
Practical Statistically-Sound Proofs of
Exponentiation in any Group?

Charlotte Hoffmann[0000−0003−2027−5549]1, Pavel Hubáček[0000−0002−6850−6222]2,
Chethan Kamath3, Karen Klein4, and Krzysztof Pietrzak1

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
{pietrzak,charlotte.hoffmann}@ist.ac.at

2 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

3 Tel Aviv University, Tel Aviv, Israel
ckamath@protonmail.com

4 ETH Zurich, Zurich, Switzerland
karen.klein@inf.ethz.ch

Abstract. A proof of exponentiation (PoE) in a group G of unknown
order allows a prover to convince a verifier that a tuple (x, q, T, y) ∈
G × N × N × G satisfies xq

T

= y. This primitive has recently found ex-
citing applications in the constructions of verifiable delay functions and
succinct arguments of knowledge. The most practical PoEs only achieve
soundness either under computational assumptions, i.e., they are argu-
ments (Wesolowski, Journal of Cryptology 2020), or in groups that come
with the promise of not having any small subgroups (Pietrzak, ITCS
2019). The only statistically-sound PoE in general groups of unknown
order is due to Block et al. (CRYPTO 2021), and can be seen as an elab-
orate parallel repetition of Pietrzak’s PoE: to achieve λ bits of security,
say λ = 80, the number of repetitions required (and thus the blow-up in
communication) is as large as λ.
In this work, we propose a statistically-sound PoE for the case where the
exponent q is the product of all primes up to some bound B. We show
that, in this case, it suffices to run only λ/ log(B) parallel instances
of Pietrzak’s PoE, which reduces the concrete proof-size compared to
Block et al. by an order of magnitude. Furthermore, we show that in
the known applications where PoEs are used as a building block such
structured exponents are viable. Finally, we also discuss batching of our
PoE, showing that many proofs (for the same G and q but different x
and T) can be batched by adding only a single element to the proof per
additional statement.

? Pavel Hubáček was supported by the Grant Agency of the Czech Republic un-
der the grant agreement no. 19-27871X and by the Charles University project
UNCE/SCI/004. Chethan Kamath is supported by Azrieli International Postdoc-
toral Fellowship. Karen Klein was supported in part by ERC CoG grant 724307 and
conducted part of this work at Institute of Science and Technology Austria.

1 Introduction

In a proof of exponentiation (PoE) in a group G, a prover P aims at convincing
a verifier V that a tuple (x, q, T, y) ∈ G×N×N×G satisfies xq

T

= y. Note that
such proofs are only of interest if the order ord(G) of G is not known: otherwise,
one can efficiently compute xq

T

by first computing the exponent modulo the
group order, i.e., e = qT mod ord(G), and then computing xe using a single
exponentiation xe in G.

PoEs in groups of unknown order have found applications for constructing
verifiable delay functions (VDFs) [40,50] and as building blocks for time- and
space-efficient succinct non-interactive arguments of knowledge (SNARK) [7]. In
these applications, the prover and verifier get (x, q, T) and then P computes xq

T

by exponentiating to the power q sequentially5 T times:

x→ xq → xq
2

→ xq
3

→ . . .→ xq
T

.

In the next step, P sends y to V and then they run an interactive protocol where
P convinces V that y = xq

T

. The existing protocols are all public-coin and, thus,
can be made non-interactive in the random-oracle model using the Fiat-Shamir
heuristic [27].

Soundness of PoEs. In the PoEs mentioned above, the prover’s computation for
the proof is marginal compared to the T exponentiations required to compute y
in the first place, but the proofs differ in size. As illustrated in Table 1, in [50]
the proof is just one group element, in [40] it is log(T) elements and in [7] it is
λ log(T) elements for a statistical security parameter λ.

On the other hand, [7] is statistically-sound (and the non-interactive proof
inherits this security in the random oracle model), while the soundness of [50]
relies on a new computational hardness assumption called adaptive root assump-
tion. Like with the proof-size, [40] lies in-between the other two protocols also in
terms of the assumptions required for its soundness. It relies on the low order as-
sumption, which requires that it is hard to find a (non-identity) element with low
order in G. This assumption is weaker than the adaptive root assumption [10]
and, in groups where no low order elements exist, it holds unconditionally and,
thus, the [40] PoE has statistical soundness.

The two concrete groups of unknown order that have been suggested are RSA
groups [41] and class groups of imaginary quadratic fields [13]. An RSA group
Z∗N is defined by a product N = p · q of two large randomly sampled primes
p, q. In [40], it was observed that if p, q are chosen to be safe primes6 then the
subgroup of quadratic residues of Z∗N has no low order elements and, thus, the
PoE is statistically-sound.

5 In VDFs, it is an explicit “sequentiality assumption” that y = xq
T

cannot be com-
puted faster (i.e., with fewer sequential computational steps) than as described
above, even when using massive parallelism.

6 A prime p is safe if (p− 1)/2 is also prime.

2

While class groups are much less studied than RSA groups, they have one
major advantage, explained next. The only known way to sample an RSA group
is to first sample p, q and then outputN = p·q, but this means the sampler knows
the factorization and thus the group order (p− 1)(q− 1). For such groups to be
used for VDFs or SNARKs, one thus needs to either employ some trusted party
to sample N and truthfully delete p, q, or sample N in an expensive multiparty
computation (see, e.g., [28,17] and the references therein). Class groups on the
other hand have a “transparent” setup: they can be sampled obliviously in the
sense that a random string specifies a group without revealing the order of the
group. However, our understanding of non-standard assumptions, like the low-
order assumption, is still developing in class groups: in 2020 the authors of [3]
showed how to break the low-order assumption in class groups for some classes
of prime numbers.

Why Statistical Soundness? Recall that the only statistically-sound PoE in a
group with transparent setup is from [7]. There, the PoE is used in a proof of
knowledge and, to argue statistical knowledge-soundness of the protocol, the
underlying PoE must be statistically-sound.

Also when a PoE is used in VDFs, statistical soundness can be crucial as
such VDFs still provide some security even when the group order is revealed.
Moreover, in settings where the group order is supposed to be known by some
parties, it allows for a much more efficient setup. We discuss those two settings
below.

Recall that a VDF has two security properties: the first is the sequentiality,
which states that the output y := xq

T

cannot be computed faster than by T
sequential exponentiations; the second is the soundness of the proof certifying
that y is the correct output. If a VDF is statistically-sound then, even in the
worst case where an attacker learns the group order (say because the trusted
setup failed, or in the case of sampling a weak class group), the attacker will
only be able to compute the output fast but it will still not be able to lie about
its value. In a design like Chia (chia.net), which combines VDFs with proofs
of space to get a secure permissionless blockchain, an attacker that occasionally
learns the group order (Chia uses class groups which are sampled freshly every
10 minutes) has limited impact on the security, but breaking the soundness of
the VDF could be potentially devastating.7

Statistically-sound VDFs have also been used to construct randomness bea-
cons like in the RandRunner protocol [46]. Their setup is not transparent: every
party participating in the protocol realizing the beacon will sample two safe
primes which then can be used in Pietrzak’s statistically-sound PoE. The fact
that these parties know the factorization is actually a feature, as they are occa-
sionally required to use it as a trapdoor to compute and broadcast a VDF output

7 A minor nuisance would be the need to roll back the blockchain once a flawed
proof was added and recognized. But an attacker that can forge proofs controls the
randomness, and thus can do things like attaching a pre-computed chain to the
current one in order to do a double spending attack with only little resources.

3

chia.net

and the PoE certifying its correctness fast. To prevent parties from lying, they
must provide a zero-knowledge proof that their modulus is the product of two
safes primes. Using the statistically-sound PoE from this work, we can avoid this
expensive ZK proof and just use any RSA modulus, at the cost of larger PoEs
for the individual proofs.

Generally, by using a VDF that is statistically-sound in any group allows us
to skip the expensive zero-knowledge proof showing that a group was sampled
correctly during setup (i.e., it has no low order elements) for protocols where
statistical soundness is required because the party sampling the group knows
the group order and, thus, could easily break soundness otherwise. Apart from
randomness beacons as RandRunner, a related scenario comes up in the fair
multiparty coin-flipping protocol of Freitag et al. [30]. This methodology might
also be useful for (non-interactive) timed commitments [11] or encryption [32].

1.1 Our Contribution

As outlined above, Wesolowski’s PoE has proofs of size one (group element)
under the adaptive root assumption, Pietrzak’s PoE has proofs of size log(T)
under the weaker low order assumption, and the PoE of Block et al. has proofs
of size log(T)·λ for a statistical security parameter λ, say λ = 80. The protocol of
Block et al. is the only PoE with statistical soundness in a group with transparent
setup.

