
Syndrome Decoding in the Head:
Shorter Signatures from Zero-Knowledge Proofs

Thibauld Feneuil1,2, Antoine Joux3, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

{thibauld.feneuil,matthieu.rivain}@cryptoexperts.com
joux@cispa.de

Abstract. Zero-knowledge proofs of knowledge are useful tools to de-
sign signature schemes. The ongoing effort to build a quantum computer
urges the cryptography community to develop new secure cryptographic
protocols based on quantum-hard cryptographic problems. One of the
few directions is code-based cryptography for which the strongest prob-
lem is the syndrome decoding (SD) for random linear codes. This problem
is known to be NP-hard and the cryptanalysis state of the art has been
stable for many years. A zero-knowledge protocol for this problem was
pioneered by Stern in 1993. Since its publication, many articles proposed
optimizations, implementation, or variants.
In this paper, we introduce a new zero-knowledge proof for the syndrome
decoding problem on random linear codes. Instead of using permuta-
tions like most of the existing protocols, we rely on the MPC-in-the-
head paradigm in which we reduce the task of proving the low Hamming
weight of the SD solution to proving some relations between specific
polynomials. Specifically, we propose a 5-round zero-knowledge protocol
that proves the knowledge of a vector x such that y = Hx and wt(x) ≤ w
and which achieves a soundness error closed to 1/N for an arbitrary N .
While turning this protocol into a signature scheme, we achieve a signa-
ture size of 11-12 KB for 128-bit security when relying on the hardness
of the SD problem on binary fields. Using larger fields (like F28), we can
produce fast signatures of around 8 KB. This allows us to outperform
Picnic3 and to be competitive with SPHINCS+, both post-quantum sig-
nature candidates in the ongoing NIST standardization effort. Moreover,
our scheme outperforms all the existing code-based signature schemes for
the common “signature size + public key size” metric.

1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols
and applications. Such proofs enable a prover to prove a statement by interact-
ing with a verifier without revealing anything more than the statement itself.
Zero-knowledge proofs find application in many contexts. Thanks to the Fiat-
Shamir transform [FS87], we can convert such proofs into signature schemes.

2 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

In this article, we aim to build an efficient code-based signature scheme using
this methodology. To do so, we will focus on the generic decoding problem,
a.k.a. the (computational) syndrome decoding (SD) problem: given a matrix

H ∈ F(m−k)×m
q and a vector y ∈ Fm−kq , recover a small-weight vector x ∈ Fmq

such that Hx = y. For random linear codes –i.e. for a random matrix H– this
problem is known to be NP-hard and widely believed to be robust for practical
sets of parameters.

In a pioneering work from three decades ago, Stern proposed a zero-knowledge
protocol to prove the knowledge of a syndrome decoding solution [Ste94]. This
protocol achieves a soundness error of 2/3 which means that a malicious prover
can fool the verifier with a 2/3 probability. Although an arbitrary security of
(2/3)τ can be achieved by repeating the protocol τ times, the induced communi-
cation cost for standard security levels (e.g. 128 bits) becomes significant, which
is partly due to this high soundness error. Since the work of Stern, a few pa-
pers have proposed optimizations and implementations of this protocol (see for
instance [Vér96,GG07,AGS11,ACBH13]) but the communication cost was still
heavy for random linear codes with standard security levels.

In 2007, Ishai, Kushilevitz, Ostrovsky and Sahai proposed a new technique to
build zero-knowledge proofs from secure multi-party computation (MPC) pro-
tocols, which is known as the MPC-in-the-Head (MPCitH) paradigm [IKOS07].
While this construction was mainly considered of theoretical interest at first,
it has been increasingly applied to build practical schemes over the last years.
In particular, the Picnic post-quantum signature scheme [CDG+20], which is a
third-round alternate candidate of the ongoing NIST standardization effort, is
based on the MPCitH principle. Recently, new zero-knowledge protocols for the
SD problem have been inspired by this principle [GPS22,FJR21,BGKM22]. In
particular, these protocols achieve an arbitrary soundness error 1/N instead of
the 2/3 (or 1/2) of Stern protocol and variants. These protocols result in smaller
proof/signature sizes at the cost of computational overheads.

Our contribution. In this article, we build a new zero-knowledge protocol to
prove the knowledge of a syndrome decoding solution using the MPCitH paradigm.
We further turn this protocol into an efficient code-based signature scheme.

While proving that y = Hx is communication-free in this paradigm, the
hard part consists in proving that x is a small-weight vector. We propose here
an efficient way to prove that wt(x) ≤ w through a multi-party computation
which is simulated by the prover (“in her head”). The key idea is to prove the
equality x ◦ v = 0 where ◦ is the component-wise multiplication and where
the coefficients of the vector v are the evaluations of a polynomial Q of degree
w. By definition, v has at most w zero coordinates, so the relation x ◦ v = 0
proves that x has at most w non-zero coordinates (i.e. wt(x) ≤ w). The roots
of the polynomial Q encode the non-zero positions of the vector x. In order
to prove the relation x ◦ v = 0, we use techniques borrowed from the Banquet
signature scheme [BdK+21b] with further adaptations. To check that all xj · vj
are equal to zero, we arrange the input x into a polynomial S, provide a product
polynomial F · P as part of the witness, and check that (F · P)(·) indeed equals

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 3

the product of S(·) and Q(·). This can be done efficiently by only verifying a
few products of these polynomials evaluated at some random points. However,
instead of revealing the multiplication operands like in [BdK+21b], we rely on
the product checking protocol proposed in [LN17,BN20] and its batch version
recently introduced in [KZ21].

Let us note that the idea of encoding the non-zero positions in a polynomial
to prove a Hamming weight inequality was already used in [DLO+18]. However,
the proposed zero-knowledge protocol relies on a linearly homomorphic com-
mitment scheme, and such schemes do not exist yet for post-quantum hardness
assumptions.

Thanks to the Fiat-Shamir transform [FS87], we convert our protocol into
a signature scheme. Our scheme outperforms all the existing code-based signa-
tures for the “signature size + public key size” metric. When relying on the
hardness of the syndrome decoding problem over F256, our scheme is below
10 KB for this metric, which makes it competitive with Picnic3 [KZ20b] and
SPHINCS+ [BHK+19]. Compared to other code-based signature schemes (such
as Wave [DST19] and Durandal [ABG+19]), our scheme has the significant ad-
vantage of relying on a non-structured NP-hard decoding problem which has
been widely studied over the last decades.

To provide more flexibility, we introduce a parameter d in the definition of the
syndrome decoding problem. The idea is, instead of having a constraint for the
global weight of the secret vector x, to split x into d chunks x := (x1 | . . . | xd)
and to have a constraint on the weight of each chunk. By taking d = 1, this
d-split version is equivalent to the standard syndrome decoding problem. We
provide a security reduction from this variant to the standard problem which
allows us to compensate the security loss by a slight increase of the parameters.
This so-called d-split syndrome decoding problem offers us more flexibility to find
better size-performance trade-offs for our signature scheme.

Paper organization. The paper is organized as follows: In Section 2, we introduce
the necessary background on the syndrome decoding problem, zero-knowledge
proofs, and the MPC-in-the-Head paradigm. We present our protocol in Section 3
and the signature scheme obtained through the Fiat-Shamir transform in Section
4. To conclude, we provide implementation results and compare our construction
with other signature schemes from the state of the art in Section 5.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any vector x ∈ Fm, the
Hamming weight of x, denoted wt(x), is the number of non-zero coordinates
of x. For two vectors x1 ∈ Fm1 and x2 ∈ Fm2 , we denote (x1 | x2) ∈ Fm1+m2

their concatenation. We denote ◦ the component-wise multiplication between
two vectors. For any m ∈ N∗, the integer set {1, . . . ,m} is denoted [m]. For a
probability distribution D, the notation s ← D means that s is sampled from
D. For a finite set S, the notation s ← S means that s is uniformly sampled

4 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

at random from S. When the set S is clear from the context, we sometimes
denote s ← $ for a uniform random sampling of s from S. For an algorithm
A, out ← A(in) further means that out is obtained by a call to A on input
in (using uniform random coins whenever A is probabilistic). Along the paper,
probabilistic polynomial time is abbreviated PPT.

A function µ : N→ R is said negligible if, for every positive polynomial p(·),
there exists an integer Np > 0 such that for every λ > Np, we have |µ(λ)| <
1/p(λ). When not made explicit, a negligible function in λ is denoted negl(λ)
while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are
(t, ε)-indistinguishable (where t and ε are N→ R functions) if, for any algorithm
A running in time at most t(λ), we have∣∣Pr[A(x) = 1 | x← Dλ]− Pr[A(x) = 1 | x← Eλ]

∣∣ ≤ ε(λ) .

The two distributions are said

– computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);
– statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;
– perfectly indistinguishable if ε = 0 for every (unbounded) t.

In this paper, we shall use the standard cryptographic notions of secure
pseudo-random generator (PRG), tree PRG, collision-resistant hash function,
and (hiding and binding) commitment scheme. Those notions are formally de-
fined in the full version [FJR22].

2.1 Syndrome Decoding Problems

Definition 1 (Syndrome Decoding Problem). Let F be a finite field. Let
m, k and w be positive integers such that m > k and m > w. The syndrome
decoding problem with parameters (F,m, k, w) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from {x ∈ Fm : wt(x) = w},
3. y is defined as y := Hx.

From (H, y), find x.

