement with a weaker tracing property we call quorum confirmation. Here
the tracing algorithm takes as input sk t and a suspect quorum set C ⊆ [n], and
confirms if C is indeed the quorum set that generated a given signature. If this
weaker confirmation property is sufficient, then our Bulletproofs approach can
lead to a logarithmic size TAPS signature. Note that when n is small, confir-
mation can lead to full tracing by testing all possible quorum sets until one is
confirmed.

A different perspective. A TAPS system can be described as a group signa-
ture scheme where t signers are needed to sign on behalf of the group. Recall
that in a group signature scheme [25] a group manager provisions every member
in the group with a secret signing key. Any group member can sign on behalf
of the group without revealing the identity of the signer. In addition, there is a
tracing key that lets an entity that holds that key trace a given group signature
to the single member that issued that signature. A TAPS can be viewed as a
generalization of this mechanism. In a TAPS scheme, at least t members of the
group are needed to generate a group signature. The signature reveals nothing
to the public about the identity of the signers or t. However, the tracing key
enables one to trace the signature back to some t members that participated in
generating the signature.

In the literature, the term threshold group signature refers to a scheme where
the role of the group manager is distributed among a set of authorities with a
threshold access structure [14,24]. A TAPS is quite different. Here the threshold
refers to the number of parties needed to generate a signature on behalf of the
group. See also our discussion of related work below.

Threshold Signatures with Private Accountability 5

1.1 Additional related work

Ring Signatures. Ring signatures [54,52,11,11] allow a signer to sign a message
on behalf of an ad-hoc ring of signers. The signature reveals nothing about which
ring member generated the signature. As such, anyone can gather a set of public
keys, and produce a ring signature over some message without interacting with
the owners of those keys. Our notion of TAPS signatures requires a threshold
of t signers to generate a signature, where t is hidden from the public. In the
basic group or ring setting the threshold t is not secret, it is always set to t = 1.

While accountable (traceable) ring signatures with a tracing authority have
been defined in the literature [59,36,35,19], these schemes are limited to a single
signer, as opposed to a threshold of signers within the ring. Dodis et al. [31]
defined a multi-party ring signature that builds upon one-way cryptographic
accumulators and supports an identity escrow extension. However, the scheme
does not enforce a threshold number of signers to anyone other than the desig-
nated tracing authority (by recovering the identities of the signers). In contrast,
TAPS requires that anyone be able to verify that a threshold number of signers
participated in generating a signature.

Threshold ring signatures, called thring signatures, were studied in a number
of works [21,47,58,51,43]. Here the ring signature represents some t-out-of-n set
of signers. However, these schemes provide no tracing, and therefore do not fulfill
the notions of accountability required by TAPS. Similarly, linkable threshold ring
signatures [4,32] only require that any two ring signatures produced by the same
signers can be linked, but not traced.

A ring signature by Bootle et al. [19] combines Camenisch’s group signature
scheme [23] with a one-out-of-many proof of knowledge. This construction uses
similar techniques as our Schnorr TAPS construction, but supports only a single
signer, rather than a threshold, so provides quite a different functionality.

Group Signatures. First introduced by Chaum and van Heyst [25], group
signatures [16,37,46,48,29,18,12] enable a group member to sign a message such
that the verifier can determine that a member generated the signature, but
not which member. If needed, a tracing authority can trace a signature to its
signer. A group manager is trusted to manage the group’s membership. The
security notions for a group signatures were defined by Bellare et al. [8], but
focus on a single signer who is signing on behalf of the group. Traditionally
threshold group signatures refers to the ability to distribute the roles of the group
manager [14,24], as opposed to requiring a threshold number of participants to
issue a signature.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter in unary. We use
x← y to denote the assignment of the value of y to x. We write x←$ S to denote
sampling an element from the set S independently and uniformly at random. For
a randomized algorithm A we write y ←$ A(x) to denote the random variable

6 D. Boneh and C. Komlo

that is the output of A(x). We use [n] for the set {1, . . . , n}. Throughout the
paper G is a cyclic group of prime order q, and Zq is the ring Z/qZ. We let g be
a generator of G. We denote vectors in bold font: u ∈ Zmq is a vector of length
m whose elements are each in Zq. We write ga =

∏n
i=1 gi

ai ∈ G, for a vector
g = (g1, . . . , gn) ∈ Gn and a = (a1, . . . , an) ∈ Znq .

Our construction make use of a few standard primitives. We define these
briefly here.

Definition 1. A public key encryption scheme PKE for a message space
M = {Mλ}λ∈N is a triple of PPT algorithms (KeyGen,Encrypt,Decrypt)
invoked as

(pk , sk)←$ KeyGen(1λ), ct ←$ Encrypt(pk ,m), m← Decrypt(sk , ct).

The only security requirement is that PKE be semantically secure, namely,
for every PPT adversary A the following function is negligible

Advindcpa
A,PKE(λ) :=

∣∣∣Pr
[
Aenc(0,·,·)(pk) = 1

]
− Pr

[
Aenc(1,·,·)(pk) = 1

]∣∣∣,
where (pk , sk)←$ KeyGen(1λ), and for b ∈ {0, 1} and m0,m1 ∈ Mλ, the oracle
enc(b,m0,m1) returns ct ←$ Encrypt(pk ,mb).

When Mλ ⊆ {0, 1}≤`λ , for some `λ, our definition of semantic security re-
quires that the encryption scheme be length hiding : an adversary cannot dis-
tinguish the encryption of m0 ∈ Mλ from m1 ∈ Mλ even if m0 and m1 are
different lengths. This can be achieved by having the encryption algorithm pad
the plaintext to a fixed maximum length using an injective pad (e.g., 100 . . . 00),
and having the decryption algorithm remove the pad.

Definition 2. Let R := {Rλ}λ∈N. A commitment scheme COM is a pair of
PPT algorithms (Commit,Verify) invoked with r ∈ Rλ as

com← Commit(x, r) and Verify(x, r, com) ∈ {0, 1}.

The scheme is secure if it is unconditionally hiding and computationally bind-
ing. In particular, for all x, x′ the distributions {COM(x, r)} and {COM(x′, r′)}
have negligible statistical distance ε(λ) when r, r′ ←$ Rλ. In addition, for every
PPT adversary A the following function is negligible

Advbind
A,COM(λ) := Pr

x 6= x′, r, r′ ∈ Rλ,
Verify(x, r, com) = 1

Verify(x′, r′, com) = 1

: (com, x, r, x′, r′)←$ A(λ)

 .
Definition 3. A signature scheme SIG is a triple of PPT algorithms
(KeyGen,Sign,Verify) invoked as

(pk , sk)←$ KeyGen(1λ), σ ←$ Sign(sk ,m), Verify(pk ,m, σ) ∈ {0, 1}.

Threshold Signatures with Private Accountability 7

The scheme is strongly unforgeable if the following function is negligible

Adveufcma
A,SIG(λ) := Pr

Verify(pk ,m, σ) = 1

(m,σ) 6∈
{

(mi, σi)
}q
i=1

:
(pk , sk)←$ KeyGen(1λ)

(m,σ)←$ Asign(·)(pk)

where sign(mi) returns σi ←$ Sign(sk ,mi) for i = 1, . . . , q.

Definition 4. A proof system for a relation R :=
{
Rλ ⊆ Xλ ×Wλ

}
λ∈N is a

pair of interactive machines (P,V), where for x ∈ Xλ and w ∈ Wλ, the prover
is invoked as P(x,w) and the verifier is invoked as V(x). We let

〈
P(x,w);V(x)

〉
be a random variable that is the verifier’s output at the end of the interaction.
We let trans

(
P(x,w);V(x)

)
denote a random variable that is the transcript of

the interaction.

- The proof system (P,V) has perfect completeness if for all (x,w) ∈ Rλ
we have Pr

[〈
P(x,w);V(x)

〉
= 1
]

= 1.

- The proof system (P,V) is honest verifier zero knowledge, or HVZK, if
there is a PPT Sim such that for all (x,w) ∈ Rλ the two distributions{

Sim(x)
}

and
{
trans

(
P(x,w);V(x)

)}
are computational indistinguishable. In particular, let Advhvzk

A,(P,V)(λ) be the
distinguishing advantage for an adversary A. Then this function is negligible
for all PPT adversaries A.

- The proof system (P,V) is an argument of knowledge if it is perfectly
complete, and for every PPT P = (P1,P2) there is an expected polynomial
time extractor Ext so that the functions

ε1(λ) := Pr
[〈
P2(state);V(x)

〉
= 1 : (x, state)←$ P1(1λ)

]
ε2(λ) := Pr

[
(x,w) ∈ Rλ : (x, state)←$ P1(1λ), w ←$ ExtP2(state)(x)

]
satisfy

ε2(λ) ≥
(
ε1(λ)− κ(λ)

)
/q(λ), (1)

for some negligible function κ called the knowledge error, and a polynomial
function q called the extraction tightness. Here state is state data output
by P1, and ExtP2(state) denotes that Ext has oracle access to P2(state)
which is modeled as an “interactive function” [7]. We refer to P1 as an
instance generator.

