
Beyond the Csiszár-Korner Bound:
Best-Possible Wiretap Coding via Obfuscation

Yuval Ishai1, Alexis Korb2, Paul Lou3, and Amit Sahai4

1 Technion, Haifa, Israel, yuvali@cs.technion.ac.il
2 UCLA, Los Angeles, USA, alexiskorb@cs.ucla.edu

3 UCLA, Los Angeles, USA, pslou@cs.ucla.edu
4 UCLA, Los Angeles, USA, sahai@cs.ucla.edu
5 The full version of this paper can be found at

https://eprint.iacr.org/2022/343.pdf

Abstract. A wiretap coding scheme (Wyner, Bell Syst. Tech. J. 1975)
enables Alice to reliably communicate a message m to an honest Bob by
sending an encoding c over a noisy channel ChB, while at the same time
hiding m from Eve who receives c over another noisy channel ChE.
Wiretap coding is clearly impossible when ChB is a degraded version of
ChE, in the sense that the output of ChB can be simulated using only the
output of ChE. A classic work of Csiszár and Korner (IEEE Trans. Inf.
Theory, 1978) shows that the converse does not hold. This follows from
their full characterization of the channel pairs (ChB,ChE) that enable
information-theoretic wiretap coding.
In this work, we show that in fact the converse does hold when considering
computational security; that is, wiretap coding against a computation-
ally bounded Eve is possible if and only if ChB is not a degraded ver-
sion of ChE. Our construction assumes the existence of virtual black-box
(VBB) obfuscation of specific classes of “evasive” functions that gener-
alize fuzzy point functions, and can be heuristically instantiated using
indistinguishability obfuscation. Finally, our solution has the appealing
feature of being universal in the sense that Alice’s algorithm depends
only on ChB and not on ChE.

1 Introduction

The wiretap channel, first introduced by Wyner [26], captures a unidirectional
communication setting in which Alice transmits an encoding of a message across
two discrete memoryless channels: a main channel (Bob’s channel) for the in-
tended receiver Bob and an eavesdropping channel (Eve’s channel) for an adver-
sarial receiver Eve. Two conditions are desired: correctness and security. Infor-
mally, correctness guarantees that Bob can decode the message with overwhelm-
ing probability, and security requires that Eve learn essentially nothing about the
message. The wiretap coding problem is then to find a (randomized) encoding
algorithm that satisfies both conditions. The wiretap coding question represents
a basic and fundamental question regarding secure transmission over noisy chan-
nels, and indeed Wyner’s work has been incredibly influential: Google Scholar
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reports that the literature citing [26] surpasses 7000 papers, and Wyner’s work
is considered the foundational work on using noisy channels for cryptography.
Much of the interest in this question comes from its relevance to physical layer
security, a large area of research that exploits physical properties of communi-
cation channels to enhance communication security through coding and signal
processing. See, e.g., [24] for a survey.

The classic work of Csiszár and Korner [10] completely characterized the
pairs of channels for which wiretap coding is possible information theoretically.
Roughly speaking, their work defined a notion of one channel being less noisy
than the other (see Definition 8), and they proved that wiretap coding is possible
information theoretically if and only if Eve’s channel is not less noisy than Bob’s
channel.

To illustrate this, let’s consider a specific case: suppose that Bob’s channel is
a binary symmetric channel, flipping each bit that Alice sends with probability
p = 0.1; at the same time, suppose Eve’s channel is a binary erasure channel,
erasing each bit that Alice sends (i.e., replacing it with ⊥) with probability ϵ.
Then, it turns out [23] that Eve’s channel is not less noisy than Bob’s channel if
and only if ϵ > 0.36 = 4p(1− p), and thus by [10], information-theoretic wiretap
coding is only possible under this condition.

A new feasibility result for wiretap coding. In cryptography, we often take
for granted that assuming adversaries to be computationally bounded should
lead to improved feasibility results. Indeed, we have seen this many times espe-
cially in the early history of cryptography: from re-usable secret keys for encryp-
tion [6,27] to the feasibility of secure multi-party computation with a dishonest
majority [14]. However, despite the popularity of Wyner’s work, no improvement
over [10] in terms of feasibility against computationally bounded adversaries has
been obtained in over 40 years.

Nevertheless, in this work, we ask: is it possible to obtain new feasibility
results for wiretap coding for computationally bounded eavesdroppers?

Taking a fresh look at this scenario, we observe that if ϵ ≤ 0.2 = 2p, then
wiretap coding is completely impossible: If ϵ ≤ 0.2 = 2p, then Eve can simulate
Bob’s channel. For example, if ϵ = 0.2 = 2p, then Eve can assign each ⊥ that
she receives a uniform value in {0, 1}, and this would exactly yield a binary
symmetric channel with flip probability p = 0.1, thus exactly simulating the
distribution received by Bob. Since wiretap coding is non-interactive, if Bob can
recover the message with high probability, then so can Eve, violating security.
Indeed, whenever Eve can efficiently simulate Bob’s channel, we say that Bob’s
channel is a degraded version of Eve’s channel [9]. When this is true, wiretap
coding is clearly impossible, even for efficient eavesdroppers Eve.

In our main result, we show that assuming secure program obfuscation for
simple specific classes of functionalities (as we describe in more detail below),
the above limitation presents the only obstacle to feasibility of wiretap coding
against computationally bounded eavesdroppers. In particular, for the scenario
described above, we show that wiretap coding is possible whenever ϵ > 0.2 = 2p,
even though [10,23] showed that information-theoretic wiretap coding is impos-
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sible for ϵ < 0.36 = 4p(1 − p). More generally, we show that wiretap coding is
possible whenever Bob’s channel is not a degraded version of Eve’s channel. We
now describe our results in more detail.

1.1 Our Contributions

Let ChB represent Bob’s channel, and let ChE represent Eve’s channel. Observe
that the input alphabets for the channels ChB and ChE must be identical; we will
denote this input alphabet by X , and consider 1-bit messages for simplicity.6

We first consider an oracle-based model in which a wiretap coding scheme
consists of two algorithms:

– Enc(1λ,m): The (randomized) encoder takes as input a security parameter
λ and a message bit m ∈ {0, 1}. The output of Enc consists of: (1) a string
c ∈ X ∗, and (2) a circuit describing a function f . The string c is transmitted
over channels ChB and ChE to Bob and Eve respectively. However, both Bob
and Eve are granted oracle access to f .

– Decf (y): The deterministic decoder is a polynomial-time oracle algorithm
with oracle access to f . Decf takes as input the string y received by Bob
over his channel.

We obtain our main result in two steps. In our first and primary step, we prove:

Theorem 1 (Informal). For any pair of discrete memoryless channels (ChB,ChE)
where ChB is not a degraded version of ChE, there exist PPT encoding and de-
coding algorithms (Enc,Dec(·)) which achieve:

– Correctness: For all messages m ∈ {0, 1},

Pr[Decf (1λ,ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

– Security: For all computationally unbounded adversaries A(·) that are al-
lowed to make polynomially many queries to their oracle,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Theorem 1 can be viewed as an unconditional construction using an ideal
obfuscation of the oracle f . Our use of obfuscation in this context was inspired
by the recent work of Agrawal et al. [1], which used ideal obfuscation to obtain a
new feasibility result for secure computation using unidirectional communication
over noisy channels (see Section 1.2 for comparison and more related work).