In the following, a pair (H, y) generated as in the above definition is called
an instance of the syndrome decoding problem for parameters (F,m, k, w). The
syndrome decoding problem is known to be NP-hard. For a weight parameter w
lower than the Gilbert-Varshamov radius τGV(m, k), which is defined as:

w < τGV(m, k) ⇔
w−1∑
j=0

(
m

j

)
(q − 1)j < qm−k with q = |F| ,

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 5

we know that there exists a unique solution x such that y = Hx with overwhelm-
ing probability. Otherwise, an instance has several solutions on average.

There exists two main families of algorithms to solve the syndrome decoding
problem: the information set decoding (ISD) algorithms and generalized birthday
algorithms (GBA) [TS16,BBC+19]. To obtain a λ-bit security, the parameters of
the syndrome decoding problem are hence chosen in a way to ensure that both
kind of algorithms run in time greater than 2λ.

Instead of working on the standard syndrome decoding problem, we will
consider an alternative version that we shall call the d-split syndrome decoding
problem, where the secret x is split into d chunks of same Hamming weights.

Definition 2 (d-Split Syndrome Decoding Problem). Let F be a finite
field. Let m, k, w be positive integers such that m > k, m > w, d | w and
d | m. The d-split syndrome decoding problem with parameters (F,m, k, w) is the
following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from{

(x1 | . . . | xd) ∈ Fm : ∀i ∈ [d], xi ∈ Fm/d, wt(xi) =
w

d

}
,

3. y is defined as y := Hx.

From (H, y), find x.

By taking d = 1, we get the standard syndrome decoding problem. The
following theorem gives a way to estimate the difficulty to solve the d-split syn-
drome decoding problem.

Theorem 1. Let F be a finite field. Let m, k, w be positive integers such that
m > k, m > w, d | w and d | m. Let Ad be an algorithm which solves a
random (F,m, k, w)-instance of the d-split syndrome decoding problem in time
t with success probability εd. Then there exists an algorithm A1 which solves a
random (F,m, k, w)-instance of the standard syndrome decoding problem in time
t with probability ε1, where

ε1 ≥

(
m/d
w/d

)d(
m
w

) · εd .
Informally, an instance of the standard syndrome decoding problem is an

instance of the d-split syndrome decoding problem with probability
(
m/d
w/d

)d
/
(
m
w

)
.

Moreover, a standard syndrome decoding instance can be “randomized” and
input to the d-split adversary as much as desired. A formal proof of the above
theorem is provided in the full version [FJR22].

Let us note that the d-split syndrome decoding problem can be seen as a
generalization of the regular syndrome decoding problem introduced by [AFS03],
for which the ratio w/d is equal to 1.

6 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

2.2 Zero-Knowledge Proofs of Knowledge

We will focus on a special kind of two-party protocol called an interactive proof
which involves a prover P and a verifier V. In such a protocol, P tries to prove
a statement to V. The first message sent by P is called a commitment, denoted
Com. From this commitment V produces a first challenge Ch1 to which P
answers with a response Rsp1, followed by a next challenge Ch2 from V, and so
on. After receiving the last response Rspn, V produces a binary output: either
1, meaning that she was convinced by P, or 0 otherwise.

The sequence of exchanged messages is called the transcript of the execution,
which is denoted

View(〈P(inP),V(inV)〉) := (Com,Ch1,Rsp1, . . . ,Chn,Rspn)

where inP and inV respectively denote the prover and verifier inputs. An exe-
cution producing an output out is further denoted

〈P(inP),V(inV)〉 → out .

Definition 3 (Proof of Knowledge). Let x be a statement of language L in
NP, and W (x) the set of witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈W (x)} .

A proof of knowledge for relation R with soundness error ε is a two-party protocol
between a prover P and a verifier V with the following two properties:

– (Perfect) Completeness: If (x,w) ∈ R, then a prover P who knows a witness
w for x succeeds in convincing the verifier V of his knowledge. More formally:

Pr[〈P(x,w),V(x)〉 → 1] = 1,

i.e. given the interaction between the prover P and the verifier V, the prob-
ability that the verifier is convinced is 1.

– Soundness: If there exists a PPT prover P̃ such that

ε̃ := Pr[〈P̃(x),V(x)〉 → 1] > ε,

then there exists an algorithm E (called an extractor) which, given rewindable
black-box access to P̃, outputs a witness w′ for x in time poly(λ, (ε̃ − ε)−1)
with probability at least 1/2.

Informally, a proof of knowledge has soundness error ε if a prover P̃ without
knowledge of the witness cannot convince the verifier with probability greater
than ε assuming that the underlying problem (recovering a witness for the input
statement) is hard. Indeed, if a prover P̃ can succeed with a probability greater
than ε, then the existence of the extractor (algorithm E) implies that P̃ can be
used to compute a witness w′ ∈W (x).

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 7

Remark 1. In the present article, we focus on proof of knowledge for a syndrome
decoding instance defined by a matrix H and a vector y. The problem parameters
m, k and w will be considered to be defined by the security parameter λ. In this
context, the syndrome decoding instance (H, y) is the statement. A witness for
this statement is a small-weight vector x such that y = Hx.

We now recall the notion of honest-verifier zero-knowledge proof:

Definition 4 (Honest-Verifier Zero-Knowledge Proof). A proof of knowl-
edge is {computationally, statistically, perfectly} honest-verifier zero-knowledge
(HVZK) if there exists a PPT algorithm S (called simulator) whose output dis-
tribution is {computationally, statistically, perfectly} indistinguishable from the
distribution View(〈P(x,w),V(x)〉) obtained with an honest V.

Informally, the previous definition says a genuine execution of the protocol
can be simulated without any knowledge of the witness. In other words, the
transcript of an execution between the prover and an honest verifier does not
reveal any information about the witness.

2.3 Sharings and Multi-Party Computation

In the scope of this article, all the sharings are additive. Specifically, an N -
sharing of an element x ∈ Fm is an N -tuple

JxK =
(
JxK1, . . . , JxKN

)
∈ (Fm)N such that x =

N∑
i=1

JxKi .

Each JxKi is called a share of x. For a polynomial P ∈ F[X] of degree at most

d, we define its sharing JP K as a N -tuple of (F[X])
N

such that P =
∑N
i=1JP Ki,

where each JP Ki is of degree at most d. In particular, a sharing of a degree-d
polynomial can be seen as the sharing of the d-tuple of its coefficients.

In the context of multi-party computation (MPC), an N -sharing is usually
distributed to N parties, meaning that each party gets one of the N shares.
From those shares, the parties can perform distributed computation. Let assume
that each party i ∈ [N] receives the shares JxKi, JyKi and JP Ki corresponding to
shared values x, y ∈ F and polynomial P ∈ F[X]. They can perform the following
operations:

– Addition: the parties locally compute Jx + yK by adding their respective
shares:

∀i, Jx+ yKi := JxKi + JyKi .

This process is denoted Jx+ yK = JxK + JyK.
– Addition with a constant: for a given constant α, the parties locally

compute Jx+ αK by doing:{
Jx+ αK1 := JxK1 + α
Jx+ αKi := JxKi for i 6= 1

This process is denoted Jx+ αK = JxK + α.

8 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

– Multiplication by a constant: for a given constant α, the parties locally
compute Jα · xK by multiplying their respective shares:

∀i, Jα · xKi := α · JxKi .

This process is denoted Jα · xK = α · JxK.
– Polynomial evaluation: for a given r, the parties can locally compute

JP (r)K by:

∀i, JP (r)Ki := JP Ki(r) =

d∑
j=0

JPjKi · rj ,

where {JPjKi}j denotes the coefficients of JP Ki. This process is denoted
JP (r)K = JP K(r).

2.4 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way
to build zero-knowledge proofs from secure multi-party computation (MPC) pro-
tocols. Let us assume we have an MPC protocol in which N parties P1, . . . ,PN
securely and correctly evaluate a function f on a secret input x with the following
properties:

– the secret x is encoded as a sharing JxK and each Pi takes a share JxKi as
input;

– the function f outputs Accept or Reject;
– the views of t parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of
an x for which f(x) evaluates to Accept. The prover proceeds as follows:

– she builds a random sharing JxK of x;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends commitments to each party’s view, i.e. party’s input share, secret

random tape and sent and received messages, to the verifier;
– she sends the output shares Jf(x)K of the parties, which should correspond

to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their
views. After receiving them, the verifier checks that they are consistent with an
honest execution of the MPC protocol and with the commitments. Since only t
parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makes the cheating probability upper
bounded by (N−t)/N , thus ensuring the soundness of the zero-knowledge proof.

In this article, we shall only consider the case t = N−1, i.e. when the verifier
asks to open all the parties except one. We shall further consider that the function
f computed by the MPC protocol might be non-deterministic. Specifically, if the
protocol takes what we shall call a good witness x as input then the protocol

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 9

returns Accept with probability 1. Otherwise, the protocol shall reject most
of the time but might still accept with some false positive probability p. To
summarize, we consider a setting in which the output of the protocol has a
probability distribution of the form described in Table 1.

Output of f
Accept Reject

x is a good witness 1 0

x is not a good witness p 1− p

Table 1. Probability distribution of the output of the MPC protocol

While moving to the MPCitH setting, the randomness for f is then provided
by the verifier and the “pre-randomness” view of each party (input share, random
tape, initial message) must be committed before receiving the randomness from
the verifier. If the prover is honest (i.e. knows a “good witness” x), it will always
convince the verifier. On the other hand, a malicious prover might successfully
cheat with probability 1/N (by corrupting the computation of one party) or
make the MPC protocol produce a false positive with probability p. Thus, the
resulting zero-knowledge protocol has a soundness error of

1−
(

1− 1

N

)
(1− p) =

1

N
+ p− 1

N
· p .