In this work, we present a new PoE to certify that (x, q, T, y) satisfies y = xq
T

with statistical soundness in all groups. Our PoE only works for q of a special
form. Namely, q is the product of all primes less than some bound B and, for such
q, we get a proof-size log(T) · λ/ log(B), i.e., by a factor log(B) smaller than in
Block et al. [7]. Fortunately for the applications to VDFs or SNARKs discussed
above, the choice of q does not really matter: in the SNARKs application [7]
one can use any q that is sufficiently large.8 For VDFs, one typically just sets
q = 2, so exponentiation means one squaring. Having a more general q we can use
square and multiply, so each exponentiation are blog(q)c (not just one) sequential
squarings with some multiplications in-between. Note that if q was a power of 2
(which it is not in our case), say 2k, the initial exponentiation would be of the
form x(2

k)T , so one would set the time parameter to T = T ′/k in order to get a
challenge that takes time T ′ to compute. Similarly, for our choice of q one sets
the time parameter to T = dT ′/ log(q)e to get a challenge that takes sequential
time T ′ to compute.

We cannot choose B too large, as a larger B negatively affects the verifier’s
complexity. As illustrated in Figure 2, in our most basic protocol, the verifier’s
complexity is roughly the same as in Block et al. for B = 521. For this B, we get
the proof down from λ = 80 to 9 = d80/ log(B)e elements for each of the log(T)
rounds as illustrated in Figure 1. In practice, this means that, e.g., for T = 232

8 In [7] many results are stated only for odd choices of q. In Appendix B we show that
they also hold for even q.

4

Fig. 1. Number of elements sent by the prover in one round for 80-bit security depend-
ing on the bound B. The dotted blue line is the proof-size in [7], the orange graph is
the proof-size in our protocol and the dashed green line is the proof-size in [40] (which
is one element per round).

Fig. 2. Number of multiplications of the verifier in one round for 80-bit security de-
pending on the bound B. The dotted blue line is the number of multiplications in [7],
the orange graph is the number of multiplications in our protocol and the dashed green
line is the verifier’s complexity in [40]. In Figure 4 we dissect the orange curve.

and a group with elements of size 2048 bits, the proof-size drops from 655KB
to 74KB.

Basic Protocol and Proof Idea. Our starting point is the following observa-
tion on the soundness in Pietrzak’s PoE: Pietrzak’s protocol proceeds in log(T)

rounds, where each round starts with a claim xq
T ?
= y and ends with a claim

y′
?
= x′q

T/2

for a T of half the size. Assume that, at the beginning of a round,
we have the wrong claim that y′ ?

= xq
T

while y = xq
T

, where y′ = y · α with
α 6∈ {1,−1}. The soundness of the protocol then depends on the order ord(α) of
α (i.e., αord(α) = 1). Concretely, if ord(α) = pe for some prime power e of p at
the beginning of a round (in this introduction, we only consider the special case

5

of a single prime power as it already contains all interesting aspects) then the
claim at the end of the round is still wrong with probability 1− 1/pe (i.e., this
round has a soundness error of 1/pe). More generally, for any t ≤ e, we end up
with a claim for some y · α′ instead of the correct y with probability 1 − 1/pt,
where ord(α′) = pe

′
for e′ ≥ e− t.

Note that this means that Pietrzak’s protocol is statistically-sound if no low
order elements exist. The PoE by Block et al. does not need any assumption
about ord(α), and it achieves statistical soundness even if ord(α) = 2 (while
Pietrzak’s PoE is only 1/2 sound for such α) by basically running λ PoEs in
parallel. In each round, one starts with λ claims of the form xq

T ?
= y and, for

each claim, the prover provides µ which it claims is the “midpoint” satisfying
both xq

T/2 ?
= µ, µq

T/2 ?
= y. At this point, we have 2λ claims, at least one of

which is wrong if one of the original claims was wrong. These 2λ claims are then
randomly combined into λ claims of the form xq

T/2 ?
= y. Each of these claims is

individually wrong with probability 1/2 and, thus, at least one of them is wrong
with probability 1−2−λ. Each round gets the exponent in the claims down from
T to T/2 and, after log(T) rounds, we have claims that the verifier can efficiently
verify itself with a single exponentiation.

In our protocol, we use a similar strategy as Block et al.: We run ρ PoEs in
parallel (where ρ can be smaller than the statistical parameter λ). Unlike Block
et al., we require q to be of a special form, in our basic protocol it is the product
of all primes less than some bound B. If ord(α) has a prime divisor p > B then
we use the same security argument as above (but with p not 2) to get soundness
error p−ρ ≤ B−ρ, in this case we get soundness 2−λ as Block et al. with only
ρ ≈ λ/ log(B) instead of λ repetitions. Otherwise, we have ord(α) = pe for some
p < B. If the prime power e is large, concretely e ≥ log(T) log(B) then we again
can basically use the argument above. In each of the log(T) rounds, the prime
power must go down by log(B) on average, and even for p = 2 that only happens
with prob 2− log(B) = 1/B.

Therefore, we are left with the case ord(α) = pe with e ≤ C = log(T) log(B).
To handle this case, we change the statement to be proven from y

?
= xq

T

to
y′

?
= xq

T−C
and we let the verifier compute the final y = y′q

C

itself. Assume
that the prover wrongly claims y′′ ?

= xq
T−C

with y′′ = y′ · α. With α as above,
the final exponentiations of the verifier eliminate α. Since now the order pe of α
divides qC , we have that αq

C

= 1 and, so,

y′′
qC

= (y′ · α)q
C

= y′
qC · αq

C

= y′
qC

= y.

Improving the Verifier’s complexity. The basic protocol that we just outlined
decreases the number of parallel repetitions, and thus the proof-size in the non-
interactive case, by a factor log(B). But the verifier has to carry out some extra
work as it must compute the final exponentiation (y′, q, C) → y′q

C

by itself.
This can be quite expensive, especially if we batch many proofs together. In the
same group and for the same T , both protocols of Pietrzak and Block et al. can

6

handle many PoEs basically at the price of a single PoE plus a small additive
complexity overhead for each proof (this is, in fact, exploited in the SNARKs
from [7]). In this work, we show that such batching works even for different values
of T . Though, one problem for our new PoE is that, while this batching works
also for the first phase of our protocol, the final exponentiation of the verifier
cannot be trivially batched and, thus, it must be performed for each statement
individually.

We thus further improve the protocol in two ways getting mostly rid of
the extra cost for the final exponentiation. The first improvement leverages the
observation that, by setting q to be not just the product of all primes < B
but taking each prime p with power log(B)/ log(p), we can already decrease
the exponent C for the final exponentiation from log(T) log(B) to log(T). The
second improvement comes from the observation that the final exponentiation
(y′, q, C) → y′q

C

can be replaced by just another PoE and, using our batching,
this statement itself can be just batched together with the original statement. As
the exponent (C = log(T) with the first improvement) is much smaller than T ,
the final exponentiation now only needs log(C) = log log(T) rounds. Iterating

this idea log∗(T) times (which is at most 5 = log∗(22
22

2

) = log∗(265536) in
practice) we get the number of exponentiations down to 1 with a modest increase
(from ρ · log(T) to ρ · (log(T) + log∗(T)) group elements) in proof-size. This
batching argument only works so conveniently for T of a special form, basically
powers of 2: T in the (relevant) range 217 < T < 265536 should be of the form
T = 2t + 216 + 24 + 22 + 1. For general T the verifier’s cost grows with basically
the Hamming weight of log(T). In Appendix B.1 we analyze the gain in efficiency
of the polynomial commitment in [7] when we use this improved version of our
PoE as a building block instead of the PoE proposed in [7].

1.2 Additional Related Work

PoE, SNARGs and VDFs. Verifiable Delay Function (VDF), as a cryptographic
primitive, was first formalised in [9]. In addition to defining its security require-
ments, [9] provided theoretical constructions based on incrementally-verifiable
computation [48]. Loosely speaking, they used repeated (structured) hashing
as their delay function and then relied on succinct non-interactive arguments
(SNARGs) to enable efficient verifiability of the result of the repeated hashing.
As explained in Section 1, (non-interactive) PoE are closely related to VDFs: the
practical VDFs of Pietrzak [40] and Wesolowski [50] use repeated squaring in a
group of unknown order as their delay function and use a PoE on top to enable
efficient, public verifiability of the result of the repeated squaring. The difference
between [40] and [50] lies in the way the PoE is implemented: an overview and
comparison of these PoE protocols can be found in [10]. Moreover, there is evi-
dence that to construct VDFs over groups, the reliance on the group order being
unknown is inherent [45,37], which lends even more importance to PoE protocols
from the perspective of efficient VDFs. Finally, PoE have recently been used as
a crucial building block in constructing space-efficient general-purpose succinct

7

non-interactive arguments of knowledge (SNARKs) [14,7,2], thus establishing a
converse relationship.

Additional related work to VDFs. VDFs have also been proposed in other al-
gebraic settings: e.g., the constructions in [25,16,47] are based on supersingular
isogenies with the motivation to achieve (some notion of) post-quantum secu-
rity.9 In addition to the basic VDFs, refined variants of VDFs have also been
explored. For a “continuous” VDF [23], it should be possible (loosely speaking)
to take a proof and iterate it to produce a proof for the next iteration of the
delay function (instead of having to recompute the proof for the new value from
scratch). A “tight” VDF [20] necessitates that the amount of work that is re-
quired to generate a proof to be ‘comparable’ to that required to just compute
the function. Finally, we point out that existence of VDFs has implications in
complexity theory, in particular to the existence of average-case hardness in
complexity classes of total search problems such as PPAD [23,34,18].

Timed-release cryptography. VDFs fall under the umbrella of timed-release cryp-
tographic primitives [38]. The first of such objects were time-lock puzzles (TLP)
[42] and timed commitments [11]. A TLP can be regarded as a delay function
that also allows efficient sampling of its output (via a trapdoor). The TLP from
[42] uses repeated squaring in RSA group as the delay function, while the output
can be efficiently determined using the factorisation of the modulus as trapdoor.
Constructions of TLP are scarce – the only other known construction is from
[6] and it relies on obfuscation-like assumptions. Prior to VDFs the notion of
proofs of sequential work (PoSW) was introduced by Mahmoody, Moran an
Vadhan [36]. Like in a VDF, in a PoSW a prover on input some challenge x and
time parameter T must perform an (inherently sequential) computation of Θ(T)
steps and provide an efficiently verifiable proof. VDFs are a stronger notion than
PoSW as in the latter the proof only certifies that a sequential computation was
done, while in a VDF has an additional – for many applications crucial – “unique-
ness” property, it certifies that some particular value is the correct output of a
deterministic sequential computation. Unlike TLPs, PoSWs can be constructed
from random oracles (RO) [35]. The construction from [36] is based on ROs but is
not really practical as the prover needs not just T time but also linear in T space
to compute the PoSW. A construction using just log(T) space was given in [19],
constructions with extra properties like being that “reversible” [1] or “incremen-
tal” [21] were recently proposed. Existing PoSW are quantum secure [8], while
as mentioned above, for VDFs post quantum security is largely open. Before
practical VDFs were found, the sloth function of Lenstra and Wesolowski [33]
was the closest we had to a unique PoSW. The reason sloth was not a unique
PoSW was that verification took time linear in the time to compute the output,
but verification is faster by a constant around 1000 (leveraging the difference of
squaring and taking roots in groups of known order) and can be parallelized.
9 Note that the delay functions in the RSA group and class groups of imaginary
quadratic field lose their sequentiality property in the quantum setting since the
order of these groups can be efficiently computed.

8

Repeated squaring. The use of repeated squaring (a special case of repeated
exponentiation) in a group of unknown order as an inherently sequential op-
eration can be traced back to [42,15]. In the algebraic setting of RSA group,
there is evidence that speeding up repeated squaring is tantamount to factoring
[32,44]. Further support for the sequential hardness of the problem was given
in [51] and [49]. In [29] Freitag and Komargodski give a lower bound for the
verifier’s complexity in interactive proofs for repeated squaring in the generic
group model.

Batch Verification. The idea of using batching to reduce the amortized cost
per operation has been explored for a host of cryptographic primitives such as,
e.g., key agreement [5], signatures [39], and public-key encryption [26]. Closer to
our topic, the problem of batching the verification of multiple exponentiations in
arbitrary groups (not necessary of unknown order) was studied in [4]. They make
a heavy use of the random subset and random exponents technique (as pointed
out in [43]), which we also do. Building on [4], Rotem [43] recently explored
batch-verification of VDFs: as mentioned in Section 3, Rotem focused on the
verification of statements with the same time parameter, whereas our batching
does not have this restriction. We refer the reader to [43] for further related work
on batching.

2 Basic Protocol

Block et al. [7] constructed a statistically-sound PoE in any group of unknown
order using the PoE from [40] as starting point. To achieve λ bits of security, their
construction requires a multiplicative factor of λ in proof-size compared to [40].
Below, we first explain the PoE from [7] in a bit more detail (than Section 1.1),
and then we explain how our protocol reduces this overhead. For now we just
focus on improving the proof-size, but the verifier complexity of our protocol will
increase, especially in settings where we batch many proofs – later, in Section 3,
we will show how to get down the verifier’s complexity.

Statistical PoE from [7]. To interactively prove the statement xq
T ?

= y, the
prover and verifier first make λ copies of the statement. In every round of the
protocol, the original claims are reduced to “smaller” statements by reducing the
exponent qTi to qTi+1 := qTi/2 as follows: The i-th round starts with a set of λ
statements {xq

Ti

i
?
= yi}i∈[1,λ]. The prover then sends λ many “midpoints” {µi :=

xq
Ti/2

i }i∈[1,λ] resulting in 2λ statements of the form {uq
Ti/2

i
?
= vi}i∈[1,2λ]. To avoid

a blow-up in the number of statements in every round, the verifier recombines
these 2λ statements by taking a random subset of them and multiplying the
statements in the subset together, i.e., obtaining a single statement. To ensure
soundness, the verifier performs λ many of such recombinations independently
and the round ends with λmany new smaller statements. It is easy to see why the
recombination step must be performed λ many times: Suppose only one of the

9

2λ statements is incorrect before the recombination step. Then, with probability
1/2, the incorrect statement is not chosen among the statements in the random
subset used during the recombination step and the resulting new statement is
correct. If all new statements are correct, then the verifier falsely outputs accept
at the end of the protocol and, therefore, the verifier must perform λ many
independent recombinations to ensure λ bit security.

Our Protocol. In this work, we improve the efficiency of the above PoE by
introducing the following changes in the protocol:

1. Instead of sampling a subset to construct a new statement, we take each
statement to a random exponent in {0, 1, . . . , 2κ− 1}, where κ is some small
integer, and then multiply them together.

2. We set
q :=

∏
prime p<B

p, (1)

where B is some fixed bound, which can be chosen depending on the appli-
cation of the PoE.

3. We define a constant C such that the prover gives a proof for the statement
xq

T−C ?
= y′ (i.e., a C-th root of the original statement) and the verifier

computes the final check (y′)q
C

= y itself.

The above changes allow us to reduce the number of repetitions from λ to ρ :=
λ/ log(B) (for λ bits security). At a first glance, it could seem like the first
change is sufficient to avoid the need for λ independent recombinations since the
probability that an incorrect statement is part of a new statement is not 1/2
anymore but seemingly 1/2κ. Unfortunately, it is not the case that taking κ-bit
exponents for the recombination step achieves such a drastic improvement in
the bound on the probability of accepting an incorrect statement. Note that the
process of raising an incorrect statement to some exponent can also result in a
correct statement. This is indeed very likely if an incorrect statement xq

T ?
= y

is “close” to the correct one in the sense that y is the correct result multiplied
by a low-order element α. If, for example, this element α is of order two and
the statement is raised to an even exponent, say two, the resulting statement
(xq

T

)2
?
= (yα)2 will be a valid one. This observation underlies an attack on [40]

that was first described10 in [10] and it is also the reason why [40] is statistically-
sound only in groups that have no elements of small order.

To circumvent the above attack using low-order elements, we introduce the
second and third change in the protocol: instead of the original statement xq

T ?
=

y, the (honest) prover only proves the (shorter) modified statement xq
T−C ?

= y′,
where y′ := xq

T−C
, and the verifier checks (y′)q

C ?
= y by itself as the final step.

Moreover, to ensure that all the low orders are covered, we define q to be the
10 The observation that random batching can be attacked using low-order elements was

already made in [12].

10

product of all small prime numbers up to a certain bound B as in Equation (1).
Now, a malicious prover that tries to cheat on an original statement by proving a
wrong modified statement11 will get caught in the final exponentiation as long as
the wrong modified statement is “close” to the correct one, where “close” means
that the correct result can be multiplied by an element α whose order only has
small prime divisors (prime numbers less than B) and the prime divisors have
small exponents (integers up to C). To see this, observe that if the modified
statement is xq

T−C ?
= y′α (which is wrong), the final exponentiation with qC

leads to rejection since

(αy′)q
C

= 1 · (xq
T−C

)q
C

= xq
T

6= y,

where αq
C

= 1 holds in G because of our assumption that it has low order.
The above changes allow us to restrict to adversaries that try to convince the
verifier of statements that are “far” from correct, i.e., where the correct result
is multiplied by an element whose order either has a large prime divisor or a
divisor which is a small prime number with a large exponent. However, in this
case the probability that the protocol ends with only correct statements and the
verifier falsely accepts at the end of the protocol is less than log(T) · 2−λ for
parameters C = log(T) log(B) and ρ = λ/ log(B), where ρ takes the role of λ in
[7], i.e., it is basically the number of parallel repetitions of Pietrzak’s protocol.