6 In the computational setting, any wiretap coding scheme for 1-bit messages can be
bootstrapped into one that encodes long messages with rate achieving the capacity
of ChB via the use of a standard hybrid encryption technique (see the full version
for more details).
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In our second step, we show how to bootstrap from Theorem 1 to obtain
wiretap coding in the plain model secure against computationally bounded ad-
versaries, via a suitable form of cryptographic program obfuscation. More con-
cretely, we use the notion of virtual black-box (VBB) obfuscation for evasive
circuits [3], for a specific class of evasive circuits that we call generalized fuzzy
point functions, and with a very simple kind of auxiliary information that cor-
responds to the message that Eve receives when Alice transmits a uniformly
random message across Eve’s channel (see Section 7 for details). Using this kind
of obfuscation, we obtain the following result in the plain model:

Theorem 2 (Informal). Assume that O is a secure evasive function obfus-
cation scheme for the class of generalized fuzzy point functions. Then, for any
pair of discrete memoryless channels (ChB,ChE) where ChB is not a degraded
version of ChE, there exist PPT encoding and decoding algorithms (Enc,Dec)
which achieve:

– Correctness: For all messages m ∈ {0, 1},

Pr[Dec(1λ,O(f),ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

– Security: For all computationally bounded adversaries A,

Pr[A(1λ,O(fb),ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Note that since O(f) can be made public to both Bob and Eve, it can be
communicated by using a standard encoding scheme for ChB, with no security
requirements.

On instantiating obfuscation. We conjecture that indistinguishability obfusca-
tion (iO) provides a secure realization of the obfuscation needed in our wire-
tap coding scheme. The recent work of [18] provides a construction of iO from
well-studied hardness assumptions, and thus gives a conservative and explicit
candidate realization. We provide several arguments in favor of our conjecture
(see Section 7 for details regarding all the points below):

– First, we stress that VBB obfuscation for evasive circuit families is not known
to be subject to any impossibility results, under any hardness assumptions,
even wildly speculative ones. This is because the notion of evasiveness that
we consider is statistical in the following sense: even a computationally un-
bounded Eve, that can make any polynomially bounded number of queries
to our oracle, cannot find an input z to the oracle f such that f(z) = 1. This
property rules out all known techniques for proving impossibility of obfusca-
tion that we are aware of (c.f. [4,15]). But in fact, our situation is even further
away from impossibility results because we obfuscate simple distributions of
evasive functions that generalize random fuzzy point functions and only need
to leak simple auxiliary information about the obfuscated function.

4



– Furthermore, in fact, the work of [2] gives a construction of VBB obfuscation
for evasive circuits from multilinear maps, which is designed to be immune
to all known attacks on multilinear map candidates, and has never been
successfully attacked.

– Finally, indistinguishability obfuscation is a “best-possible obfuscation” [17],
and therefore, roughly speaking, if any way exists to securely realize the ideal
oracle in our construction to achieve wiretap coding, then using iO must also
yield secure wiretap coding.

Optimal-rate wiretap coding. We stress that the problem of achieving asymptoti-
cally optimal rate follows almost immediately from our solution to the feasibility
question above. This is because the feasibility solution can be used to transmit
a secret key, and then the encrypted message can be transmitted using any re-
liable coding scheme to Bob. The security of encryption will ensure that even if
Eve learns the ciphertext, because she is guaranteed not to learn the encryption
key due to our solution to the feasibility problem above, the (computationally
bounded) Eve cannot learn anything about the message. Using standard Rate 1
symmetric key encryption, therefore, we achieve asymptotic wiretap coding rate
equal to the capacity of Bob’s channel, regardless of the quality of Eve’s channel.

Universal wiretap coding. An appealing feature of our solution to the wiretap
problem is that it gives a universal encoding, meaning that (Enc,Dec) depend
only on the main channel ChB and not on the eavesdropper’s channel ChE. This
is not possible in the information-theoretic regime.

1.2 Related Works

Our work was inspired by the recent work of Agrawal et al. [1], who proposed a
similar obfuscation-based approach for establishing a feasibility result for secure
computation over unidirectional noisy channels. In contrast to our work, the use
of ideal obfuscation in [1] applies to more complex functions that are not even
“evasive” in the standard sense. We stress that beyond inspiration and a common
use of obfuscation, there is no other technical overlap between [1] and our work.

Another closely related line of work studies the notion of fuzzy extractors,
introduced by Dodis et al. [11]. A fuzzy extractor can be used to encode a
message m in a way that: (1) any message m′ which is “close” to m (with respect
to some metric) can be used to decode m, and (2) if m has sufficiently high
min-entropy, its encoding hides m. The possibility of constructing strong forms
of computational fuzzy extractors from strong forms of fuzzy point function
obfuscation was discussed by Canetti et al. [7] and Fuller et al. [12]. The wiretap
coding problem can be loosely cast as a variant of fuzzy extractors where the
metric is induced by the main channel ChB and security should hold with respect
to a specific entropic source defined by the eavesdropper’s channel ChE. The
latter relaxation makes the notion of obfuscation we need qualitatively weaker.

Various extensions to the wiretap setting have been studied in the informa-
tion theoretic setting, and we discuss a very limited subset here that relate most
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closely to our work. Further generalizations were made by Liang et al’s [21] in-
troduction of the compound wiretap channel, in which there are finitely many
honest receiver and finitely many eavesdroppers, modeling a transmitter’s uncer-
tainty about the receiver’s channel and the eavesdropper’s channel. The upper
and lower bounds on secrecy capacity of the compound wiretap channel suggest
the impossibility of positive rate universal encodings. Maurer [22] showed that
a public channel and interaction between the transmitter and honest receiver
circumvent the necessity of ChE being not less noisy than ChB for security. We
stress that the focus of our paper is the non-interactive case, without any feed-
back channels. Nair [23] studied information-theoretic relationships between BSC
and BEC channels.

Bellare et al. [5] introduced stronger security notions for wiretap coding than
the notions that existed within the information theoretic community. In particu-
lar, they introduced an information theoretic notion of semantic security, which
we also achieve in our work. They also provided an efficient information-theoretic
encoding and decoding scheme for many channels that achieves correctness, se-
mantic security, and rate achieving the Csiszár-Korner bound. Previously, most
works on wiretap coding had only proven the existence of wiretap encoding and
decoding schemes, and not provided explicit constructions.

Finally, the wiretap problem we study is also related to other fuzzy cryp-
tographic primitives, including fuzzy vaults [19] and fuzzy commitments [20].
However, our work is technically incomparable because they use different defini-
tions of noise and study security in different regimes. In both cases, the achieved
parameters are not optimal (certainly not in a computational setting), whereas
our construction achieves the best possible parameters.

2 Technical Overview

In the wiretap setting, we consider two discrete memoryless channels (DMCs):
ChB : X → Y from Alice to the intended receiver Bob, and ChE : X → Z
from Alice to an eavesdropper Eve. Alice’s goal is to transmit an encoding of a
message m ∈ M = {0, 1} across both channels so that Bob can decode m with
high probability and Eve learns negligible information about m. Our goal is to
build an encoder and a decoder that satisfies these requirements.

Definition 1 (Discrete Memoryless Channel (DMC)). We define a dis-
crete memoryless channel (DMC) ChW : X → Y to be a randomized function
from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix PW = [pW (y|x)]x∈X ,y∈Y .