2.5 Multi-Party Product Verification

A triple of sharings (JaK, JbK, JcK) of three elements a, b, c ∈ F is called a multi-
plication triple (or Beaver triples [Bea92]) if the shared values satisfy a · b = c.
The ability to check the correctness of a multiplication triple is instrumental in
many MPC (in the Head) protocols.

The authors of [LN17,BN20] propose an MPC protocol to verify the correct-
ness of a multiplication triple by “sacrificing” another one. Specifically, given a
random triple (JaK, JbK, JcK), the protocol simultaneously verifies the correctness
of (JxK, JyK, JzK) and (JaK, JbK, JcK), i.e. verifies that c = a ·b and z = x ·y, without
revealing any information on (x, y, z) in the following way:

1. The parties get a random ε ∈ F (from the verifier in the MPCitH paradigm),

2. The parties locally set JαK = εJxK + JaK and JβK = JyK + JbK.
3. The parties broadcast JαK and JβK to obtain α and β.

4. The parties locally set JvK = εJzK− JcK + α · JbK + β · JaK− α · β.

5. The parties broadcast JvK to obtain v.

6. The parties output Accept if v = 0 and Reject otherwise.

10 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

Observe that if both triples are correct multiplication triples (i.e., z = xy
and c = ab) then the parties will always accept since

v = ε · z − c+ α · b+ β · a− α · β
= ε · x · y − a · b+ (ε · x+ a) · b+ (y + b) · a− (ε · x+ a) · (y + b) = 0

In contrast, if one or both triples are incorrect, then the parties will accept with
probability at most 1/|F| as shown in Lemma 1.

Lemma 1 ([BN20]). If (JaK, JbK, JcK) or (JxK, JyK, JzK) is an incorrect multi-
plication triple then the parties output Accept in the sub-protocol above with
probability 1

|F| .

The authors of [KZ21] propose a variant of the above protocol to batch
the verification of the d multiplication triples (JxjK, JyjK, JzjK) by sacrificing a
random dot-product tuple ((JajK, JbjK)j∈[d], JcK) verifying c = 〈a, b〉.

1. The parties gets a random ε ∈ Fd (from the verifier in the MPCitH paradigm),
2. The parties locally set JαK = ε ◦ JxK + JaK and JβK = JyK + JbK.
3. The parties broadcast JαK and JβK to obtain α and β.
4. The parties locally set JvK = −JcK + 〈ε, JzK〉+ 〈α, JbK〉+ 〈β, JaK〉 − 〈α, β〉.
5. The parties broadcast JvK to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.

Lemma 2 ([KZ21]). If (JxjK, JyjK, JzjK)j∈[d] contains an incorrect multiplica-
tion triple or if ((JajK, JbjK)j∈[d], JcK) form an incorrect dot product, then the

parties output Accept in the sub-protocol above with probability at most 1
|F| .

This variant requires less communication for c and v, compared to the case
where we repeat d times the original protocol. But depending on the context,
repeating d times the original protocol might be preferred to lower the false
positive probability (i.e. 1/|F|d against 1/|F|).

3 A Zero-Knowledge Protocol for Syndrome Decoding

Let us consider an instance (H, y) of the (d-split) syndrome decoding problem,
and let us denote x a solution of this instance. We denote FSD the field on which
the instance is defined.

Without loss of generality, we assume that H is in the standard form, i.e. that

H = (H ′|Im−k) for some H ′ ∈ F(m−k)×k
SD . Thus the solution x can be written as

(xA|xB) such that we have the linear relation

y = H ′xA + xB . (1)

This implies that one simply needs to send xA (k · log |FSD| bits) to reveal the
solution of the instance (H, y).

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 11

In the following sections, we first build an MPC protocol that takes a sharing
of JxAK, builds the corresponding JxK thanks to Equation (1), and checks that JxK
corresponds to a vector with a Hamming weight of at most w/d on each chunk.
Since JxK would verify y = Hx by construction, this MPC protocol verifies that
JxAK corresponds to a solution of the syndrome decoding instance (H, y). Then,
in Section 3.3, we transform it into a zero-knowledge protocol which proves the
knowledge of a solution of the syndrome decoding instance (H, y) thanks to the
MPC-in-the-Head paradigm (described in Section 2.4).

3.1 Standard Case (d = 1)

We first focus on the case where (H, y) is an instance of the standard syndrome
decoding problem (i.e. we have d = 1). We will then show how to extend the
protocol to the general case of any d. We consider a field extension Fpoly ⊇ FSD

such that |Fpoly| ≥ m (we recall that m is the length of the secret x, i.e. x ∈ FmSD).
We denote φ : FSD → Fpoly the canonical inclusion of FSD into Fpoly. Let us take
a bijection γ between {1, . . . , |Fpoly|} and Fpoly. Then, to ease the notation, we
denote γi for γ(i).

The protocol must check that y = Hx and wt(x) ≤ w. As explained in the
introduction of the section, the input for the MPC protocol will be JxAK, then
it will build the sharing JxK using the linear relation (1). Then we directly have
that y = Hx. It remains to check that wt(x) ≤ w.

To prove that wt(x) ≤ w, the prover build the three following polynomials:

– The polynomial S ∈ Fpoly[X] satisfying

∀i ∈ [m], S(γi) = φ(xi) ,

as well as degS ≤ m − 1. This S is unique and can be computed by inter-
polation.

– The polynomial Q ∈ Fpoly[X] defined as

Q(X) :=
∏
i∈E

(X − γi)

for some E ⊂ [m] such that |E| = w and {i ∈ [m] : xi 6= 0} ⊂ E, implying
degQ = w.

– The polynomial P ∈ Fpoly[X] defined as

P := (Q · S)/F with F (X) :=

m∏
i=1

(X − γi) .

We stress some useful properties of these polynomials:

– The polynomial Q is a monic polynomial of degree w. Moreover, for every
i ∈ [m], we have

xi 6= 0 ⇒ i ∈ E ⇒ Q(γi) = 0 .

12 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

– The polynomial F divides Q · S. Indeed, for every i ∈ [m], we have

(Q · S)(γi) = 0

since S(γi) 6= 0 ⇒ xi 6= 0 ⇒ Q(γi) = 0. The polynomial P is hence well
defined.

– The polynomial P has degree degP ≤ w − 1.

If the prover convinces the verifier that there exists two polynomials P (with
degP ≤ w − 1) and Q (with degQ = w) such that Q · S − P · F = 0 where S
and F are built as described above, then the verifier can deduce the following:

∀i ∈ [m], (Q · S)(γi) = P (γi) · F (γi) = 0

⇒ ∀i ∈ [m], Q(γi) = 0 or S(γi) = φ(xi) = 0

Since Q has at most w roots, the verifier concludes that φ(xi) 6= 0 in at most w
positions. Thus wt(x) ≤ w.

We now explain how to prove this statement in the MPCitH paradigm. For
this purpose, we describe an MPC protocol, which on input x, P and Q outputs
Accept if the above condition is verified and Reject otherwise, except with
a small false positive probability. The parties’ inputs are defined as the shares
of JxAK, JQK and JP K. Let us recall that a sharing of a polynomial is naturally
defined as a sharing of its coefficients (see Section 2.3). However, for the sharing
of Q, we share all of its coefficients except the leading one. Indeed since Q is
monic, its leading coefficient is publicly known and is equal to 1. Moreover, it
enables to convince the verifier that Q is of degree exactly w, which is important
since otherwise, a malicious prover could take Q as the zero polynomial.

From its inputs, the MPC protocol first builds the polynomial S from xA.
Then, to verify Q · S = P · F , it evaluates the two sides of the relation on t
random points r1, ..., rt (sampled by the verifier in the MPCitH setting). If the
relation is not verified, the probability to observe Q(rj) · S(rj) = P (rj) · F (rj)
for all j ∈ [t] will be low, which stems from the Schwartz-Zippel Lemma (see
the full version [FJR22]). The larger the set from which the evaluation points
rj are sampled, the smaller the false positive probability p. For this reason, we
take these evaluation points in a field extension Fpoints of Fpoly. Such a field
extension allows us to have more points and so to detect more efficiently when
Q · S 6= P · F . In practice, given an evaluation point rj , the parties of the
MPC protocol verify the relations Q(rj) · S(rj) = (P · F)(rj) by sacrificing
multiplication triples as described in Section 2.5. To proceed, the prover must
previously build t multiplication triples (JajK, JbjK, JcjK) for random elements
aj , bj , cj ∈ Fpoints satisfying aj · bj = cj for j ∈ [t] and include them to the
parties’ inputs (each party getting its corresponding share from JajK, JbjK and
JcjK).

The MPC protocol runs as follows:

1. The parties sample t random points r1, . . . , rt of Fpoints.

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 13

2. The parties locally compute JxK from JxAK using Equation (1).

3. The parties locally compute JS(rj)K, JQ(rj)K and J(F ·P)(rj)K for all j ∈ [t].
Let us remark that JS(rj)K can be computed from JxK by the parties without
any interaction thanks to the linearity of Lagrange interpolation formula:

JS(rj)K =
∑
i∈[m]

JxiK
∏

`∈[m], 6̀=i

rj − γ`
γi − γ`

.

On the other hand J(F · P)(rj)K is computed as F (rj) · JP (rj)K since F is
publicly known.