- We say that a proof system (P,V) is non-interactive if the only interaction
is a single message π from the prover P to the verifier V.

- We say that the proof system (P,V) is a non-interactive HVZK argument
of knowledge in the random oracle model if (PH ,VH) is a proof system
that is non-interactive, HVZK, and an argument of knowledge, where H is
a random oracle.

8 D. Boneh and C. Komlo

A public coin proof system can be made non-interactive using the Fiat-Shamir
transform [33]. For some proof systems, this transformation retains the argument
of knowledge and HVZK properties in the random oracle model [3]. Implementing
the Fiat-Shamir transform in practice is error-prone and it is recommended to
use an established implementation to do it (e.g., [28]).

3 Threshold, Accountable, and Private Signatures

In this section, we formalize the notion of threshold, accountable, and private
signatures (TAPS). We use n for the total number of allowed signers, and t for
the threshold number of required users. We let M denote the message space.

The Combiner. When t parties wish to generate a signature on some message
m, they send their signature shares to a Combiner who uses the t shares to gen-
erate a complete signature. Notice that the Combiner will learn the threshold t,
which is secret information in our settings. Since the Combiner must be trusted
with this private information, we also allow the Combiner to hold a secret key
denoted sk c. Secrecy of the Combiner’s key is only needed for privacy of the
signing quorum. It is not needed for security: if sk c becomes public, an adver-
sary cannot use it to defeat the unforgeability or accountability properties of
the scheme. As we will see, we model this by giving sk c to the adversary in the
unforgeability and accountability security games, but we keep this key hidden
in the privacy game.

The Tracer. A tracing entity is trusted to hold a secret tracing key sk t that
allows one to trace a valid signature to the quorum of signers who generated it.
Without knowledge of sk t, recovering the quorum should be difficult.

With these parties in mind, let us define the syntax for a TAPS.

Definition 5. A private and accountable threshold signature scheme, or
TAPS, is a tuple of five polynomial time algorithms

S = (KeyGen,Sign,Combine,Verify,Trace)

where:

- KeyGen(1λ, n, t) →
(
pk , (sk1, . . . , skn), sk c, sk t

)
: a probabilistic algorithm

that takes as input a security parameter λ, the number of parties n and
threshold t. It outputs a public key pk, signer keys {sk1, . . . , skn}, a com-
biner secret key sk c, and a tracing secret key sk t.

- Sign(sk i,m,C)→ δi: a probabilistic algorithm performed by one signer who
uses its secret key sk i to generate a signature “share” δi on a message m in
M. In some constructions it is convenient to allow the signer to know the
identity of the members of the signing quorum C ⊆ [n]. We provide it as an
optional input to Sign.

- Combine(sk c,m,C, {δi}i∈C)→ σ: a probabilistic algorithm that takes as in-
put the Combiner’s secret key, a message m, a description of the signing
quorum C ⊆ [n], where |C| = t, and t valid signature shares by members
of C. If the input is valid, the algorithm outputs a TAPS signature σ.

Threshold Signatures with Private Accountability 9

- Verify(pk ,m, σ)→ 0/1: a deterministic algorithm that verifies the signature
σ on a message m with respect to the the public key pk.

- Trace(sk t,m, σ) → C/fail: a deterministic algorithm that takes as input the
tracer’s secret key sk t, along with a message and a signature. The algorithm
outputs a set C ⊆ [n], where |C| ≥ t, or a special message fail. If the algo-
rithm outputs a set C, then the set is intended to be a set of signers whose
keys must have been used to generate σ. We refer to the entity performing
Trace as the Tracer.

- For correctness we require that for all allowable 1 ≤ t ≤ n, for all t-
size sets C ⊆ [n], all m ∈ M, and for

(
pk , (sk1, . . . , skn), sk c, sk t

)
←$

KeyGen(1λ, n, t) the following two conditions hold:

Pr
[
Verify

(
pk ,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= 1
]

= 1

Pr
[
Trace

(
sk t,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= C

]
= 1. (2)

Remark 1 (signing algorithm vs. signing protocol). In this paper we treat Sign()
as an algorithm that is run locally by each of the signing parties. However, in
some schemes, Sign is an interactive protocol between each signing party and
the Combiner. Either way, the end result is that the Combiner obtains a list of
signature shares {δi}i∈C , one share from each signer. The distinction between a
local non-interactive signing algorithm vs. an interactive signing protocol is not
relevant to the constructions in this paper.

Remark 2 (distributed key generation). Our syntax assumes a centralized setup
algorithm KeyGen to generate the signing key shares. However, all our schemes
can be adapted to use a decentralized key generation protocol among the signers,
the Combiner, and the Tracer. At the end of the protocol every signer knows its
secret key, the Combiner knows sk c, the Tracer knows sk t, and pk is public. No
other information is known to any party.

Remark 3 (Why use a Tracer?). The Combiner knows which parties contributed
signature shares to create a particular signature. A badly designed tracing sys-
tem could operate as follows: whenever the Combiner constructs a signature, it
records the quorum that was used to generate that signature in its database.
Later, when a signature needs to be traced, the Combiner could look up the
signature in its database and reveal the quorum that generated that signature.
If the signature scheme is strongly unforgeable, then one could hope that the
only valid signatures in existence are ones generated by an honest Combiner, so
that every valid signature can be easily traced with the help of the Combiner.
The problem, of course, is that a malicious quorum of signers could collude with
the Combiner to generate a valid signature that cannot be traced because the
data is not recorded in the database. Or a malicious quorum might delete the
relevant entry from the Combiner’s database and prevent tracing.

Instead, we require that every valid signature can be traced to the quorum
that generated it using the secret tracing key sk t. The tracing key sk t can be
kept in a “safety deposit box” and only accessed when tracing is required. The
Combiner in a TAPS is stateless.

10 D. Boneh and C. Komlo

Unforgeability and accountability attack game:

(n, t, C, state) ←$ A0(1λ); where t ∈ [n] and C ⊆ [n] // A0 outputs n, t and C (no size bound on C)

(pk, {sk1, . . . , skn}, skc, pkt) ←
$ KeyGen(1λ, n, t) // generate keys using n and t

(m′, σ′) ←$ AO(·,·)
1 (pk, {ski}i∈C, skc, skt, state) // A1 receives secret keys for all of C,

// as well as the tracing and combiner’s secret keys

where O(Cj,mj) returns the sig. shares {Sign(ski,mj, Cj)}i∈Cj // A1 can request signature shares for mj

winning condition:
let (C1,m1), (C2,m2), . . . be A1’s queries to O

let C′ ←
⋃
Cj , union over all queries to O(Cj,m

′), // collect all signers that signed m′

if no such queries, set C′ ← ∅ // if no O-queries for m′, then C′ = ∅

let Ct ← Trace(skt,m
′, σ′) // trace the forgery (m′, σ′)

output 1 if Verify(pk,m′, σ′) = 1 and either // A wins if someone outside of (C ∪ C′) is blamed,

Ct 6⊆ (C ∪ C′) or Ct = fail // or if tracing fails

Fig. 1. Game defining the advantage of an adversary A = (A0,A1) to produce a
valid forgery against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with
respect to a security parameter λ.

In the next two subsections we define security, privacy, and accountability for
a TAPS. The scheme has to satisfy the standard notion of existential unforge-
ability under a chosen messages attack (EUF-CMA) [41]. In addition, the scheme
has to be private and accountable. It is convenient to define unforgeability and
accountability in a single game. We define privacy as an additional requirement.

3.1 Unforgeability and Accountability

Like any signature scheme, a TAPS must satisfy the standard notion of unforge-
ability against a chosen message attack (EUF-CMA). Further, a TAPS scheme
should be accountable. Informally, this means that a tracer that has the tracing
key sk t should output the correct quorum set C ⊆ [n] of signers for a given
message-signature pair.

We refer to these simultaneous notions of unforgeability and accountability
as Existential Unforgeability under a Chosen Message Attack with Traceability.
Informally, this notion captures the following unforgeability and accountability
properties, subject to restrictions of the chosen message attack:

- Unforgeability: an adversary that controls fewer than t participants cannot
construct a valid message-signature pair; and

- Accountability: an adversary that controls t or more corrupt participants
cannot construct a valid message-signature pair that traces to at least one
honest participant.

We formalize this in the attack game in Figure 1. Let Advforg
A,S(λ) be the proba-

bility that adversary A wins the game of Figure 1 against the TAPS scheme S.

Threshold Signatures with Private Accountability 11

Definition 6 (accountable TAPS). A TAPS scheme S is unforgeable and
accountable if for all probabilistic polynomial time adversaries A = (A0,A1),

the function Advforg
A,S(λ) is a negligible function of λ.