Warmup: The BSC0.1-BEC0.3 Wiretap Setting. We first consider a simple exam-
ple. Consider a wiretap setting in which Alice has a BSC0.1 between her and Bob
and a BEC0.3 between her and Eve. Alice wishes to send m ∈ {0, 1} to Bob, but
not to Eve. First observe that on a uniform random input distribution, Eve’s
information about the input is greater than Bob’s information. Indeed, Eve’s
BEC0.3 channel has greater capacity than Bob’s BSC0.1 channel. In fact, it can
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be proven [10,23] that in the information theoretic setting with these channel
parameters, then there does not exist any encoding scheme that Alice can use
to encode her message so that Bob can decode with high probability but Eve
cannot.

Acknowledging this obstacle, how can we favor Bob’s decoding probability
and disadvantage Eve in the computational setting? A simple observation is that
on a uniform random input r ∈ {0, 1}n to the channels, then Bob’s output dis-
tribution is different from Eve’s output distribution. Indeed, for large enough n,
Bob’s BSC0.1’s output rB should contain approximately 10% bit flips relative to
r, whereas Eve’s BEC0.3 output rE should contain approximately 30% erasures.

Now, suppose Bob and Eve both had access to an oracle that outputs m on
binary inputs containing approximately 10% bit flips relative to r and outputs
⊥ on all other inputs. Then, Bob can decode m by simply sending his received
output rB to the oracle. However, in order to learn m, Eve must be able to guess
a r̂B that has 10% bit flips relative to r. It is simple to observe that Eve’s best
strategy for guessing such an r̂B is to generate it from her channel output rE
by replacing each erasure in rE with a uniformly random bit. But observe that
with high probability this r̂B will contain roughly 15% bit flips relatives to r.
Thus, with high probability, Eve cannot generate a r̂B with only 10% bit flips,
so she cannot learn m.

This motivates our use of the ideal obfuscation model in which Alice, in
addition to specifying a string r to send across both channels can also specify an
oracle f which is perfectly transmitted to Bob and Eve who get bounded access
to the oracle. In this model, we can achieve secure wiretap coding schemes. To
encode m ∈ {0, 1}, Alice picks a random string r that will be sent across both
channels and specifies the oracle mentioned above which is perfectly transmitted
to Bob and Eve. By the above argument, this encoding satisfies both correctness
and security.

Handling all Non-Degraded Channels. Now, consider the case where Bob’s chan-
nel ChB : X → Y and Eve’s channel ChE : X → Z are arbitrary channels with
the same input domain X with the sole restriction that ChB is not a degradation
of ChE. We first build intuition about channel degradation.

Definition 2 (Channel Degradation). We say that channel ChB is a degra-
dation of channel ChE if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Observe that if ChB is a degradation of ChE, then secure wiretap coding schemes
are impossible even in the computational setting since then there exists a ChS
such that ChB = ChS ◦ ChE, which means Eve can simulate Bob’s output by
running her channel output through ChS and thus learn as much information as
Bob learns.
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On the other hand, if ChB is not a degradation of ChE, then this means that
for every channel ChS, there exists an x∗ ∈ X and y∗ ∈ Y such that

|pB(y∗ | x∗)− pE·S(y
∗ | x∗)| > 0

where pB(y
∗ | x∗) = Pr[ChB(x∗) = y∗] and pE·S(y

∗ | x∗) = Pr[ChS(ChE(x∗)) =
y∗]. In fact, by using properties of continuity and compactness, we can prove
that there is a constant d > 0 such that for every ChS, there exists an x∗ ∈ X
and y∗ ∈ Y such that

|pB(y∗ | x∗)− pE·S(y
∗ | x∗)| ≥ d

Now, define the following notation.

Definition 3. Let X and Y be any two discrete finite sets and let n ∈ N. For
r ∈ Xn and s ∈ Yn and for any x ∈ X and y ∈ Y, we define the fraction of x’s
in r that are y’s in s to be

Ratiox→y(r, s) =
|{i ∈ [n] : ri = x, si = y}|
|{i ∈ [n] : ri = x}|

.

If |i ∈ [n] : ri = x| = 0, then we define Ratiox→y(r, s) = 0.

Fix any ChS : Z → Y and let x∗ and y∗ be defined as above. Consider sending a
uniform random string r ∈ Xn through ChB and ChS◦ChE. By a Chernoff bound,
we expect that with high probability, Ratiox∗→y∗(r,ChB(r)) should be close
to pB(y

∗ | x∗) and Ratiox∗→y∗(r,ChS(ChE(r))) should be close to pE·S(y
∗ |

x∗). But since pE·S(y
∗ | x∗) and pB(y

∗ | x∗) differ by a constant, we expect
Ratiox∗→y∗(r,ChS(ChE(r))) to differ by a constant from pB(y

∗ | x∗) with high
probability.

Thus, Ratiox∗→y∗ forms a distinguisher between ChB and ChS◦ChE. There-
fore, we can define the following function which outputs m with high probability
on an input sampled from ChB(r) and outputs m with negligible probability on
an input sampled from ChS(ChE(r)) for any channel ChS.7

hm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB)− pB(y | x)| ≤ n−
1
3 ,

output m.
Else, output ⊥.

In fact, since we are considering the ratios of all pairs (x, y) ∈ X × Y, the
same observation holds for the following function that considers only one-sided
bounds.

7 A slight caveat is that this holds only when r contains sufficiently many of each
x ∈ X , but this occurs with overwhelming probability over the choice of r.
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fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x)+n−
1
3 , output

m.
Else, output ⊥.

Construction Overview. We now describe our coding scheme for wiretap channel
(ChB,ChE). Our encoder EncChB takes a security parameter 1λ and a message
m ∈ M and outputs a description of a circuit computing some function f and
a string r ∈ Xn. Our decoder Dec(·) takes as input a security parameter 1λ and
a string rB ∈ Yn and outputs some message in M. The string r is sent across
both channels, and both Bob and Eve obtain bounded oracle access to f .

EncChB(1
λ,m):

1. Let n = λ
2. Sample r ← Xn.
3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x)+n−
1
3 ,

output m.
Here, pB(y | x) = Pr[ChB(x) = y].
Else, output ⊥.

4. Output (fm,r,ChB,n, r).

DecfChB(1
λ, rB):

1. Output f(rB).

For convenience, we define R to be a uniform random input over Xn, RE =
ChE(R), and RB = ChB(R).

Correctness holds since Bob can decode with high probability since fm,r,ChB,n

on ChB(r) will output m with high probability.

Security Overview. Now consider security. Intuitively, since r is independent of
the message bit b, then Eve should only be able to learn b if she can generate
a guess r̂B such that fb,r,ChB,n(r̂B) = b. Consider a strategy g that given input
rE ← ChE(r) from Eve’s channel seeks to produce an output r̂B that maximizes
the probability that fb,r,ChB,n(r̂B) = fb,r,ChB,n(g(rE)) = b. We say that g wins if
this occurs and b is output.

If strategy g is to send Eve’s channel output rE through some discrete mem-
oryless channel ChS (i.e. g(rE) = ChS(rE)), then by our previous discussion on
non-degraded channels, there exists some x∗ ∈ X and y∗ ∈ Y such that with
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high probability, Ratiox∗→y∗(r, g(ChE(r))) differs from pB(y
∗ | x∗) by at least

a constant. Thus, such a g would only win with negligible probability.
However, Eve can choose any arbitrary strategy g. Nevertheless, we can still

prove that any strategy g has only a negligible chance of winning. To do so, we
show through a series of hybrids that any strategy g is only polynomially better
than a strategy Eve3, where Eve3’s strategy is to apply a DMC independently
to each symbol of rE . Then, we can use the non-degraded condition to show
that Eve3’s probability of success on a single query to the oracle is negligible,
and thus that any g’s probability of success on a single query to the oracle is
negligible. This hybrid argument is the main technical argument in our work,
and it is summarized below.

