
Batch Arguments for NP and More
from Standard Bilinear Group Assumptions

Brent Waters1,2 and David J. Wu1

1 University of Texas at Austin, Austin, TX, USA
2 NTT Research, Sunnyvale, CA, USA

Abstract. Non-interactive batch arguments for NP provide a way to
amortize the cost of NP verification across multiple instances. They
enable a prover to convince a verifier of multiple NP statements with
communication much smaller than the total witness length and verification
time much smaller than individually checking each instance.
In this work, we give the first construction of a non-interactive batch

argument for NP from standard assumptions on groups with bilinear
maps (specifically, from either the subgroup decision assumption in
composite-order groups or from the k-Lin assumption in prime-order
groups for any k ≥ 1). Previously, batch arguments for NP were only
known from LWE, or a combination of multiple assumptions, or from
non-standard/non-falsifiable assumptions. Moreover, our work introduces
a new direct approach for batch verification and avoids heavy tools like
correlation-intractable hash functions or probabilistically-checkable proofs
common to previous approaches.
As corollaries to our main construction, we obtain the first publicly-

verifiable non-interactive delegation scheme for RAM programs (i.e.,
a succinct non-interactive argument (SNARG) for P) with a CRS of
sublinear size (in the running time of the RAM program), as well as the
first aggregate signature scheme (supporting bounded aggregation) from
standard assumptions on bilinear maps.

1 Introduction

Consider the following scenario: a prover has a batch of m NP statements
x1, . . . ,xm and seeks to convince the verifier that all of these statements are true
(i.e., convince the verifier that xi ∈ L for all i ∈ [m], where L is the associated
NP language). A naïve solution is for the prover to provide the m witnesses
w1, . . . ,wm to the verifier and have the verifier check the NP relation on each
pair (xi,wi). A natural question is whether we could do this more efficiently.
Namely, can the prover convince the verifier that x1, . . . ,xm ∈ L with a proof of
size o(m)—that is, can the size of the proof grow sublinearly with the number of
instances?

Batch arguments. The focus of this work is on constructing non-interactive batch
arguments (BARGs) for NP languages in the common reference string (CRS)

2 Brent Waters and David J. Wu

model. In this model, a (trusted) setup algorithm samples a common reference
string crs that is used to construct and verify proofs. The goal of a BARG is
to amortize the cost of NP verification across multiple instances. Specifically,
a BARG for NP allows a prover to construct a proof π of m NP statements
x1, . . . ,xm ∈ {0, 1}n where the size of the proof π scales sublinearly with m. We
focus on the setting where the proof is non-interactive and publicly verifiable. The
soundness requirement is that no computationally-bounded prover can convince
the verifier of a tuple (x1, . . . ,xm) that contains a false instance xi /∈ L; namely,
we focus on batch argument systems.

Constructing non-interactive batch arguments for NP is challenging, and
until very recently, constructions have either relied on idealized models [Mic95,
Gro16, BBHR18, COS20, CHM+20, Set20] or on non-standard [KPY19], and
oftentimes, non-falsifiable cryptographic assumptions [Gro10, BCCT12, DFH12,
Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17, BCC+17] (see also
Section 1.3 for more detail). This state of affairs changed in two very recent and
exciting works by Choudhuri et al. In the first work [CJJ21a], they show how to
construct a BARG assuming both subexponential hardness of DDH in pairing-free
groups and polynomial hardness of QR. Subsequently, they construct a BARG
from polynomial hardness of LWE [CJJ21b]. Both works leverage correlation-
intractable hash functions [CGH98, CCH+19, PS19, JJ21] to provably instantiate
the Fiat-Shamir heuristic [FS86].

In this work, we take a direct approach for constructing BARGs from bilinear
maps, and provide a new instantiation from either polynomial hardness of the
k-Lin assumption on prime-order bilinear groups, or from polynomial hardness
of the subgroup decision assumption on composite-order bilinear groups. This
is the first BARG for NP under standard assumptions over bilinear groups.
Moreover, our construction is direct and avoids powerful tools like correlation-
intractable hash functions or probabilistically-checkable proofs used in many
previous constructions.

Delegation for RAM programs. A closely related problem is delegation for RAM
programs (also known as a succinct non-interactive argument (SNARG) for the
class P of polynomial-time deterministic computations). In a delegation scheme
for RAM programs, the prover has a RAM program P , an input x, and output y,
and its goal is to convince the verifier that y = P(x). The efficiency requirement
is that the length of the proof and the verification time should be sublinear
(ideally, polylogarithmic) in the running time of the RAM program. There is a
close connection between batch arguments for NP and delegation schemes for
RAM programs [BHK17, KPY19, KVZ21, CJJ21b], and several of these works
show how to construct a delegation scheme for RAM programs using a batch
argument for NP. As a corollary to our main construction, we use our BARG to
obtain a non-interactive delegation scheme for RAM programs under the SXDH
assumption in asymmetric bilinear groups. The CRS size of our construction is
short (i.e., sublinear in the running time of the RAM computation).

Previously, Kalai et al. [KPY19] constructed a delegation scheme for RAM
programs with a short CRS from a non-standard, but falsifiable, q-type assump-

Batch Arguments for NP 3

tion on bilinear groups, and more recently, González and Zacharakis [GZ21]
showed how to construct a delegation scheme with a long CRS for arithmetic
circuits from a bilateral k-Lin assumption in asymmetric bilinear groups.3 Choud-
huri et al. [CJJ21b] showed how to construct a delegation scheme for RAM
programs from LWE, and previously, Jawale et al. [JKKZ21] constructed a delega-
tion scheme for bounded-depth circuits also from LWE; both of these schemes also
have a short CRS. Recently, Hulett et al. [HJKS22] showed how to construct a
SNARG for P from sub-exponential DDH (in pairing-free groups) in conjunction
with the QR assumption. In the designated-verifier model where a secret key is
needed to check proofs, Kalai et al. [BHK17] showed how to construct a delegation
scheme from any computational private information retrieval scheme.

1.1 Our Contributions

In this work, we introduce a simpler and more direct approach for constructing
BARGs using bilinear maps. Our main result is a BARG for NP assuming either
the polynomial hardness of k-Lin in asymmetric prime-order pairing groups (for
any k ≥ 1)4, or alternatively, the subgroup decision assumption in composite-
order pairing groups. We capture this in the informal theorem statement below:

Theorem 1.1 (Informal). Take any constant ε > 0. Under the k-Lin assump-
tion (for any k ≥ 1) in a prime-order pairing group (alternatively, the subgroup
decision assumption in a composite-order pairing group), there exists a publicly-
verifiable non-interactive BARG for Boolean circuit satisfiability with proof size
poly(λ, |C|), verification complexity poly(λ,m, n) + poly(λ, |C|), and CRS size
mε · poly(λ), where λ is a security parameter, C : {0, 1}n × {0, 1}h → {0, 1} is
the Boolean circuit, n is the statement size, and m is the number of instances.
The BARG satisfies semi-adaptive soundness (Definition 2.5).

A new approach for batch verification. In contrast to many recent works (see
also Section 1.3) on constructing succinct arguments that rely on probabilistically-
checkable proofs (PCPs) [KRR13, KRR14, BHK17, CJJ21b, KVZ21] or correlation-
intractable hash functions [JKKZ21, CJJ21a, CJJ21b, HJKS22], we take a direct
“low-tech” approach in our construction. Our construction follows a “commit-and-
prove” strategy and is reminiscent of the classic pairing-based non-interactive
proof systems by Groth et al. [GOS06] and Groth and Sahai [GS08]. Essentially,
the prover starts by providing a (succinct) commitment to the values associated
with each wire in the circuit. The prover commits to m bits for each wire, one
for each instance, and we require that the size of the commitment be sublinear
in m. Then, for each gate in the circuit, the prover provides a short proof that
3In the bilateral version of the k-Lin assumption, the challenge is encoded in both groups
rather than one of the groups.

4Recall that the case k = 1 corresponds to the DDH assumption holding in each base
group (i.e., SXDH). The case k = 2 corresponds to the DLIN assumption [BBS04,
HK07, Sha07]

4 Brent Waters and David J. Wu

the committed wire values are consistent with the gate operation. The succinct
commitment scheme to the wire labels can be viewed as a non-hiding version of
the vector commitment scheme of Catalano and Fiore [CF13]. The key challenge
in the construction is proving consistency of the gate computations given only
the succinct commitments to the input and output wires of each gate. We give a
technical overview of our approach in Section 1.2 and the formal description in
Sections 3 and 4.

Application to delegating RAM programs. The proof size in Theorem 1.1 is
independent of the number of instances m, but the verification time contains
a component poly(λ,m, n) that scales with m. For general NP languages, some
type of linear dependence on the number of instances is inherent since the
verification algorithm must at least read the input (of size m · n). However, when
the statements have a “succinct description,” (e.g., they are simply the indices
1, . . . ,m), and it is unnecessary for the verifier to read the full input, we can
reduce the the verification cost down to poly(λ, logm, |C|). This setting is useful
for applications to delegation [CJJ21b, KVZ21]. Our main constructions directly
support this setting. Indeed, combining our new pairing-based BARGs with the
compiler from Choudhuri et al. [CJJ21b], we also obtain a delegation scheme for
RAM programs from the SXDH assumption over pairing groups.

We note here that invoking the compiler from [CJJ21a] additionally requires
a “somewhere extractable commitment” scheme (that supports succinct local
openings). The pairing-based techniques underlying our BARG construction
naturally give rise to a somewhere extractable commitment (in conjunction with
a somewhere extractable hash function [HW15, OPWW15]). This is the first
construction of a somewhere extractable commitment that supports succinct
local openings from standard assumptions over bilinear groups and may be of
independent interest. We describe the construction in the full version of this
paper [WW22]. We summarize our result on delegation in the following informal
theorem:

Theorem 1.2 (Informal). Take any constant ε > 0. Under the SXDH assump-
tion in a prime-order pairing group, for every polynomial T = T (λ), there exists
a publicly-verifiable non-interactive delegation scheme for RAM programs with
proof size poly(λ, log T), verification complexity poly(λ, log T), a verification key
of size poly(λ, log T), and a proving key of size T ε ·poly(λ). Here, λ is the security
parameter and T is the running time of the RAM program. The delegation scheme
is adaptively sound.