4. For every j ∈ [t], the parties run an MPC verification of the multiplication
triple

(
JS(rj)K, JQ(rj)K, J(F ·P)(rj)K

)
by sacrificing the triple (JajK, JbjK, JcjK):

– The parties sample a random εj ∈ Fpoints.
– The parties locally set

JαjK = εj · JQ(rj)K + JajK and JβjK = JS(rj)K + JbjK.

– The parties broadcast JαjK and JβjK to obtain αj and βj .
– The parties locally set

JvjK = εj · J(F · P)(rj)K− JcjK + αj · JbjK + βj · JajK− αj · βj .

– The parties broadcast JvjK to obtain vj .

5. The parties output Accept if v = 0 and Reject otherwise.

Note that we do not need to specify how the random values rj ’s and εj ’s are
sampled by the parties since they will be provided as challenges from the verifier
while turning to the zero-knowledge setting.

The above MPC protocol computes a non-deterministic function f which
takes x, Q and P (and t multiplication triples) as input and which outputs
Accept or Reject. The randomness of this function comes from the random
evaluations points r1, . . . , rt and from the random challenges ε1, . . . , εt used by
the product checking protocol. Whenever x indeed satisfies wt(x) ≤ w and the
polynomials P and Q are genuinely computed as described above, the protocol
outputs Accept with probability one. Whenever the protocol input is not of
this form, the protocol shall output Reject except with a small false positive
probability p. In other words, the output of the above protocol follows the dis-
tribution depicted in Table 1 where a good witness here means an x of weight
at most w and polynomials P and Q which are correctly built.

Let us make explicit the false positive probability p. We shall denote ∆ :=
|Fpoints|. Whenever the protocol input is not a good witness, i.e. wt(x) > w, P
or Q are not correctly built, we have Q · S 6= F · P . In the above protocol, both
sides of the relation are evaluated in t random points. The probability to have
the equality for i evaluation points among the t points is at most

max`≤m+w−1

{(
`
i

)(
∆−`
t−i
)}(

∆
t

)

14 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

since Q ·S−F ·P is a polynomial of degree at most m+w− 1. This holds from
a simple extension of the Schwartz-Zippel Lemma that we provide in the full
version [FJR22]. When this event occurs, the probability to obtain Accept as
output is (

1

∆

)t−i
,

which corresponds to the probability to get the t− i false positives in the verifi-
cation of multiplication triples (for the t − i remaining evaluation points rj for
which Q(rj) · S(rj) 6= F (rj) · P (rj)). Thus, the global false positive probability
p satisfies

p ≤
t∑
i=0

max`≤m+w−1

{(
`
i

)(
∆−`
t−i
)}(

∆
t

) (
1

∆

)t−i
. (2)

3.2 General case (any d)

Let us now assume that (H, y) is an instance of a d-split syndrome decoding
problem for some d ≥ 1. We can easily adapt our protocol in that case. Instead of
having a unique polynomial Q of degree w, we will have d polynomials Q1, . . . , Qd
of degree exactly w/d to prove the weight bound wt(xj) ≤ w/d for each chunk
xj of the SD solution. We then have d polynomials Sj (of degree m/d− 1) and
d polynomials Pj (of degree w/d− 1) satisfying the d relations Qj · Sj = F · Pj
with F :=

∏m/d
j=1 (X − γj). To prove those d relations we evaluate each of them

on t random points r1, . . . , rt. We stress that the same t random points can be
used for each chunk, i.e. for every j ∈ [d].

A malicious prover might try to cheat on a single relation (i.e. on a single
chunk of the SD solution), in such a way that there exists j0 ∈ [d] with{

Qj0 · Sj0 6= F · Pj0 ,
∀j 6= j0, Qj · Sj = F · Pj .

So for a given point r, we use the dot-product checking of [KZ21] (described
in Section 2.5) to check all the equalities Qj(r) · Sj(r)=F (r) · Pj(r) at once.
This saves communication without impacting the soundness error compared to
independent checks of the d relations.

Whenever the input x, {Pj}, {Qj} is not a good witness (i.e. whenever one xj
has a weight greater than w/d or one polynomial Pj or Qj is not correctly built),
at least one of the relations Qj ·Sj = F ·Pj is not verified. Since Qj ·Sj−F ·Pj is a
polynomial of degree at most (m+w)/d−1, the global false positive probability
for the d-split variant becomes

p ≤
t∑
i=0

max`≤(m+w)/d−1

{(
`
i

)(
∆−`)
t−i
)}(

∆
t

) (
1

∆

)t−i
(3)

with ∆ := |Fpoints|. (This upper bound is equivalent to (2) where the max degree
m+ w − 1 is replaced by (m+ w)/d− 1).

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 15

The constraint on the size of Fpoly now becomes

|Fpoly| ≥
m

d

since we only need w/d points for the interpolation of the polynomials S1, . . . Sd.
Thus using the d-split version allows us to use smaller fields for Fpoly and Fpoints.

Let us note that in practice the new communication is not smaller than
before, but rather equivalent or higher, since we need to use bigger syndrome
decoding instances to compensate the security loss of the d-split version. The
main benefit to introduce the d-split version is to work on polynomials of smaller
degree and/or on specific fields which provides better performance trade-offs (see
Section 4.5).

3.3 Description of the Protocol

We now give the formal description of our zero-knowledge protocol (general case)
in Protocol 1. For the sake of clarity in the protocol description, we denote Q the
tuple of polynomials (Q1, . . . , Qd). Same for the polynomials P and S. The ad-
ditions, substractions and polynomial evaluations of these tuples are component-
wise defined. For example, for a point r ∈ Fpoints,Q(r) means (Q1(r), . . . , Qd(r)).
We also use this bold notation for aj , bj , αj , βj and εj which shall represent vec-

tors of Fdpoints. Let us recall that ◦ denotes the component-wise multiplication. In

the scope of this protocol, the polynomial F is defined as F (X) :=
∏m/d
i=1 (X−γi)

with Fpoly = {γ1, γ2, . . .}.

3.4 Security Proofs

The following theorems state the completeness, zero-knowledge and soundness
of Protocol 1. The proofs of Theorems 3 and 4 are provided in the full version
[FJR22].

Theorem 2 (Completeness). Protocol 1 is perfectly complete, i.e. a prover
P who knows a solution x to the syndrome decoding instance (H, y) and who
follows the steps of the protocol always succeeds in convincing the verifier V.

Proof. For any sampling of the random coins of P and V, if the computation
described in Protocol 1 is genuinely performed then all the checks of V pass. �

Theorem 3 (Honest-Verifier Zero-Knowledge). Let the PRG used in Pro-
tocol 1 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding.
There exists an efficient simulator S which, given random challenge i∗ outputs
a transcript which is (t, εPRG + εCom)-indistinguishable from a real transcript of
Protocol 1.

Theorem 4 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (H, y), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

16 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

Inputs: Both parties have H = (H′|Im−k) ∈ F(m−k)×m
SD and y ∈ Fm−kSD , the prover also holds

x := (x1 | x2 | . . . | xd) ∈ FmSD such that y = Hx and wt(xj) ≤ w for j ∈ [d].

Round 1: The prover computes the proof witness: for all chunk j ∈ [d],

1. Choose a set Ej ⊂ [md] s.t. |Ej | = w
d and {` : (xj)` 6= 0} ⊂ Ej .

2. Compute Qj(X) =
∏
`∈Ej

(X − γ`) ∈ Fpoly[X].

3. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. deg Sj ≤ m
d − 1 and ∀` ∈ [md], Sj(γ`) = (xj)`.

4. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Then, the prover prepares the inputs for the multi-party computation as follows:

1. Sample a root seed: seed
$←− {0, 1}λ.

2. Compute parties’ seeds and commitment randomness (seedi, ρi)i∈[N] with TreePRG(seed).

3. For each party i ∈ {1, . . . , N},
– JajKi, JbjKi ← PRG(seedi), for each j ∈ [t]

– If i 6= N ,

• {JcjKi}j∈[t], JxAKi, JQKi, JP Ki ← PRG(seedi)

• statei = seedi
– Else,

• JxAKN = xA −
∑
` 6=N JxAK`

• JQKN = Q−
∑
` 6=N JQK`.

• JP KN = P −
∑
` 6=N JP K`.

• JcjKN = 〈aj , bj〉 −
∑
` 6=N JcjK`, for each j ∈ [t]

• aux = (JxAKN , JQKN , JP KN , {JcjKN}j∈[t])
• stateN = seedN || aux

– Commit the party’s state: comi = Com(statei; ρi).

The prover builds h = Hash(com1, . . . , comN) and sends it to the verifier.

Round 2: The verifier uniformly samples, for each j ∈ [t], an evaluation point rj ← Fpoints and a

vector εj ← Fdpoints, and sends them to the prover.

Round 3: The prover simulates the MPC protocol:

1. The parties locally set JxBK = y −H′JxAK.
2. The parties locally compute JSK by interpolation using JxK := (JxAK | JxBK).
3. Then for all j ∈ [t],

– The parties locally compute JS(rj)K, JQ(rj)K and JP (rj)K.
– They locally set JαjK = εj ◦ JQ(rj)K + JajK.
– They locally set JβjK = JS(rj)K + JbjK.
– The parties open JαjK and JβjK to get αj and βj .

– The parties locally set

JvjK = −JcjK + 〈εj , F (rj) · JP (rj)K〉+ 〈αj , JbjK〉+ 〈βj , JajK〉 − 〈αj ,βj〉 .

The prover builds h′ = Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK) and sends it to the verifier.