The hybrid argument: Proving g has a negligible chance of winning. We first
observe that an arbitrary strategy g cannot perform better than an optimal
strategy g∗ defined as follows:

Definition 4. For any m, we say that a strategy g∗ : Zn → Yn for guessing r̂B
is optimal if

g∗ = argmax
g

(
Pr

R,ChE
[fm,R,ChB,n(g(RE)) = m]

)
.

Now, consider any deterministic optimal strategy. (Observe that there always
exists an optimal g∗ that is deterministic since g∗ can arbitrarily break ties in
the maximum.)

Our first step is to simplify our function g∗ by a symmetrization argument.
We observe that our definition of evaluation function fm,r,ChB,n on input r̂B
considers only the mapping ratios Ratiox→y(r, r̂B) for all x ∈ X , y ∈ Y from r
to r̂B . An immediate consequence of this recollection is that the probability of
success for Eve when the input string is r and the guessed string is r̂B = g∗(rE)
is permutation-invariant. That is, for every permutation π ∈ Sn, the probability
of succeeding on r̂B when the input string is r is equivalent to the probability
of succeeding on π(r̂B) when the input string is π(r) because

Ratiox→y(r, r̂B) = Ratiox→y(π(r), π(r̂B)).

Thus, since r is uniformly random, then we have Pr[R = π(r)] = Pr[R = r], so
morally an optimal g∗’s success probability on rE and π(rE) should be the same.
This is formally seen by a symmetrization argument regarding the equivalence
relation we define below.

Definition 5. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|} and Nzi(rE) = |i ∈ [n] | rEi = zi|. We define an equiv-
alence relation Eqwt on Zn ×Zn by

Eqwt = {(rE , rE ′) ∈ Zn ×Zn | wt(rE) = wt(rE
′)}

= {(rE , rE ′) ∈ Zn ×Zn | ∃π ∈ Sn, rE = π(rE
′)}.
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Let rEw,0 denote the lexicographically first vector in the equivalence class {rE ∈
Zn | wt(rE) = w}.

Then since g∗ performs equally well on all permutations of rE , we can create a
new optimal deterministic strategy Eve0 which behaves in a structured manner
on all strings rE from the same equivalence class. Importantly, Eve0 has the
nice property that for any permutation π, then π(Eve0(rE)) = Eve0(π(rE)).

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn

of weight w.
2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .
3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Now, consider a probabilistic Eve1 that on input rE ∈ Zn deviates slightly
from the deterministic Eve0. For any z ∈ Z, y ∈ Y, and input rE ∈ Zn, observe
that Eve0 will map some deterministically chosen subset of size kz,y of the y’s
in rE to be a z in r̂B . Instead, we will have Eve1 map a random subset of size
kz,y of the y’s in rE to be a z in r̂B . By a similar symmetrization argument and
the construction of Eve0, then Eve1’s probability of success is equal to that of
Eve0.

Eve1(rE):

1. For each y ∈ Y and z ∈ Z, compute kz,y =Nz(rE)·Ratioz→y(rE ,Eve0(rE)).
2. Start with S = [n].

For each y ∈ Y and z ∈ Z
(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| =

kz,y.
(b) Set r̂B,i = y for all i ∈ Sz,y.
(c) Set S = S\Sz,y.

3. Output r̂B .

Now, we relax the necessity of requiring that exactly kz,y of the z’s in rE map
to y’s in r̂B . This relaxation is done by defining a set of stochastic matrices that
model a DMC. In particular, we use the probabilistic strategy of Eve1 to define
a set of DMCs ChrE where prE (z | y) = Ratioz→y(rE ,Eve1(rE)) (which is also
equal to Ratioz→y(rEw,0,Eve0(rEw,0)) by definition of Eve1). We then define
a new strategy Eve2 which on input rE applies the corresponding channel ChrE
on each symbol of rE to get r̂B . Then Eve2 acts identically to Eve1 whenever
each of the ratios Ratioz→y(rE ,Eve2(rE)) hit their expected value. We prove
that this happens with probability at least 1

poly(n) , so therefore, Eve2 wins at

least inverse polynomially as often as Eve1.
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Eve2(rE):

1. Define a channel ChrE from Z to Y by stochastic matrix

PrE = [prE (y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE (rEi).
3. Output r̂B .

Although Eve2’s strategy is to apply a channel ChrE to each symbol of
her input rE , the choice of channel she applies is dependent on which rE she
received. However, it turns out that there are only polynomially many possi-
ble channels that Eve2 may construct. In particular, the set of channels that
Eve2 can construct is in bijective correspondence with the equivalence classes
Eqwt. To see this, observe that for any permutation π, ChrE = Chπ(rE) be-
cause Eve0(π(rE)) = π(Eve0(rE)). Thus, the total number of possible channels
that Eve2 may apply to rE is bounded by the number of equivalence classes of
Eqwt, which is polynomial in size. We define Chw to be equal to ChrE for any
rE of weight w.

Thus, instead of having Eve2 choose a channel based on rE ’s weight, we
define a new strategy that randomly selects the channel before seeing rE . In
particular, we construct an Eve3 which in addition to getting input rE also gets
an independently chosen random input w that defines which channel Chw that
Eve3 should apply to rE .

Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector in Zn of weight w.
2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pw(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).
4. Output r̂B .

Now, if the randomly chosen w equals wt(rE), then Eve3 acts identically to
Eve2. But since there are only polynomially many weight vectors, an inde-
pendently chosen random w equals wt(rE) with probability 1

poly(n) . Thus, the

probability that Eve3 succeeds given a random w is only polynomially worse
than the probability that Eve2 succeeds.

However, for any weight w, it is now the case that Eve3 applies an input-
independent channel to each symbol of rE . Thus, we can now apply the non-
degraded condition to prove that Eve3’s probability of success is negligible for
any input weight w. This then implies that any arbitrary strategy g has a neg-
ligible probability of winning.

12



3 Preliminaries

Throughout, we will use λ to denote a security parameter.

Notation

– We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote
it by f(λ) = negl(λ).

– We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed
polynomial p, and we denote it by g(λ) = poly(λ).

– For n ∈ N, we use [n] to denote {1, . . . , n}.
– If R is a random variable, then r ← R denotes sampling r from R. If T is a

set, then i← T denotes sampling i uniformly at random from T .
– Let Sn denote the symmetric group on n letters.

Definition 6 (Max Norm of a Matrix). Let A by any n × m matrix. We
define the max norm to be the maximal magnitude of any entry and denote it
with

∥A∥max = max
i,j
|Ai,j | .

Remark 1. As a reminder, computationally bounded adversaries are described
as non-uniform polynomial-time throughout the paper but can be equivalently
given as a family of polynomial-size circuits.

Definition 7 (Discrete Memoryless Channel (DMC)). We define a dis-
crete memoryless channel (DMC) ChW : X → Y to be a randomized function
from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix

PW = [pW (y|x)]x∈X ,y∈Y

For x ∈ X , we use ChW(x) to denote a random variable over Y such that for
y ∈ Y,

Pr[ChW(x) = y] = pW (y|x)

For n ∈ N and r = (r1, . . . , rn) ∈ Xn, we define

ChW(r) = ChW(r1) . . .ChW(rn)

Whenever we discuss channels in the context of efficient algorithms, we assume
all channels have finite description size with constant alphabet size and rational
probabilities.