Theorem 1.2 gives the first RAM delegation scheme from standard assumptions
over bilinear maps with a CRS whose size is sublinear in the running time of
the computation. Previously constructions of RAM delegation based on pairings
either relied on non-standard q-type assumptions [KPY19] or a CRS of size
super-linear in the running time of the RAM computation [GZ21].

Application to aggregate signatures. As a final application, we use our BARG
for NP to obtain the first aggregate signature scheme that supports bounded

Batch Arguments for NP 5

aggregation from standard assumptions over bilinear maps. In an aggregate
signature scheme, there is a public algorithm that takes a collection of message-
signature pairs (µ1, σ1), . . . , (µm, σm) under (possibly distinct) verification keys
vk1, . . . , vkm, respectively, and outputs a new signature σagg on (µ1, . . . , µm)
under the joint verification key (vk1, . . . , vkm). The requirement is that the size
of σagg scales sublinearly with m. A BARG for circuit satisfiability directly yields
an aggregate signature scheme via the following straightforward construction.
Define the circuit C(vk,m, σ) that takes as input the verification key vk, message
µ, and signature σ, and outputs 1 if σ is a valid signature on µ under vk. An
aggregate signature on (µ1, σ1, vk1), . . . , (µm, σm, vkm) is a BARG proof that
C(vki, µi, σi) = 1 for all i ∈ [m]. Succinctness of the BARG ensures that the size
of the aggregate signature is sublinear in the number of signatures m. Realizing
the above blueprint requires that the underlying BARG satisfy a (weak) form of
extractability; the BARGs we construct in this work satisfy this property, and we
refer to the full version of this paper [WW22] for the details. We obtain the first
aggregate signature scheme supporting (bounded) aggregation from standard
pairing assumptions. We summarize the instantiation here and compare with
previous approaches in Section 1.3:

Corollary 1.3 (Informal). Under the k-Lin assumption (for any k ≥ 1) in a
prime-order pairing group (alternatively, the subgroup decision assumption in a
composite-order pairing group), there exists an aggregate signature scheme that
supports bounded aggregation. In particular, for any a priori bounded polynomial
m = m(λ), aggregating up to T ≤ m message-signature pairs (µ1, σ1), . . . , (µT , σT)
under verification keys vk1, . . . , vkT yields an aggregate signature σagg of size
poly(λ).

1.2 Technical Overview

In this work, we focus on constructing BARGs for the language of Boolean circuit
satisfiability. Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. A
tuple (C,x1, . . . ,xm) is true if for all i ∈ [m], there exists a witness wi such that
C(xi,wi) = 1.

General blueprint. Our BARG for circuit satisfiability follows a “commit-and-
prove” paradigm. To construct a proof π of a statement (C,x1, . . . ,xm) with
associated witnesses (w1, . . . ,wm), the prover proceeds as follows:

– Wire commitments: The prover starts by evaluating C(xi,wi) for each
i ∈ [m]. Let t be the number of wires in circuit C. For each instance i ∈ [m]
and wire k ∈ [t], we write wi,k ∈ {0, 1} to denote the value of wire k in instance
i. Then (w1,k, . . . , wm,k) ∈ {0, 1}m is the vector of assignments to wire k
across all m instances. The prover starts by constructing a vector commitment
Uk to each vector (w1,k, . . . , wm,k). Here, we require the commitment to be
succinct: namely, |Uk| = poly(λ, logm), where λ is a security parameter.
The prover additionally constructs a proof Vk that Uk is a commitment

6 Brent Waters and David J. Wu

to a 0/1 vector (i.e., wi,k ∈ {0, 1} for all i ∈ [m]).5 We similarly require
that |Vk| = poly(λ, logm). Both the commitments to the wire assignments
U1, . . . , Uk and the proofs of valid assignment V1, . . . , Vk are included in the
BARG proof.

– Gate satisfiability: We consider Boolean circuits with fan-in two. Namely,
each gate G` in C can be described by a tuple of (k1, k2, k3) ∈ [t]3, where
k1, k2 are the indices for the input wires and k3 is the index for the output
wire. Since NAND gates are universal, we will assume that all of the gates
in C are NAND gates.6 Let s be the number of gates (i.e., the size) of
the circuit. For each gate ` ∈ [s], the prover constructs a proof W` that
the committed assignments Uk3 to the output wire are consistent with the
committed assignments Uk1 , Uk2 to the input wires. For example, if G` is a
NAND gate, Uk1 is a commitment to (w1,k1 , . . . , wm,k1), Uk2 is a commitment
to (w1,k2 , . . . , wm,k2), then the prover needs to demonstrate that Uk3 is a
commitment to (NAND(w1,k1 , w1,k2), . . . ,NAND(wm,k1 , wm,k2)). The size of
each proof W` must also be succinct: |W`| = poly(λ, logm). The prover
includes a proof of gate satisfiability W` for each gate ` ∈ [s].

The overall proof is π =
(
{(Uk, Vk)}k∈[t], {W`}`∈[s]

)
, and the proof size is |C| ·

poly(λ, logm), which satisfies the efficiency requirements on the BARG. To verify
the proof, the verifier checks the following:

– Input validity: Without loss of generality, we associate wires 1, . . . , n with
the bits of the statement. The verifier checks that U1, . . . , Un are commitments
to the bits of x1, . . . ,xm ∈ {0, 1}n. In our construction, each commitment
is a deterministic function of the input vector, so the verifier can compute
U1, . . . , Un directly from x1, . . . ,xm.

– Wire validity: For each k ∈ [t], the verifier checks that Uk is a commitment
to a 0/1 vector using Vk.

– Gate consistency: For each gate G` = (k1, k2, k3), the verifier uses W`

to check that Uk1 , Uk2 , and Uk3 are commitments to a set of valid wire
assignments consistent with the gate operation G`.

– Output satisfiability: Let t be the index of the output wire in C. The
verifier checks that the commitment to the output wire Ut is a commitment
to the all-ones vector (indicating that all m instances accept).

Since the verifier needs to read the statement, the statement validity check runs
in time poly(λ, n,m). The remaining checks run in time |C| ·poly(λ), which yields
the desired verification complexity.

1.2.1 Construction from Composite-Order Pairing Groups

To illustrate the main ideas underlying our construction, we first describe it using
symmetric composite-order groups and argue soundness under the subgroup
5Technically, this is only required for the input wires corresponding to the witness.
6Our techniques extend naturally to support binary-valued gates that can compute
arbitrary quadratic functions of their inputs; see the full version of this paper [WW22].

Batch Arguments for NP 7

decision assumption [BGN05]. We believe this construction is conceptually simple
and best illustrates the core ideas behind the construction. The approach described
here translates to the setting of asymmetric prime-order pairing groups to yield
a construction from the k-Lin assumption.

Composite-order pairing groups. A symmetric composite-order pairing group
consists of two cyclic groups G and GT of order N = pq, where p, q are prime.
Let g be a generator of G. By the Chinese Remainder Theorem, we can write
G ∼= Gp × Gq, where Gp is a subgroup of order p (generated by gp = gq) and
Gq is a subgroup of order q (generated by gq = gp). Additionally, there exists
an efficiently-computable, non-degenerate bilinear map e : G×G→ GT called
the “pairing:” namely, for all a, b ∈ ZN , it holds that e(ga, gb) = e(g, g)ab. Finally,
the subgroups Gp and Gq are orthogonal: e(gp, gq) = 1, where 1 denotes the
identity element in GT . In our construction, the real scheme operates entirely in
the order-p subgroup Gp of G; the full group G only plays a role in the soundness
analysis.

Vector commitments. The first ingredient we need to implement the above
blueprint is a vector commitment scheme for vectors of dimension m (m being
the number of instances). We start by constructing a common reference string
with m group elements (A1, . . . , Am) where each Ai = gαi

p for some αi
r← ZN . A

commitment to a vector (w1,k, . . . , wm,k) is a subset product of the associated

group elements Uk =
∏
i∈[m]A

wi,k

i = g
∑

i∈[m] αiwi,k

p ∈ Gp. We note that this
is essentially the vector commitment scheme of Catalano and Fiore [CF13]
instantiated in Gp, but without randomization (in our setting, we do not require
a hiding property on the commitments). With this instantiation, the commitment
to each wire has size poly(λ), and is independent of m.

Wire validity checks. The second ingredient we require is a way for the prover
to demonstrate that the committed values satisfy the wire validity and gate
consistency relations. We start by describing the wire validity checks. Consider a
vector of candidate wire assignments (w1, . . . , wm). The prover needs to convince
the verifier that wi ∈ {0, 1} for all i ∈ [m], or equivalently, that w2

i = wi. Now, a
correctly-generated commitment to (w1, . . . , wm) is an encoding of

∑
i∈[m] αiwi

(in the exponent). We can now write∑
i∈[m]

αi

∑
i∈[m]

αiwi

 =
∑
i∈[m]

α2
iwi +

∑
i6=j

αiαjwj

∑
i∈[m]

αiwi

2

=
∑
i∈[m]

α2
iw

2
i +

∑
i 6=j

αiαjwiwj .

When w2
i = wi, the difference between these two expressions is

∑
i 6=j αiαj(1−

wi)wj . Notably, this difference is a linear combination of the products αiαj where

8 Brent Waters and David J. Wu

i 6= j; we refer to these terms as the cross terms. Conversely, if w2
i 6= wi for

some i, then the difference between the two relations always depends on the
non-cross-term α2

i . This suggests the following strategy for proof generation and
verification: we publish encodings Bi,j := g

αiαj
p for i 6= j in the CRS to allow

the prover to “cancel out” cross terms but not the non-cross terms. We also
include an encoding A :=

∏
i∈[m]Ai = g

∑
i∈[m] αi

p that will be used for verification.
Specifically, we define the CRS to be

crs =
(
{Ai := gαi

p }i∈[m] , A :=
∏
i∈[m]Ai = g

∑
i∈[m] αi

p , {Bi,j := gαiαj
p }i 6=j

)
.

(1.1)
Then, the prover can compute the quantity V =

∏
i 6=j B

(1−wi)wj

i,j = g
∑

i6=j αiαj(1−wi)wj

p .

By the above relations, we see that if U = g
∑

i∈[m] αiwi

p , then

e(A,U) = e(U,U)e(gp, V). (1.2)

The analysis above shows that if U is a valid commitment to a binary vector, then
the prover can always compute V that satisfies the verification relation. When
U is not a commitment to a binary vector, we need to argue that the prover
cannot craft a proof V that satisfies Eq. (1.2). The intuition is that there will be
“non-cross-terms” that cannot be cancelled using the components available to the
prover. Formalizing this intuition requires some care and we provide additional
details below. We also note here that the size of the CRS (Eq. (1.1)) in our
construction scales quadratically with the number of instances m. In the following,
we will describe a bootstrapping technique to reduce the CRS size to scale with
mε for any constant ε > 0.