We give a formal description of our protocol in Figure 3. For clarity of ex-
position12, we assume that T = 2t + C for some t ∈ N. Note that, similarly
to [7], the starting instance in our protocol can either contain ρ many different
statements with exponent qT or ρ many copies of the same statement.

2.1 Soundness

We show that our protocol is statistically-sound for arbitrary groups of unknown
order. In particular, soundness holds against adversaries that can construct group
elements of small order:

Theorem 1. Let B be any prime number such that q :=
∏

prime p<B p and
ρ ∈ N be the number of repetitions per round. If we set C = log(T) log(B)
and let κ → ∞, the verifier V will output accept on an incorrect statement
(x, y, T = 2t + C) with probability at most

t

Bρ
.

A parameter of our PoE is the bit-size κ of each random element sampled by
the verifier. In the statement of Theorem 1, we consider the limit case with κ

11 If the (malicious) prover does not cheat on the modified statement, the verifier will
anyway catch it during the final exponentiation.

12 The case where T − C is not a power of 2 can be handled by a standard approach
similar to [40, Section 3.1].

11

Instance: (x, T, y), where x, y ∈ G and T ∈ N

Parameters: (determined in the analysis)

1. bound B ∈ N, which defines the base q :=
∏

prime p<B p
2. constant for exponentiation C ∈ N
3. number of parallel repetitions ρ ∈ N
4. size of individual random coin κ ∈ N

Statement: xq
T

= y

Protocol: For the ease of exposition, we assume that T = 2t + C. The protocol
consists of t rounds described in Item 2 below.

1. The prover sends y′ = xq
T−C

to the verifier, defining the initial ρ instances
{(x0,j , y0,j , T0)}j∈[1,ρ], where T0 := T − C and, for j ∈ [1, ρ], x0,j := x and
y0,j := y′.

2. In round i ∈ [1, t], the prover and verifier engage in the following halving
sub-protocol:
(a) Let

{
(xi−1,j , yi−1,j , Ti−1 = 2t−i+1)

}
j∈[1,ρ] be the instance from round i−

1.
(b) The prover sends the midpoints

{
µi,j := xq

Ti−1/2

i−1,j

}
j∈[1,ρ]

defining 2ρ

smaller instances

{(xi−1,j , µi,j , Ti := Ti−1/2)}j∈[1,ρ] and {(µi,j , yi−1,j , Ti)}j∈[1,ρ],

which we denote {(ui,k, vi,k, Ti)}k∈[1,2ρ].
(c) The verifier sends a random challenge {ri,j,k}j∈[1,ρ],k∈[1,2ρ] to the prover,

where ri,j,k ← {0, 1}κ independently for all j ∈ [1, ρ] and k ∈ [1, 2ρ].
(d) They both set {(xi,j , yi,j , Ti)}j∈[1,ρ], where

xi,j :=
∏

k∈[1,2ρ]

u
ri,j,k
i,k and yi,j :=

∏
k∈[1,2ρ]

v
ri,j,k
i,k ,

and proceed to the next round.
3. The verifier accepts only if xqt,j = yt,j and (y′)q

C

= y for all j ∈ [1, ρ].
Otherwise, it rejects.

Fig. 3. Our basic Proof of Exponentiation.

12

approaching infinity for the sake of readability. Note that if r is sampled from a
randomness space of size 2κ we have Pr [p divides r] = 1/p+ 1/2κ. In the limit
case κ → ∞, the probability is 1/p. In practice, κ needs to be chosen carefully
such that the protocol is still efficient but the probability of the above event is
close enough to 1/p. We discuss this point further in Section 2.2.

Before proving Theorem 1, we explain how the order of a group element
affects soundness. Let xq

T−C
= y′ but a malicious prover claims that the result

is xq
T−C

= y′α. We say that the second statement is α-wrong. Then soundness
of the protocol depends on the order of α:

In the execution of the protocol, the prover first sends a midpoint µ, which
results in two statements µ ?

= xq
(T−C)/2

and µq
(T−C)/2 ?

= y′α. Note that whatever
the prover claims to be µ, one of the two statements will be incorrect, so for now
we can assume that the prover sends a correct midpoint µ = xq

(T−C)/2

. We copy
each statement ρ many times, raise each copy to a random exponent rk and
then multiply the 2ρ statements together. This results in a new statement that
is correct whenever

αr1αr2 . . . αrρ = αr1+r2+···+rρ = 1.

This is the case when r1 + r2 + · · · + rρ ≡ 0 mod ord(α), which happens with
probability 1/ ord(α) if we assume that the randomness space is large enough
(for more information on the size of the randomness see Section 2.2). This means
that whenever ord(α) is large, it is unlikely that the statement is transformed
into a correct statement after a single round. However, the order of the element
that makes the statement incorrect can also decrease round by round until the
statement is transformed into a correct one. To show this, we use the following
well-known fact. A proof can be found in any standard textbook on group theory
(e.g., [22, Proposition 5]).

Proposition 1. Let G be a group, α ∈ G a group element and m a positive
integer. It holds that

ord(αm) =
ord(α)

gcd(ord(α),m)
.

From Proposition 1 we get that ord(αr1+r2+···+rρ) < ord(α) whenever r1 + r2 +
· · · + rρ ≡ 0 mod d, where d is a divisor of ord(α). If the order decreases in
all of the ρ many new statements obtained this way, the adversary has a better
chance to end up with a correct statement in one of the following rounds. We
want to bound the probability that after some round of the protocol all of the
statements are correct. To this end we need the following Lemma which bounds
the probability that recombining a set of m > ρ statements, where at least one
statement is wrong, gives ρ correct statements. In the proof of Theorem 1 we
always have m = 2ρ. Later in Section 3 we show how to prove many statements
simultaneously so we will use the lemma with different values m.

13

Lemma 1. Let {(xi, yi, T)}i∈[1,m] be a set of m statements such that at least
one of the statements is α-wrong for some α ∈ G. Let {(x̃j , ỹj , T)}j∈[1,ρ] be a
set of ρ statements defined as

x̃j :=
∏

i∈[1,m]

x
rj,i
i and ỹj :=

∏
i∈[1,m]

y
rj,i
i

with independently sampled rj,i ← Z2κ uniformly at random for all i ∈ [1,m]
and j ∈ [1, ρ]. Let B be any prime number. If we let κ→∞, the new statements
satisfy the following properties with probability at least 1− (1/B)ρ:

1. If for some prime p ≥ B we have p | ord(α), at least one of the instances
{(x̃j , ỹj , T)}j∈[1,ρ] is α̃-wrong and p | ord(α̃).

2. If for some prime p < B and some integer e ≥ log(B) we have pe | ord(α),
at least one of the instances {(x̃j , ỹj , T)}j∈[1,ρ] is α̃-wrong and pe−log(B)+1 |
ord(α̃).

Proof. Since we want to lower bound the probabilities of the above events, it is
sufficient to consider the case where ord(α) has a single prime divisor. So, we
assume ord(α) = pe for some prime p and integer e. Using α, we can express
the statements {(xi, yi, T)}i∈[1,m] equivalently in the form {(xi, hiαai , T)}i∈[1,m],

where xq
T

i = hi are the correct results for all i ∈ [1,m], ai ∈ Z and at least one
of the ai = 1. A new statement (x̃j , ỹj , T) is computed as

x̃j :=
∏

i∈[1,m]

x
rj,i
i and ỹj :=

∏
i∈[1,m]

(hiα
ai)rj,i .

Let α̃ :=
∏
i∈[1,m] α

ai·rj,i . By Proposition 1, the order of α̃ is

pe

gcd(pe,
∑m
i=1 airj,i)

= pe−s

for some s ∈ {0, 1, . . . , e}. The probability that s ≥ k for any k ∈ {0, 1, . . . , e} is

Pr[s ≥ k] = Pr

[
m∑
i=1

airj,i ≡ 0 mod pk

]
=

1

pk
.

To obtain the first claim of the lemma, we set e = 1 and p = B. The
probability that the new statement is correct is the probability that s = 1,
which is 1/B. Hence, the probability that all of the ρ new instances are correct
is 1/Bρ.

We obtain the second claim of the lemma by setting e ≥ log(B) and observing
that the probability of s ≥ log(B) is 1/plog(B) ≤ 1/2log(B) = 1/B. Hence, the
probability that this is the case for all ρ statements is at most 1/Bρ. ut

14

Proof (of Theorem 1). Assume that the correct result in Step 2 of the protocol
is xq

T−C
= y′ but a malicious prover claims that it is xq

T−C
= y′α (i.e., makes

a statement that is α-wrong). Notice that in the case where ord(α) | qC we
have that (y′α)q

C

= (y′)q
C

= y and, hence, the verifier ends up rejecting after
Step 3 of the protocol. It follows that an adversary who wants to convince the
verifier that the result is not y needs to choose an element α of order not dividing
qC . The adversary wins if all of the ρ statements are correct after t rounds of
the protocol. From the discussion above we know that the best option for the
adversary is either picking an element of order 2C+1 or an element of order
p, where p is the smallest prime not dividing qC . We analyze the two cases
separately.

Case 1: Let ord(α) = p. Assume that in round i of the protocol we have ρ
many statements {(xi−1,j , yi−1,jαai−1,j , Ti−1)}j∈[1,ρ] where ai−1,j ∈ Z for all
j ∈ [1, ρ]. If ai−1,j ≡ 0 mod p, the statement is correct. Otherwise it is
wrong and, by Proposition 1 and the primality of p, we know that αai−1,j

has order p. We assume that at least one of the ai−1,j is not divisible by p
and we bound the probability that all of the statements are correct in round
i+ 1.
In Step 2 of the protocol, the prover sends midpoints µi,j which results in
2ρ statements

{(xi−1,j , µi,j , Ti = Ti/2)}j∈[1,ρ] and {(µi,j , yi−1,jαai−1,j , Ti)}j∈[1,ρ],

which we denote by
{
(ui,k, vi,kα

bi,k , Ti)
}
k∈[1,2ρ]. Note that at least one of the

bi,k is nonzero modulo p, no matter which elements µi,j the prover sends.
Hence, the assumption of Lemma 1 is satisfied, so the probability that all
of the statements in round i + 1 are correct is at most 1/Bρ. By the union
bound, we get that the probability that all statements are correct after t
rounds is

t

Bρ
.

Case 2: Let ord(α) = 2C+1 where C = t` for some ` ≥ log(B). In order to end
up with a correct statement after t rounds, the adversary has to decrease
the order of the wrong element by a factor of 2` on average per round. In
particular (by an averaging argument) there has to be one round where the
order decreases by at least 2`.
Assume that in round i of the protocol we have ρ statements of the form
{(xi−1,j , yi−1,jαai−1,j , Ti−1)}j∈[1,ρ] where ai−1,j ∈ Z. Without loss of gener-
ality, let αai−1,1 have the largest order of all αai−1,j .
The prover sends midpoints µi,j which results in 2ρ statements

{(xi−1,j , µi,j , Ti = Ti/2)}j∈[1,ρ] and {(µi,j , yi−1,jαai−1,j , Ti)}j∈[1,ρ],

which we denote by
{
(ui,k, vi,kα

bi,k , Ti)
}
k∈[1,2ρ].

15

We note that whatever midpoint the prover sends, the order of the element
that makes one of the two statements µi,1

?
= xq

Ti

i−1,1 and µq
Ti

i,1
?
= yi−1,1α

ai−1,1

incorrect is at least ord(αai−1,1). To see this, assume that µi,1 is the correct
midpoint but the adversary sends µi,1β for some group element β. Then the
second statement becomes µq

Ti

i,1
?
= yi−1,1α

ai−1,1β−q
Ti , which is γ-wrong for

γ := αai−1,1β−q
Ti . Since αai−1,1 = γβq

Ti we have that ord(αai−1,1) divides
lcm(ord(γ), ord(βq

Ti
)). It follows that ord(αai−1,1) divides either ord(γ) or

ord(βq
Ti
) (and hence ord(β)) because the order of αai−1,1 is a power of 2.

By Lemma 1, we get that the probability that none of the statements in
round i + 1 is α̃-wrong, where α̃ is some element with order divisible by
ord(αai−1,1)/2`−1, is at most 1/Bρ. By the union bound, we conclude that
the adversary wins after t rounds with probability at most

t

Bρ
.

Cases 1 and 2 together yield Theorem 1. ut

Corollary 1. For C := t log(B) the Fiat-Shamir transform of our PoE yields a
sound non-interactive protocol.

Proof. As we have seen above, a malicious prover is able to convince the verifier
of a wrong statement only if there is one round where at least one of the following
two events happens depending on which attack is chosen:

– an α-wrong statement where ord(α) has a prime divisor of size at least B is
transformed into a correct one or

– the order of the wrong element decreases by at least 2C/t.

We know that the probability that the output of a random oracle results in such
an event is (1/B)ρ since by our choice of C we have 1/2ρC/t = (1/B)ρ. By the
union bound, the probability that a malicious prover that makes up to Q queries
to the random oracle will find such a query is at most Q · (1/B)ρ. ut

2.2 Efficiency

In this section, we analyze the efficiency of the Fiat-Shamir transform of our
PoE for proving a statement of the form xq

T ?
= y with T = 2t + C.

Randomness space. In order to keep the cost of exponentiation with random
coins low, we need to make the size of the randomness space as small as pos-
sible while ensuring that divisibility by B is almost uniformly distributed. For
concreteness, we use log(B)+ 5 random bits. Then it holds for any prime p > B
and c ∈ Zp that

Pr
r←Z

2dlog(B)e+5

[r = c mod p] <
1

B
+

1

B · 25
≈ 1.03

B
.

16

Fig. 4. Number of multiplications of the verifier in one round for 80-bit security de-
pending on the bound B. The orange graph is the total verifier’s complexity for one
round, the blue dotted graph is the cost of the interactive part of the protocol and
the green dashed graph is the cost of the final exponentiation divided by the number
of rounds (i.e., we amortize the cost of the final exponentiation over the number of
rounds).

Verifier’s efficiency. The work for the verifier consists of two parts: 1) the inter-
active part, which is dominated by t ·4ρ2 exponentiations (with exponents of size
log(B) + 5) and ρ exponentiations with q, and 2) the final exponentiation with
qC . Each exponentiation with a z-bit exponent via “square and multiply” costs
about 1.5z multiplications (i.e., z plus the Hamming weight of the exponent),
so the small exponentiations have complexity 6tρ2(log(B)+5). Additionally, the
verifier performs 2tρ2 multiplications to recombine the statements. The expo-
nentiation with qC takes C · log(q) multiplications. If we set C = t · log(B), the
total of multiplications performed by the verifier is approximately

t · ((6 log(B) + 32)ρ2 + log(B) · log(q)) + ρ log(q) ≈ t log(B)(6ρ2 + 2B) + 2ρB,

where we use the upper bound q ≤ 4B of Erdős [24] . As an example, consider
an implementation where t = 32, B = 521, and ρ = d80/ log(521)e=9. Then we
have log(q) ≈ 703, so the cost for the verifier is around 426000 multiplications.

In Figure 4, we plot the complexity of the verifier in a single round of the
interactive protocol for different values of B. Additionally, we consider the curves
for the verifier’s complexity of only the interaction with the prover and only the
final exponentiation separately. Observe that, for B < 227, the total complexity
decreases as B increases due to the fact that the number of repetitions λ/ log(B)
decreases faster than the increasing cost of the final exponentiation with qC (the
latter increases linearly with B). Beyond B = 227, it is the other way round
and, thus, the total cost increases. Note that B = 227 implies q ≈ 2287. If an
application requires either a value q that is much larger than this or PoEs for
multiple statements (e.g., in [7], where λ many PoEs are needed in each round),
then the final exponentiation of the verifier becomes too expensive. We present
two modifications of the protocol that improve this complexity significantly: In
Appendix A, we show how to replace C = log(T) log(B) with C = log(T) by

17

PoE statistically-sound Verifier’s complexity |π|
Our PoE yes (6(λ

log(B)
)2 + 2B) log(B) log(T) + 2λ

log(B)
λ

log(B)
log(T)

[7] yes 2λ2 log(T) + 2λ log(q) λ log(T)
[40] in some G 3λ log(T) log(T)
[50] no log(T) + 3λ 1
Table 1. Comparison of different PoEs. Verifier’s complexity is measured in the number
of multiplications and proof-size |π| in the number of group elements.We denote by λ
the statistical security parameter. [40] is statistically-sound only in groups without
elements of small order.

slightly modifying how we set q. In Section 3, we show how to compute the last
step interactively without increasing the number of rounds.

Prover’s efficiency. The prover needs to compute xq
T

and the midpoints µi,j .
Computing xq

T

takes log(q) · T multiplications. If the prover stores the value
xq

T/2

during that computation, then computing the midpoints takes another
ρ · log(q) · (T/4+T/8+ . . .+1) ≈ ρ · log(q) ·T/2 multiplications. This number can
be significantly reduced by storing a few more elements during the computation
of xq

T

similarly to [40, Section 6.2]. For sufficiently large values of T , the cost
for computing the proof can be made small compared to the cost of the T
exponentiations required to compute the output and, moreover, the computation
of the proof can be easily be parallelized. For this reason we mostly ignore the
prover’s complexity in the comparisons.

Communication complexity. The communication complexity from the prover to
the verifier is of interest as it equals the proof-size after using the Fiat-Shamir
heuristic. In each of the t rounds, our prover sends ρ many midpoints which
are of size logN . If logN = 2048, t = 32, and ρ = 9 then the communication
complexity is approximately 219 bits.