Notation If ChE is a channel, we may use PrChE to denote the probability over
the randomness of ChE. Similarly, if f is a randomized function, we may use Prf
to denote the probability over the randomness of f .
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Less Noisy and Channel Degradation

Definition 8 (Less Noisy, [10]). Channel ChE is less noisy than channel ChB
if for every Markov chain V → X → Y Z such that pY |X(y|x) corresponds to
ChB and pZ|X(z|x) correspond to ChE then

I(V ;Z) ≥ I(V ;Y ).

Definition 9 (Channel Degradation, [9]). We say that channel ChB is a
degradation of channel ChE if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Definition 10 (Channel Degradation Equivalent Definition). Equivalently,
we say that channel ChB : X → Y is a degradation of channel ChE : X → Z if
there exists a stochastic matrix PS = [pS(y | z)]z∈Z,y∈Y such that

PB = PE · PS

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z |
x)]x∈X ,z∈Z is the stochastic matrix of ChE.

Remark 2 (Notions of Degradation). The notion of degradation defined above is
sometimes referred to as stochastic degradation. There is also a notion of physical
degradation. (See [25] for further discussion.) However, the difference between
these notions is irrelevant in the current context.

Provided in the full version, we obtain the following Lemma:

Lemma 1. If channel ChB is not a degradation of channel ChE, then there exists
a constant d > 0 such that for all stochastic matrices PS = [pS(y | z)]z∈Z,y∈Y ,

∥PB − PE · PS∥max ≥ d

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z |
x)]x∈X ,z∈Z is the stochastic matrix of ChE.

Proof. We defer the proof to the full version.

4 Wiretap Channels

A wiretap channel [26,10] is defined by two discrete memoryless channels (ChB,ChE)
with the same input domain X where ChB : X → Y is the main channel
and ChE : X → Z is the eavesdropper channel. We characterize ChB by its
stochastic matrix PB = [pB(y | x)]x∈X ,y∈Y and ChE by its stochastic matrix
PE = [pE(z | x)]x∈X ,z∈Z . Throughout, we will use X ,Y,Z to denote respec-
tively the input alphabet of ChB and ChE, the output alphabet of ChB, and the
output alphabet of ChE. We useM to denote the message space.
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Definition 11 (Wiretap Coding Scheme: Syntax). A wiretap coding scheme
Π for wiretap channel (ChB,ChE) and message spaceM is a pair of algorithms
(Enc,Dec). Enc is a randomized encoding algorithm that takes as input a se-
curity parameter 1λ, a message m ∈ M, and outputs a finite length encoding
in Xn where n = n(λ). Dec is a deterministic decoding algorithm that takes as
input a security parameter 1λ, and a string from Yn and outputs a message in
M.

A wiretap coding scheme satisfies correctness if Bob can decode the output
of ChB on an encoding of a message. Security holds if Eve when given the output
of ChE on the encoding of the message cannot learn the message. Similarly to
[5]8, we use the standard notion of semantic security [16]. For simplicity, we
only consider the case whenM = {0, 1}. However, we can easily generalize our
definition to consider larger families of message spaces. (See the full version.)

Definition 12 (Statistically Secure Wiretap Coding Scheme). A wiretap
coding scheme Π = (Enc,Dec) is a statistically secure wiretap coding scheme
for wiretap channel (ChB,ChE) and message space M = {0, 1} if there exist
negligible functions ϵ(λ), µ(λ) such that

– Correctness: For all messages m ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1− ϵ(λ)

– Security: For all adversaries A,

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1

2
+ µ(λ)

where b is uniformly distributed over {0, 1}.

We may similarly refer to a finite scheme Π0 (with a fixed λ) as being ϵ0-correct
and µ0-secure.

8 Our security definition corresponds to requiring the distinguishing advantage Advds

of [5] to be negligible. [5] define a separate notion for semantic security, but prove
that the two definitions are equivalent.
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Definition 13 (Computationally Secure Wiretap Coding Scheme). Π =
(Enc,Dec) is a computationally secure wiretap coding scheme if Enc and Dec are
PPT algorithms, and if it satisfies the above definition except that we only require
security against non-uniform polynomial-time adversaries A.

Notation We say that a wiretap channel (ChB,ChE) admits a statistically (resp.
computationally) secure wiretap coding scheme if there exists a statistically
(resp. computationally) secure wiretap coding scheme for (ChB,ChE).

4.1 Ideal Obfuscation Model

Similarly to the recent use of obfuscation in [1], it is convenient to describe and
analyze our constructions in an ideal obfuscation model in which the sender can
give a receiver (either Bob or Eve) bounded query access to an oracle. In this
model, the encoding function outputs both an encoding of m and a description
f̂ of a circuit computing a deterministic function f . (We will typically abuse
notation by using f to denote both the function and its description.) The receiver
Bob and the adversary Eve are both given oracle access to f . In addition, though
we require Eve to only make polynomially many queries to the oracle f , we
allow Eve to be otherwise unbounded by default (see Remark 3 below for a
relaxed definition variant). We will later consider the question of instantiating
the ideal obfuscation primitive in the plain model under concrete cryptographic
assumptions (see Section 7).

Definition 14 (Wiretap Coding Scheme in the Ideal Obfuscation Model:
Syntax). A wiretap coding scheme Π for wiretap channel (ChB,ChE) and mes-

sage spaceM in the ideal obfuscation model is a pair of algorithms (Enc,Dec(·)).
Enc is a randomized encoding algorithm that takes as input a security parameter
1λ and a message m ∈ M, and outputs a finite length encoding in Xn where
n = n(λ) and a description f̂ of a circuit computing some deterministic function

f . Dec(·) is a deterministic decoding algorithm with polynomially bounded access
to an oracle. It takes as input a security parameter 1λ, a string from Yn, and
outputs a message inM.

Definition 15 (Bounded Query Secure Wiretap Coding Scheme in the

Ideal Obfuscation Model). A wiretap coding scheme Π = (Enc,Dec(·)) is a
bounded query secure wiretap coding scheme in the ideal obfuscation model for
wiretap channel (ChB,ChE) and message space M = {0, 1} if Enc and Dec(·)

are PPT algorithms which satisfy

– Correctness: For all messages m ∈ {0, 1},

Pr[Decf (1λ,ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

– Security: For every polynomial query bound q(λ) and (computationally un-
bounded) adversary A(·) that makes at most q(λ) queries to its oracle f ,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)
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where b is uniformly distributed over {0, 1}.

We will prove the following characterization of the wiretap feasibility region
in the information theoretic setting:

Theorem 3. ChE is not less noisy than ChB if and only if there exists a statis-
tically secure wiretap coding scheme for (ChB,ChE).9

Proof. We defer the proof to the full version.

Remark 3 (Computationally bounded adversaries). Definition 15 only bounds
the number of queries made by A but does not otherwise bound its computa-
tional complexity. This makes our main feasibility results stronger. One may
also consider a relaxed variant of the definition in which A is computationally
bounded, as in Definition 13.

5 Constructing Bounded Query Secure Wiretap Coding
Schemes in the Ideal Obfuscation Model

We consider the setting of a (ChB,ChE) wiretap channel where the main channel
ChB : X → Y is not a degradation of the eavesdropping channel ChE : X → Z.
For the entirety of this section, we will characterize ChB by its stochastic matrix
PB = [pB(y | x)]x∈X ,y∈Y and channel ChE by its stochastic matrix PE = [pE(z |
x)]x∈X ,z∈Z . We letM = {0, 1}.