Gate consistency checks. The approach we take for wire validity checks readily
extends to enable gate consistency checks. We describe our approach for verifying
a single NAND gate. To simplify the description, suppose U1 and U2 are vector
commitments to the input wires (w1,1, . . . , wm,1) and (w1,2, . . . , wm,2), and U3 is
a vector commitment to the output wire (w1,3, . . . , wm,3). The prover wants to
show that wi,3 = NAND(wi,1, wi,2) for all i ∈ [m]. This is equivalent to checking
satisfiability of the quadratic relation wi,3 + wi,1wi,2 = 1. In this case, the prover
computes the element W ∈ Gp such that

e(A,U3)e(U1, U2)

e(A,A)
= e(gp,W). (1.3)

Suppose U1, U2, U3 are properly-generated commitments. Then, if we consider
the exponents for the left-hand side of the verification relation, we have∑
i∈[m]

α2
iwi,3 +

∑
i6=j

αiαjwj,3︸ ︷︷ ︸
e(A,U3)

+
∑
i∈[m]

α2
iwi,1wi,2 +

∑
i 6=j

αiαjwi,1wj,2︸ ︷︷ ︸
e(U1,U2)

−
∑
i∈[m]

α2
i −

∑
i 6=j

αiαj︸ ︷︷ ︸
e(A,A)

.

If wi,3 +wi,1wi,2 = 1, then all of the non-cross terms vanish, and we are left with∑
i 6=j αiαj(wj,3+wi,1wj,2−1). The prover can thus setW =

∏
i 6=j B

wj,3+wi,1wj,2−1
i,j

Batch Arguments for NP 9

to satisfy the above verification relation. Similar to the case with wire con-
sistency checks, we now have to show that if there exists an i ∈ [m] where
wi,3 + wi,1wi,2 6= 1, then the prover is unable to compute a W that satisfies
Eq. (1.3).

Proving soundness. To argue soundness of our argument system, we take the
dual-mode approach from [CJJ21a, CJJ21b].7 Specifically in this setting, there
are two computationally indistinguishable ways to sample the CRS: (1) the
normal mode described above; and (2) a trapdoor mode that takes as input an
instance index i∗ ∈ [m] and outputs a trapdoor CRS crs∗. The requirement is
that in trapdoor mode, the scheme is statistically sound for instance i∗. Namely,
with overwhelming probability over the choice of crs∗, there does not exist any
proof π for (x1, . . . ,xm) that convinces the verifier when xi∗ is false. However,
it is still possible that there exists valid proofs of tuples where xi∗ is true but
xi is false for some i 6= i∗. By a standard hybrid argument, it is easy to see
that a BARG with this dual-mode “somewhere statistical soundness” property
also satisfies non-adaptive soundness (i.e., soundness for statements that are
independent of the CRS).8 Achieving the stronger notion of adaptive soundness
where security holds for statements that depend on the CRS seems challenging
and in certain settings, will either require non-black-box techniques or basing
security on non-falsifiable assumptions [GW11, BHK17].

Somewhere statistical soundness. To argue that our construction above satisfies
somewhere statistical soundness, we start by describing the trapdoor CRS. To
ensure statistical soundness for index i∗ ∈ [m], we replace the encoding Ai∗ = gαi∗

p

associated with instance i∗ with Ai∗ ← gαi∗ ∈ G. Critically, Ai∗ is now in the full
group rather than the order-p subgroup Gp. The encodings Ai associated with
instances i 6= i∗ are still sampled from Gp. We can construct the cross terms Bi,j in
a similar manner as before: the components for i, j 6= i∗ are unaffected and we set
Bi∗,j = Bj,i∗ = A

αj

i∗ ∈ G. The trapdoor CRS is computationally indistinguishable
from the normal CRS by the subgroup decision assumption [BGN05]. Consider
the wire consistency checks and gate consistency checks:

– Wire consistency checks. Let U ∈ G be a commitment to a tuple of
wire values and V ∈ G be the wire consistency proof. We can decompose U
as U = g

βp
p g

βq
q for some βp ∈ Zp, βq ∈ Zq. Moreover, by construction, the

verification component A is defined to be A =
∏
i∈[m]Ai = g

∑
i∈[m] αi

p gαi∗
q .

Consider now the verification relation from Eq. (1.2). If this relation holds
7This is different from the notion of “dual-mode” proof system often encountered in the
setting of non-interactive zero-knowledge (NIZK) [GOS06, PS19, LPWW20]. There,
the CRS can be sampled in two computationally indistinguishable modes: one mode
ensures statistical soundness and the other ensures statistical zero knowledge.

8Our construction satisfies the stronger notion of semi-adaptive somewhere sound-
ness [CJJ21b], where the adversary first commits to an index i∗, but is allowed to
choose the statements (x1, . . . ,xm) after seeing the CRS. The adversary wins if the
proof is valid but xi∗ is false. This notion is needed for the implications to delegation.

10 Brent Waters and David J. Wu

in GT , it must in particular hold in the order-q subgroup of GT . The key
observation is that projecting the relation into the order-q subgroup of GT
isolates instance i∗ (since only the encoding Ai∗ contains components in the
order-q subgroup). Moreover, the pairing e(gp, V) vanishes in the order-q
subgroup, so the prover has no control over the validity check in the order-
q subgroup. Now, for Eq. (1.2) to be satisfied, it must be the case that
αi∗βq = β2

q mod q. Thus, either βq = 0 or βq = αi∗ and so the wire checks
ensure that Uk = g

βp
p gξkαi∗

q where ξk ∈ {0, 1} for all k ∈ [m].
– Gate consistency checks. Now, consider the gate consistency checks. We

again consider the projection of the pairing check into the order-q subgroup.
If we project Eq. (1.3) in the order-q subgroup and using the above relations
for Uk and A, we obtain the relation

ξk3α
2
i∗ + ξk1ξk2α

2
i∗ − α2

i∗ = 0 mod q.

If αi∗ 6= 0 mod q, then ξk3 + ξk1ξk2 − 1 = 0 mod q. Since ξk1 , ξk2 , ξk3 ∈ {0, 1},
this means that ξk3 = NAND(ξk1 , ξk2).

The above relations show that (ξ1, . . . , ξt) ∈ {0, 1}t constitutes a valid assignment
to the wires of C((ξ1, . . . , ξn),w

∗) where w∗ = (ξn+1, . . . , ξn+h). Again consider-
ing the verification relations in the order-q subgroup, the input validity checks
ensure that xi∗ = (ξ1, . . . , ξn) and the output satisfiability check ensures that
C(xi∗ ,w

∗) = ξt = 1. The above argument shows that if all of the validity checks
pass, then we can extract a witness for instance i∗. Thus, statistical soundness
for instance xi∗ holds. In fact, this extraction procedure can be made efficient
given a trapdoor (i.e., the factorization of N). We provide the full construction
and security analysis in Section 3.

1.2.2 The Prime-Order Instantiation, Bootstrapping, and Applica-
tions

The BARG construction from symmetric composite-order groups is conceptually
simple to describe and illustrates the main ideas behind our construction. We
now describe several extensions and generalizations of these ideas.

Instantiation from k-Lin. The ideas underlying the composite-order construction
(Sections 1.2.1 and 3) naturally extend to the setting of asymmetric prime-order
groups. Recall that an asymmetric prime-order group consists of two base groups
G1 and G2, a target group GT , all of prime order p, and an efficiently-computable,
non-degenerate pairing e : G1 ×G2 → GT . In this setting, we can base security
on the standard k-Lin assumption for any k ≥ 1. Recall that the case k = 1
corresponds to the SXDH assumption (i.e., DDH in G1 and G2) and the case k = 2
corresponds to the DLIN assumption [BBS04, HK07, Sha07]. The key property
we relied on in the soundness analysis of the composite-order construction is the
ability to isolate a single instance by projecting the verification relations into a
suitable subgroup. In the prime-order setting, we can simulate this projection
property by considering subspaces of vector spaces [GS08, Fre10]. We refer to
Section 4 for the full description and security analysis.

Batch Arguments for NP 11

Bootstrapping to reduce CRS size. The size of the CRS in the above construction
scales quadratically with the number of instances m (due to the cross terms).
However, we can adapt the bootstrapping approach from Kalai et al. [KPY19]
reduce the size of the CRS to grow with mε (for any constant ε > 0). Soundness
of the bootstrapping construction critically relies on the ability to extract the
witness for one of the instances in the BARG.

The construction is simple. To verify statements x1, . . . ,xm, we consider
a two-tiered construction where we group the statements into m/B batches
of statements, each containing exactly B statements. We use a BARG (on B
instances) to prove that all of the statements in each batch (xB(i−1)+1, . . . ,xiB)

are true. Let πi be the BARG proof for the ith batch. The prover then shows
that it knows accepting proofs π1, . . . , πm/B of each of the m/B batches of
statements. Here, it will be critical that the size of the BARG verification circuit
for checking πi be sublinear in the batch size B. This is not possible in general
since the verification circuit has to read the statement which already has length
B. However, when the underlying BARG satisfies a “split verification” property
(Definition 2.9), where the verification algorithm decomposes into (1) a circuit-
independent preprocessing step that reads the statement and outputs a succinct
verification key vk; and (2) a fast “online” verification step whose running time is
polylogarithmic in the number of instances, it suffices to use the BARG to only
check the online verification step.

Now, if we set B =
√
m in this framework, both the BARG for checking each

batch of B statements as well as the BARG for verifying the m/B =
√
m batches

are BARGs on
√
m instances. Thus, we can use a BARG on

√
m instances to

construct a BARG on m instances. If we start with a BARG with CRS size md,
then the two-tiered construction reduces the CRS size to roughly md/2. We can
apply this approach recursively (with a constant number of iterations) to reduce
the CRS size from poly(λ,m) to mε · poly(λ) for any constant ε > 0. We refer to
the full version of this paper [WW22] for the full details.