Our game in Figure 1 captures both unforgeability (EUF-CMA) for a thresh-
old signature scheme as well as accountability. During the game the adversary
obtains the secret keys of parties in C and obtains signature shares for m′ from
parties in C ′. The adversary should be unable to produce a valid signature σ′

that causes the tracing algorithm to fail, or causes the tracing algorithm to blame
a signing party outside of C ∪C ′. This captures the accountability property. To
see why this implies unforgeability, suppose the adversary A obtains fewer than
threshold t signature shares for m′, meaning that |C ∪ C ′| < t. Yet, the adver-
sary is able to produce a valid signature σ′ that causes the tracing algorithm
to blame some quorum Ct. By definition of Trace we know that |Ct| ≥ t and
therefore Ct cannot be contained in C ∪ C ′. Therefore the adversary succeeds
in blaming an honest party, and consequently A wins the game. Hence, if the
adversary cannot win the game, the scheme must be unforgeable.

Remark 4. Definition 6 captures unforgeability, but not strong unforgeability,
where the adversary should be unable to generate a new signature on a pre-
viously signed message. If needed, one can enhance the definition to require
strong unforgeability. Moreover, any unforgeable scheme can be made strongly
unforgeable by adapting to the setting of threshold signatures a general transfor-
mation from an unforgeable signature scheme to a strongly unforgeable signature
scheme [10].

3.2 Privacy

Next, we define privacy for a TAPS. Privacy for a threshold signature scheme is
often defined by requiring that a threshold signature on a message m be indis-
tinguishable from a signature on m generated by some standard (non-threshold)
signature scheme [39]. This property ensures that a threshold signature reveals
nothing about the threshold and the quorum that produced the signature.

A TAPS may not be derived from a non-threshold signature scheme, so this
definitional approach does not work well in our setting. Instead, we define privacy
as an intrinsic property of the TAPS. Our definition of privacy applies equally
well to a private threshold signature (PTS) scheme.

We impose two privacy requirements:

- Privacy against the public: A party who only has pk and sees a sequence
of message-signature pairs, learns nothing about the threshold t or the set
of signers that contributed to the creation of those signatures.

- Privacy against signers: The set of all signers working together, who
also have pk (but not sk c or sk t), and see a sequence of message-signature
pairs, cannot determine which signers contributed to the creation of those
signatures. Note that t is not hidden in this case since the set of all signers
knows the threshold.

12 D. Boneh and C. Komlo

The game defining privacy against the public:

b ←$ {0, 1}

(n, t0, t1, state) ←
$ A0(1λ) where t0, t1 ∈ [n] // A0 outputs n and two thresholds t0, t1

(pk, {sk1, . . . , skn}, skc, skt) ←
$ KeyGen(1λ, n, tb) // generate keys using n and tb

b′ ← AO1(·,·,·), O2(·,·)
1 (pk, state)

output (b = b′)

where O1(C0, C1,m) returns σ ←$ Combine(skc,m,Cb, {Sign(ski,m,Cb)}i∈Cb
) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = t0 and |C1| = t1,

and where O2(m,σ) returns Trace(skt,m, σ). // trace (m,σ)

Restriction: if σ is obtained from a query O1(·, ·,m), then O2 is never queried at (m,σ).

Fig. 2. The game used to define privacy against the public for an adversary A =
(A0,A1) against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with re-
spect to a security parameter λ.

These properties are captured by the games in Figure 2 and Figure 3 respectively.
Let W be the event that the game in Figure 2 outputs 1. Similarly, let W ′

be the event that the game in Figure 3 outputs 1. We define the two advantage
functions for an adversary A against the scheme S, as a function of the security
parameter λ:

Advpriv1
A,S (λ) =

∣∣2 Pr[W]− 1
∣∣ and Advpriv2

A,S (λ) =
∣∣2 Pr[W ′]− 1

∣∣.
Definition 7 (Privacy for a TAPS scheme). A TAPS scheme is private if
for all probabilistic polynomial time public adversaries A = (A0,A1), the func-

tions Advpriv1
A,S (λ) and Advpriv2

A,S (λ) are negligible functions of λ.

To give some intuition, privacy against the public for a TAPS is defined using
the game in Figure 2. The adversary chooses two thresholds t0 and t1 in [n] and
is given a public key pk for one of these thresholds. The adversary then issues
a sequence of signature queries to a signing oracle O1, where each signature
query includes a message m and two quorums C0 and C1. The adversary gets
back a signature generated using either the left or the right quorum. We also
give the adversary access to a restricted tracing oracle O2 that will trace a valid
message-signature pair. The adversary should be unable to determine whether
the sequence of signatures it saw were with respect to the left or the right
sequence of quorums.

Our definition of privacy ensures that the threshold t is hidden, but we do
not try to hide the number of signers n because there is no need to: one can
covertly inflate n to some upper bound by generating superfluous signing keys.

Privacy against signers is defined using the game in Figure 3. This game is
the same as in Figure 2, however here the adversary chooses the threshold t, and
is given all the signing keys. Again, the adversary should be unable to determine
if a signing oracle O1 that takes two quorums C0 and C1, responds using the

Threshold Signatures with Private Accountability 13

The game defining privacy against signers:

b ←$ {0, 1}

(n, t, state) ←$ A0(1λ) where t ∈ [n] // A0 outputs n and t

(pk, {sk1, . . . , skn}, skc, skt) ←
$ KeyGen(1λ, n, t) // generate keys using n and t

b′ ← AO1(·,·,·), O2(·,·)
1 (pk, {sk1, . . . , skn}, state) // A1 issues signature and trace queries

output (b = b′)

where O1(C0, C1,m) returns σ ←$ Combine(skc,m,Cb, {Sign(ski,m,Cb)}i∈Cb
) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = |C1| = t,

and where O2(m,σ) returns Trace(skt,m, σ). // trace (m,σ)

Restriction: if σ is obtained from a query O1(·, ·,m), then O2 is never queried at (m,σ).

Fig. 3. The game used to define privacy against signers for an adversary A = (A0,A1)
against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with respect to a
security parameter λ. Here, A1 is granted knowledge of all signing keys sk1, . . . , skn.

left or the right quorum. As before, the adversary has access to a restricted
tracing oracle O2. As in private threshold signatures (PTS), we do not aim to
prevent signers from recognizing a signature that was generated with their help,
as discussed in Section 6.

Remark 5 (Randomized signing). The privacy games in Figures 2 and 3 require
that signature generation be a randomized process: calling

Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

with the same arguments m and C twice must result in different signatures,
with high probability. Otherwise, the adversary could trivially win these games:
it would query O1 twice, once as O1(C0, C1,m) and again as O1(C0, C

′
1,m),

for suitable quorums C0, C1, C
′
1 where C1 6= C ′1. It would then check if the

resulting signatures are the same. If so, it learns that b = 0, and if not it learns
that b = 1. For this reason, if a scheme satisfies Definition 7, then the output
of Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C) must be sampled from some high
entropy distribution.

3.3 Accountable Threshold Schemes (ATS)

For completeness, we note that the standard notions of private threshold signa-
tures (PTS) and accountable threshold signatures (ATS) are special cases of a
TAPS. We review these concepts in the next two definitions.
To obtain an ATS we impose two syntactic requirements on a TAPS scheme:

- In an ATS, the tracing key is publicly known, meaning that anyone can trace
a valid message-signature pair to the quorum that participated in generating
it. We capture this by requiring that the TAPS tracing key sk t is equal to
the public key pk .

14 D. Boneh and C. Komlo

- In an ATS, the Combiner is not a trusted party and cannot hold secrets. We
capture this by requiring that the Combiner’s secret key sk c is also equal to
the public key pk .

For clarity, whenever we make use of an ATS, we will drop sk t and sk c as explicit
inputs and outputs to the relevant TAPS algorithms.

Definition 8. An accountable threshold signature scheme, or an ATS,
is a special case of a TAPS, where the tracing key sk t and the Combiner key
sk c are both equal to the public key pk. The scheme is said to be secure if it is
accountable and unforgeable as in Definition 6.

Notice that there is no privacy requirement in Definition 8.

Remark 6. As mentioned in the introduction, an ATS scheme is closely related
to the concept of an accountable multi-signature scheme (ASM) [9]. One can
construct an ATS from an ASM by including a threshold t in the ASM public
key. The ASM verification algorithm is modified to ensure that at least t signers
represented in pk signed the message.

Next, we define a private threshold signature scheme, or a PTS. In the liter-
ature, a private threshold signature scheme is simply called a threshold signature
scheme. However, ATS and PTS are equally important concepts, and we there-
fore add an explicit adjective to clarify which threshold signature concept we are
using.

Definition 9. A private threshold signature scheme, or a PTS, is a spe-
cial case of a TAPS, where the Trace algorithm always returns fail, and the
correctness requirement for a TAPS in Definition 5 is modified to remove the
requirement on Trace in Eq. (2). The scheme is said to be secure if it is private
as in Definition 7, and unforgeable as in Definition 6 with one modification: the
adversary wins if the forgery is valid and |C ∪ C ′| < t.

The modification of Definition 6 reduces the accountability and unforgeability
game in Definition 6 to a pure unforgeability game under a chosen message at-
tack, ignoring accountability. Interestingly, this game captures a security notion
related to dual-parameter threshold security [56]. If one puts a further bound
requiring |C| < t′ < t in Figure 1, for some parameter t′, then one obtains the
usual definition of dual-parameter threshold security from [56].

4 A Generic Construction via an Encrypted ATS

We next turn to constructing a TAPS scheme. In this section we present a generic
construction from a secure ATS scheme. The generic TAPS construction makes
use of five building blocks:

- a secure accountable threshold signature (ATS) scheme as in Definition 8,
namely AT S = (KeyGen,Sign,Combine,Verify,Trace);

Threshold Signatures with Private Accountability 15

- a semantically secure public-key encryption scheme as in Definition 1, namely
PKE = (KeyGen,Encrypt,Decrypt), whose message space is the space of
signatures output by the ATS signing algorithm;

- a binding and hiding commitment scheme COM = (Commit,Verify), where
algorithm Commit(m, r) outputs a commitment to a message m using a
random nonce r ←$ R;

- a strongly unforgeable signature scheme SIG = (KeyGen,Sign,Verify);

- a non-interactive zero knowledge argument of knowledge (P, V), possibly
constructed in the random oracle model using the Fiat-Shamir transform.

Recall that our definition of semantic security in Section 2 ensures that the
encryption scheme PKE is length-hiding: the encryption of messages m0 and m1

of different lengths are indistinguishable.

The generic TAPS scheme. The generic TAPS scheme S is shown in Figure 4.
In our construction, a TAPS signature on a message m is a triple σ = (ct , π, tg),
where (i) ct is a public key encryption of an ATS signature σm on m, encrypted
using the tracing public key pk t, (ii) π is a zero-knowledge proof that the decryp-
tion of ct is a valid ATS signature on m, and (iii) tg is the Combiner’s signature
on (m, ct , π). The reason for the Combiner’s signature is explained in Remark 7.

Recall that an ATS public key can reveal the threshold t in the clear, which
would violate the TAPS privacy requirements. As such, the TAPS public key
cannot include the ATS public key in the clear. Instead, the TAPS public key
only contains a hiding commitment to the ATS public key.

Correctness. The scheme is correct if the underlying ATS scheme, commitment
scheme, encryption scheme, signature scheme, and proof system are correct.

Efficiency. When using a succinct commitment scheme, the public key is quite
short; its length depends only on the security parameter. When using a zk-
SNARK [13] for the proof system, the signature overhead over the underlying
ATS signature is quite short; its length depends only on the security parameter.
Moreover, signature verification time is dominated by the SNARK proof verifi-
cation, which is at most logarithmic in the total number of signing parties n.

However, the Combiner’s work in this scheme is substantial because it needs
to generate a zk-SNARK proof for a fairly complex statement. In addition, zk-
SNARK proof systems rely on strong complexity assumptions for security [40].
To address these issues, we construct in the next section more efficient TAPS
schemes whose security relies on DDH in the random oracle model, a much
simpler assumption.

Security, privacy, and accountability. We next turn to proving that the generic
scheme is secure, private, and accountable.

Theorem 1. The generic TAPS scheme S in Figure 4 is unforgeable, account-
able, and private, assuming that the underlying accountable threshold scheme

16 D. Boneh and C. Komlo

- S.KeyGen(1λ, n, t):

1:
(
pk ′, (sk1, . . . , skn)

)
←$ AT S.KeyGen(1λ, n, t)

2: rpk ←$ Rλ and compk ← COM.Commit(pk ′, rpk)

3: (pk t, sk
′
t)←$ PKE .KeyGen(1λ)

4: (pkcs, skcs)←$ SIG.KeyGen(1λ) // Combiner’s signing key

5: sk t ← (pk ′, sk ′t, pkcs) // the secret tracing key

6: skc ← (pk ′, pk t, skcs, t, compk , rpk) // Combiner’s secret key

7: pk ← (compk , pk t, pkcs)

8: output
(
pk , (sk1, . . . , skn), skc, sk t)

)
- S.Sign(sk i,m,C)→ δi: output δi ←$ AT S.Sign(sk i,m,C).

Here C ⊆ [n] is a set of size t of participating signers. Recall that in some
schemes AT S.Sign is an algorithm run by the signing parties, while in other
schemes AT S.Sign is an interactive protocol between the Combiner and the
signing parties. Either way, the end result in that the Combiner obtains sig-
nature shares {δi}i∈C .

- S.Combine(skc,m,C, {δi}i∈C) → σ: with skc = (pk ′, pk t, skcs, t, compk , rpk),
the Combiner does

1: σm ←$ AT S.Combine(pk ′,m,C, {δi}i∈C)

2: ct ← PKE .Encrypt(pk t, σm; r), where r is a fresh nonce

3: use the prover P to generate a proof π for the relation:

R
(

(compk , pk t,m, ct) ; (σm, r, rpk , pk
′)
)

= true iff
ct = PKE .Encrypt(pk t, σm; r),

AT S.Verify(pk ′,m, σm) = 1,

COM.Verify(pk ′, rpk , compk) = 1

(3)

4: tg←$ SIG.Sign
(
skcs, (m, ct , π)

)
// sign with Combiner’s signing key

5: output the TAPS signature σ ← (ct , π, tg)

- S.Verify
(
pk = (compk , pk t, pkcs), m, σ = (ct , π, tg)

)
→ {0, 1}: accept if

• π is a valid proof for the relation R in (3) with respect to the statement
(compk , pk t,m, ct), and

• SIG.Verify
(
pkcs, (m, ct , π), tg

)
= 1.

- S.Trace
(
sk t = (pk ′, sk ′t, pkcs), m, σ = (ct , π, tg)

)
→ C:

1: if SIG.Verify
(
pkcs, (m, ct , π), tg

)
6= 1, output fail and stop

2: set σm ← PKE .Decrypt(sk ′t, ct), if fail then output fail and stop

3: otherwise, output AT S.Trace(pk ′,m, σm)

Fig. 4. The generic TAPS scheme S

Threshold Signatures with Private Accountability 17

AT S is secure, the encryption scheme PKE is semantically secure, the non-
interactive proof system (P, V) is an argument of knowledge and HVZK, the
commitment scheme COM is hiding and binding, and the signature scheme SIG
is strongly unforgeable.

We provide concrete security bounds in the lemmas below. First, let us explain
the need for the Combiner’s signature in Step 4 of S.Combine.

Remark 7. Observe that the privacy games in Figures 2 and 3 give the adversary
a tracing oracle for any message-signature pair of its choice. In the context of
our construction this enables the adversary to mount a chosen ciphertext at-
tack on the encryption scheme PKE . Yet, Theorem 1 only requires that PKE
be semantically secure, not chosen ciphertext secure. The need for a weak secu-
rity requirement on PKE will become important in the next section where we
construct more efficient TAPS schemes. To secure against the chosen ciphertext
attack, we rely on the Combiner’s signature included in every TAPS signature.
It ensures that the adversary cannot call the tracing oracle with anything other
than a TAPS signature output by the Combiner.

We now prove Theorem 1. The proof is captured in the following three lemmas.

Lemma 1. The generic TAPS scheme S is unforgeable and accountable, as in
Definition 6, assuming the accountable threshold scheme AT S is secure, the non-
interactive proof system (P, V) is an argument of knowledge, and the commitment
scheme is binding. Concretely, for every adversary A that attacks S there exists
adversaries B1,B2, that run in about the same time as A, such that

Advforg
A,S(λ) ≤

(
Advforg

B1,AT S(λ) + Advbind
B2,COM(λ)

)
· q(λ) + κ(λ) (4)

where κ and q are the knowledge error and tightness of the proof system from
Definition 4.

We provide the proof of Lemma 1 in the full version of the paper.

Lemma 2. The generic TAPS scheme S is private against the public assum-
ing the non-interactive proof system (P, V) is HVZK, the public-key encryption
scheme PKE is semantically secure, the commitment scheme COM is hiding,
and the signature scheme SIG is strongly unforgeable. Concretely, for every ad-
versary A that attacks S there exist adversaries B1,B2,B3, that run in about the
same time as A, such that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) +Q ·Advhvzk

B3,(P,V)(λ) + ε(λ)
)

(5)
where ε(λ) is the hiding statistical distance of the commitment scheme COM
and Q is the number of signature queries from A.

We provide the proof of Lemma 2 in the full version of the paper.

18 D. Boneh and C. Komlo

Lemma 3. The generic TAPS scheme S is private against signers assuming the
non-interactive proof system (P, V) is HVZK, the public-key encryption scheme
PKE is semantically secure, and the signature scheme SIG is strongly unforge-
able. Concretely, for every adversary A that attacks S there exist adversaries
B1,B2,B3, that run in about the same time as A, such that

Advpriv2
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) +Q ·Advhvzk

B3,(P,V)(λ)
)
. (6)

The proof of Lemma 3 is almost identical to the proof of Lemma 2.

5 An Efficient TAPS from Schnorr Signatures

In this section we construct a secure TAPS in the random oracle model, based
on the Schnorr signature scheme. The construction is far more efficient than
applying the generic construction from the previous section to a Schnorr ATS.
We obtain this improvement by taking advantage of the algebraic properties of
the Schnorr signature scheme to vastly simplify the zero knowledge statement
that the Combiner needs to prove when making a signature.

The construction makes use of a group G of prime order q in which the
Decision Diffie-Hellman problem is hard. Let g, h be independent generators
of G. We also require a hash function H : PK × G ×M → Zq that will be
modeled as a random oracle, where PK is a space of public keys.

5.1 A review of the Schnorr ATS schemes

Let us first review the (uncompressed) Schnorr signature scheme [55]:

- KeyGen(λ): sk ←$ Zq, pk ← gsk , output (sk , pk).

- Sign(sk ,m): r ←$ Zq, R← gr, c← H(pk , R,m) ∈ Zq, z ← r+sk ·c ∈ Zq,
output σ ← (R, z).

- Verify(pk ,m, σ): compute c← H(pk , R,m) ∈ Zq and accept if gz = pk c ·R.

Our Schnorr TAPS builds upon an existing Schnorr accountable threshold sig-
nature (ATS), such as [50,49,53]3. Using our terminology, these ATS schemes
operate as follows:

- KeyGen(λ, n, t): Choose sk1, . . . , skn ←$ Zq and set pk i ← gski for i ∈ [n].
Set pk ← (t, pk1, . . . , pkn) and sk ← (sk1, . . . , skn). Output (pk , sk).
In an ATS, the Combiner key sk c and the tracing key sk t are equal to pk .

- Sign(sk i,m,C): An interactive protocol between the Combiner and signer i.
At the end of the protocol the Combiner has δi = (Ri, zi) ∈ G × Zq, where

3 Technically, these are multisignature schemes, but as noted in Remark 6, they can
easily be made into an ATS.

Threshold Signatures with Private Accountability 19

(Ri, zi) satisfies gzi = pk ci ·Ri for c← H(pk , R,m) ∈ Zq. Here R ∈ G is de-
fined4 as R :=

∏
i∈C Ri. This R is obtained from the Combiner’s interaction

with all the signers participating in the current signature process.

- Combine(pk ,m,C, {δi}i∈C): Abort if |C| 6= t. Parse δi as δi = (Ri, zi),
set z ←

∑
i∈C zi ∈ Zq and R←

∏
i∈C Ri. Output σ ←

(
R, z, C

)
.

One can confirm that (R, z) is a valid Schnorr signature on m with respect
to the public key pkC ←

∏
i∈C pk i.

- Verify(pk ,m, σ): parse pk = (t, pk1, . . . , pkn) and σ = (R, z, C). Accept if
|C| = t and the Schnorr verification algorithm accepts the triple (pkC ,m, σ

′)
where σ′ ← (R, z) and pkC ←

∏
i∈C pk i. Here the challenge c is computed as

c← H(pk , R,m) ∈ Zq and the algorithm accepts if |C| = t and gz = pk cC ·R.

- Trace(pk ,m, σ): parse σ = (R, z, C), run Verify(pk ,m, σ), the verification
algorithm from the previous bullet, and if valid, output C; else output fail.

The Schnorr ATS papers [50,49,53] describe different ways to instantiate the
Sign protocol. They prove security of the resulting Schnorr ATS scheme using
differing security models. Here we treat the Sign protocol as a black box, and
rely on the following assumption.

Assumption 1 The Schnorr ATS outlined above is a secure ATS scheme, as
in Definition 8.

5.2 An efficient Schnorr TAPS

We next construct our Schnorr-based TAPS scheme. If we were to follow the
generic construction from Section 4, the combiner would encrypt the entire
Schnorr signature (R, z), and would need to produce a zero knowledge proof
for a complicated relation. In particular, it would need to prove that an en-
crypted Schnorr signature is valid, which is difficult to prove in zero knowledge
efficiently. However, observe that in the public’s view, R is a product of random
elements in G, and as such, is independent of the quorum set C. Therefore, R can
be revealed in the TAPS signature in the clear without compromising the privacy
of C in the public’s view. Even an adversary who has all the signing keys learns
nothing about C from R. We only need to encrypt the quantity z ∈ Zq. The
challenge then is to develop an efficient zero knowledge proof that the cleartext
R and an encrypted z are a valid Schnorr signature with respect to an encrypted
quorum set C.

The scheme. Our Schnorr TAPS is built from any Schnorr ATS that operates
as described in Section 5.1 and satisfies Assumption 1. In addition, we use a
single-party (non-threshold) signature scheme SIG = (KeyGen,Sign,Verify).

4 In some Schnorr ATS schemes (e.g., [53]) this R is defined as R :=
∏
i∈C R

γi
i , for

public scalars {γi ∈ Zq}i∈C . We assume that all these scalars are set to 1, but our
constructions can easily accommodate any scalars.

20 D. Boneh and C. Komlo

The complete TAPS scheme is presented in Figure 5. The combine algorithm
in Step 4 generates a zero-knowledge proof for the relation RS in Figure 6. We
present two efficient proof systems for this relation in Sections 5.3 and 5.4.

In Step 4 of the tracing algorithm there is a need to find a set C ⊆ [n] of size t
that satisfies a certain property. If n is logarithmic in the security parameter,
then this set C can be found by exhaustive search over all t-size subsets of [n].
For larger n, we explain how to find C efficiently in Sections 5.3 and 5.4.

Correctness. The scheme is correct assuming the Schnorr ATS scheme, the sig-
nature scheme SIG, and proof system for RS are correct.

Security. We next prove security, privacy, and accountability.

Theorem 2. The Schnorr TAPS scheme is unforgeable, accountable, and pri-
vate, assuming that the underlying Schnorr ATS is secure (Assumption 1), the
signature scheme SIG is strongly unforgeable, DDH holds in G, and the non-
interactive proof system (P, V) for RS is an HVZK argument of knowledge.

The proof of Theorem 2 is presented in the following three lemmas, where we
also provide concrete security bounds.

Lemma 4. The Schnorr TAPS scheme is unforgeable and accountable, as in
Definition 6, assuming the underlying Schnorr ATS is secure, as in Definition 8,
and the non-interactive proof system (P, V) for RS is an argument of knowledge.
Concretely, for every adversary A that attacks TAPS, there exists an adversary
B that runs in about the same time as A such that

Advforg
A,S(λ) ≤

(
Advforg

B,AT S(λ)
)
· q(λ) + κ(λ) (7)

where κ and q are the knowledge error and tightness of the proof system.

We provide the proof of Lemma 4 in the full version of the paper.

Lemma 5. The Schnorr TAPS scheme is private against the public, as in Def-
inition 7, assuming DDH holds in G, the non-interactive proof system (P, V) for
RS is HVZK, and the signature scheme SIG is strongly unforgeable. Concretely,
for every adversary A that attacks S there exist adversaries B1,B2,B3 that run
in about the same time as A such that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) +Q ·Advhvzk
B2,(P,V)(λ) + (Q+ 1) ·Advddh

B3,G(λ)
)

(8)

where Q is the number of signature queries from A.

We provide the proof of Lemma 5 in the full version of the paper.

Lemma 6. The Schnorr scheme is private against signers, as in Definition 7,
assuming DDH holds in G, the non-interactive proof system (P, V) for RS is
HVZK, and the signature scheme SIG is strongly unforgeable.

The proof of Lemma 6 is mostly the same as the proof of Lemma 5.

Threshold Signatures with Private Accountability 21

- S.KeyGen(λ, n, t): using the independent generators g and h of G do:

1: Run the Schnorr ATS KeyGen procedure from Section 5.1. That is, choose
sk1, . . . , skn ←$ Zq and set pk i ← gski for i ∈ [n].
Set pk ′ ← (pk1, . . . , pkn)

2: Encrypt t with ElGamal: ψ ←$ Zq and (T0, T1)← (gψ, gthψ)

3: Generate (skcs, pkcs)←
$ SIG.KeyGen(λ) and ske ←$ Zq

4: sk t ← (pk ′, ske, pkcs) and pk t ← gske ∈ G // the tracing secret key

5: skc ← (pk ′, pk t, skcs, t, ψ) // the combiner’s secret key

6: pk ← (pk ′, pk t, pkcs, T0, T1) // the verifier’s public key

7: Output
(
pk , (sk1, . . . , skn), skc, sk t)

)
- S.Sign(sk i,m,C): Run the Schnorr ATS Sign procedure from Section 5.1 so

that the Combiner obtains a signature share δi ←$ (Ri, zi) ∈ G× Zq.
- S.Combine(skc,m,C, {δi}i∈C): With δi = (Ri, zi), the coordinator does:

1: R←
∏
i∈C Ri, z ←

∑
i∈C zi ∈ Zq, c← H(pk , R,m) ∈ Zq

// we know that gz =
[∏

i∈C pk i
]c ·R.

2: Encrypt z with ElGamal: ρ←$ Zq, ct := (c0, c1)← (gρ, gzpkρt).

3: Set (b1, . . . , bn) ∈ {0, 1}n, such that bi = 1 iff i ∈ C
// then gz =

[∏n
i=1(pk i)

bi
]c
·R.

4: Generate a zero knowledge proof π for the relation RS listed in Figure 6.
We present two efficient non-interactive proof systems for this relation in
Sections 5.3 and 5.4.

5: tg←$ SIG.Sign
(
skcs, (m,R, ct , π)

)
// sign with Combiner’s key

6: Output the TAPS signature σ ← (R, ct , π, tg).

- S.Verify(pk , m, σ): Let σ = (R, ct , π, tg) where ct = (c0, c1).

Parse pk = (pk ′, pk t, pkcs, T0, T1) and set c← H(pk , R,m). Accept if:

• SIG.Verify
(
pkcs, (m,R, ct , π), tg

)
= 1, and

• π is a valid proof for the relation RS in Figure 6 with respect to the
statement (g, h, pk ′, pk t, T0, T1, R, c, ct = (c0, c1)).

- S.Trace(sk t,m, σ): Parse sk t =
(
pk ′ = (pk1, . . . , pkn), ske, pkcs

)
and do:

1: Parse σ as (R, ct , π, tg) and ct = (c0, c1). Set c← H(pk , R,m).

2: If SIG.Verify
(
pkcs, (m,R, ct , π), tg

)
6= 1, output fail and stop.

3: ElGamal decrypt ct = (c0, c1) as g(z
′) ← c1/c0

ske ∈ G.

4: Find a set C ⊆ [n], where |C| = t and g(z
′) = R · (

∏
i∈C pk i)

c.
This equality implies that (R, z′) is a valid Schnorr signature on m with
respect to the public key pkC ←

∏
i∈C pk i.

5: If such a set C ⊆ [n] is found, output C. Otherwise, output fail.

Fig. 5. The Schnorr TAPS scheme

22 D. Boneh and C. Komlo

RS =
{

(g, h, pk ′ = (pk1, . . . , pkn), pk t, T0, T1, R, c, ct = (c0, c1)) ; (z, ρ, ψ, b1, . . . , bn)
}

iff (1) gz =
[n∏
i=1

(pk i)
bi
]c
·R,

(2) c0 = gρ and c1 = gz · pkρt ,

(3) T0 = gψ and T1 = g
∑n
i=1 bi · hψ,

(4) bi(1− bi) = 0 for i = 1, . . . , n (i.e. bi ∈ {0, 1}).

Fig. 6. The relation RS used in the Combine algorithm of the Schnorr TAPS. Condi-
tion (1) verifies that (R, z) is a valid signature for m assuming c = H(pk , R,m); (2)
verifies that (c0, c1) is an ElGamal encryption of z using the tracing public key pk t; (3)
verifies that the quorum C contains t signers; and (4) verifies that each bi is in {0, 1}.
Here g and h are public random generators of G.

5.3 A sigma protocol proof for RS

It remains to construct an efficient non-interactive zero knowledge argument of
knowledge for the relationRS from Figure 6. In this section we construct a Sigma
protocol, and in the next section we construct a protocol using Bulletproofs. We
describe these as interactive protocols, but they can be made non-interactive
using the Fiat-Shamir transform [33,3].

Let g, h, h1, . . . , hn ∈ G be independent random generators of G. To prove
knowledge of a witness for the relation RS from Figure 6 we use the following
approach:

Protocol S1:

1: The prover chooses γ ←$ Zq and commits to its bits (b1, . . . , bn) ∈ {0, 1}n as(
v0 ← gγ , v1 ← gb1hγ1 , . . . , vn ← gbnhγn

)
∈ Gn+1

It sends (v0, v1, . . . , vn) to the verifier. Observe that for i ∈ [n] the pair
(v0, vi) is an ElGamal encryption of bi with respect to the public key hi.
The term v0 will be used for efficient tracing.

2: The verifier samples a challenge α←$ Zq and sends α to the prover.
3: The prover computes φi ← αiγ(1− bi) ∈ Zq for i ∈ [n].
4: Finally, the prover uses a Sigma protocol to prove knowledge of a witness

(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn) for the relation RS1 in Figure 7.

We present the concrete steps for the 3-round Sigma protocol for the relation
RS1 used in Step 4 in the full version, where we also show the TAPS signature
obtained from this protocol. After applying the Fiat-Shamir transform to Pro-
tocol S1, the resulting proof π for the relation RS from Figure 6 contains n+ 1
group elements and 2n+ 5 elements in Zq.

Threshold Signatures with Private Accountability 23

RS1 :=
{

(g, h, h1, . . . , hn, pk1, . . . , pkn, pk t, T0, T1, R, c, ct = (c0, c1), v0, v1, . . . , vn, α) ;

(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn)
}

where

(1) gz = R ·
n∏
i=1

(pk i)
c·bi

(2) c0 = gρ and c1 = pkρt · g
z

(3) T0 = gψ and T1 = g
∑n
i=1 bi · hψ

(4) v0 = gγ and vi = gbihγi for i ∈ [n] and

n∏
i=1

v
αi(1−bi)
i =

n∏
i=1

hφii

Fig. 7. The relation RS1. Equations (1), (2), and (3) are the same as in the relation
RS in Figure 6. Equation (4) proves that bi(1− bi) = 0 for i ∈ [n]. As usual, both the
prover and verifier have c ← H(pk , R,m). The prover computes the witness element
φ1, . . . , φn ∈ Zq on its own as φi ← αiγ(1− bi).

Theorem 3. Let G be a group of prime order q. If the Decision Diffie-Hellman
(DDH) assumption holds in G, and n/q is negligible, then Protocol S1 is an
HVZK argument of knowledge for the relation RS from Figure 6.

We provide the proof for Theorem 3 in the full version.

Remark 8 (Efficient tracing). Recall that the tracing algorithm in Figure 5
requires the tracer to find a set C ⊆ [n] of size t such that g(z

′) = (
∏
i∈C pk i)

c ·R.
When using Protocol S1, the tracing algorithm can efficiently find this set C ⊆
[n] by decrypting the Combiner’s ElGamal commitment (v0, v1, . . . , vn) ∈ Gn+1

to the bits b1, . . . , bn ∈ {0, 1} that define C. To see how, let us extend algorithm
KeyGen in Figure 5 by adding the following steps:

- choose τi ←$ Zq and set hi ← gτi for i ∈ [n]
- aug-sk t ← (sk t, τ1, . . . , τn) // augmented tracing key
- aug-sk c ← (sk c, h1, . . . , hn) // augmented Combiner’s key
- aug-pk ← (pk , h1, . . . , hn) // augmented public key

The Combiner and verifier use h1, . . . , hn in their augmented keys to produce
and verify the proof for the relation RS using Protocol S1. The proof contains
an ElGamal commitment (v0, v1, . . . , vn) to the bits b1, . . . , bn. The tracing al-
gorithm can obtain b1, . . . , bn ∈ {0, 1} by decrypting the ElGamal ciphertexts
(v0, vi) for i ∈ [n] using the secret keys τ1, . . . , τn ∈ Zq. Soundness of Protocol S1
ensures that the resulting bits define the correct quorum set C. Note that aug-pk
contains a total of 2n+ 4 group elements.

5.4 A bulletproofs protocol proof for RS

The Sigma protocol for the relation RS from Figure 6 may be adequate for many
real-world settings where the number of allowed signers is small. However, if a

24 D. Boneh and C. Komlo

large number of parties n is used, then the resulting proof size may be too large.
We can shrink the proof using an argument system that produces shorter proofs
(e.g., using a zk-SNARK). This approach raises two difficulties. First, computing
the proof will be slow because the exponentiations in Figure 6 would need to
be implemented explicitly in the zk-SNARK relation. Second, we would lose the
efficient tracing algorithm from Remark 8.

We can avoid both issues using the Bulletproofs proof system [20,22] or its
treatment as a compressed Sigma protocol in [2]. First, the exponentiations in
Figure 6 are handled efficiently. Second, we can retain efficient tracing with a
much shorter TAPS signature compared to the Sigma protocol in Section 5.3.