Let λ be a security parameter, and let n = λ. Our encoding of a message m ∈
M will specify a codeword and an oracle. The codeword will be a random string
r ∈ Xn which will be sent across the two channels. We define R to be a uniform
random variable over Xn, RB := ChB(R), and RE := ChE(R). The oracle, which
is transmitted perfectly to both parties, will output the message m if it receives
an input which is “typical” for RB conditioned on R = r (notationally RB |R=r)
and will output ⊥ otherwise. We will define typicality in terms of the expected
number of x’s in r that should turn into y’s in RB |R=r for each pair (x, y) ∈ X×Y
as specified by Bob’s channel probability matrix PB . The receiver Bob should be
able to recover m simply by sending his received value of RB to the oracle. Thus,
the decoder will simply output the value of the oracle on its input. Security holds
if the eavesdropper Eve cannot create a “typical” channel value for RB |R=r given
only RE |R=r. To specify this more formally, we first define the following:

Definition 16. Let X be any discrete finite set and n ∈ N. For any r ∈ Xn and
x ∈ X , we define the number of x’s in r to be

Nx(r) = |{i ∈ [n] : ri = x}|
9 This is also true with respect to statistically secure wiretap coding schemes over
larger message spaces (see the full version).
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Definition 17. Let X and Y be any two discrete finite sets and n ∈ N. For
r ∈ Xn and s ∈ Yn and for any x ∈ X and y ∈ Y, we define the fraction of x’s
in r that are y’s in s to be

Ratiox→y(r, s) =
|{i ∈ [n] : ri = x, si = y}|

Nx(r)
.

If Nx(r) = 0, then we define Ratiox→y(r, s) = 0.

We now describe our wiretap encoder-decoder pair (EncChB,DecChB) for main
channel ChB.

EncChB(1
λ,m):

1. Let n = λ
2. Sample r ← Xn.
3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x)+n−
1
3 ,

output m.
Else, output ⊥.

4. Output (fm,r,ChB,n, r).

DecfChB(1
λ, rB):

1. Output f(rB).

We then prove that our coding scheme gives us both correctness and security.

Theorem 4. If (ChB,ChE) is a wiretap channel where ChB is not a degradation

of ChE, then (EncChB,Dec
(·)
ChB) achieves

– Correctness: For all messages m ∈ {0, 1},

Pr[Dec
fm,r,ChB,n

ChB (1λ,ChB(r)) = m | (fm,r,ChB,n, r)← EncChB(1
λ,m)] ≥ 1−negl(λ)

– Security: For every polynomial query bound q(λ) and (computationally un-
bounded) adversary A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r)← EncChB(1
λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Proof. Correctness follows by a simple Chernoff bound which we defer to the
full version. Security follows by Theorem 7 which are proven below.
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Since EncChB and Dec
(·)
ChB are PPT, we get the following corollary.

Corollary 1. If (ChB,ChE) is a wiretap channel where ChB is not a degradation

of ChE, then (EncChB,Dec
(·)
ChB) is a bounded query secure wiretap coding scheme

in the ideal obfuscation model.

Remark 4. Theorem 4 and Corollary 1 hold even if we modify fm,r,ChB,n to
have binary output domain by outputting 0 in place of ⊥. Correctness still
holds since the probability that the decoder using the original function outputs
⊥ is negligible, so changing ⊥ to 0 results in at most a negligible change in
correctness. For security, observe that by outputting 0 instead of ⊥, Eve gets
strictly less information as she cannot tell whether an observed 0 from the oracle
is an indicator of failure to receive the message bit or is the message bit itself.

5.1 Security

Overview In our security game, the adversary receives RE = ChE(R) and oracle
access to fb,R,ChB,n for a random b ∈ {0, 1} and tries to guess b. Intuitively, since
R is independent of b, if for all b ∈ {0, 1}, an adversary is unable to generate an
input r̂B such that fb,r,ChB,n(r̂B) ̸= ⊥, then the adversary should be unable to
learn anything about b. Thus, we will first attempt to show this.

To simplify our proof, we define the following function hr,ChB,n which on
input rB outputs 1 if all of the ratios Ratiox→y(r, rB) are sufficiently close to
the channel probabilities pB(y | x) and 0 otherwise.

Definition 18. Let r ∈ Xn and rB ∈ Yn. Define hr,ChB,n : Yn → {0, 1} as

hr,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB)− pB(y | x)| ≤ |Y| · n−
1
3 ,

output 1.
Else, output 0.

We will first show that for any arbitrary strategy g that an adversary applies to
RE ,

Pr[hR,ChB,n(g(RE)) = 1] ≤ negl(λ).

We will then prove that this implies that for any arbitrary strategy g that an
adversary applies to RE ,

Pr[fm,R,ChB,n(g(RE)) ̸= ⊥] ≤ negl(λ).

Then we will prove that this implies security.
To prove the first step, we will need to rely on the fact that ChB is not a

degradation of ChE. This means that for all channels ChS, then ChB ̸= ChS◦ChE.
Thus, if Eve’s strategy g was to apply a DMC channel ChS to each symbol
of RE , then the distribution of g(RE) = ChS(ChE(R)) should differ from the
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distribution of ChB(R), and therefore result in hR,ChB,n(g(RE)) = 0 with high
probability.

However, Eve may instead choose any arbitrary strategy g. Thus, to prove
our result, we will show through a series of hybrids g,Eve0,Eve1,Eve2,Eve3
that strategy g is only polynomially better that strategy Eve3, where Eve3’s
strategy is to apply a DMC independently to each symbol of RE . Then, we can
use the not-degraded condition to show that Eve3’s probability of success is
negligible. We refer further intuition to the Technical Overview.

We will first assume that Eve’s arbitrary strategy g is optimal, defined below:

Definition 19. We say that a strategy g∗ : Zn → Yn for guessing r̂B is optimal
if

g∗ = argmax
g

(
Pr

R,ChE
[hR,ChB,n(g(RE)) = 1]

)
.

Remark 5. By definition, for any optimal strategy g∗,

g∗(rE) = max
r̂B

(
Pr

R,ChE
[hR,ChB,n(r̂B) = 1 | RE = rE ]

)
Observe that there may be multiple possible optimal strategies g∗ which achieve
the same maximal probability of success. Furthermore, since g∗ may arbitrarily
break ties for the maximum, then there always exists an optimal strategy which
is deterministic.

We also define a notion of weight.

Definition 20. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|}. We define an equivalence relation Eqwt on Zn ×Zn

by

Eqwt = {(rE , rE ′) ∈ Zn ×Zn | wt(rE) = wt(rE
′)}

= {(rE , rE ′) ∈ Zn ×Zn | ∃π ∈ Sn, rE = π(rE
′)}.

We define the lexicographically first element in the equivalence class to be the
canonical representative of the class.

Definition 21. Let rEw,0 denote the lexicographically first vector in the equiv-
alence class {rE ∈ Zn | wt(rE) = w}.

Applying Symmetry Let g∗ be any optimal deterministic strategy. We will
first construct a new optimal strategy Eve0 that has the property that for all
rE ∈ Zn and all permutations π, Eve0(π(rE)) = π(Eve0(rE)).

First, we prove a fact about symmetry.
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Lemma 2. For all r̂B ∈ Yn, rE ∈ Zn, π ∈ Sn,

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]

Proof. We defer the proof to the full version.

Now, we can prove that any optimal deterministic strategy g∗ : Xn → Yn

does equally well on all permutations of received string rE .