Comparison with alternative PoEs. In Table 1, we compare our protocol with
the proofs of exponentiation from [40], [7], and [50]. We list the proof-size and
verifier’s complexity. Prover’s complexity is omitted since the main computation
for the prover in all the protocols is dominated by the same factor, i.e., the cost
of T sequential exponentiations to compute the output.

We observe that [50] is the most efficient PoE regarding verifier’s complexity
and proof-size. However, it is not statistically-sound. [40] introduces only a minor
increase in overhead, but it has the drawback that it is only statistically-sound
in groups with no low-order elements other than the identity. The PoE from [7]
and our PoE are both statistically-sound in all groups, while the proof-size of our
PoE improves by a factor of log(B) upon [7] and we compare the communication
complexity per round for different values of B in Figure 1.

The verifier’s efficiency of our PoE depends on the choice of the bound B
which also determines the size of q. In Figure 2, we compare the number of

18

multiplications per round for the verifier in both protocols for different choices
of B. Additionally to the work in each round, the verifier computes λ many
exponentiations with q in the last round of [7] and ρ many exponentiations
with q in the last round of our interactive protocol. We see that the verifier’s
complexity improves for B ∈ (59, 499), which corresponds to q ∈ (271, 2685).

It is important to note that this is the verifier’s complexity for proving a
single statement. The PoE in [7] achieves the same verifier’s efficiency for prov-
ing λ many different statements with the same exponent simultaneously. Our
protocol incurs additional log(T) log(q) multiplications for every new statement,
since the verifier has to compute the final exponentation individually for every
statement. In Section 3, we give a batching protocol that reduces the cost of
the final exponentiation to log(q), which enables us to prove arbitrarily many
statements simultaneously without significantly increasing the proof-size and
verifier’s complexity.

3 Reducing (Verifier-) Complexity by Batching

In this section, we show how to prove arbitrary many statements simultaneously
without increasing the number of rounds. This batching protocol serves two
purposes:

1. Efficiently proving multiple independent statements. This is needed for ex-
ample in the polynomial commitment scheme of [7], where in each round λ
many statements need to be proven;

2. Reducing the verifier’s complexity of the final exponentiation with qC in
our basic protocol. Instead of performing the computation locally, the veri-
fier can request an additional PoE for the statement (y′)q

C

= y and verify
it simultaneously with the original PoE. While now we need to do a final
exponentiation for the new statement, the exponent drops from log(T) to
log log(T).

In [43] Rotem gives a batching technique for arbitrary PoEs, where the state-
ments have the same exponent. We describe a batching technique for our PoE,
where the statements can have different exponents. Furthermore, the protocol
can be easily adapted to the PoEs in [40] and [7].

3.1 The Protocol

Assume the prover wants to prove two statements in the same group G:

gq
2t+C1

1
?
= h1 and gq

2s+C2

2
?
= h2.

The statements can either be independent or one of them is the statement from
the final verifier exponentiation of the other. The two statements can be proven
simultaneously as follows: First the prover sends the statements

gq
2t

1
?
= h′1 and gq

2s

2
?
= h′2.

19

We can assume that t = ` + s for some ` ∈ N. Begin with the proof of the first
statement. After executing the protocol for `− 1 rounds and the prover sending
midpoints in round `, we have 2ρ statements of the form

uq
2s

j
?
= vj

for j ∈ [2ρ]. The prover makes this 2ρ+1 statements by adding gq
2s

2
?
= h′2 to these

statements. Next the verifier sends ρ · (2ρ + 1) random coins and both parties
create ρ new statements similarly to the original protocol. Then they proceed
with the PoE protocol. Note that this process neither reduces soundness of the
proof of the first statement nor of the second statement since by Lemma 1 we
only need one of the statements that are being combined to be incorrect. In
the end the verifier checks if (h′1)

qC1
= h1 and (h′2)

qC2
= h2. This process

can be extended to arbitrary-many statements of the form gq
2r+Ci
i

?
= hi with

the protocol given in Figure 5. Note that in Step 4 we do not specify whether
the verifier checks (h′i)

qCi = hi by carrying out the computation locally or by
appending the statement to the instances. This depends on the size of C and on
the application.

Remark 1. In the case where the exponents of q are not powers of 2, one can
simply divide a statement of the form xq

S ?
= y for S ∈ N into smaller statements

as follows: Let (s0, s1, . . . , sm) be the binary representation of S. Then we have

xq
S

= xq
∑
sk·2

k

= x
∏
qsk·2

k

= y.

This gives at most m+ 1 smaller statements xq
s0 ?

= y1 and yq
si·2

i

i
?
= yi+1 for

i ∈ [1,m] where ym+1 = y. Again these statements can be proven simultaneously
with the batching protocol.

The theorem below follows immediately from the description of the batching
protocol and Remark 1.

Theorem 2. For any m ∈ N the statements {(gi, hi, Si + Ci)}i∈[1,m] can be
proven in at most 1 + maxi log(Si) rounds where additionally to one execution
of the PoE protocol the following computations need to be performed:

1. P and V perform

2ρ

m∑
i=1

h(Si)

additional exponentiations with exponents of size log(B) + 5. Here h(Si)
denotes the hamming weight of Si;

2. V performs m − 1 additional exponentiations with exponents qCi for i ∈
[1,m] \ {argmaxi Si};

and the communication complexity increases by m− 1 group elements.

20

Instance:
{
(gi, hi, 2

ti + Ci)
}
i∈[1,m]

with gi, hi ∈ G and t1 > t2 > . . . > tm ∈ N

Claim: gq
2ti+Ci

i = hi over G for all i ∈ [1,m] and q ∈ N
Parameters: (determined in the analysis)

1. number of rounds of parallel repetition ρ
2. size of individual random coin κ

Protocol:

1. The prover sends h′i := gq
2ti

i for all i ∈ [1,m] to the verifier.
2. Execute Step 2 of the PoE protocol for (g1, h′1, 2t1) for t1 − t2 − 1 rounds.
3. In round i ∈ [1,m− 1] of the batching protocol we have ρ instances of the

form
{
(xj , yj , 2

ti+1+1)
}
j∈[1,ρ]:

(a) The prover sends ρ midpoints {µj}j∈[1,ρ], which results in 2ρ instances{
(uk, vk, 2

ti+1)
}
k∈[1,2ρ]

(b) The prover and verifier append (gj+1, h
′
j+1, 2

ti+1) to the instances result-
ing in 2ρ+ 1 instances of the form

{
(ũk, ṽk, 2

ti+1)
}
k∈[1,2ρ+1]

.
(c) The verifier sends the random challenge {rj,k}j∈[1,ρ],k∈[1,2ρ+1], where

rj,k ∈ {0, 1}κ.
(d) They both set

{
(x̃j , ỹj , 2

ti+1)
}
j∈[1,ρ] as the instance for the next execution

of the PoE protocol, where

x̃j :=
∏

k∈[1,2ρ+1]

ũ
rj,k
k and ỹj :=

∏
k∈[1,2ρ+1]

ṽ
rj,k
k

(e) If i < m−1: Execute Step 2 of the PoE protocol for ti+1−ti+2−1 rounds.
Else: Execute Step 2 of the PoE protocol for tm rounds until the state-
ments are of the form

{
(x∗j , y

∗
j , 1)

}
j∈[1,ρ].

4. At the end of m− 1 rounds, the verifier accepts if and only if (x∗j)q = y∗j for
all j ∈ [1, ρ] and (h′i)

qCi = hi for all i ∈ [1,m].

Fig. 5. Batching protocol for PoE.

21

Soundness of the protocol follows immediately from Lemma 1 and Theorem 1
since in the statement of Lemma 1 we consider a set of arbitrary many statements
of the form (xi, yi, T) in any round. This means that the proof of Theorem 1
also holds when new statements are added during the execution of the protocol.

Theorem 3. Let B be any prime number such that q :=
∏

prime p<B p and
ρ ∈ N be the number of repetitions per round. If we set C = log(T) log(B) and
let κ→∞, the verifier V will output accept on instance {(gi, hi, 2ti+Ci)}i∈[1,m],
where t1 ≥ t2 ≥ . . . ≥ tm and at least one statements is incorrect, with probability
at most

t1
Bρ

.

3.2 Improving Verifier’s Efficiency

In this section we analyze how the batching protocol reduces the number of
multiplications for verifying a statement of the form xq

T ?
= y. In Appendix B.1

we analyze the gain in efficiency of the polynomial commitment in [7] when we
use this improved version of our PoE as a building block instead of the PoE
proposed in [7].