Let G be a group of prime order q, let a1, . . . , an be generators of G, and
a := (a1, . . . , an) ∈ Gn. For w ∈ Znq we write aw :=

∏n
i=1 a

wi
i ∈ G.

Recall that bulletproofs is an HVZK proof system that can prove knowledge
of a satisfying witness w ∈ Znq for the relation

RBP :=
{

(P, a ∈ Gn, u ∈ G) ; w ∈ Znq
}

iff P (w) = 1 and aw = u,

where P is a rank one constraint system (R1CS), meaning that P is a triple of
matrices A,B,C ∈ Z`×nq and P (w) = 1 iff (Aw) ◦ (Bw) = Cw. The ◦ operator
denotes the Hadamard product (component-wise product) of two vectors in Znq .
The program P is said to have ` constraints over n variables. We represent the
program P in RBP using R1CS instead of an arithmetic circuit because R1CS is
more convenient in our settings: it more directly captures the relations we need
to prove.

The Bulletproofs proof is succinct, containing only 2dlog2(n + `)e group el-
ements and two elements in Zq. For a convincing prover P ∗, the Bulletproofs
extractor outputs some w ∈ Znq such that either (i) w is a valid witness for
RBP, or (ii) w is a non-trivial relation among the generators5 a ∈ Gn, namely
aw = 1. If the discrete log problem in G is difficult, and a are random generators
of G, then an efficient prover cannot cause (ii) to happen. Then bulletproofs is
an argument of knowledge for RBP.

Shorter proofs with efficient tracing. In the full version of the paper we
show that Bullerptoofs gives an efficient logarithmic size proof for the relation
RS from Figure 6. However, in doing so we lose the ability to efficiently trace
a signature using the tracing key. Recall that the tracing algorithm in Figure 5
needs to find a set C ⊆ [n] of size t such that g(z

′) = (
∏
i∈C pk i)

c ·R. This can be

done, in principal, by trying all sets C ⊆ [n] of size t, assuming
(
n
t

)
is polynomial

in the security parameter λ. However, we want a more efficient tracing algorithm.

We can restore efficient tracing for larger n and t in a way similar to Remark 8.
Let (b1, . . . , bn) ∈ {0, 1}n be the characteristic vector of the quorum of signers
C ⊆ [n]. In Section 5.3 we encrypted every bit bi on its own, and added the n+1
group elements (v0, . . . , vn) to the signature. The tracing algorithm could then

5 This relation might include additional random generators of G.

Threshold Signatures with Private Accountability 25

decrypt each of the n ElGamal ciphertexts (v0, vi), for i ∈ [n], and efficiently
recover the quorum set C.

Using Bulletproofs we can compress the commitment to the bits (b1, . . . , bn)
by committing to a batch of bits at a time using a single ElGamal ciphertext.
We will then need to extend the Bulletproofs relation to verify that every batch
commitment is well formed.

To see how, let us fix a batch size e, say e := 40. For simplicity suppose that
e divides n. We extend algorithm KeyGen in Figure 5 by adding the following
steps:

- for i ∈ [n/e]: choose τi ←$ Zq and set hi ← gτi ∈ G
- aug-sk t ← (sk t, τ1, . . . , τn/e) // augmented tracing key
- aug-sk c ← (sk c, h1, . . . , hn/e) // augmented Combiner’s key
- aug-pk ← (pk , h1, . . . , hn/e) // augmented public key

Next, we augment the prover for the relation RS from Figure 6 by adding a
step 0 where the prover does:

- step (i): Divide the n bits into (n/e) buckets 0 ≤ B1, . . . , Bn/e < 2e as:

B1 ← b1 + 2b2 + 4b3 + . . .+ 2ebe ∈ Zq,

B2 ← be+1 + 2be+2 + . . .+ 2eb2e ∈ Zq,
...

Bn/e ← bn−e+1 + 2bn−e+2 + . . .+ 2ebn ∈ Zq.

- step (ii): Choose a random γ ←$ Zq and compute(
v0 ← gγ , v1 ← gB1hγ1 , . . . , vn/e ← gBn/ehγn/e

)
∈ G(n/e)+1.

Send (v0, v1, . . . , vn/e) to the verifier. Observe that for i ∈ [n/e] the pair
(v0, vi) is an ElGamal encryption of gBi with respect to the public key hi.

Finally, we augment the relation RS to verify that (v0, v1, . . . , vn/e) were con-
structed correctly, but this has only a small impact on the size of the proof. The
final TAPS signature is expanded by (n/e) + 1 group elements (v0, v1, . . . , vn/e).

When the tracing algorithm is given a signature to trace, it can obtain
gB1 , . . . , gBn/e ∈ G by decrypting the ElGamal ciphertexts (v0, vi) for i ∈ [n/e]
using the secret keys τ1, . . . , τn/e ∈ Zq in the tracing key aug-sk t. Next, the
tracing algorithm computes the discrete log base g of these group elements to
obtain B1, . . . , Bn/e ∈ Zq. Since each Bi is in {0, 1, . . . , 2e− 1}, each discrete log

computation can be done with about 2e/2 group operations.
Taking e := 40 gives a reasonable amount of time for computing all of

B1, . . . , Bn/e ∈ Zq from gB1 , . . . , gBn/e . The tracing algorithm then computes
b1, . . . , bn ∈ {0, 1} from B1, . . . , Bn/e, and this reveals the required quorum set
C. Soundness of the argument system for the relation RS ensures that the re-
sulting bits b1, . . . , bn define the correct quorum set C ⊆ [n].

26 D. Boneh and C. Komlo

6 Extensions

Shorter public keys. While the size of the public key in our Schnorr construc-
tion grows linearly in n, there are several ways to shrink the public key. First, the
public key can be replaced by a short binding commitment to the linear-size pub-
lic key, and the full public key could be included in every signature. This shrinks
the public key at the cost of expanding the signature. Alternatively, both the
public key and signature can be kept short by making the public key a witness
in the zero-knowledge proof statement, as is done in the generic construction
(Figure 4). However, doing so comes at the cost of increased complexity of the
statement that the Combiner needs to prove.

Shorter signatures using tracing confirmation. The need to trace a TAPS
signature to the signing quorum implies that a TAPS signature must encode
the signing set, and therefore must be at least log2

(
n
t

)
bits long. We can design

shorter TAPS signatures by relaxing this requirement: replace the tracing algo-
rithm by a quorum confirmation algorithm. The confirmation algorithm takes
the signing quorum set C as input, along with the secret tracing key sk t, and a
pair (m,σ). It outputs 1 if the set C is the set that generated σ. The security
definitions in Section 3 can be adapted to support quorum confirmation instead
of tracing. Since a signature no longer needs to encode the quorum set, this
lets us construct TAPS where signature size in independent of the number of
parties, for example by using a constant-size zk-SNARK for the relation RS in
Figure 6. Our bulletproofs construction can be made to directly achieve a TAPS
with quorum confirmation and logarithmic size signatures.

Stronger privacy against signers. Our privacy against signers game in Fig-
ure 3 ensures that the signer’s private keys cannot be used to link a TAPS
signature to the quorum that created it. However, it is possible that the quorum
of signers that helped create a TAPS signature σ, can later recognize σ, using its
knowledge of the random bits used during the signing process. The same is true
for many Schnorr private threshold signature (PTS) schemes: the quorum that
creates a signature can recognize that signature. If needed, our Schnorr TAPS
construction can be strengthened so that the Combiner can ensure that a TAPS
signature cannot be recognized by the quorum of signers that helped create it.
The Combiner need only blind the quantity R ∈ G in the signature by a random
group element, and adjust the relation in Figure 6 accordingly. We leave this
variation for future work.

A construction from the BLS signature scheme. In this paper we focused
on a TAPS from the Schnorr signature scheme. A TAPS can also be constructed
from the BLS signature scheme [17] as the underlying ATS. We leave this for
future work.

Beyond threshold: supporting monotone access structures. While thresh-
old access structures are widely used in practice, our constructions generalize to

Threshold Signatures with Private Accountability 27

support more general monotone access structures. For example, one can require
that a quorum of signers contain t1 parties from one set of signers and t2 from
another set of signers. More generally, standard techniques [6] can be used to
generalize our construction to support any access structure derived from a poly-
nomial size monotone formula.

7 Conclusion and Future Work

In this work, we present TAPS, a new threshold signature primitive that ensures
both accountability and privacy. While notions of accountable threshold schemes
and private threshold schemes exist in the literature, our work takes a step
towards defining a primitive with both properties simultaneously.

We hope that future work can lead to TAPS schemes with shorter signatures
and public keys. Our generic construction has a short public key: the public key
is simply a commitment to an ATS public key, and so its size is independent
of the number of parties n. However, our Schnorr-based systems with efficient
tracing require a linear size public key. An important research direction is to
design an efficient TAPS that relies on standard assumptions where the size
of the public key is independent of n. One possible avenue for a more efficient
TAPS is for pk to be the root of a Merkle tree whose leaves are the n signers’
public keys. The zero-knowledge proof output by the Combiner will then be a
succinct non-interactive zero-knowledge argument of knowledge (a zk-SNARK)
demonstrating that t of the n signers participated in signing. A related direction
is to employ the approach of Dodis et al. [31], by defining the public key via
an accumulator scheme. The signature is then a proof that the t signers know
the corresponding secret keys to t public keys in the accumulator. However, it
remains an open problem to design such a scheme that fulfills our notion of
accountability.

Another direction for future work is to improve the efficiency of verification
in our Schnorr TAPS. In settings where n is small, such as financial transactions,
the linear-time cost of verification of the Schnorr construction is acceptable. For
large n the cost may be prohibitive. Future work could consider other construc-
tions that support full tracing, but with a faster verifier.

Acknowledgments. This work was funded by NSF, DARPA, a grant from
ONR, and the Simons Foundation. Opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

1. G. Andresen. Bitcoin m-of-n standard transactions, 2011. BIP-0011.
2. T. Attema and R. Cramer. Compressed ς-protocol theory and practical application

to plug & play secure algorithmics. In CRYPTO 2020, volume 12172 of LNCS,
pages 513–543. Springer, 2020.

https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki

28 D. Boneh and C. Komlo

3. T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round
interactive proofs. Cryptology ePrint Archive, Report 2021/1377, 2021. https:

//ia.cr/2021/1377.
4. M. H. Au, S. S. M. Chow, W. Susilo, and P. P. Tsang. Short linkable ring signatures

revisited. In Public Key Infrastructure PKI Workshop, 2006.
5. A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the

discrete logarithm assumption and a generalized forking lemma. In Conference on
Computer and Communications Security, 2008.

6. A. Beimel. Secret-sharing schemes: A survey. In IWCC, 2011.
7. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO ’92,

volume 740 of LNCS, pages 390–420. Springer, 1992.
8. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: For-

mal definitions, simplified requirements, and a construction based on general as-
sumptions. In EUROCRYPT ’03, volume 2656 of LNCS, pages 614–629. Springer,
2003.

9. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In A. Juels, R. N. Wright, and S. D. C. di Vimercati,
editors, CCS’06, pages 390–399. ACM, 2006.

10. M. Bellare and S. Shoup. Two-tier signatures from the fiat-shamir transform, with
applications to strongly unforgeable and one-time signatures. IET Inf. Security,
2(2):47–63, 2008.

11. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. J. of Cryptology, 22(1):114–138, 2009.

12. P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty
via group signatures without encryption. In SCN’10, volume 6280 of LNCS, pages
381–398. Springer, 2010.

13. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS’12, pages 326–349. ACM, 2012.

14. J. Blömer, J. Juhnke, and N. Löken. Short group signatures with distributed trace-
ability. In Mathematical Aspects of Computer and Information Sciences MACIS,
2015.

15. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Y. Desmedt, editor, PKC,
volume 2567, pages 31–46, 2003.

16. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO ’04,
volume 3152 of LNCS, pages 41–55. Springer, 2004.

17. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532, 2001.

18. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully
dynamic group signatures. J. of Cryptology, 33(4):1822–1870, 2020.

19. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short ac-
countable ring signatures based on DDH. In European Symposium on Research in
Computer Security, volume 9326 of LNCS, pages 243–265. Springer, 2015.

20. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT
2016, volume 9666 of LNCS, pages 327–357. Springer, 2016.

21. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications
to ad-hoc groups. In Crypto’02, volume 2442 of LNCS, pages 465–480. Springer,
2002.

https://ia.cr/2021/1377
https://ia.cr/2021/1377

Threshold Signatures with Private Accountability 29

22. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short Proofs for Confidential Transactions and More. In IEEE S&P, pages 315–
334, 2018.

23. J. Camenisch. Efficient and generalized group signatures. In EUROCRYPT ’97,
volume 1233 of LNCS, pages 465–479. Springer, 1997.

24. J. Camenisch, M. Drijvers, A. Lehmann, G. Neven, and P. Towa. Short threshold
dynamic group signatures. In SCN’20, volume 12238 of LNCS, pages 401–423.
Springer, 2020.

25. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, volume 547
of LNCS, pages 257–265. Springer, 1991.

26. I. Damg̊ard and M. Koprowski. Practical threshold RSA signatures without a
trusted dealer. In EUROCRYPT 2001, volume 2045 of LNCS, pages 152–165.
Springer, 2001.

27. I. Damg̊ard. On Σ Protocols, 2010.
28. H. de Valence. Merlin transcripts. https://merlin.cool.
29. D. Derler and D. Slamanig. Highly-efficient fully-anonymous dynamic group sig-

natures. In AsiaCCS’18, 2018.
30. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89, 1989.
31. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad

hoc groups. In EUROCRYPT ’04, volume 3027 of LNCS, pages 609–626. Springer,
2004.

32. H. Feng, J. Liu, D. Li, Y. Li, and Q. Wu. Traceable ring signatures: general frame-
work and post-quantum security. Designs, Codes and Cryptography, 89(6):1111–
1145, 2021.

33. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO ’86, volume 263 of LNCS, pages 186–194.
Springer, 1986.

34. P. Fouque and J. Stern. Fully distributed threshold RSA under standard assump-
tions. In ASIACRYPT 2001, volume 2248 of LNCS, pages 310–330. Springer,
2001.

35. E. Fujisaki. Sub-linear size traceable ring signatures without random oracles. In
CT-RSA, 2011.

36. E. Fujisaki and K. Suzuki. Traceable ring signature. In Public Key Cryptography,
2007.

37. J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps.
IEICE Tr. on Fundamentals of Electronics Comm. and Comp. Sci., 89-A(5):1328–
1338, 2006.

38. R. Gennaro and S. Goldfeder. One round threshold ecdsa with identifiable abort.
IACR Cryptol. ePrint Arch., 2020.

39. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signa-
tures. Inf. Comput., 164(1):54–84, 2001.

40. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC’11, pages 99–108. ACM, 2011.

41. S. Goldwasser, S. Micali, and A. C. Yao. Strong signature schemes. In FOCS’83,
pages 431–439. ACM, 1983.

42. V. Goyal, Y. Song, and A. Srinivasan. Traceable secret sharing and applications.
In CRYPTO ’21, volume 12827 of LNCS, pages 718–747. Springer, 2021.

43. A. Haque and A. Scafuro. Threshold ring signatures: New definitions and post-
quantum security. In Public-Key Cryptography, volume 12111 of LNCS, pages
423–452. Springer, 2020.

https://merlin.cool

30 D. Boneh and C. Komlo

44. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC research and development, 1983.

45. C. Komlo and I. Goldberg. FROST: flexible round-optimized schnorr threshold
signatures. In SAC’20, 2020.

46. B. Libert and M. Yung. Dynamic fully forward-secure group signatures. In Asi-
aCCS’10, 2010.

47. J. K. Liu, V. K. Wei, and D. S. Wong. A separable threshold ring signature scheme.
In Information Security and Cryptology - ICISC, 2003.

48. M. Manulis, N. Fleischhacker, F. Günther, F. Kiefer, and B. Poettrering. Group
signatures: Authentication with privacy. Bundesamt fur Sicherheit in der Infor-
mationstechnik, 2012.

49. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
2019.

50. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In CCS’01, pages 245–254. ACM, 2001.

51. A. Munch-Hansen, C. Orlandi, and S. Yakoubov. Stronger notions and a more
efficient construction of threshold ring signatures. In Latincrypt, 2021.

52. M. Naor. Deniable ring authentication. In CRYPTO 2002, 2002.
53. J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple Two-Round Schnorr Multi-

Signatures. In CRYPTO 2021, volume 12825 of LNCS, pages 189–221. Springer,
2021.

54. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT
2001, volume 2248 of LNCS, pages 552–565. Springer, 2001.

55. C. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO
’89, volume 435 of LNCS, pages 239–252. Springer, 1989.

56. V. Shoup. Practical threshold signatures. In EUROCRYPT 2000, volume 1807 of
LNCS, pages 207–220. Springer, 2000.

57. D. R. Stinson and R. Strobl. Provably secure distributed schnorr signatures and
a (t, n) threshold scheme for implicit certificates. In Information Security and
Privacy, 2001.

58. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong.
Separable linkable threshold ring signatures. In INDOCRYPT 2004, volume 3348
of LNCS, pages 384–398. Springer, 2004.

59. S. Xu and M. Yung. Accountable ring signatures: A smart card approach. In
IFIP’04, 2004.

	Threshold Signatures with Private Accountability