Lemma 3. For all rE ∈ Zn, π ∈ Sn, and for any optimal deterministic strategy
g∗ : Xn → Yn,

Pr
R,ChE

[hR,ChB,n(g
∗(RE)) | RE = rE ] = Pr

R,ChE
[hR,ChB,n(g

∗(RE)) | RE = π(rE)]

Proof. We defer the proof to the full version.

Although g∗ has the same probability of success on all permutations of a given
string rE , g

∗ may still behave rather differently on each permutation. To deal
with this, we construct a new optimal strategy Eve0 that acts in a structured
manner on each permutation of rE so that Eve0(π(rE)) = π(Eve0(rE)) for all
π ∈ Sn.

We define Eve0 from g∗ as follows:

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn

of weight w.
2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .
3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Remark 6. For any weight w and any permutation τ ∈ Sn, Eve0(τ(rEw,0)) =
τ(g∗(rEw,0)) In particular, Eve0(rEw,0) = g∗(rEw,0).

Lemma 4. If g∗ : Zn → Yn is an optimal deterministic strategy, then Eve0 :
Zn → Yn is an optimal strategy. Moreover, for any rE ∈ Zn and π ∈ Sn,
Eve0(π(rE)) = π(Eve0(rE)).

Proof. We defer the proof to the full version.

Randomized Locations Consider a probabilistic Eve1 that on input rE ∈ Zn

deviates slightly from the deterministic Eve0. For any z ∈ Z, y ∈ Y, and input
rE ∈ Zn, Eve0 maps some deterministically chosen subset of size kz,y of the y’s
in rE to be a z in r̂B . Instead, Eve1, will map a random subset of size kz,y of
the y’s in rE to be a z in r̂B .

More formally, we define Eve1 as follows.
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Eve1(rE):

1. ∀y ∈ Y, z ∈ Z, compute kz,y = Nz(rE) ·Ratioz→y(rE ,Eve0(rE)).
2. Start with S = [n].

For each y ∈ Y and z ∈ Z
(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| =

kz,y.
(b) Set r̂B,i = y for all i ∈ Sz,y.
(c) Set S = S\Sz,y.

3. Output r̂B .

Remark 7. Observe that for any fixed randomness e of Eve1 and any rE ∈ Zn,
then there exists a permutation πe ∈ Sn such that Eve1(rE ; e) = πe(Eve0(rE))
where πe(rE) = rE .

We show that such a probabilistic Eve1 has the same success probability as
Eve0.

Lemma 5.

Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1] = Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]

Proof. We defer the proof to the full version.

Stochastic Matrix Strategy Consider a probabilistic Eve2 that on input
rE ∈ Zn defines a new channel ChrE from Z to Y such that prE (z | y) =
Ratioz→y(rE ,Eve0(rE)) and applies this channel to each symbol of rE to get
r̂B .

Eve2(rE):

1. Define a channel ChrE from Z to Y by stochastic matrix

PrE = [prE (y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE (rEi).
3. Output r̂B .

We will now prove that Eve2 cannot perform much worse than Eve1. In par-
ticular, we will prove that for an overwhelming fraction of rE ∈ Zn, then with
probability at least 1

poly(n) , Eve2(rE) will produce an output that is distributed

identically to the distribution of Eve1(rE).

Definition 22.
Let GoodE = {rE ∈ Zn | ∀z ∈ Z, Nz(rE) ≥ n

2|X | ·maxx∈X (pE(z|x))} ⊂ Zn.

Observe that for all rE ∈ GoodE and z ∈ Z, then Nz(rE) = Θ(n).
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Lemma 6. PrR,ChE[rE ∈ GoodE ] ≥ 1− negl(λ)

Proof. We defer the proof to the full version.

Lemma 7. For all rE ∈ GoodE, there exists a polynomial p(n) = O
(
n|Z||Y|/2

)
such that

Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ]

≥ 1

p(n)
· Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1 | RE = rE ]

Proof. We defer the proof to the full version.

Corollary 2. There exists a polynomial p(n) = O
(
n|Z||Y|/2

)
such that

p(n)· Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1]+negl(λ) ≥ Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

Proof. We defer the proof to the full version.

Input-Independent Strategy Now, although Eve2’s strategy is to apply a
channel ChrE to each symbol of her input rE , the choice of channel she applies is
dependent on which rE she received. To remove this dependence, we construct
an Eve3 who in addition to getting input rE also gets an independent random
input w that defines which channel Chw that Eve3 should apply to rE . More
formally,

Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector of weight w.
2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pw(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).
4. Output r̂B .

Notation

– Let Wn = {w = (w1, . . . , w|Z|) |
∑|Z|

i=1(wi) = n} = {w ∈ Nn | w =
wt(rE) for some rE ∈ Zn} be the set of all weight vectors of Zn.

– Note that |Wn| =
(
n+|Z|−1
|Z|−1

)
= poly(n).

– Let W be a random variable uniformly distributed over Wn.

Now, we will show that Eve3(wt(rE), rE) has the same behavior as Eve2(rE).
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Lemma 8. For all weights w ∈ Wn and all rE ∈ Zn such that wt(rE) = w,
then Chw = ChrE where Chw is defined as in Eve3 and ChrE is defined as in
Eve2.

Proof. We defer the proof to the full version.

Corollary 3. For any rE ∈ Zn, the distribution of Eve3(wt(rE), rE) is the
same as the distribution of Eve2(rE).

Proof. This follows directly from Lemma 8 by definition of Eve2 and Eve3.

We claim that given a uniformly randomly chosen weight vector w, Eve3’s
probability of success is not much worse than Eve2’s probability of success. This
follows since there are only polynomially many possible weight vectors, so with
some inverse polynomially probability, the randomly chosen weight w for Eve3
will be equal to wt(rE) and thus Eve3 will act identically to Eve2.

Lemma 9.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1] ≥ 1

q(n)
· Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1]

where q(n) =
(
n+|Z|−1
|Z|−1

)
= |Wn| = poly(n).

Proof. We defer the proof to the full version.

Finally, we prove that Eve3 only succeeds with negligible probability. This
step crucially requires that the main channel ChB is not a degradation of Eve’s
channel ChE.

Lemma 10.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1] ≤ negl(λ)

Proof. We defer the proof to the full version.

Putting it Together

Theorem 5. For all randomized functions g : Zn → Yn,

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ negl(λ)

Proof. By Lemma 4, Eve0 is an optimal strategy so

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]
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Then, by Lemma 5, Corollary 2, Lemma 9, and Lemma 10 for some polynomials
p(n), q(n) = poly(n),

Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1] = Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

≤ p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + negl(λ)

≤ p(n) · q(n) · Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1]

+ negl(λ)

≤ p(n) · q(n) · negl(λ) + negl(λ)

≤ negl(λ)

We now show that this implies that any strategy g can only cause fm,R,ChB,n

to output m with negligible probability. This follows from the lemma below:

Lemma 11. For any r ∈ Xn and r̂B ∈ Yn,

∀x ∈ X , y ∈ Y, Ratiox→y(r, r̂B) ≤ pB(y|x) + n−
1
3

implies

∀x ∈ X , y ∈ Y, |Ratiox→y(r, r̂B)− pB(y|x)| ≤ |Y| · n−
1
3

Proof. We defer the proof to the full version.

Therefore, we obtain

Theorem 6. For all randomized functions g : Zn → Yn and any message m ∈
{0, 1},

Pr
R,ChE,g

[fm,R,ChB,n(g(RE)) ̸= ⊥] ≤ negl(λ)

Proof. We defer the proof to the full version.