Application to delegation. Choudhuri et al. [CJJ21b] showed how to combine a
“BARG for index languages” with a somewhere extractable commitment scheme
to obtain a delegation scheme for RAM programs. In a BARG for index languages,
the statements to the m instances are always fixed to be the binary representation
of the integers 1, . . . ,m. In this setting, the prover and the verifier do not need
to read the statement anymore, and correspondingly, the verification algorithm
is required to run in time poly(λ, logm, |C|) when checking a circuit C.

Our BARG construction extends naturally to this setting. In the construction
described in Section 1.2.1 (see also Section 3), the verifier starts by computing the
commitments U1, . . . , Un to the bits of the statement. This takes time poly(λ, n,m)
since the verifier has to minimally read the statement (of length mn). However
in the case of an index BARG, the statements are known in advance, so the
encodings Ui can be computed in advance and included as part of a verification key
vk = (U1, . . . Un) that the verifier uses for verification. Given vk, the statement
validity checks can be implemented by simply comparing the precomputed
commitments with those provided by the adversary; notably this check is now

12 Brent Waters and David J. Wu

independent of the number of instances. Using the precomputed commitments,
we can bring the overall verification cost down to |C| ·poly(λ, logm), which meets
the efficiency requirements for an index BARG.

The second ingredient we require to instantiate the Choudhuri et al. [CJJ21b]
compiler is a somewhere extractable commitment scheme. Our techniques for
constructing BARGs can also be used to directly construct a somewhere ex-
tractable commitment scheme (when combined with a somewhere statistically
binding hash function [HW15, OPWW15]). We can thus appeal to the compiler of
Choudhuri et al. to obtain a delegation scheme for RAM programs from the SXDH
assumption in bilinear groups.9 Similar to the case with BARGs, we first describe
a construction with a long CRS where the length of the CRS grows quadratically
with the length of the committed message. We then describe a similar kind of
bootstrapping technique to obtain a somewhere extractable commitment scheme
with a CRS of size sublinear in the message size. We refer to the full version of
this paper [WW22] for the full details.

Application to aggregate signatures. As described in Section 1.1, our BARG con-
struction directly implies an aggregate signature scheme supporting bounded ag-
gregation. We describe this construction in the full version of this paper [WW22].

Generalized BARGs. As previously noted for the case of BARGs for index
languages, when the statements are fixed in advance, we can precompute commit-
ments to them during setup and include the honestly-generated commitments
to their values as part of a verification key. In this case, the verifier can use the
precomputed encodings during verification and no longer needs to perform the
statement validity checks. In the full version of this paper [WW22], we describe a
more generalized view where some of the statement wires are fixed while others
can be chosen by the prover. This generalization captures both the standard
setting (where all of the statement wires can be chosen by the prover) and the
BARG for index languages setting (where all of the statement wires are fixed
ahead of time) as special cases.

1.3 Related Work

SNARGs. Batch arguments for NP can be constructed from any succinct non-
interactive argument (SNARG) for NP. Existing constructions of SNARGs have
either relied on random oracles [Mic95, BBHR18, COS20, CHM+20, Set20],
the generic group model [Gro16], or strong non-falsifiable assumptions [Gro10,
BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, BISW17,

9While our BARG scheme can be based on the k-Lin assumption over bilinear groups
for any k ≥ 1, existing constructions of somewhere statistically binding hash func-
tions [OPWW15] rely on the DDH assumption. As such, our current instantiation is
based on SXDH. It seems plausible that the DDH-based construction of somewhere
statistically binding hash functions can be extended to achieve hardness under the
k-Lin assumption, but this is orthogonal to the primary focus of our work.

Batch Arguments for NP 13

BCC+17]. Indeed, Gentry and Wichs [GW11] showed that no construction
of an (adaptively-sound) SNARG for NP can be proven secure via a black-box
reduction to a falsifiable assumption [Nao03]. This separation also extends to
adaptively-sound BARGs of knowledge (i.e., “BARKs”) for NP [BHK17]. The
only construction of non-adaptively sound SNARGs from falsifiable assumptions
is the construction based on indistinguishability obfuscation [SW14]. We note
that Lipmaa and Pavlyk [LP21] recently proposed a candidate SNARG from
a non-standard, but falsifiable, q-type assumption on bilinear groups. However,
we were recently informed [Wic22] that the proof of security was fundamentally
flawed and later confirmed this with the authors of [LP21].

Batch arguments for NP. If we focus specifically on constructions of BARGs
for NP, Kalai et al. [KPY19] showed how to construct a BARG for NP from
a non-standard, but falsifiable, q-type assumption on bilinear groups. More re-
cently, Choudhuri et al. gave constructions from subexponentially-hard DDH
in pairing-free groups in conjunction with polynomial hardness of the QR as-
sumption [CJJ21a], as well as from polynomial hardness of the LWE assump-
tion [CJJ21b]. Both of these constructions leverage correlation-intractable hash
functions. The size of the proof in the DDH+ QR construction grows with

√
m,

where m is the number of instances, while that in the LWE construction scales
polylogarithmically with the number of instances. Our work provides the first
BARG for NP from standard assumptions on bilinear groups (with proof size
that is independent of the number of instances).

Interactive schemes. Batch arguments for NP have also been considered in the
interactive setting. First, the classic IP = PSPACE theorem [LFKN90, Sha90]
implies a interactive proof for batch NP verification, albeit with an inefficient
prover. For interactive proofs with an efficient prover, batch verification is known
for the class UP of NP languages with unique witnesses [RRR16, RRR18, RR20].
If we relax to interactive arguments, Brakerski et al. [BHK17] constructed 2-
message BARGs for NP from any computational private information retrieval
(PIR) scheme.

Delegation schemes. Many works have focused on constructing delegation schemes
for deterministic computations. In the interactive setting, we have succinct proofs
for both bounded-depth computations [GKR08] and bounded-space computa-
tions [RRR16]. In the non-interactive setting, Kalai et al. [KPY19] gave the first
construction from a falsifiable (but non-standard) assumption on bilinear groups.
Using correlation-intractable hash functions based on LWE, Jawale et al. [JKKZ21]
and Choudhuri et al. [CJJ21b] constructed delegation schemes for bounded-depth
computations and general polynomial-time computations, respectively. Recently,
González and Zacharakis [GZ21] constructed a delegation scheme for arithmetic
circuits with a long CRS from a bilateral (or “split”) k-Lin assumption in asym-
metric groups. The size of the CRS in their construction is quadratic in the
circuit size. Our scheme is based on the vanilla SXDH assumption in asymmetric
groups and has a CRS whose size is sublinear in the running time of the RAM

14 Brent Waters and David J. Wu

computation (specifically, T ε for any constant ε > 0, where T is the running time
of the RAM computation).

Aggregate signatures. Aggregate signatures were introduced by Boneh et al. [BGLS03]
who also gave an efficient construction using bilinear maps in the random oracle
model. In the standard model, constructions of aggregate signatures have typically
considered restricted settings such as sequential aggregation [LMRS04, LOS+06]
where the aggregate signature is constructed by having each signer sequen-
tially “add” its signature to an aggregated signature, or synchronized aggrega-
tion [GR06, AGH10, HW18], which assumes that signers have a synchronized clock
and aggregation is only allowed on signatures from the same time period (with
exactly 1 signature from each signer per time period). Other (standard model)
constructions have relied on heavy tools such as multilinear maps [RS09, FHPS13]
or indistinguishability obfuscation [HKW15]. Aggregate signatures can also be
constructed generically from adaptively-sound succinct arguments of knowledge
(SNARKs), which are only known from non-falsifiable assumptions or idealized
models. In the case of bounded aggregation (where there is an a priori bound on
the number of signatures that can be aggregated), the somewhere extractable
BARG by Choudhuri et al. [CJJ21b] can be used to obtain a construction from
LWE. Our work provides the first instantiation of an aggregate signature support-
ing bounded aggregation from standard assumptions over bilinear groups in the
plain model.

2 Preliminaries

For a positive integer n, we write [n] to denote the set {1, . . . , n}. For a positive
integer p ∈ N, we write Zp to denote the ring of integers modulo p. We use bold-
face uppercase letters (e.g., A, B to denote matrices) and bold-face lowercase
letters (e.g., x, w) to denote vectors. For a finite set S, we write x r← S to
indicate that x is sampled uniformly at random from S. We use non-bold-face
letters to denote their components (e.g., x = (x1, . . . , xn)). We write poly(λ) to
denote a function that is O(λc) for some c ∈ N and negl(λ) to denote a function
that is o(λ−c) for all c ∈ N. We say an event E occurs with overwhelming
probability if its complement occurs with negligible probability. An algorithm
is efficient if it runs in probabilistic polynomial time in its input length. We
say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are
computationally indistinguishable if no efficient algorithm can distinguish them
with non-negligible probability. We say they are statistically indistinguishable if
the statistical distance between them is bounded by a negligible function.

2.1 Non-Interactive Batch Arguments for NP

In this work, we consider the NP-complete language of Boolean circuit satisfiability.
For ease of exposition, we focus on Boolean circuits comprised exclusively of
NAND gates in our main construction. In the full version of this paper [WW22],

Batch Arguments for NP 15

we describe how to generalize the construction to support gates that compute
arbitrary quadratic relations over their inputs. This allows us to support both
general gates (e.g., AND, OR, XOR) as well as gates with more than two inputs.

For a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} with t wires, we associate
wires 1, . . . , n with the bits of the statement x1, . . . , xn, and wires n+1, . . . , n+h
with the bits of the witness w1, . . . , wh, respectively. We associate wire t with the
output wire. We measure the size s of C by the number of NAND gates it has.
By construction, t ≤ n+ h+ s. We now define the (batch) circuit satisfiability
language we consider in this work:

Definition 2.1 (Circuit Satisfiability). We define LCSAT = {(C,x) | ∃w ∈
{0, 1}h : C(x,w) = 1} to be the language of Boolean circuit satisfiability, where
C : {0, 1}n ×{0, 1}h → {0, 1} is a Boolean circuit and x ∈ {0, 1}n is a statement.
For a positive integer m ∈ N, we define the batch circuit satisfiability language
LBatchCSAT,m as follows:

LBatchCSAT,m = {(C,x1, . . . ,xm) | ∀i ∈ [m] : ∃wi ∈ {0, 1}h : C(xi,wi) = 1},

where C : {0, 1}n×{0, 1}h → {0, 1} is a Boolean circuit and x1, . . . ,xm ∈ {0, 1}n
are the instances.