Round 4: The verifier uniformly samples i∗ ← [N] and sends it to the prover.

Round 5: The prover sends (statei, ρi)i6=i∗ , comi∗ , {JαjKi∗}j∈[t] and {JβjKi∗}j∈[t].

Verification: The verifier accepts iff all the following checks succeed:

1. For each i 6= i∗, she computes all the commitments to the parties’ states: comi = Com(statei; ρi).

Then she checks that h
?
= Hash(com1, . . . , comN).

2. Using {statei}i6=i∗ , she simulates all the parties except for i∗. From the recomputed shares, she

checks that h′
?
= Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK) where JvjKi∗ := −

∑
i6=i∗JvjKi.

Protocol 1: Zero-knowledge proof for syndrome decoding.

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 17

where the soundness error ε is equal to

p+
1

N
− p · 1

N

with p defined in Equation (3). Then, there exists an efficient probabilistic ex-
traction algorithm E that, given rewindable black-box access to P̃, produces with
either a witness x such that y = Hx and wt(x) ≤ w, or a commitment collision,
by making an average number of calls to P̃ which is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
.

By adapting the parameters t and ∆, we can produce a protocol with sound-
ness error arbitrarily close to 1/N .

3.5 Performance

In the following analysis, we exclude the challenges from the communication cost
since they are of very moderate impact (and do not count whenever making the
protocol non-interactive). The communication then consists into

– Com := h,
– Res1 := h′ and
– Res2 :=

(
(statei, ρi)i 6=i∗ , comi∗ , {JαjKi∗}j∈[t], {JβjKi∗}j∈[t]

)
.

For i 6= N , statei simply consists in a seed of λ bits. For i = N , statei contains

– a seed of λ bits,
– the share JxAKN of a plaintext,
– the shares JQKN and JP KN which are 2 · d polynomials of degree w/d− 1,
– and the shares {JcjKN}j∈[t] of t points of Fpoints.

Let us recall that seeds are sampled using a tree PRG. Instead of sending the N−
1 seeds and commitment randomness of (statei, ρi)i 6=i∗ , we can instead send the
sibling path from (statei∗ , ρi∗) to the tree root, it costs at most λ·log2(N) bits (we
need to reveal log2(N) nodes of the tree). Moreover comi∗ is a commitment of 2λ
bits, and {JαjKi∗}j∈[t], {JβjKi∗}j∈[t] are elements of Fpoints. The communication
cost (in bits) of the protocol is then

Size = 4λ+ k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+ (2 · w) · log2 |Fpoly|︸ ︷︷ ︸
JQKN ,JP KN

+ (2 · d+ 1) · t · log2 |Fpoints|︸ ︷︷ ︸
{JαjKi∗ ,JβjKi∗ ,JcjKN}j∈[t]

+λ · log2(N)︸ ︷︷ ︸
(seedi)i6=i∗

+ 2λ︸︷︷︸
comi∗

As usual, to achieve a targeted soundness error 2−λ, we can perform τ parallel
repetitions of the protocol such that ετ ≤ 2−λ. And instead of sending τ values

18 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

for h and h′, we can merge them together to send a single h and a single h′. The
communication cost (in bits) of the protocol with τ repetitions is

Size = 4λ+ τ ·
(
k · log2 |FSD|+ (2 · w) · log2 |Fpoly|

+ (2 · d+ 1) · t · log2 |Fpoints|+ λ · log2(N) + 2λ
)

and the obtained soundness error is(
p+

1

n
− p · 1

n

)τ
.

3.6 Comparison

We compare our new protocol with existing zero-knowledge protocols for syn-
drome decoding (or equivalently for message decoding). We compare these pro-
tocols on two SD instances of 128-bit security:

– Instance 1 [FJR21]: Syndrome Decoding on F2 with parameters

(m, k,w) = (1280, 640, 132);

– Instance 2 [CVE11]: Syndrome Decoding on F28 with parameters

(m, k,w) = (208, 104, 78).

The comparison for a soundness error of 2−128 is given in the Table 2. For our
protocol, we provide two instantiations for each syndrome decoding instance to
give the reader an idea of the obtained performance while changing the number
of parties. The first instantiation called “short” corresponds to an instantiation
which provides small communication cost. The second one called “fast” corre-
sponds to an instantiation with faster computation but higher communication
cost. The used parameters (N, τ, |Fpoly|, |Fpoints|, t) for our scheme are

– Instance 1:

Short: (256, 16, 211, 222, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 211, 222, 1) ⇒ ετ = 2−129.6

– Instance 2:

Short: (256, 16, 28, 224, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 28, 224, 1) ⇒ ετ = 2−130.0

We can remark that all the previous protocols prove an equality for the Ham-
ming weight by relying on isometries (i.e. permutations if FSD = F2). On our
side, we only prove the inequality wt(w) ≤ w. We stress that both versions
(equality or inequality) can be merely equivalent for some SD parameters. In-
deed, if w is chosen sufficiently below the Gilbert-Varshamov bound and if we
know there exists an SD solution x of Hamming weight w, then proving the
knowledge of a solution x′ with wt(x′) ≤ w amounts to proving the knowledge
of x with overwhelming probability.

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 19

Name Protocol Year Instance 1 Instance 2 Proved statement

[Ste94] 1993 37.4 KB 46.1 KB y = Hx, wt(x) = w
[Vér96] 1997 31.7 KB 38.7 KB message decoding

[CVE11] 2010 - 37.4 KB y = Hx, wt(x) = w

[AGS11] 2011 24.8 KB - y = Hx, wt(x) = w

[GPS22] (short) 2021 - 15.2 KB y = Hx, wt(x) = w
[GPS22] (fast) 2021 - 19.9 KB y = Hx, wt(x) = w

[FJR21] (short) 2021 12.9 KB 15.6 KB y = Hx, wt(x) = w
[FJR21] (fast) 2021 20.0 KB 24.7 KB y = Hx, wt(x) = w

Our scheme (short) 2022 9.7 KB 6.9 KB y = Hx, wt(x) ≤ w
Our scheme (fast) 2022 14.4 KB 9.7 KB y = Hx, wt(x) ≤ w

Table 2. Comparison of our protocol with state-of-the-art zero-knowledge protocols
for syndrome decoding. The formulae for the communication costs of the different
protocols and the used parameters are detailed in the full version [FJR22].

4 The Signature Scheme

A signature scheme is a triplet of PPT algorithms (KeyGen,Sign,Verif). On input
1λ for security level λ, KeyGen outputs a pair (pk, sk) where pk ∈ {0, 1}poly(λ)

is a public key and sk ∈ {0, 1}poly(λ) is a private key (a.k.a. secret key). On
input a secret key sk and a message m ∈ {0, 1}∗, Sign produces a signature
s ∈ {0, 1}poly(λ). Verif is a deterministic algorithm which, on input a public
key pk, a signature s and a message m, outputs 1 if s is a valid signature
for m under pk (meaning that it is a possible output s ← Sign(sk,m) for the
corresponding sk) and it outputs 0 otherwise. The standard security property
for a signature scheme is the existential unforgeability against chosen message
attacks: an adversary A given pk and a oracle access to Sign(sk, ·) should not
be able to produce a pair (s,m) satisfying Verif(pk, s,m) = 1 (for a message m
which was not queried to the signing oracle).

In this section, we show how to turn our 5-round HVZK protocol into a signa-
ture scheme using the Fiat-Shamir transform [FS87,AABN02]. After explaining
the transformation, we give the description of the signature scheme and then
provide a security proof in the random oracle model (ROM).

4.1 Transformation into a Non-Interactive Scheme

To transform our protocol into a non-interactive scheme, we apply the multi-
round variant of the Fiat-Shamir transform [FS87] (see e.g. [EDV+12,CHR+16]).
Concretely, we compute the challenge Ch1 and Ch2 as

h1 = Hash1(m, salt, h)
Ch1 ← PRG(h1)

and
h2 = Hash2(m, salt, h, h′)
Ch2 ← PRG(h2)

20 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

where m is the input message, where Hash1 and Hash2 are some hash functions
(that shall be modeled as random oracles) and where h and h′ are the Round
1 and Round 3 hash commitments merged for the τ repetitions. We introduce
a value salt called salt which is sampled from {0, 1}2λ at the beginning of the
signing process. This value is then used for each commitment to the parties’
states. Without it, the security of the signature would be at most 2λ/2 because
of the seed collisions between several signatures. Moreover, since the signature
security relies on the random oracle model, we can safely replace the commitment
scheme Com of the Protocol 1 by a single hash function Hash0.

The security of the obtained scheme is lower than the soundness error of
Protocol 1. Indeed, in [KZ20a], Kales and Zaverucha describe a forgery attack
against signature schemes obtained by applying the Fiat-Shamir transform to
5-round protocols. Adapting this attack to our context yields a forgery cost of

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}
(4)

with p defined in Equation (3). This is substantially lower than the target forgery
cost of 1/ε, for ε being the soundness error of Protocol 1 (see Theorem 4). We
therefore need to adapt the parameters to fill this gap.

4.2 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syn-
drome decoding instance (H, y) of the syndrome decoding problem with solution
x (i.e. y = Hx) with security parameter λ. In order to make the key pair com-
pact, the matrix H is pseudorandomly generated from a λ-bit seed. Specifically,
a call to the KeyGen algorithm outputs a pair (pk, sk) :=

(
(seedH , y),mseed

)
generated as follows:

1. mseed← {0, 1}λ
2. (seedH , x)← PRG(mseed) where x is sampled in {x ∈ Fm2 | wt(x) = w}
3. H ← PRG(seedH)
4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the
seeds in the algorithms below and assume pk = (H, y) and sk = (H, y, x).

Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the algorithm
Sign proceeds as described in Figure 1. And given a public key pk = (H, y), a
signature σ and a message m ∈ {0, 1}∗, the algorithm Verif proceeds as described
in Figure 2. For the sake of clarity, as for the protocol description in Section 3.3,
we use the bold notation to represent a tuple of d polynomials or of d points.

4.3 Signature Properties

We now state the security of our signature scheme in the following theorem. The
proof is provided in the full version [FJR22].

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 21

Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.

Sample a random salt salt← {0, 1}2λ.

Phase 1.0: Building of the proof witness. For all chunk j ∈ [d],

1. Compute Qj(X) =
∏
`∈Ej

(X − γ`) ∈ Fpoly[X] where Ej = {` : (xj)` 6= 0}.
2. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. deg Sj ≤ m

d − 1 and ∀` ∈ [md], Sj(γ`) = (xj)`.

3. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Phase 1.1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [τ],

1. Sample a root seed: seed[e]
$←− {0, 1}λ.

2. Compute parties’ seeds seed
[e]
1 , . . . , seed

[e]
N with TreePRG(salt, seed).

3. For each party i ∈ {1, . . . , N},
– Ja[e]

j Ki, Jb
[e]
j Ki ← PRG(salt, seed

[e]
i), for each j ∈ [t]

– If i 6= N ,

• {Jc[e]j Ki}j∈[t], Jx
[e]
A Ki, JQ[e]Ki, JP [e]Ki ← PRG(salt, seed

[e]
i)

• state
[e]
i = seed

[e]
i

– Else,

• Jx[e]
A KN = xA −

∑
j 6=N Jx[e]

A Kj
• JQ[e]KN = Q−

∑
` 6=N JQ[e]K`.

• JP [e]KN = P −
∑
` 6=N JP [e]K`.

• Jc[e]j KN = 〈a[e]
j , b

[e]
j 〉 −

∑
` 6=N Jc[e]j K`, for each j ∈ [t]

• aux[e] = (Jx[e]
A KN , JQ[e]KN , JP [e]KN , {Jc[e]j KN}j∈[t])

• state
[e]
N = seed

[e]
N || aux

[e]

– Compute com
[e]
i = Hash0(salt, e, i, state

[e]
i).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N).

2. Extend hash {r[e]j , ε
[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ Fdpoints.

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [τ],

1. The parties locally set Jx[e]
B K = y −H′Jx[e]

A K.
2. Then for all j ∈ [t],

– The parties locally compute JS[e]K by interpolation using Jx[e]K := (Jx[e]
A K | Jx[e]

B K).
– They locally compute JS[e](r

[e]
j)K, JQ[e](r

[e]
j)K and JP [e](r

[e]
j)K.

– They locally set Jα[e]
j K = ε

[e]
j ◦ JQ[e](r

[e]
j)K + Ja[e]

j K.

– They locally set Jβ[e]
j K = JS[e](r

[e]
j)K + Jb[e]j K.

– The parties open Jα[e]
j K and Jβ[e]

j K to get α
[e]
j and β

[e]
j .

– The parties locally set

Jv[e]j K = −Jc[e]j K + 〈ε[e]j , F (r
[e]
j) · JP [e]

(r
[e]
j)K〉+ 〈α[e]

j , Jb[e]j K〉+ 〈β[e]
j , Ja[e]

j K〉 − 〈α[e]
j ,β

[e]
j 〉 .

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(m, salt, h1, {Jα[e]
j K, Jβ[e]

j K, Jv[e]j K}j∈[t],e∈[τ]).
2. Expand hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N].

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(

(state
[e]
i)

i6=i∗[e] | com
[e]

i∗[e]
| {Jα[e]

j K
i∗[e]}j∈[t] | {Jβ

[e]
j K

i∗[e]}j∈[t]
)
e∈[τ]

.

Fig. 1. Code-based signature scheme - Signing algorithm.

22 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

Inputs: A public key pk = (H, y), a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 |
(

(state
[e]
i)

i6=i∗[e] | com
[e]

i∗[e]
| {Jα[e]

jKi∗[e]}j∈[t] | {Jβ
[e]
jKi∗[e]}j∈[t]

)
e∈[τ]

.

2. Extend hash {r[e]j , ε
[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ Fdpoints.

3. Extend hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N].

4. For each iteration e ∈ [τ],

– For each i 6= i∗[e], computes com
[e]
i = Hash0(salt, e, i, state

[e]
i).

– Using {state[e]i }i6=i∗[e] , simulate all the parties except for i∗[e] as in the Phase 3 of the

signing algorithm and get Jα1K, . . . , JαtK, Jβ1K, . . . , JβtK, JvK for all parties except for i∗[e].

– Compute Jv[e]j K
i∗[e] := −

∑
i6=i∗[e]Jv

[e]
j Ki for all j ∈ [t].

5. Compute h′1 = Hash1(m, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N).

6. Compute h′2 = Hash2(m, {Jα[e]
j K, Jβ[e]

j K, Jv[e]j K}j∈[t],e∈[τ]).

7. Output Accept iff h′1
?
= h1 and h′2

?
= h2.

Fig. 2. Code-based signature scheme - Verification algorithm.

Theorem 5. Suppose the PRG used is (t, εPRG)-secure and any adversary run-
ning in time t has at most an advantage εSD against the underlying d-split
syndrome decoding problem. Model Hash0, Hash1 and Hash2 as random oracles
where Hash0, Hash1 and Hash2 have 2λ-bit output length. Then chosen-message
adversary against the signature scheme depicted in Figure 1, running in time
t, making qs signing queries, and making q0, q1, q2 queries, respectively, to the
random oracles, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τNqs)
2

2 · 22λ
+
qs(qs + q0 + q1 + q2)

22λ
+qs ·τ ·εPRG+εSD+q2 ·ετ ,

where ε = p+ 1
N − p ·

1
N and p defined in Equation (3).

4.4 Parameters

In what follows, we propose three parameter sets which achieve a security level
of 128 bits for the signature:

– the first one shall rely on the hardness to solve the SD problem on F2;

– the second one shall also rely on the hardness to solve the SD problem on
F2, but we shall use a d-split version to get polynomials over a chosen field,
concretely F256;

– the last one shall rely on the hardness to solve the SD problem on F256.

Choice of the SD parameters. Let us first describe how we estimate the security
level of a syndrome decoding instance for a random linear code over F2. The
best practical attack for our parameters is the algorithm of May, Meurer and

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 23

Thomae [MMT11]. As argued in [FJR21], we can lower bound the cost of this
attack by only considering the cost of its topmost recursion step:(

m
w

)(
k+`
p

)(
m−k−`
w−p

) · (L+
L2

2`−p

)
with L :=

(
k+`
p/2

)
2p

.

As usual in ISD algorithm we need to optimize for the parameters ` (a number
of rows) and p (a partial Hamming weight). Since we only account for the cost of
the topmost level in the algorithm, this yields a slightly conservative estimate for
the security level. We use this estimate to choose the parameters of our scheme.

Given these considerations, we suggest the following concrete parameters:

– Variant 1: standard binary syndrome decoding problem. We propose the
parameters

(q,m, k, w, d) = (2, 1280, 640, 132, 1)

which achieve a security level of 128 bits according to the above formula.

– Variant 2: d-split binary syndrome syndrome decoding problem, where d is
taken to have m/d ≤ 256 so that Fpoly = F256. We propose the parameters

(q,m, k, w, d) = (2, 1536, 888, 120, 6)

which achieve a security of 129 bits. Indeed, the standard SD problem with
the same parameters (but d = 1) has a security of 145 bits and we know,
thanks to the Theorem 2, that there is a security loss of at most 16 bits
while switching to d = 6. Let us stress that this choice is conservative since
the current state of the art does not contain attacks filling the gap of this
reduction. Our aim here was to build a practical signature scheme with
conservative security, but searching for more aggressive parameters for the
d-split syndrome decoding problem would be an interesting direction for
future research.

– Variant 3: syndrome decoding instance defined over F256. The cryptanalysis
of the syndrome decoding problem on a field which is larger than F2 has
been less studied. Previous articles [CVE11,GPS22] propose parameters sets
for syndrome decoding instances over F28 where the code length m is be-
tween 200 and 210. In our case, we choose m = 256 in such a way that the
polynomial degree is equal to the field size. Besides being more conservative,
this choice has the advantage of easing the use of a Fast Fourier Transform.
We propose the following parameters4 for this variant:

(q,m, k, w, d) = (256, 256, 128, 80, 1) .

Choice of the MPC parameters. For each variant, we suggest in Table 3 a pa-
rameter set for the MPC protocol.

4 More cryptanalysis of the SD problem over F256 would be welcome to get more
confidence in the choice of the parameters. Such research is out of the scope of
present article.

24 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

Scheme
SD Parameters MPC Parameters

q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

Table 3. SD and MPC parameters.

To have a short signature, we take the smallest possible field Fpoly since a
signature transcript includes polynomials on that field. As explained in Section 3,
Fpoly must be a field extension of FSD which verifies the relation |Fpoly| ≥ m/d.
Then, it remains to choose |Fpoints| and t. These parameters are chosen to make
the false positive probability p is negligible compared to 1/N such that the
optimal forgery strategy of an attacker is to take τ1 = 1 in the Equation (4). As
a result, we just need to increase the number of iterations τ by one compared to
the interactive protocol.