We now prove full security.

Theorem 7. For every polynomial query bound q(λ) and (computationally un-
bounded) adversary A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r)← EncChB(1
λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Proof. We defer the proof to the full version.
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6 Universal Coding Schemes

A universal coding scheme for a main channel ChB is a wiretap coding scheme
that allows decoding for Bob but is secure against any eavesdropping channel
ChE from some set E .

Definition 23 (Secure (ChB, E)-universal coding scheme). A statistically
secure (resp. computationally secure, resp. bounded query secure in the ideal
obfuscation model) (ChB, E)-universal coding scheme for channel ChB, a class
of eavesdropping channels E, and message space M is a wiretap coding scheme
(Enc,Dec) that is a statistically secure (resp. computationally secure, resp. bounded
query secure in the ideal obfuscation model) wiretap coding scheme for all wiretap
channels in the set {(ChB,ChE) | ChE ∈ E} and for message spaceM.

We observe that for any channel ChB, our wiretap coding scheme (EncChB,DecChB)
in the ideal oracle model gives us a universal coding scheme against all eaves-
dropping channels for which secure wiretap coding schemes are possible. Recall,
that if ChB is a degradation of ChE, then no secure wiretap coding scheme is
possible since the adversary can simulate anything that ChB produces.

Theorem 8. Let ChB be any channel and let

Not-Degraded(ChB) = {ChE | ChB is not a degradation of ChE}.

Then, (EncChB,Dec
(·)
ChB) is a bounded query secure (ChB,Not-Degraded(ChB))

wiretap coding scheme in the ideal oracle model.

Proof. The proof follows by Corollary 1 and the observation that (EncChB,Dec
(·)
ChB)

only depend on ChB.

In contrast, in the information theoretic setting, there exist channels ChB for
which there is no positive rate universal coding schemes against all channels ChE
that are not less noisy than ChB.

We defer further discussion on this to the full version.

7 Instantiating the Oracle via Obfuscation

7.1 Obfuscation Definitions

We now give obfuscation definitions that suffice for building computationally
secure wiretap coding schemes. Crucially, we will use the fact that the func-
tion classes we are obfuscating are statistically evasive – that is, even given the
information that Eve receives over her channel, it is infeasible for (even a com-
putationally unbounded) Eve to find even one input that causes the function to
output anything but 0. We formalize this notion now.

Definition 24 (Statistically Evasive Circuit Collection with Auxiliary
Input). A statistically evasive circuit collection with auxiliary input (F ,G ) is
defined by
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– a collection F = {Cλ}λ∈N of circuits such that each C ∈ Cλ maps λ input
bits to a single output bit and has size poly(λ)

– a collection G of pairs (D,Aux) where D is a PPT sampler that takes as
input the security parameter 1λ and output circuits from Cλ, and Aux is a
PPT auxiliary input generator that takes as input the security parameter 1λ

and a circuit in Cλ and outputs an auxiliary input

such that for every computationally unbounded oracle machine A(·) that is limited
to polynomially many queries to the oracle, and for every (D,Aux) ∈ G , there
exists a negligible function µ such that for every λ ∈ N,

Pr
C←D(1λ)

[
C
(
AC

(
1λ,Aux(1λ, C)

))
= 1

]
≤ µ(λ).

Obfuscation for evasive functions has been studied in several works, most
relevantly for us in [3,2]. We stress that while there are impossibility results
for several definitions of obfuscation, there are no impossibility results known
for obfuscation of statistically evasive circuits with auxiliary input. Indeed, this
is for good reason: all known impossibilities for obfuscating circuits involve ei-
ther: (i) providing (computationally hiding) obfuscations as auxiliary input [15],
which is ruled out in the statistically evasive case; or (ii) “feeding an obfuscated
circuit to itself” [4] which requires a non-evasive circuit family. Beyond merely
avoiding impossibilities, both the circuit families that we are obfuscating and
the auxiliary inputs we are considering are quite natural, and there are multiple
natural avenues for instantiating our obfuscation using previous work.

In particular, we consider essentially Definition 2.3 from [2], which is itself
a generalization of the standard average-case VBB definition of obfuscation [4],
but extended to consider auxiliary input. The work of [2] gives a construction
achieving this definition for evasive functions based on multilinear map candi-
dates [13,8], that remain secure even in light of all known attacks on multilinear
map candidates (when instantiated with sufficiently large security parameters).
Below, we also comment that the recent construction of indistinguishability ob-
fuscation from well-studied assumptions [18] also gives a plausible candidate for
obfuscating our oracle.

Here, our definition slightly extends the average-case VBB definition given
in [2] only in that we consider security with respect to a class of possibly ran-
domized auxiliary input generators as opposed to a single deterministic auxiliary
input generator. The proof of security in [2] is oblivious to this change. We also
restrict our notion of obfuscation to statistically evasive circuits collections with
auxiliary input.

Definition 25 (Average-Case Virtual Black Box Obfuscation for Sta-
tistically Evasive Circuit Collections with Auxiliary Input). Consider
a statistically evasive circuit collection with auxiliary input, (F ,G ) where F =
{Cλ}λ∈N and G are defined as in Definition 24. A uniform PPT algorithm Obf
is an average-case virtual black box obfuscator for (F ,G ) if there exist negligible
functions ϵ and µ such that
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– Correctness: For all λ ∈ N, every circuit C ∈ Cλ, and every input y to C,

Pr
[
Obf(1λ, C)(y) ̸= C(y)

]
≤ ϵ(λ)

– G -VBB Security: For all non-uniform polynomial time adversaries A,
there exists a non-uniform polynomial time oracle algorithm Sim(·) such that
for all λ ∈ N and for every (D,Aux) ∈ G ,∣∣∣ Pr

C←D(1λ)
[A(1λ,Obf(1λ, C),Aux(1λ, C)) = 1]

− Pr
C←D(1λ)

[SimC(1λ, 1|C|,Aux(1λ, C)) = 1]
∣∣∣ ≤ µ(λ)

7.2 Fuzzy Point Function Obfuscation for the BSC-BEC Case

As a warm-up we consider fuzzy point function obfuscation which suffices when
the main channel is a BSCp channel and Eve’s channel is a BECϵ channel such
that ϵ > 2p. Notably this fuzzy point function solution uses only Hamming
distance. Therefore this solution is based on a standard definition of fuzzy point
functions.

We defer this section to the full version.

7.3 Generalized Fuzzy Point Function Obfuscation

In general wiretap settings, a fuzzy point function obfuscation does not suffice
to produce secure wiretap coding schemes. Thus, we define a generalization of
fuzzy point functions that do suffice.

We defer this section to the full version.

7.4 Construction from iO

Finally, we remark that if there exists a uniformly bounded average case virtual
black box with auxiliary input obfuscator, then iO (indistinguishability obfusca-
tion) also implies secure wiretap coding schemes for (ChB,ChE) wiretap channels
where ChB is not a degradation of ChE. We use the definition of indistinguisha-
bility obfuscation (iO) defined in [18].

Following the discussion on iO in [1], we note that iO is a ”best-possible”
obfuscation [17]. More specifically, if there exists some instantiation of the ideal
obfuscation that gives a secure computational wiretap coding scheme, then re-
placing that instantiation with iO should preserve the security properties. How-
ever, in our setting, the adversary is given additional auxiliary information that
may depend on the obfuscated circuit. Despite this auxiliary information, we
show in the full version that iO still behaves as a best possible obfuscation.
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