Definition 2.2 (Batch Argument for Circuit Satisfiability). A non-interactive
batch argument (BARG) for circuit satisfiability is a tuple of three efficient algo-
rithms ΠBARG = (Setup,Prove,Verify) with the following properties:

– Setup(1λ, 1m, 1s)→ crs: On input the security parameter λ ∈ N, the number
of instances m ∈ N, and a bound on the circuit size s ∈ N, the setup algorithm
outputs a common reference string crs.

– Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm))→ π: On input the common refer-
ence string crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements
x1, . . . ,xm ∈ {0, 1}n, and witnesses w1, . . . ,wm ∈ {0, 1}h, the prove algo-
rithm outputs a proof π.

– Verify(crs, C, (x1, . . . ,xm), π)→ b: On input the common reference string crs,
the Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . ,xm ∈
{0, 1}n and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

Definition 2.3 (Completeness). A BARG ΠBARG = (Setup,Prove,Verify) is
complete if for all λ,m, s ∈ N, all Boolean circuits C : {0, 1}n × {0, 1}h →
{0, 1} of size at most s, all statements x1, . . . ,xm ∈ {0, 1}n, and all witnesses
w1, . . . ,wm ∈ {0, 1}h where C(xi,wi) = 1 for all i ∈ [m],

Pr

[
Verify(crs, C, (x1, . . . ,xm), π) = 1 :

crs← Setup(1λ, 1m, 1s);
π ← Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm))

]
= 1.

Definition 2.4 (Soundness). Let ΠBARG = (Setup,Prove,Verify) be a BARG.
We consider two notions of soundness:

16 Brent Waters and David J. Wu

– Non-adaptive soundness:We say that ΠBARG satisfies non-adaptive sound-
ness if for all polynomials m = m(λ), s = s(λ), and efficient adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, and every
statement (C,x1, . . . ,xm) /∈ LBatchCSAT,m, where C : {0, 1}n×{0, 1}h → {0, 1}
is a Boolean circuit of size at most s(λ) and x1, . . . ,xn ∈ {0, 1}n,

Pr

[
Verify(crs, C, (x1, . . . ,xm), π) = 1 :

crs← Setup(1λ, 1m, 1s);
π ← A(1λ, crs, C, (x1, . . . ,xm))

]
= negl(λ).

– Adaptive soundness: We say that ΠBARG is adaptively sound if for every
efficient adversary A and every polynomial m = m(λ), s = s(λ), there exists
a negligible function of negl(·) such that for all λ ∈ N,

Pr

[
Verify(crs, C, (x1, . . . ,xm), π) = 1

and
(C,x1, . . . ,xm) /∈ LBatchCSAT,m

:
crs← Setup(1λ, 1m, 1s);

(C,x1, . . . ,xm, π)← A(1λ, crs)

]
= negl(λ).

Definition 2.5 (Semi-Adaptive Somewhere Soundness [CJJ21b]). A
BARG ΠBARG = (Setup,Prove,Verify) satisfies semi-adaptive somewhere sound-
ness if there exists an efficient algorithm TrapSetup with the following properties:

– TrapSetup(1λ, 1m, 1s, i∗)→ crs∗: On input the security parameter λ ∈ N, the
number of instances m ∈ N, the size of the circuit s ∈ N, and an index
i∗ ∈ [m], the trapdoor setup algorithm outputs a (trapdoor) common reference
string crs∗.

We require TrapSetup satisfy the following two properties:

– CRS indistinguishability: For integers m ∈ N, s ∈ N, a bit b ∈ {0, 1}, and
an adversary A, define the CRS indistinguishability experiment ExptCRSA(λ,m, s, b)
as follows:
1. Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
2. If b = 0, the challenger gives crs← Setup(1λ, 1m, 1s) to A. If b = 1, the

challenger gives crs∗ ← TrapSetup(1λ, 1m, 1s, i∗) to A.
3. Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-

ment.
Then, ΠBARG satisfies CRS indistinguishability if for every efficient adversary
A, every polynomial m = m(λ), s = s(λ), there exists a negligible function
negl(·) such that for all λ ∈ N,

|Pr[ExptCRSA(λ,m, s, 0) = 1]− Pr[ExptCRSA(λ,m, s, 1) = 1]| = negl(λ).

– Somewhere soundness in trapdoor mode: Define the somewhere sound-
ness security game between an adversary A and a challenger as follows:
• Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
• The challenger samples crs∗ ← TrapSetup(1λ, 1m, 1s, i∗) and gives crs∗ to
A.

Batch Arguments for NP 17

• Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}
of size at most s, statements x1, . . . ,xm ∈ {0, 1}n, and a proof π. The
output of the game is b = 1 if Verify(crs∗, C, (x1, . . . ,xm), π) = 1 and
(C,xi∗) /∈ LCSAT. Otherwise, the output is b = 0.

Then, ΠBARG satisfies somewhere soundness in trapdoor mode if for every
adversary A, and every polynomial m = m(λ), s = s(λ), there exists a
negligible function negl(·) such that for all λ ∈ N, Pr[b = 1] = negl(λ) in the
somewhere soundness security game.

Definition 2.6 (Somewhere Argument of Knowledge [CJJ21b]). A BARG
ΠBARG = (Setup,Prove,Verify) is a somewhere argument of knowledge if there
exists a pair of efficient algorithms (TrapSetup,Extract) with the following prop-
erties:

– TrapSetup(1λ, 1m, 1s, i∗)→ (crs∗, td): On input the security parameter λ ∈ N,
the number of instances m ∈ N, the size of the circuit s ∈ N, and an index
i∗ ∈ [m], the trapdoor setup algorithm outputs a common reference string
crs∗ and an extraction trapdoor td.

– Extract(td, C, (x1, . . . ,xm), π) → w∗ On input the trapdoor td, statements
x1, . . . ,xm, and a proof π, the extraction algorithm outputs a witness w∗ ∈
{0, 1}h. The extraction algorithm is deterministic.

We require (TrapSetup,Extract) to satisfy the following two properties:

– CRS indistinguishability: Same as in Definition 2.5.
– Somewhere extractable in trapdoor mode: Define the somewhere ex-
tractable security game between an adversary A and a challenger as follows:
• Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
• The challenger samples (crs∗, td) ← TrapSetup(1λ, 1m, 1s, i∗) and gives

crs∗ to A.
• Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}
of size at most s, statements x1, . . . ,xm ∈ {0, 1}n, and a proof π. Let
w∗ ← Extract(td, C, (x1, . . . ,wm), π).
• The output of the game is b = 1 if Verify(crs∗, C, (x1, . . . ,xm), π) = 1 and
C(xi∗ ,w

∗) 6= 1. Otherwise, the output is b = 0.
Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary
A and every polynomial m = m(λ), s = s(λ), there exists a negligible function
negl(·) such that Pr[b = 1] = negl(λ) in the somewhere extractable game.

Remark 2.7 (Soundness Notions). The notion of semi-adaptive somewhere sound-
ness from Definition 2.5 is stronger than and implies non-adaptive soundness.
Somewhere extractability (Definition 2.6) is a further strengthening of semi-
adaptive somewhere soundness.

Definition 2.8 (Succinctness). A BARG ΠBARG = (Setup,Prove,Verify) is
succinct if there exists a fixed polynomial poly(·, ·, ·) such that for all λ,m, s ∈ N,
all crs in the support of Setup(1λ, 1m, 1s), and all Boolean circuits C : {0, 1}n ×
{0, 1}h → {0, 1} of size at most s, the following properties hold:

18 Brent Waters and David J. Wu

– Succinct proofs: The proof π output by Prove(crs, C, ·, ·) satisfies |π| ≤
poly(λ, logm, s).

– Succinct CRS: |crs| ≤ poly(λ,m, n) + poly(λ, logm, s).
– Succinct verification: The verification algorithm runs in time poly(λ,m, n)+

poly(λ, logm, s).

BARGs with split verification. Our bootstrapping construction in the full version
of this paper [WW22] (for reducing the size of the CRS) will rely on a BARG with
a split verification property where the verification algorithm can be decomposed
into a input-dependent algorithm that pre-processes the statements into a short
verification key together with a fast online verification algorithm that takes
the precomputed verification key and checks the proof. A similar property was
also considered by Choudhuri et al. [CJJ21b] to realize their RAM delegation
construction.

Definition 2.9 (BARG with Split Verification). A BARG ΠBARG = (Setup,
Prove,Verify) supports split verification if there exists a pair of efficient and de-
terministic algorithms (GenVK,OnlineVerify) with the following properties:

– GenVK(crs, (x1, . . . ,xm)) → vk: On input the common reference string crs
and statements x1, . . . ,xm ∈ {0, 1}n, the verification key generation algorithm
outputs a verification key vk.

– OnlineVerify(vk, C, π)→ b: On input a verification key vk, a Boolean circuit
C : {0, 1}n×{0, 1}h → {0, 1} and a proof π, the verification algorithm outputs
a bit b ∈ {0, 1}.

Then, we say ΠBARG supports split verification if Verify(crs, C, (x1, . . . ,xm), π)
outputs

OnlineVerify(GenVK(crs, (x1, . . . ,xm)), C, π).

We additionally require that there exists a fixed polynomial poly(·, ·, ·) such that
for all λ,m, s ∈ N, all crs in the support of Setup(1λ, 1m, 1s), and all Boolean
circuits C : {0, 1}n × {0, 1}h → {0, 1} of size at most s, the following efficiency
properties hold (in addition to the properties in Definition 2.8):

– Succinct verification key: The verification key generation algorithm GenVK
runs in time poly(λ,m, n), and the size of the vk output by GenVK satisfies
|vk| ≤ poly(λ, logm,n).

– Succinct online verification: The algorithm OnlineVerify(vk, C, π) runs in
time poly(λ, logm, s).

Remark 2.10 (BARGs for Index Languages [CJJ21b]). BARGs for index lan-
guages [CJJ21b] (“index BARGs”) are a useful building block for constructing
delegation schemes for RAM programs. In an index BARG with m instances, the
statement to the ith instance is the binary representation of the index i. Since
the statements are fixed in an index BARG, they are not included in the input to
the Prove and Verify algorithms. Moreover, the running time of the verification

Batch Arguments for NP 19

algorithm Verify on input a verification key vk,10 a circuit C, and a proof π is
required to be poly(λ, logm, |C|). It is easy to see that any BARG with a split
verification procedure can also be used to build an index BARG. Specifically, after
the Setup algorithm samples the common reference string crs, it precomputes the
(short) verification key vk← GenVK(crs, (1, 2, . . . ,m)). The verification algorithm
Verify then takes as input the precomputed verification key vk, the circuit C, and
the proof π, and outputs OnlineVerify(vk, C, π). The succinctness requirements
on the split verification procedure implies the succinctness requirement on the
index BARG.

3 BARG for NP from Subgroup Decision in Bilinear
Groups

In this section, we show how to construct a BARGs from the subgroup decision
assumption over symmetric composite-order groups. We refer to Section 1.2.1 for
a general overview of this construction. We start by recalling the definition of a
composite-order pairing group [BGN05] and the subgroup decision assumption.

Definition 3.1 (Composite-Order Bilinear Groups [BGN05]). A (sym-
metric) composite-order bilinear group generator is an efficient algorithm CompGroupGen
that takes as input the security parameter λ and outputs a description G =
(G,GT , p, q, g, e) of a bilinear group where p, q are distinct primes, G and GT are
cyclic groups of order N = pq, and e : G×G→ GT is a non-degenerate bilinear
map (called the “pairing”). We require that the group operation in G and GT as
well as the pairing operation to be efficiently computable.

Definition 3.2 (Subgroup Decision [BGN05]). The subgroup decision as-
sumption holds with respect to a composite-order bilinear group generator CompGroupGen
if for every efficient adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N,∣∣Pr[A((G,GT , N, gp, e), gr) = 1]− Pr[A((G,GT , N, gp, e), grp) = 1]

∣∣ = negl(λ),

where (G,GT , p, q, g, e)← CompGroupGen(1λ), N ← pq, gp ← gq, and r r← ZN .

Construction 3.3 (BARG for NP from Subgroup Decision). Take any
integer m ∈ N. We construct a BARG with split verification for the language of
circuit satisfiability as follows:

– Setup(1λ, 1m, 1s): On input the security parameter λ, the number of instances
m, and the bound on the circuit size s, the setup algorithm does the following:
• Run (G,GT , p, q, g, e)← GroupGen(1λ) and let N = pq, gp ← gq. In par-

ticular, gp generates a subgroup of order p in G. Let G = (G,GT , N, gp, e).
10Here, we allow the verification algorithm to take in a separate verification key vk,
which may be shorter than the full common reference string crs. Note that the vk is
assumed to be public (i.e., the CRS contains vk and possibly additional components
used to construct proofs).

20 Brent Waters and David J. Wu

• For each i ∈ [m], sample αi
r← ZN . For each i ∈ [m], let Ai ← gαi

p . Let
A←

∏
i∈[m]Ai.

• For each i, j ∈ [m] where i 6= j, compute Bi,j ← g
αiαj
p .

• Output the common reference string crs =
(
G, A, {Ai}i∈[m], {Bi,j}i 6=j

)
.

– Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm)): On input the common reference
string crs = (G, A, {Ai}i∈[m], {Bi,j}i 6=j), the circuit C : {0, 1}n × {0, 1}h →
{0, 1}, instances x1, . . . ,xm ∈ {0, 1}n, and witnesses w1, . . . ,wm ∈ {0, 1}h,
define t to be the number of wires in C and s to be the number of gates in
C. Then, for i ∈ [m] and j ∈ [t], let wi,j ∈ {0, 1} be the value of wire j in
C(xi,wi). The prover proceeds as follows:
• Encoding wire values: For each k ∈ [t], let Uk =

∏
i∈[m]A

wi,k

i .

• Validity of wire assignments: For each k ∈ [t], let Vk =
∏
i 6=j B

(1−wi,k)wj,k

i,j .
• Validity of gate computation: For each NAND gateG` = (k1, k2, k3) ∈
[t]3 (where ` ∈ [s]), compute W` =

∏
i 6=j B

1−wi,k1
wj,k2

−wj,k3
i,j

Finally, output the proof π =
(
{Uk, Vk}k∈[t], {W`}`∈[s]

)
.

– Verify(crs, C, (x1, . . . ,xm), π): We decompose the verification algorithm into
(GenVK,OnlineVerify):
• GenVK(crs, (x1, . . . ,xm)): On input the common reference string crs =
(G, A, {Ai}i∈[m], {Bi,j}i 6=j), instances x1, . . . ,xm ∈ {0, 1}n, the verifica-
tion key generation algorithm computes U∗k =

∏
i∈[m]A

xi,k

i for each
k ∈ [n], and outputs the verification key vk = (U∗1 , . . . , U

∗
n).

• OnlineVerify(vk, C, π): On input the verification key vk = (U∗1 , . . . , U
∗
n), a

circuit C : {0, 1}n×{0, 1}h → {0, 1} and the proof π = ({Uk, Vk}k∈[t], {W`}`∈[s]),
the verification algorithm checks the following:

∗ Validity of statement: For each input wire k ∈ [n], Uk = U∗k .
∗ Validity of wire assignments: For each k ∈ [t],

e(A,Uk) = e(gp, Vk)e(Uk, Uk). (3.1)

∗ Validity of gate computation: For each gate G` = (k1, k2, k3) ∈
[t]3,

e(A,A) = e(Uk1 , Uk2)e(A,Uk3)e(gp,W`). (3.2)

∗ Output satisfiability: The output encoding Ut satisfies Ut = A.
The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.

The verification algorithm outputs OnlineVerify(GenVK(crs, (x1, . . . ,xm)), C, π).

Theorem 3.4 (Completeness). Construction 3.3 is complete.

Proof. Take any circuit C : {0, 1}n × {0, 1}h → {0, 1}, instances x1, . . . ,xm ∈
{0, 1}n and witnesses w1, . . . ,wm ∈ {0, 1}h such that C(xi,wi) = 1 for all i ∈
[m]. Let crs← Setup(1λ, 1m, 1s) and π ← Prove(crs, (x1, . . . ,xm), (w1, . . . ,wm)).
We show that Verify(crs, C, (x1, . . . ,xm), π) outputs 1. Consider each of the
verification relations:

Batch Arguments for NP 21

– Validity of statement: By construction of GenVK, U∗k =
∏
i∈[m]A

xi,k

i for
each k ∈ [n]. By construction of Prove, Uk =

∏
i∈[m]A

wi,k

i . By definition, the
first n wires in C coincide with the wires to the statement, so wi,k = xi,k for
k ∈ [n], and Uk = U∗k for all k ∈ [n].

– Validity of wire assignments: Take any k ∈ [t]. Then Uk =
∏
i∈[m]A

wi,k

i =

g
∑

i∈[m] αiwi,k

p . Now,∑
i∈[m]

αi

∑
j∈[m]

αjwj,k

 =
∑
i∈[m]

α2
iwi,k +

∑
i 6=j

αiαjwj,k,

and ∑
i∈[m]

αiwi,k

∑
j∈[m]

αjwj,k

 =
∑
i∈[m]

α2
iwi,k +

∑
i 6=j

αiαjwi,kwj,k,

using the fact that wi,k ∈ {0, 1} so w2
i,k = wi,k. Finally Vk =

∏
i 6=j B

(1−wi,k)wj,k

i,j =

g
∑

i6=j αiαj(1−wi,k)wj,k

p . Thus, we can write

e(gp, Vk)e(Uk, Uk) = e(gp, gp)
∑

i6=j αiαj(1−wi,k)wj,k+
∑

i∈[m] α
2
iwi,k+

∑
i6=j αiαjwi,kwj,k

= e(gp, gp)
∑

i∈[m] α
2
iwi,k+

∑
i6=j αiαjwj,k

= e(A,Uk).

– Validity of gate computation: Take any gate G` = (k1, k2, k3) ∈ [t]3.
Consider first the exponents for the terms e(Uk1 , Uk2), e(A,Uk3), and e(A,A):∑

i∈[m]

αiwi,k1

∑
j∈[m]

αjwj,k2

 =
∑
i∈[m]

α2
iwi,k1wi,k2 +

∑
i 6=j

αiαjwi,k1wj,k2∑
i∈[m]

αi

∑
j∈[m]

αjwj,k3

 =
∑
i∈[m]

α2
iwi,k3 +

∑
i 6=j

αiαjwj,k3∑
i∈[m]

αi

∑
j∈[m]

αj

 =
∑
i∈[m]

α2
i +

∑
i 6=j

αiαj .

By definition wi,k3 = NAND(wi,k1 , wi,k2). This means that for each i ∈ [m],
either (wi,k1wi,k2 = 1 and wi,k3 = 0) or (wi,k1wi,k2 = 0 and wi,k3 = 1). This
means that ∑

i∈[m]

α2
i (wi,k1wi,k2 + wi,k3) =

∑
i∈[m]

α2
i .

22 Brent Waters and David J. Wu

Combining the above relations in the exponent, we have that

e(A,A)

e(Uk1 , Uk2)e(A,Uk3)
=

e(gp, gp)
∑

i∈[m] α
2
i+

∑
i6=j αiαj

e(gp, gp)
∑

i∈[m] α
2
i+

∑
i6=j αiαj(wi,k1

wj,k2
+wj,k3

)

=
∏
i 6=j

e(gp, Bi,j)
1−wi,k1

wj,k2
−wj,k3

= e(gp,W`).

– Output satisfiability: Since C(xi,wi) = 1, it follows that wi,t = 1 for all
i ∈ [m]. By definition, Ut =

∏
i∈[m]A

wi,t

i =
∏
i∈[m]Ai = A. ut

Theorem 3.5 (Somewhere Argument of Knowledge). Suppose the sub-
group decision assumption holds with respect to CompGroupGen. Then, Construc-
tion 3.3 is a somewhere argument of knowledge.

Proof. We start by defining the trapdoor setup and extraction algorithms:

– TrapSetup(1λ, 1m, 1s, i∗) : The trapdoor algorithm uses the following proce-
dure (we highlight in green the differences in the common reference string
components between TrapSetup and Setup):
1. Run (G,GT , p, q, g, e) ← GroupGen(1λ) and let N = pq, gp ← gq. Let
G = (G,GT , N, gp, e).

2. For each i ∈ [m], sample αi
r← ZN . For each i 6= i∗, let Ai ← gαi

p . Let
Ai∗ ← gαi∗ . Let A← Ai∗

∏
i 6=i∗ Ai.

3. For each i, j ∈ [m] where i 6= j and i, j 6= i∗, compute Bi,j ← g
αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j 6= i∗.

4. Output the common reference string crs∗ =
(
G, A, {Ai}i∈[m], {Bi,j}i6=j

)
and the trapdoor td = gq ← gp.

– Extract(td, C, (x1, . . . ,xm), π): On input the trapdoor td = gq, the Boolean
circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . ,xm ∈ {0, 1}n, and
the proof π =

(
{Uk, Vk}k∈[t], {W`}`∈[s]

)
, the extraction algorithm sets w∗k = 0

if e(gq, Uk) = 1 and w∗k = 1 otherwise for each k = n+1, . . . , n+h. It outputs
w∗ = (w∗n+1, . . . , w

∗
n+h).

We now show the CRS indistinguishability and somewhere extractable in trapdoor
mode properties.

Lemma 3.6 (CRS Indistinguishability). If the subgroup decision assump-
tion holds with respect to CompGroupGen, then Construction 3.3 satisfies CRS
indistinguishability.

Proof. Take any polynomial m = m(λ), s = s(λ). We proceed via a hybrid
argument:

– Hyb0: This is the real distribution. At the beginning of the security game,
the adversary chooses an index i∗ ∈ [m]. The challenger then constructs the
common reference string by running Setup(1λ, 1m, 1s):

Batch Arguments for NP 23

• Run (G,GT , p, q, g, e) ← GroupGen(1λ) and let N = pq, gp ← gq. Let
G = (G,GT , N, gp, e).

• For each i ∈ [m], sample αi
r← ZN . For each i ∈ [m], let Ai ← gαi

p . Let
A←

∏
i∈[m]Ai.

• For each i, j ∈ [m] where i 6= j, compute Bi,j ← g
αiαj
p .

• Output the common reference string crs =
(
G, A, {Ai}i∈[m], {Bi,j}i 6=j

)
.

The challenger gives crs to A and A outputs a bit b′ ∈ {0, 1}, which is the
output of the experiment.

– Hyb1: Same as Hyb0 except the challenger constructs A and Bi,j using the
procedure from TrapSetup:
• For each i ∈ [m], sample αi

r← ZN . For each i ∈ [m], let Ai ← gαi
p . Let

A← Ai∗
∏
i 6=i∗ Ai.

• For each i, j ∈ [m] where i 6= j and i, j 6= i∗, compute Bi,j ← g
αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j 6= i∗.

– Hyb2: Same as Hyb1 except the challenger samples Ai∗ ← gαi∗ :
• For each i ∈ [m], sample αi

r← ZN . For each i 6= i∗, let Ai ← gαi
p . Let

Ai∗ ← gαi∗ . Let A← Ai∗
∏
i 6=i∗ Ai.

• For each i, j ∈ [m] where i 6= j and i, j 6= i∗, compute Bi,j ← g
αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j 6= i∗.

In this experiment, crs is distributed according to TrapSetup(1λ, 1m, 1s, i∗).

For an index i, we write Hybi(A) to denote the output of experiment Hybi
with algorithm A. We show that the output distributions each adjacent pair of
experiments are computationally indistinguishable (or identical).

Claim 3.7. For all adversaries A, Pr[Hyb0(A) = 1] = Pr[Hyb1(A) = 1].

Proof. The difference between Hyb0 and Hyb1 is purely syntactic. In Hyb1, Ai =
Ai∗

∏
i 6=iAi =

∏
i∈[m]Ai, which matches the distribution in Hyb0. Similarly, in

Hyb1,
Bi∗,j = A

αj

i∗ = gαi∗αj and Bi,i∗ = Aαi
i∗ = gαi∗αi ,

which is precisely the distribution of Bi∗,j and Bi,i∗ in Hyb0 for all i, j 6= i∗. Finally
Bi,j for i 6= j and i, j 6= i∗ are identically distributed in the two experiments.

Claim 3.8. Suppose the subgroup decision assumption holds with respect to
GroupGen. Then, for all efficient adversaries A, there exists a negligible function
negl(·) such that for all λ ∈ N, |Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| = negl(λ).

Proof. Suppose there exists an efficient adversary A that distinguishes Hyb1 and
Hyb2 with non-negligible advantage ε We use A to construct an adversary B for
the subgroup decision problem:

1. At the beginning of the game, algorithm B receives the group description
G = (G,GT , N, gp, e) and the challenge Z ∈ G from the subgroup decision
challenger.

24 Brent Waters and David J. Wu

2. For i 6= i∗, algorithm B samples αi
r← ZN and sets Ai ← gαi

p . It sets Ai∗ ← Z
to be the challenge value. Next, it computes A ← Z

∏
i 6=i∗ Ai. For i 6= j

and i, j 6= i∗, algorithm B computes Bi,j ← g
αiαj
p . For i, j 6= i∗, it computes

Bi∗,j ← Zαj and Bi,i∗ ← Zαi .
3. Algorithm B gives crs =

(
G, A, {Ai}i∈[m], {Bi,j}i 6=j

)
to A and outputs what-

ever A outputs.

Consider now the two possibilities:

– Suppose Z = grp in the subgroup decision game. Then, Ai∗ = grp and algorithm
B perfectly simulates the distribution in Hyb1. In this case, algorithm B
outputs 1 with probability Pr[Hyb1(A) = 1].

– Suppose Z = gr in the subgroup decision game. Then, Ai∗ = gr and algorithm
B perfectly simulates the distribution in Hyb2. In this case, algorithm B
outputs 1 with probability Pr[Hyb2(A) = 1].

The advantage of B in the subgroup decision game is thus ε.

Combining Claims 3.7 and 3.8, CRS indistinguishability holds.

Lemma 3.9 (Somewhere Extractable in Trapdoor Mode). Construc-
tion 3.3 is somewhere extractable in trapdoor mode.

Proof. Fix polynomials m = m(λ) and s = s(λ). Let i∗ ← A(1λ, 1m, 1s) and
(crs∗, td)← TrapSetup(1λ, 1m, 1s, i∗). By construction,

crs∗ = (G, A, {Ai}i∈[m], {Bi,j}i6=j) and td = gq,

where G = (G,GT , N, gp, e). Let N = pq and g be the generator of G (i.e.,
gp := gq and gq := gp). Let Gp = 〈gp〉 be the order-p subgroup of G generated
by gp. Correspondingly, let Gq = 〈gq〉 be the order-q subgroup of G generated by
gq. By the Chinese Remainder Theorem, G ∼= Gp ×Gq.

Let C : {0, 1}n×{0, 1}h → {0, 1} be the Boolean circuit, x1, . . . ,xm ∈ {0, 1}n
be the statements, and π =

(
{Uk, Vk}k∈[t], {W`}`∈[s]

)
be the proof the adversary

outputs. Suppose Verify(crs∗, (x1, . . . ,xm), π) = 1. By construction of TrapSetup,
we can write Ai∗ = gαi∗ = g

αi∗,p
p g

αi∗,q
q for some αi∗,p ∈ Zp and αi∗,q ∈ Zq.

Suppose that αi∗,q 6= 0. This holds with overwhelming probability since αi∗
r← ZN .

Now the following properties hold:

– For all k ∈ [t], either Uk ∈ Gp or Uk/g
αi∗,q
q ∈ Gp. This follows from the

wire validity checks. Specifically, suppose Uk = g
βp
p g

βq
q . We can also write

A = g
∑

i∈[m] αi

p g
αi∗,q
q . Since verification succeeds, it must be the case that

e(A,Uk) = e(gp, Vk)e(Uk, Uk).

Consider the projection in the order-q subgroup of GT . This relation requires
that αi∗,q · βq = β2

q . This means that either βq = 0 (in which case Uk ∈ Gp)
or βq = αi∗,q (in which case Uk/g

αi∗,q
q ∈ Gp).

Batch Arguments for NP 25

– For each k ∈ [t], if Uk ∈ Gp, then set ξk = 0. If Uk/g
αi∗,q
q ∈ Gp, then set ξk = 1.

Then, for all gates G` = (k1, k2, k3) ∈ [t]3 in the circuit, ξk3 = NAND(ξk1 , ξk2).
This follows from the gate validity checks. In particular, if verification succeeds,
then Eq. (3.2) holds. From the above analysis, we can write Uk = g

βk,p
p g

ξkαi∗,q
q

for all k ∈ [t] and some βk,p ∈ Zp. Consider the projection of Eq. (3.2) into
the order-q subgroup of GT . This yields the relation

α2
i∗,q = (ξk1αi∗,q)(ξk2αi∗,q) + αi∗,q(ξk3αi∗,q) = α2

i∗,q(ξk1ξk2 + ξk3).

Since αi∗,q 6= 0, this means that 1 = ξk1ξk2 + ξk3 , or equivalently, ξk3 =
1− ξk1ξk2 = NAND(ξk1 , ξk2).

– Let xi∗ = (xi∗,1, . . . , xi∗,n). For k ∈ [n], ξk = xi∗,k.

This follows from the statement validity check. Namely, for k ∈ [n], the
verifier checks that Uk = A

xi∗,k
i∗

∏
i6=i∗ A

xi,k

i . Since Ai ∈ Gp for i 6= i∗, it
follows that if xi∗,k = 0, then Uk ∈ Gp (and ξk = 0 = xi∗,k). Otherwise, if
xi∗,k = 1, then the component of Uk in Gq is exactly gαi∗,q

q , in which case
ξk = 1 = xi∗,k.

– Finally ξt = 1. This follows from the output satisfiability check. Namely, the
verifier checks that Ut = A = g

∑
i∈[m] αi

p g
αi∗,q
q . If the verifier accepts, then

this relation holds and ξt = 1.

The above properties show that ξ1, . . . , ξt is a valid assignment to the wires of C
on input xi∗ and witness ξ = (ξn+1, . . . , ξn+h). Moreover, C(xi∗ , ξ) = ξt = 1.

To complete the proof, let w∗ ← Extract(td, C, (x1, . . . ,xm), π). We claim
that w∗ = ξ. In particular, for k ∈ [h], if Un+k ∈ Gp, then e(gq, Uk) = 1
and w∗k = 0 = ξn+k. Alternatively, if Un+k/g

αi∗,q
p ∈ Gp, then e(gq, Uk) =

e(gq, gq)
αi∗,q 6= 1, so w∗k = 1 = ξn+k. Thus, with probability 1− negl(λ), either

Verify(crs∗, C, (x1, . . . ,xm), π) = 0 or C(x,w∗) = 1.

By Lemmas 3.6 and 3.9, Construction 3.3 is a somewhere argument of knowledge.

Theorem 3.10 (Succinctness). Construction 3.3 is succinct and satisfies
split verification (Definition 2.9).

Proof. Take any λ,m, s ∈ N and consider a Boolean circuit C : {0, 1}n×{0, 1}h →
{0, 1} of size at most s. Let t = poly(s) be the number of wires in C. We check
each property:

– Proof size: A proof π consists of 2t+ s elements in G, each of which can
be represented in poly(λ) bits. Thus, the proof size satisfies |π| = (2t+ s) ·
poly(λ) = poly(λ, s)

– CRS size: The common reference string crs consists of the group description
G, and m+ 1 +m(m− 1)/2 elements in G. Thus, |crs| = m2 · poly(λ).

– Verification key size: The size of the verification key vk output by GenVK
consists of n group elements. Thus, |vk| = n · poly(λ).

– Verification key generation time: The algorithm GenVK performs nm
group operations. This takes time poly(λ,m, n).

26 Brent Waters and David J. Wu

– Online verification time: The running time of the online verification
algorithm OnlineVerify is

n · poly(λ)︸ ︷︷ ︸
statement validity

+ t · poly(λ)︸ ︷︷ ︸
wire validity

+ s · poly(λ)︸ ︷︷ ︸
gate validity

+ poly(λ)︸ ︷︷ ︸
output validity

= poly(λ, s),

since n, t = poly(s). ut

Remark 3.11 (Variable Number of Instances). As currently described, the prover
and verifier algorithms in Construction 3.3 takes exactly m instances as input.
However, the same scheme can also be used to prove any T ≤ m instances (by
ignoring components in the CRS). In this case, the proof size is unchanged,
and the verification running time (assuming random read access to the CRS) is
poly(λ, n, T) + poly(λ, s).

4 BARG for NP from k-Lin in Bilinear Groups

Due to space limitations, we defer our BARG construction from asymmetric
prime-order pairing groups (where the k-Lin assumption holds) to the full version
of this paper [WW22]. In this setting, the pairing e : G1 × G2 → GT is an
efficiently-computable bilinear map from the base groups G1 and G2 to the
target group GT . The construction relies on a similar underlying principle as the
construction from symmetric composite-order groups (Construction 3.3). Here,
we summarize the key differences and refer readers to the full version for the
complete description and analysis:

– Randomizing cross-terms in the CRS. In the symmetric setting, we
associated a single encoding Ai with each instance. In the asymmetric setting,
we need to encode the instance in both G1 and G2 in order to apply the pairing
consistency checks. Thus, the prover now generates two commitments to the
wire labels for each wire, one in G1 and the other in G2. This introduces
a new challenge when it comes to constructing the cross-terms Bi,j , as it
depends on the exponents associated with the encodings in both G1 and G2.
Proving security would seemingly need to rely on a “bilateral” assumption
over pairing groups where the assumption gives out elements with correlated
exponents in both G1 and G2. To avoid this and base security on the vanilla
k-Lin assumption, we split the cross-terms into two shares, with one share in
G1 and the other in G2. The extra randomness in the cross terms allows for
a simple simulation strategy in the security analysis (see the full version of
this paper [WW22]).

– Simulating projective pairing using outer products. The key property
we relied on in the soundness analysis of the composite-order construction
is that the pairing is projecting. Namely, there exists a projection map on
G and GT that map into the subgroup of order-q in each respective group;
moreover, this projection map commutes with the pairing. Then, if a relation

Batch Arguments for NP 27

like Eq. (3.1) or Eq. (3.2) holds in the target group, the projected relation
formed by projecting the left-hand and right-hand sides into the order-q
subgroup also holds. As argued in Lemma 3.9, projecting into the order-q
subgroup allows us to isolate a single instance i∗, in which case the verification
checks ensure statistically soundness for instance i∗. To obtain an analog of
projective pairings in the prime order setting, we can replace the subgroups
with subspaces of a vector space and define the pairing operation to be an
outer (tensor) product of vectors [GS08, Fre10]. As we show in the full version
of this paper [WW22], this enables a similar strategy to prove soundness.

5 Extensions and Applications

Bootstrapping to reduce CRS size. As mentioned inSection 1.2.2, we can leverage
a similar type of bootstrapping from the work of Kalai et al. [KPY19] to reduce
the size of the CRS in our BARG constructions to grow with mε for any ε > 0
and where m is the number of instances. We refer to Section 1.2.2 for the overview
of this approach and to the full version of this paper [WW22] for the full details.

Application to delegation. In the full version of this paper [WW22], we show
how to use our BARG for NP to obtain a delegation scheme for RAM programs
(equivalently, a SNARG for P). Our construction follows the approach from
Choudhuri et al. [CJJ21b] of combining a BARG for “index languages” (or more
generally, any BARG with the split verification property (Definition 2.9)) with a
somewhere extractable commitment scheme. The BARGs we construct in this
work

both satisfy the required split verification property. In the full version of this
paper [WW22], we also show how to use our techniques in conjunction with
somewhere statistically binding hash functions [HW15] to obtain a somewhere
extractable commitment scheme. This suffices to obtain a RAM delegation scheme
from the SXDH assumption in asymmetric pairing groups.

Application to aggregate signatures. In the full version of this paper [WW22], we
describe a simple approach of constructing aggregate signatures that supports
bounded aggregation from a BARG for NP. Together with our BARG for NP
(from either subgroup decision or k-Lin), we obtain an aggregate signature scheme
from the same assumption.

Acknowledgments

B. Waters is supported by NSF CNS-1908611, a Simons Investigator award, and
the Packard Foundation Fellowship. D. J. Wu is supported by NSF CNS-1917414,
CNS-2045180, a Microsoft Research Faculty Fellowship, and a Google Research
Scholar award.

28 Brent Waters and David J. Wu

References

AGH10. Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized
aggregate signatures: new definitions, constructions and applications. In
ACM CCS, 2010.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. IACR
Cryptol. ePrint Arch., 2018, 2018.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

BCC+17. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. The hunting of the SNARK. J.
Cryptol., 30(4), 2017.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS, 2012.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In TCC, 2013.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence
of extractable one-way functions. In STOC, 2014.

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In EUROCRYPT, 2003.

BGN05. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In TCC, 2005.

BHK17. Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive
delegation and batch NP verification from standard computational assump-
tions. In STOC, 2017.

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based
SNARGs and their application to more efficient obfuscation. In EURO-
CRYPT, 2017.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to
theory. In STOC, 2019.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applications.
In PKC, 2013.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In STOC, 1998.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In EUROCRYPT, 2020.

CJJ21a. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive
batch arguments for NP from standard assumptions. In CRYPTO, 2021.

CJJ21b. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P
from LWE. In FOCS, 2021.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. In EUROCRYPT, 2020.

DFH12. Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party
computation with low communication. In TCC, 2012.

Batch Arguments for NP 29

FHPS13. Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph
Striecks. Programmable hash functions in the multilinear setting. In
CRYPTO, 2013.

Fre10. David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In EUROCRYPT, 2010.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, 1986.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In EU-
ROCRYPT, 2013.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In STOC, 2008.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In EUROCRYPT, 2006.

GR06. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures.
In PKC, 2006.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In ASIACRYPT, 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, 2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In EUROCRYPT, 2008.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In STOC, 2011.

GZ21. Alonso González and Alexandros Zacharakis. Succinct publicly verifiable
computation. In TCC, 2021.

HJKS22. James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan.
Snargs for P from sub-exponential DDH and QR. In EUROCRYPT, 2022.

HK07. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened
key encapsulation. In CRYPTO, 2007.

HKW15. Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signa-
ture aggregators. In EUROCRYPT, 2015.

HW15. Pavel Hubácek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In ITCS, 2015.

HW18. Susan Hohenberger and Brent Waters. Synchronized aggregate signatures
from the RSA assumption. In EUROCRYPT, 2018.

JJ21. Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from
sub-exponential DDH. In EUROCRYPT, 2021.

JKKZ21. Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun
Zhang. SNARGs for bounded depth computations and PPAD hardness
from sub-exponential LWE. In STOC, 2021.

KPY19. Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate com-
putations publicly. In STOC, 2019.

KRR13. Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for
bounded space. In STOC, 2013.

KRR14. Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In STOC, 2014.

KVZ21. Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Some-
where statistical soundness, post-quantum security, and SNARGs. In TCC,
2021.

30 Brent Waters and David J. Wu

LFKN90. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. In FOCS, 1990.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In ASIACRYPT, 2013.

LMRS04. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
Sequential aggregate signatures from trapdoor permutations. In EURO-
CRYPT, 2004.

LOS+06. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential aggregate signatures and multisignatures without random oracles.
In EUROCRYPT, 2006.

LP21. Helger Lipmaa and Kateryna Pavlyk. Gentry-Wichs is tight: a falsifiable
non-adaptively sound SNARG. In ASIACRYPT, 2021.

LPWW20. Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New
constructions of statistical NIZKs: Dual-mode DV-NIZKs and more. In
EUROCRYPT, 2020.

Mic95. Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual
European Summer Meeting of the Association of Symbolic Logic, 1995.

Nao03. Moni Naor. On cryptographic assumptions and challenges. In CRYPTO,
2003.

OPWW15. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs.
New realizations of somewhere statistically binding hashing and positional
accumulators. In ASIACRYPT, 2015.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symposium on Security
and Privacy, 2013.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In CRYPTO, 2019.

RR20. Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of
proximity with polylog overhead. In TCC, 2020.

RRR16. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round
interactive proofs for delegating computation. In STOC, 2016.

RRR18. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch
verification for UP. In CCC, 2018.

RS09. Markus Rückert and Dominique Schröder. Aggregate and verifiably en-
crypted signatures from multilinear maps without random oracles. In ISA,
2009.

Set20. Srinath T. V. Setty. Spartan: Efficient and general-purpose zkSNARKs
without trusted setup. In CRYPTO, 2020.

Sha90. Adi Shamir. IP=PSPACE. In FOCS, 1990.
Sha07. Hovav Shacham. A Cramer-Shoup encryption scheme from the linear

assumption and from progressively weaker linear variants. IACR Cryptol.
ePrint Arch., 2007.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC, 2014.

Wic22. Daniel Wichs, 2022. Personal communication.
WW22. Brent Waters and David J. Wu. Batch arguments for NP and more from

standard bilinear group assumptions. IACR Cryptol. ePrint Arch., 2022.

	Batch Arguments for NP and More from Standard Bilinear Group Assumptions