4.5 Implementation and Performances

For each repetition in the computation of each party, d polynomial interpolations
are involved. Indeed, from JxK, the parties must compute

JS`K(X) =

m/d∑
i=1

Jxm
d `+i

K ·
m/d∏

j=1,j 6=i

X − wj
wi − wj

for all ` ∈ [d]. Then, the parties must evaluate JS`K in t random evaluation
points sampled by the verifier, for all ` ∈ [d]. The natural way to implement that
is to compute the coefficients of all the polynomials {JS`K}` from JxK, then to
evaluate these polynomials t times. However this implies that the signer must
realize τ ·N · d interpolations. Instead, the signer can compute the vector u(r)
defined as

u(r) =

 m/d∏
j=1,j 6=i

r − wj
wi − wj

1≤i≤md

for each evaluation point r, and then use these vectors in the computation of all
the parties as

JS`(r)K = 〈Jx`K, u(r)〉

where Jx`K is the `th chunk of JxK. By proceeding this way, the number of (trans-
posed) interpolations done by the signer is of τ · t.

To reduce the computational cost of the interpolations, we can make use
of a Fast Fourier Transform (FFT). We are working on field extensions of
F2, so we can use the Additive FFT independently introduced by Wang-Zhu

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 25

in 1988 [WZ88] and by Cantor in 1989 [Can89], which was further improved
in [vzGG03,GM10]. Although such additive FFT exists for any extension of F2,

the algorithms are simpler for a field of size 2(2i) for some i, which is why we
define Fpoly as F256. On such a field F, we indeed have an efficient additive FFT
using 1

2 |F| log2 |F| multiplications to evaluate a polynomial (of degree lower than
|F|) in |F| points.

We implemented the signature scheme in C. In our implementation, the
pseudo-randomness is generated using AES in counter mode and the hash func-
tion is instantiated with SHAKE. We benchmarked our scheme on a 3.8 GHz
Intel Core i7 CPU with support of AVX2 and AES instructions. All the reported
timings were measured on this CPU while disabling Intel Turbo Boost.

Remark 2. Another motivation for using Fpoly = F256 is that some Intel proces-
sors have dedicated instructions for F256 arithmetic. We therefore expect sub-
stantial speed-ups for the instances of our signature scheme using Fpoly = F256

on these processors. Optimizing and benchmarking such implementations is left
for future research.

We instantiate two trade-offs per variant: the first one lowering communica-
tion cost to produce short signatures, and the second one lowering computational
cost to get a fast signature computation. We obtain the parameters and sizes
described in Table 4. We provide the measured computational performances of
our signature implementation in Table 5.

λ Scheme Aim
Parameters |pk| |sk| Signature
N τ |sgn| (max) |sgn| (avg, std)

128
Variant 1

Fast 32 27 96 16 16 422 16 006, 446
128 Short 256 17 96 16 11 193 11 160, 127

128
Variant 2

Fast 32 27 97 16 17 866 17 406, 494
128 Short 256 17 97 16 12 102 12 066, 141

128
Variant 3

Fast 32 27 144 16 12 115 11 835, 302
128 Short 256 17 144 16 8 481 8 459, 86

Table 4. Parameters (N, τ) with the achieved communication costs (in bytes).

Future investigations. We tried to optimize the implementation using some al-
gorithmetic tricks, but we did not yet investigate the possible software opti-
mizations like vectorialization or bitslicing. Although the variants 1 and 2 are
more conservative because they rely on the hardness of the binary syndrome
decoding problem, variant 3 is more promising in terms of signature size and
computation time. While we have investigated parameter sets where FSD is a
field extension of F2, more cryptanalysis for the SD problem on those fields as
well as on non-binary fields would be welcome. An interesting idea would be to

26 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

λ Variant Aim Keygen Sign Verify

128
Variant 1

Fast
n/a†

128 Short

128
Variant 2

Fast
0.03 ms

114 162 cycles
13.4 ms

52 463 114 cycles
12.7 ms

50 306 845 cycles

128 Short
0.03 ms

113 852 cycles
64.2 ms

251 099 099 cycles
60.7 ms

243 055 474 cycles

128
Variant 3

Fast
0.01 ms

49 181 cycles
6.4 ms

25 253 580 cycles
5.9 ms

23 816 143 cycles

128 Short
0.01 ms

49 057 cycles
29.5 ms

114 226 505 cycles
27.1 ms

108 541 768 cycles

Table 5. Benchmarks of our signature implementation. Timings are averaged over
10 000 measurements. The CPU clock cycles have been measured using SUPERCOP
(https://bench.cr.yp.to/supercop.html).
†We only have a proof of concept implementation with irrelevant timings.

instantiate our scheme with a prime field FSD for which the Number-Theoretic
Transform (NTT) is defined. If FSD is large enough, we could then take the same
field for Fpoly than FSD and we would have fast polynomial interpolations and
simpler multiplication operations.

5 Comparison

In this section, we compare our scheme to different code-based and post-quantum
signature schemes from the literature.

5.1 Comparison with Other Code-Based Signature Schemes

In the state of the art, there exist two approaches to build signatures. On one
hand, there is the hash-and-sign paradigm which relies on the existence of a
(code-based) trapdoor permutation. Wave [DST19] is a code-based signature
scheme in this paradigm. Such schemes are often more vulnerable to structural
attacks. On the other hand, further signature schemes are constructed by apply-
ing the Fiat-Shamir transform to (zero-knowledge) identification schemes, which
can rely on weaker assumptions (and typically the SD for random linear codes).
Historically such schemes, like the famous Stern protocol, give rise to large signa-
tures because of the high soundness error of the underlying identification scheme
(2/3 or 1/2). To avoid this issue, a solution consists in relying on different code-
based problems. For instance, LESS is a recent scheme which security relies on
the hardness of the Linear Code Equivalence problem [BMPS20,BBPS21]. An-
other direction is to find a way to adapt the Schnorr-Lyubashevsky approach
to code-based cryptography. Durandal is a recent scheme following this ap-
proach [ABG+19]. More recently, some works [GPS22,FJR21,BGKM22] have
obtained better soundness by relying on the MPC-in-the-Head principle. The

https://bench.cr.yp.to/supercop.html

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 27

proposed schemes achieve small signature sizes at the cost of slower compu-
tation. Depending on the setting, they can produce signatures with different
trade-offs between the signature size and the computational cost. The current
work follows this approach while achieving better trade-offs than any of these
previous works.

Scheme Name Year |sgn| |pk| tsgn tverif Assumption

Wave 2019 2.07 K 3.2 M 300 -
SD over F3 (large weight)

(U,U + V)-codes indisting.

Durandal - I 2018 3.97 K 14.9 K 4 5 Rank SD over F2m

Durandal - II 2018 4.90 K 18.2 K 5 6 Rank SD over F2m

LESS-FM - I 2020 9.77 K 15.2 K - - Linear Code Equivalence
LESS-FM - II 2020 206 K 5.25 K - - Perm. Code Equivalence
LESS-FM - III 2020 11.57 K 10.39 K - - Perm. Code Equivalence

[GPS22]-256 2021 24.0 K 0.11 K - - SD over F256

[GPS22]-1024 2021 19.8 K 0.12 K - - SD over F1024

[FJR21] (fast) 2021 22.6 K 0.09 K 13 12 SD over F2

[FJR21] (short) 2021 16.0 K 0.09 K 62 57 SD over F2

[BGKM22] - Sig1 2022 23.7 K 0.1 K - - SD over F2

[BGKM22] - Sig2 2022 20.6 K 0.2 K - - (QC)SD over F2

Our scheme - Var1f 2022 15.6 K 0.09 K - - SD over F2

Our scheme - Var1s 2022 10.9 K 0.09 K - - SD over F2

Our scheme - Var2f 2022 17.0 K 0.09 K 13 13 SD over F2

Our scheme - Var2s 2022 11.8 K 0.09 K 64 61 SD over F2

Our scheme - Var3f 2022 11.5 K 0.14 K 6 6 SD over F256

Our scheme - Var3s 2022 8.26 K 0.14 K 30 27 SD over F256

Table 6. Comparison of our scheme with signatures from the literature (128-bit se-
curity). The sizes are in bytes and the timings are in milliseconds. Reported timings
are from the original publications: Wave has been benchmarked on a 3.5 Ghz Intel
Xeon E3-1240 v5, Durandal on a 2.8 Ghz Intel Core i5-7440HQ, while [FJR21] and our
scheme on a 3.8 GHz Intel Core i7.

Table 6 compares the performances of our scheme with the current code-
based signature state of the art, for the 128-bit security level.5 We observe that
our scheme outperforms all the existing code-based signatures for the |sgn|+ |pk|
metric. Depending on the parameters, it can even produce signatures such that
|sgn|+ |pk| is below the symbolic cap of 10 KB. Regardless of the key size, Wave
still achieves the shortest signatures. In terms of security, our scheme has the
advantage of relying on the hardness of one of the oldest problems of the code-
based cryptography, namely the syndrome decoding for random linear codes in
Hamming weight metric.

5 We did not include “Sig 3” from [BGKM22] since it is similar to [FJR21] with slight
differences (message decoding setting) which do not improve the scheme.