The first prover message is the value y′ = xq
T−C

, where C ≥ log(T). The key
idea is that the verifier does not carry out the last exponentiation with qC but
the prover gives an interactive proof of the statement (y′)q

C

= y (a “smaller”
PoE). This reduces the final exponentiation to (y′′)q

C′

= y, where y′′ is the first
prover message in the smaller PoE and C ′ ≥ log(C) is much smaller than C.
This statement can again be proven interactively by an even smaller PoE. In
fact, this trick can be applied recursively until the verifier only has to perform a
single exponentiation with q in the final step. We make two assumptions in this
section:

1. We have q =
∏

prime p<B p
dlog(B)/ log(p)e such that the constant C in the PoE

protocol is lower bounded only by log(T) and not log(T) log(B). This is the
trick we discuss in Appendix A. This assumption is needed to reduce the
exponent from qC to q and should be adopted in practice if one wants to
make use of the recursion.

2. Instead of setting C to exactly log(T), we set C = 22
22

+22
2

+22 +1, which
will always be larger than log(T) in practice. This assumption is mainly for
the ease of presentation and need not be adopted in practice.

Reducing the exponent from qC to qlog(C). We know that exponentiation with
qC takes C log(q) multiplications. In order to reduce this cost for the verifier,
we slightly modify the protocol in the following way: Instead of the verifier
performing the last exponentiation locally, the verifier and the prover run the
batching protocol with instances

{(x, y, T = T0 + C), (y′, y, C = S0 + C ′)},

22

where C ′ = log(C). This modification introduces 3ρ·h(S0)(log(B)+5) additional
multiplications during the interactive part of the protocol (by Theorem 2) but
reduces the complexity of the final exponentiation to

C ′ log(q) = log(C) log(q) ≈ log log(T) log(q).

By our special choice of C we have h(S0) = 1 so we can ignore it in the remainder
of the section

Applying the recursion. As we have seen, the exponent qC can be reduced to
qC
′
. Now, the verifier can either perform the final exponentiation with qC

′
or

apply the above procedure recursively until the verifier only has to do a single
exponentiation with q in the final step. We denote the number of recursions
needed until the exponent is reduced to q by log∗(C). We have that the entire
recursion adds at most 3 log∗(C)ρ · (log(B) + 5) multiplications during the in-
teractive part of the protocol but reduces the work of the final exponentiation
from log(T) log(q) to log(q).

In Section 2.2 we saw that the verifier’s complexity without any batching is

log(T) · ((6 log(B) + 32)ρ2 + log(q)) + ρ log(q).

Our batching protocol reduces the number of multiplications for verifying the
proof of a single statement to approximately

log(T)(6 log(B) + 32)ρ2 + 3 log∗(C)ρ · (log(B) + 5) + (ρ+ 1) log(q)

and increases the proof-size to log∗(C) + ρ log(T) group elements.

Proving multiple statements. With this optimization of the cost of verifying a
single statement we can now compute the complexity of verifying m statements
with our improved protocol. Each additional statement that either has exponent
qT or a smaller power of q adds log(q) multiplications to compute the final
exponentiation, 3 log∗(C)ρ · (log(B) + 5) multiplications during the interactive
part and increases the proof-size by at most log∗(C) elements. We conclude that
m many statements can be proven with verifier’s complexity

log(T)(6 log(B) + 32)ρ2 + 3m log∗(C)ρ · (log(B) + 5) + (ρ+m) log(q)

and communication complexity m log∗(C) + ρ log(T).

References

1. H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and M. Walter. Reversible proofs
of sequential work. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II, volume 11477 of Lecture Notes in Computer Science, pages
277–291. Springer, 2019.

23

2. A. Arun, C. Ganesh, S. Lokam, T. Mopuri, and S. Sridhar. Dew: Transparent
constant-sized zkSNARKs. Cryptology ePrint Archive, Paper 2022/419, 2022.
https://eprint.iacr.org/2022/419.

3. K. Belabas, T. Kleinjung, A. Sanso, and B. Wesolowski. A note on the low order
assumption in class group of an imaginary quadratic number fields. Cryptology
ePrint Archive, Paper 2020/1310, 2020. https://eprint.iacr.org/2020/1310.

4. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In K. Nyberg, editor, Advances in Cryptology
- EUROCRYPT ’98, International Conference on the Theory and Application of
Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, vol-
ume 1403 of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

5. M. J. Beller and Y. Yacobi. Batch Diffie-Hellman key agreement systems and
their application to portable communications. In R. A. Rueppel, editor, Ad-
vances in Cryptology — EUROCRYPT’ 92, pages 208–220, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

6. N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In M. Sudan, editor, Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 345–356. ACM, 2016.

7. A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. Time- and
space-efficient arguments from groups of unknown order. In T. Malkin and C. Peik-
ert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Pro-
ceedings, Part IV, volume 12828 of Lecture Notes in Computer Science, pages
123–152. Springer, 2021.

8. J. Blocki, S. Lee, and S. Zhou. On the security of proofs of sequential work in a post-
quantum world. In S. Tessaro, editor, 2nd Conference on Information-Theoretic
Cryptography, ITC 2021, July 23-26, 2021, Virtual Conference, volume 199 of
LIPIcs, pages 22:1–22:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

9. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
H. Shacham and A. Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 757–788. Springer, 2018.

10. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions. IACR
Cryptol. ePrint Arch., 2018:712, 2018.

11. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in
Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880 of
Lecture Notes in Computer Science, pages 236–254. Springer, 2000.

12. C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes. In
Proceedings of the 6th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’00,
page 58–71, Berlin, Heidelberg, 2000. Springer-Verlag.

13. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. J. Cryptol., 1(2):107–118, 1988.

14. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part

24

https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2020/1310

I, volume 12105 of Lecture Notes in Computer Science, pages 677–706. Springer,
2020.

15. J. . Cai, R. J. Lipton, R. Sedgewick, and A. C. . Yao. Towards uncheatable
benchmarks. In [1993] Proceedings of the Eigth Annual Structure in Complexity
Theory Conference, pages 2–11, May 1993.

16. J. Chavez-Saab, F. R. Henríquez, and M. Tibouchi. Verifiable isogeny walks: To-
wards an isogeny-based postquantum VDF. Cryptology ePrint Archive, Report
2021/1289, 2021. https://ia.cr/2021/1289.

17. M. Chen, R. Cohen, J. Doerner, Y. Kondi, E. Lee, S. Rosefield, and A. Shelat. Mul-
tiparty generation of an RSA modulus. In D. Micciancio and T. Ristenpart, editors,
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Pro-
ceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages
64–93. Springer, 2020.

18. A. R. Choudhuri, P. Hubáček, C. Kamath, K. Pietrzak, A. Rosen, and G. N.
Rothblum. PPAD-hardness via iterated squaring modulo a composite. Cryptology
ePrint Archive, Report 2019/667, 2019. https://ia.cr/2019/667.

19. B. Cohen and K. Pietrzak. Simple proofs of sequential work. In J. B. Nielsen and
V. Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821
of Lecture Notes in Computer Science, pages 451–467. Springer, 2018.

20. N. Döttling, S. Garg, G. Malavolta, and P. N. Vasudevan. Tight verifiable delay
functions. In C. Galdi and V. Kolesnikov, editors, Security and Cryptography for
Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September 14-
16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages
65–84. Springer, 2020.

21. N. Döttling, R. W. F. Lai, and G. Malavolta. Incremental proofs of sequential work.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
II, volume 11477 of Lecture Notes in Computer Science, pages 292–323. Springer,
2019.

22. D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley and Sons, 3rd
edition, 2003.

23. N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Continuous verifiable de-
lay functions. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part III, volume 12107 of Lecture Notes in Computer Science, pages
125–154. Springer, 2020.

24. P. Erdős. Beweis eines satzes von Tschebyschef (on a proof of a theorem of Cheby-
shev, in german). Acta Litt. Sci. Szeged, 5:194–198, 01 1932.

25. L. D. Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from
supersingular isogenies and pairings. In S. D. Galbraith and S. Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part I, volume 11921 of Lecture Notes in Com-
puter Science, pages 248–277. Springer, 2019.

26. A. Fiat. Batch RSA. J. Cryptol., 10(2):75–88, 1997.

25

https://ia.cr/2021/1289
https://ia.cr/2019/667

27. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

28. T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast distributed RSA
key generation for semi-honest and malicious adversaries. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages
331–361. Springer, 2018.

29. C. Freitag and I. Komargodski. The cost of statistical security in interactive proofs
for repeated squaring. Cryptology ePrint Archive, Paper 2022/766, 2022. https:
//eprint.iacr.org/2022/766.

30. C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. Non-malleable time-lock puzzles
and applications. In K. Nissim and B. Waters, editors, Theory of Cryptography -
19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11,
2021, Proceedings, Part III, volume 13044 of Lecture Notes in Computer Science,
pages 447–479. Springer, 2021.

31. C. Hoffmann, P. Hubáček, C. Kamath, K. Klein, and K. Pietrzak. Practical
statistically-sound proofs of exponentiation in any group. Cryptology ePrint
Archive, Report 2022/???, 2022.

32. J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and timed
commitments. In R. Pass and K. Pietrzak, editors, Theory of Cryptography - 18th
International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages
390–413. Springer, 2020.

33. A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. Int. J. Appl. Cryptogr., 3(4):330–343, 2017.

34. A. Lombardi and V. Vaikuntanathan. Fiat-Shamir for repeated squaring with ap-
plications to PPAD-hardness and VDFs. In D. Micciancio and T. Ristenpart, edi-
tors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages
632–651. Springer, 2020.

35. M. Mahmoody, T. Moran, and S. P. Vadhan. Time-lock puzzles in the random
oracle model. In P. Rogaway, editor, Advances in Cryptology - CRYPTO 2011
- 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 39–
50. Springer, 2011.

36. M. Mahmoody, T. Moran, and S. P. Vadhan. Publicly verifiable proofs of sequential
work. In R. D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 373–388. ACM, 2013.

37. M. Mahmoody, C. Smith, and D. J. Wu. Can verifiable delay functions be based
on random oracles? In ICALP, volume 168 of LIPIcs, pages 83:1–83:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

38. T. C. May. Timed-release crypto, 1994.
39. D. M’Raïhi and D. Naccache. Batch exponentiation: A fast DLP-based signature

generation strategy. In L. Gong and J. Stearn, editors, CCS ’96, Proceedings of
the 3rd ACM Conference on Computer and Communications Security, New Delhi,
India, March 14-16, 1996, pages 58–61. ACM, 1996.

40. K. Pietrzak. Simple verifiable delay functions. In A. Blum, editor, 10th Inno-
vations in Theoretical Computer Science Conference, ITCS 2019, January 10-12,

26

https://eprint.iacr.org/2022/766
https://eprint.iacr.org/2022/766

2019, San Diego, California, USA, volume 124 of LIPIcs, pages 60:1–60:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

41. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

42. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.

43. L. Rotem. Simple and efficient batch verification techniques for verifiable delay
functions. In K. Nissim and B. Waters, editors, Theory of Cryptography - 19th
International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021,
Proceedings, Part III, volume 13044 of Lecture Notes in Computer Science, pages
382–414. Springer, 2021.

44. L. Rotem and G. Segev. Generically speeding-up repeated squaring is equivalent
to factoring: Sharp thresholds for all generic-ring delay functions. In D. Miccian-
cio and T. Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in
Computer Science, pages 481–509. Springer, 2020.

45. L. Rotem, G. Segev, and I. Shahaf. Generic-group delay functions require hidden-
order groups. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part III, volume 12107 of Lecture Notes in Computer Science, pages
155–180. Springer, 2020.

46. P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. R. Weippl. Randrunner:
Distributed randomness from trapdoor VDFs with strong uniqueness. In 28th An-
nual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society, 2021.

47. B. Shani. A note on isogeny-based hybrid verifiable delay functions. Cryptology
ePrint Archive, Report 2019/205, 2019. https://ia.cr/2019/205.

48. P. Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In R. Canetti, editor, Theory of Cryptography, Fifth The-
ory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008,
volume 4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

49. A. van Baarsen and M. Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. In Advances in Cryptology – ASIACRYPT 2021: 27th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings, Part II, page 367–397,
Berlin, Heidelberg, 2021. Springer-Verlag.

50. B. Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33:2113–2147, 2020.
51. B. Wesolowski and R. Williams. Lower bounds for the depth of modular squaring.

Cryptology ePrint Archive, Report 2020/1461, 2020. https://ia.cr/2020/1461.

A Improving Verifier’s efficiency

In Figure 2 we see that for large values of B and q the verifier’s complexity
increases because the final computation (y′)q

C

becomes expensive. The cost of
this computation is C · log(q), where so far we have set C = t log(B). We can

27

https://ia.cr/2019/205
https://ia.cr/2020/1461

Fig. 6. Number of multiplications of the verifier in one round for 80-bit security de-
pending on the bound B. The blue line is the number of multiplications in [7], the
dotted orange graph is the complexity of our protocol with C = t log(B), the red graph
is the complexity in our protocol with C = t log(B)/2 and the green line is the verifier’s
complexity in [40].

reduce this number to C = t log(B)/2 by setting q to

q = 22 · 32 ·
∏

3<p<B

p. (2)

It is straightforward to check that this does not affect our soundness bound, but
it has a notable effect on verifier’s efficiency as shown in Figure 6.

This approach can be generalized to setting C = t log(B)/k for any integer
k ≤ log(B). To ensure soundness we need to modify q as follows: Let m be the
largest prime number such that m < 2k. Then we set

q = 2k · 3dk/ log(3)e · 5dk/ log(5)e · · ·mdk/ log(m)e ·
∏

m<p<B

p.

In particular, the choice of q that optimizes verifier’s efficiency for large values
of B is

q =
∏
p<B

pdlog(B)/ log(p)e

for which we can set C = t. The cost for the verifier with this parameters is
shown in Figure 7. We conclude that the verifier’s complexity of our scheme
improves upon [7] for values of B from 59 up to 2749, which corresponds to
values of q between approximately 271 and 2400·log(2749) ≈ 23167.

B Application in Polynomial Commitments

In this section we analyse the gain in efficiency when we use our PoE as a building
block instead of the one proposed in [7].

In the full version of the paper [31] we provide an overview of the polynomial
commitment scheme in [7]. Here we only state the key properties that the PoE
should satisfy in order to be applicable in the polynomial commitment scheme.

28

Fig. 7. Number of multiplications of the verifier in one round for 80-bit security de-
pending on the bound B. The dotted blue line is the number of multiplications in [7],
the orange graph is the complexity of our protocol with C = t and q as above and the
green line is verifier’s complexity in [40] (which is 240 multiplications).

Requirements from the PoE. Note that the use of the PoE in the [7] polynomial
commitment is more or less black-box. However, there are two important criteria
that it should satisfy.

1. Firstly, the PoE has to satisfy statistical soundness so that the knowledge
soundness of the polynomial commitment built upon it can be argued ([7,
Lemma 6.4]).13 Our PoE satisfies statistical soundness.

2. Secondly, the base q used in the PoE protocol is borrowed from the poly-
nomial commitment. In order for the polynomial commitment to satisfy its
homomorphic properties, [7] set it to be a large, odd integer – in particular,
they require q � p · 2npoly(λ). This requirement that q be large, as we saw
in Section 2 is advantageous for our PoE. On the other hand, the require-
ment that q be odd is in conflict with our trick of choosing an even q as in
Equation (1). However, we show in the full version of the paper [31] that the
requirement that q be odd is not necessary in [7].

B.1 Efficiency

In this section we analyze the improvement in efficiency of the polynomial com-
mitment scheme in [7] using our PoE, the batching protocol and the optimiza-
tion in Appendix A. In the polynomial commitment scheme the PoE protocol is

used to prove statements of the form xq
2n−k−1

i = yi for every i ∈ [λ] and every
k ∈ {0, 1, . . . , n− 1}.

Communication complexity. In [7] the communication complexity of proving λ
many statements with the same exponent is λ(n− k − 1) group elements. This

13 To be precise, it suffices for the soundness of the PoE to be based on a hardness
assumption that is at most as strong as the hardness assumption that is used for
showing the binding or knowledge soundness of the polynomial commitment.

29

gives a total PoE proof-size of

λ

n−1∑
k=0

(n− k − 1) =
λ

2
(n− 1)n.

As we have seen in Section 3.2, in our PoE the cost of proving λn statements,
in which the largest exponent is qn−1, is

λn log∗(n− 1) +
λ

log(B)
(n− 1).

We conclude that we decrease the proof-size of the polynomial commitment
by a factor of approximately n/(2 log∗(n − 1)). This number can be increased
to n/2 at the cost of a higher verifier complexity. More generally, the number of
recursive steps explained in Section 3.2 can be used to choose a trade-off between
proof-size and verifier efficiency.

Verifier’s efficiency. In [7] the verifier’s complexity of proving λmany statements
with the same exponent is 2λ2(n− k − 1) + λ log(q) multiplications. This gives
a total verifier’s complexity of

2λ2
n−1∑
k=0

((n− k − 1) + λ log(q)) = (λ log(q) + 2λ2(n− 1))n.

As we have seen in Section 3.2, in our PoE the cost of verifying λn statements,
in which the largest exponent is qn−1, is

(n−1)(6 log(B)+32)ρ2+3λn log∗(C)ρ·(log(B)+5)+(ρ+λn) log(q) ≈ 15λ2n+λn log(q).

Since in practice we have n ≈ 32, we conclude that the verifier’s efficiency of
the polynomial commitment scheme implemented with our PoE is comparable
to that in [7].

30

	Practical Statistically-Sound Proofs of Exponentiation in any Group