28 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

5.2 Comparison with other Post-Quantum Signature Schemes

Finally, we compare in Table 7 our construction with other signature schemes
aiming at post-quantum security. First of all, let us note that the lattice-based
signature schemes (such as Dilithium [BDK+21a] and Falcon [FHK+20]) are cur-
rently the most efficient post-quantum signature schemes. They achieve small
signature size and efficient running time. However, the goal of our construction
is to propose a signature scheme based on an alternative problem for the sake of
diversity of security assumptions. All the others schemes have very short public
keys and secret keys (less than 150 bytes for 128-bit security), which is hence not
a point for comparison. Depending on the chosen parameters, our scheme can be
competitive with Picnic3 [KZ20b] and the recently proposed “Picnic4” [KZ21]
which also rely on the MPC-in-the-Head paradigm. Like Picnic4, it can produce
signatures with a size of around 8 KB. However, our scheme is arguably more
conservative in terms of security since Picnic is based on the hardness of invert-
ing LowMC [ARS+15], a cipher with unconventional design choices, while our
scheme is based on the hardness of the syndrome decoding problem on linear
codes, which has a long cryptanalysis history and is believed to be very robust.
Banquet [BdK+21b] is a signature scheme for which the security is based on the
hardness of inverting AES (instead of LowMC), which can also be argued to be
a conservative choice. Our scheme over F2 is competitive with Banquet: slightly
shorter and slightly slower (but the timing could be optimized). On the other
hand, our scheme on F256 clearly outperforms Banquet. Our scheme can also
be competitive with SPHINCS+ [BHK+19] depending on the exact criteria. For
similar signature sizes, our signature computation is significantly faster while
our signature verification is significantly slower than those of SPHINCS+.

Acknowledgements. This work has been supported by the European Union’s
H2020 Programme under grant agreement number ERC-669891.

References

AABN02. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre.
From identification to signatures via the Fiat-Shamir transform: Minimiz-
ing assumptions for security and forward-security. In Lars R. Knudsen, ed-
itor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer,
Heidelberg, April / May 2002.

ABG+19. Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and
Gilles Zémor. Durandal: A rank metric based signature scheme. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 728–758. Springer, Heidelberg, May 2019.

ACBH13. Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Rachid El
Bansarkhani, and Gerhard Hoffmann. Code-Based Identification and Sig-
nature Schemes in Software. In Alfredo Cuzzocrea, Christian Kittl, Dim-
itris E. Simos, Edgar R. Weippl, and Lida Xu, editors, Security Engineering

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 29

Scheme Name |sgn| |pk| tsgn tverif

Dilithium2 2.4 K 1.3 K 0.065 0.024
Falcon-512 0.65 K 0.88 K 0.168 0.036

SPHINCS+-128f 16.7 K 0.03 K 14 1.7
SPHINCS+-128s 7.7 K 0.03 K 239 0.7

Picnic3 12.3 K 0.03 K 5.2 4.0
Picnic4 7.8 K 0.03 K ≈ 20 ≈ 20

Banquet (fast) 19.3 K 0.03 K 6 5
Banquet (short) 13.0 K 0.03 K 44 40

Our scheme - Var1f 15.6 K 0.09 K - -
Our scheme - Var1s 10.9 K 0.09 K - -

Our scheme - Var2f 17.0 K 0.09 K 13 13
Our scheme - Var2s 11.8 K 0.09 K 64 61

Our scheme - Var3f 11.5 K 0.14 K 6 6
Our scheme - Var3s 8.3 K 0.14 K 30 27

Table 7. Comparison of our scheme with signatures from the literature. The sizes are
in bytes and the timings are in milliseconds. Reported timings for Falcon have been
benchmarked on a 2.3 Ghz Intel Core i5-8259U in [FHK+20], and timings for Dilithium
and our scheme have been benchmarked on a 3.8 Ghz Intel Core i7. The benchmarks
of the other schemes have been realized on a Intel Xeon W-2133 CPU at 3.60GHz, the
values for SPHINCS+ and Banquet have been extracted from [BdK+21b] while the
values for Picnic3 have been extracted from its original publication [KZ20b].

and Intelligence Informatics - CD-ARES 2013 Workshops: MoCrySEn and
SeCIHD, Regensburg, Germany, September 2-6, 2013. Proceedings, volume
8128 of Lecture Notes in Computer Science, pages 122–136. Springer, 2013.

AFS03. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast provably
secure cryptographic hash function. Cryptology ePrint Archive, Report
2003/230, 2003. https://eprint.iacr.org/2003/230.

AGS11. Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-knowledge
code based identification scheme with reduced communication. In 2011
IEEE Information Theory Workshop, pages 648–652, 2011.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

BBC+19. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. A Finite Regime Analysis of Information Set Decoding
Algorithms. Algorithms, 12(10):209, 2019.

BBPS21. Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo
Santini. LESS-FM: Fine-tuning signatures from the code equivalence prob-
lem. In Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 12th International Workshop, PQCrypto 2021, pages 23–43.
Springer, Heidelberg, 2021.

BDK+21a. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crypstals-dilithium

https://eprint.iacr.org/2003/230

30 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

– algorithm specifications and supporting documentation. Version 3.1
– 8 February 2021, 2021. https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf.

BdK+21b. Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela
Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and fast sig-
natures from AES. In Juan Garay, editor, PKC 2021, Part I, volume
12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
420–432. Springer, Heidelberg, August 1992.

BGKM22. Löıc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu. Code-
based Signatures from New Proofs of Knowledge for the Syndrome Decod-
ing Problem, 2022.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press, November
2019.

BMPS20. Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo
Santini. LESS is more: Code-based signatures without syndromes. In
Abderrahmane Nitaj and Amr M. Youssef, editors, AFRICACRYPT 20,
volume 12174 of LNCS, pages 45–65. Springer, Heidelberg, July 2020.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
495–526. Springer, Heidelberg, May 2020.

Can89. David G. Cantor. On arithmetical algorithms over finite fields. Journal of
Combinatorial Theory, Series A, 50:285–300, 1989.

CDG+20. Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir
Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Xiao Wang, and Greg Zaverucha. The Picnic Sig-
nature Scheme – Design Document. Version 2.2 – 14 April 2020,
2020. https://raw.githubusercontent.com/microsoft/Picnic/master/
spec/design-v2.2.pdf.

CHR+16. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. From 5-pass MQ-based identification to MQ-
based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 135–165. Springer,
Heidelberg, December 2016.

CVE11. Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui.
A zero-knowledge identification scheme based on the q-ary syndrome de-
coding problem. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,
editors, SAC 2010, volume 6544 of LNCS, pages 171–186. Springer, Hei-
delberg, August 2011.

DLO+18. Ivan Damg̊ard, Ji Luo, Sabine Oechsner, Peter Scholl, and Mark Simkin.
Compact zero-knowledge proofs of small Hamming weight. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 530–560. Springer, Heidelberg, March 2018.

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/design-v2.2.pdf
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/design-v2.2.pdf

Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 31

DST19. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave:
A new family of trapdoor one-way preimage sampleable functions based
on codes. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 21–51. Springer,
Heidelberg, December 2019.

EDV+12. Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron, David
Galindo, and Pierre-Louis Cayrel. Extended security arguments for sig-
nature schemes. In Aikaterini Mitrokotsa and Serge Vaudenay, editors,
AFRICACRYPT 12, volume 7374 of LNCS, pages 19–34. Springer, Hei-
delberg, July 2012.

FHK+20. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based
compact signatures over NTRU. Version 1.2 – 1 October 2020, 2020.
https://falcon-sign.info/falcon.pdf.

FJR21. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permu-
tation for syndrome decoding: New zero-knowledge protocol and code-
based signature. Cryptology ePrint Archive, Report 2021/1576, 2021.
https://eprint.iacr.org/2021/1576.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding
in the head: Shorter signatures from zero-knowledge proofs. Cryptology
ePrint Archive, Report 2022/188, 2022. https://eprint.iacr.org/2022/
188.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GG07. Philippe Gaborit and Marc Girault. Lightweight code-based identification
and signature. In IEEE International Symposium on Information Theory,
ISIT 2007, Nice, France, June 24-29, 2007, pages 191–195. IEEE, 2007.

GM10. Shuhong Gao and Todd Mateer. Additive Fast Fourier Transforms Over
Finite Fields. IEEE Transactions on Information Theory, 56(12):6265–
6272, 2010.

GPS22. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practi-
cal code-based signature scheme from zero-knowledge proofs with trusted
setup. Cryptography, 6(1), 2022.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

KZ20a. Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. In Stephan Krenn, Haya
Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 3–22. Springer, Heidelberg, December 2020.

KZ20b. Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic
signature scheme. IACR TCHES, 2020(4):154–188, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8680.

KZ21. Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-
Knowledge Proofs and Post-Quantum Signatures. Preliminary Draft, Oc-
tober 29, 2021, 2021. https://groups.google.com/a/list.nist.gov/g/

pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ.

https://falcon-sign.info/falcon.pdf
https://eprint.iacr.org/2021/1576
https://eprint.iacr.org/2022/188
https://eprint.iacr.org/2022/188
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ

32 Thibauld Feneuil, Antoine Joux, and Matthieu Rivain

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over
arithmetic circuits with malicious adversaries and an honest-majority. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 259–276. ACM Press, October / November
2017.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, Hei-
delberg, December 2011.

Ste94. Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages
13–21. Springer, Heidelberg, August 1994.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Tsuyoshi Takagi, editor, Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
pages 144–161. Springer, Heidelberg, 2016.

Vér96. Pascal Véron. Improved identification schemes based on error-correcting
codes. Appl. Algebra Eng. Commun. Comput., 8(1):57–69, 1996.

vzGG03. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 2003.

WZ88. Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over
finite fields and its VLSI implementation. IEEE Journal on Selected Areas
in Communications, 6(3):572–577, 1988.

	Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs

