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Abstract. It is a long standing open problem to find search to deci-
sion reductions for structured versions of the decoding problem of linear
codes. Such results in the lattice-based setting have been carried out
using number fields: Polynomial–LWE, Ring–LWE, Module–LWE and
so on. We propose a function field version of the LWE problem. This
new framework leads to another point of view on structured codes, e.g.
quasi-cyclic codes, strengthening the connection between lattice-based
and code-based cryptography. In particular, we obtain the first search
to decision reduction for structured codes. Following the historical con-
structions in lattice–based cryptography, we instantiate our construction
with function fields analogues of cyclotomic fields, namely Carlitz ex-
tensions, leading to search to decision reductions on various versions of
Ring-LPN, which have applications to secure multiparty computation
and to an authentication protocol.

Keywords: Code-based cryptography · Search to decision reductions ·
LWE · Function fields · Carlitz modules

1 Introduction

Code-Based Cryptography. Error correcting codes are well known to pro-
vide quantum resistant cryptographic primitives such as authentication proto-
cols [35,18], signatures [10,13] or encryption schemes such as McEliece [24]. These
code-based cryptosystems were built to rely on the following hard problem: find-
ing a close (or far away) codeword to a given word, a task called decoding. In the
case of random linear codes of length n, which is the standard case, this problem
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can be expressed as follows. First, we are given a vector space C (i.e. the code)
of Fnq generated by the rows of some random matrix G ∈ Fk×nq , namely:

C
def
= {mG |m ∈ Fkq}. (1)

The decoding problem corresponds, given G (in other words C) and some noisy
codeword mG + e where the number of non-zero coordinates of e is equal to
t (its Hamming weight is |e| = t), to find the error e or what amounts to the
same, the original codeword mG.

Usually this decoding problem is considered in the regime where the code
rate R def

= k
n is fixed, but there are also other interesting parameters for cryp-

tographic applications. For instance, the Learning Parity with Noise problem
(LPN) corresponds to the decoding problem where n is the number of samples,
k the length of the secret while the error is sampled according to a Bernoulli
distribution of fixed rate t/n. As the number of samples in LPN is unlimited,
this problem actually corresponds to decoding a random code of rate arbitrarily
close to 0.

Despite the promising approach of McEliece, there are two drawbacks if
one follows it to design a cryptosystem. First, the public data in McEliece is
a representation of a code which has to look like random. Assuming this pseudo-
randomness property, the security relies on the hardness of the decoding problem.
In that case one needs to publish Ω(n2) bits but at the same time, best generic
decoding algorithms have a complexity exponential in the number t of errors to
correct. Therefore, to reach a security level of 2λ, the public data are of order
Θ(λ2) if t = Θ(n) or even worse of the order Θ(λ4) if t = Θ (

√
n). On the other

hand, in McEliece-like cryptosystems, the owner of the secret key has to know an
efficient decoding algorithm for the public code. It turns out that codes for which
we know an efficient decoding algorithm are obtained via polynomial evaluations
(e.g. Goppa codes) or short vectors (e.g. MDPC codes). Thus, the owner of the
secret key has to hide the peculiar description of the code he publishes. It leads
to the fact that in McEliece-like cryptosystems, the security also relies on the
difficulty to distinguish the code that is made public from a random one. This is a
second assumption to make in addition to the hardness of the decoding problem.

Alekhnovich Cryptosystem. In 2003, Alekhnovich [5] introduced a new ap-
proach to design an encryption scheme based on error correcting codes. Unlike
McEliece cryptosystem, Alekhnovich truly relies on the hardness of decoding
random codes. It starts from a random code C and proceeds as follows:

– Key Generation. Let esk ∈ Fn2 of small Hamming weight. The public key is
(C, c+ esk) where c ∈ C and the secret key is esk.

– Encryption. To encrypt one bit β ∈ {0, 1} set:
• Enc(1)

def
= u where u ∈ Fn2 is a uniformly random vector.

• Enc(0)
def
= c∗ + e where e is of small Hamming weight and c∗ lies in the

dual of the code Cpub spanned by C and c+ esk.
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– Decryption. The decryption of Enc(β) is ⟨Enc(β), esk⟩, where ⟨·, ·⟩ is the usual
inner product on Fn2 .

The correction of this procedure relies on the fact that

⟨Enc(0), esk⟩ = ⟨c∗ + e, esk⟩ = ⟨e, esk⟩,

where we used that esk ∈ Cpub while c∗ lies in its dual. Now, this inner product
is equal to 0 with overwhelming probability as esk and e are of small Hamming
weight. On the other hand, ⟨Enc(1), esk⟩ is a uniformly random bit.

Therefore, contrary to McEliece cryptosystem, the security of Alekhnovich
scheme does not depend on hiding the description of a code:

• Key security. Recovering the private key from public data amounts to de-
coding the random code C.

• Message security. Recovering the plaintext from the ciphertext is tantamount
to distinguishing a noisy codeword from a uniformly random vector.

The message security relies on the decision version of the decoding problem.
Search and decision versions of the decoding problem are known to be compu-
tationally equivalent using Goldreich-Levin theorem [14]. However, Alekhnovich
cryptosystem suffers from major drawbacks:

1. Encrypting one bit amounts to sending n bits;
2. The public key size is quadratic in the length of ciphertexts.

While the first issue can easily be addressed, the second flaw needs more work,
and as is, Alekhnovich cryptosystem is not practical. However, the approach
itself was a major breakthrough in code-based cryptography. It was inspired
by the work of Ajtai and Dwork [3] whose cryptosystem is based on solving
hard lattice problems. The latter reference from Ajtai and Dwork is also the
inspiration of Regev famous Learning With Errors (LWE) problem [30], which
is at the origin of an impressive line of work. As Alekhnovich cryptosystem, the
original LWE cryptosystem was not practical either and, to address this issue,
structured versions were proposed, for instance Polynomial-LWE [34], Ring-LWE
[23], Module-LWE [20].

Structured Decoding Problem. In the same fashion, for code–based public
key encryptions, it has been proposed to restrict to codes that can be represented
more compactly to reduce the key sizes. In McEliece setting, the story begins in
2005 with the results of [15] that suggest to use ℓ–quasi-cyclic codes, i.e. codes
that are generated by a matrix G formed out of ℓ blocks:

G =
(
rot

(
a(1)

)
· · · rot

(
a(ℓ)

))
, (2)
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each block being a circulant matrix, i.e. of the form

rot(a)
def
=



a0 a1 . . . . . . ak−1

ak−1 a0 . . . . . . ak−2

...
. . . . . .

...
...

. . . . . .
...

a1 a2 . . . ak−1 a0

 with a ∈ Fkq .

The key point is that such codes have a large automorphism group G, and
instead of publishing a whole basis, one can only publish a generating set for the
Fq[G]–module structure of the code. That is to say, a family of vectors whose
orbit under the action of G spans the code. For instance, in the case of quasi-
cyclic codes (2), one can publish only the first row of the ℓ-circulant generator
matrix. It can be argued that the quasi–cyclicity could be used to improve the
speed-up of generic decoding, but the best known approach in the generic case
uses DOOM [33] which allows to divide the complexity of decoding by

√
#G,

the latter complexity remaining exponential with the same exponent. Hence, one
can keep the same security parameter, while the size of the public key can be
divided by a factor O(#G).

This idea leads to very efficient encryption schemes such as Bike [1], in the
McEliece fashion, or HQC [2] which is closer to Ring-LWE. Both proposals use
2-quasi-cyclic codes and have been selected to the third round of NIST competi-
tion as alternate candidates. Other structured variants of the decoding problem
(referred to as Ring-LPN) were also proposed with applications to authentication
[18] or secure MPC [7].

In other words, the security of those cryptosystems now rely on some struc-
tured variant of the decoding problem.

A Polynomial Representation. It turns out that a convenient way of seeing
ℓ-quasi-cyclic codes, is to represent blocks of their generator matrix as elements
of the quotient ring Fq[X]/(Xn − 1), via the Fq–isomorphism:

Fnq −→ Fq[X]/(Xn − 1)

a
def
= (a0, . . . , an−1) 7−→ a(X)

def
=

n−1∑
i=0

aiX
i.

A simple computation shows that the product of two elements of Fq[X]/(Xn − 1)
can be represented with the operator rot(·):

u(X)v(X) mod (Xn−1) = u·rot(v) = v·rot(u) = v(X)u(X) mod (Xn−1).

From now on, u can denote either a vector of Fnq or a polynomial in Fq[X]/(Xn − 1),
and the product of two elements uv is defined as above.

Consider an ℓ-quasi-cyclic code with a generator matrix G in ℓ-circulant
form. Let s ∈ Fnq be a secret word of the ambient space and let e ∈ Fℓnq be an
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error vector. Under the above map, the noisy codeword sG+e is represented by
ℓ samples of the form sa(j) + e(j) ∈ Fq[X]/(Xn − 1) and the decoding problem
of ℓ-circulant codes corresponds to recovering the secret s given ℓ samples. This
can be seen as a code analogue of the Ring-LWE problem, with access to a fixed
number of samples ℓ. The rate of the code is 1

ℓ , so increasing the number of
samples corresponds to decode a code whose rate goes to 0.

A natural generalization would be to consider multiple rows of circulant
blocks. In this situation, the generator matrix G is of the form

G =

 rot(a(1,1)) · · · rot(a(1,ℓ))
...

...
rot(a(m,1)) · · · rot(a(m,ℓ))


and a noisy codeword sG+ e is now represented by ℓ samples of the form

m∑
i=1

sia
(i,j) + ej ∈ Fq[X]/(Xn − 1)

where s can be considered as a collection of m secrets s1, . . . , sm. This would
be the code analogue of Module-LWE, with a rank m module and ℓ samples,
introduced in [20].

Contrary to structured lattice cryptosystems, up to now, no reduction from
the search to the decision version of the structured decoding problem was known.
This was pointed out by NIST [4], and was one of the reasons for those code-
based cryptosystems to only be considered as alternate candidates for the third
round. Actually even before NIST standardization process, this lack of search
to decision reduction was already pointed out by the authors of the Ring-LPN
based authentication scheme Lapin [18].

Our Contribution. To handle this lack of search to decision reduction in the
code setting, we propose in this article a new generic problem called FF-DP,
for Function Field Decoding Problem, in the Ring-LWE fashion. One of the key
ideas consists in using function fields instead of number fields, the latter being
used in the lattice case. This framework enables us to adapt directly the search
to decision reduction of [23] in the case of codes. Frequently in the literature
on Ring-LWE, the search to decision reduction is instantiated with cyclotomic
number fields. In the same spirit we present an instantiation with function fields
analogues of cyclotomic fields, namely the so-called Carlitz extensions. As we
show, this framework is for instance enough to provide a search to decision
reduction useful in the context of Lapin [18] or for a q–ary analogue of Ring-
LPN used for secure multiparty computation [7]. If our reduction does not work
for every schemes based on structured codes such as HQC, we believe that our
work paves the way towards a full reduction.

Remark 1. Note that the use of function fields in coding theory is far from
being new. Since the early 80’s and the seminal work of Goppa [16], it is well–
known that codes called Algebraic Geometry (AG) codes can be constructed
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from algebraic curves or equivalently from function fields and that some of these
codes have better asymptotic parameters than random ones [37]. However, the
way they are used in the present work is completely different. Indeed, AG codes
are a natural generalization of Reed–Solomon codes and, in particular, are codes
benefiting from efficient decoding algorithms (see for instance surveys [19,6,11]).
In the present article, the approach is somehow orthogonal to the AG codes
setting since we use function fields in order to introduce generic problems related
to structured codes for which the decoding problem is supposed to be hard.

A Function Field Approach. Lattice-based cryptography has a long standing
history of using number fields and their rings of integers to add some structure
and reduce the key sizes. Recall that number fields are algebraic extensions of
Q of the form

K
def
= Q[X]/(f(X)),

where f is an irreducible polynomial, and the ring of integers OK is the integral
closure of Z in K, i.e. it is the subring of K composed of elements which are roots
of monic polynomials with coefficients in Z. For instance, cyclotomic extensions
are of the form K = Q(ζm) = Q[X]/(Φm(X)) where ζm is a primitive m-th
root of unity and Φm is the m-th cyclotomic polynomial. The ring of cyclotomic
integers has a very specific form, namely OK = Z[ζm]. One of the most used case
is when m is a power of 2. In this case, setting m = 2n, we have Φm = Φ2n =
Xn + 1 and OK = Z[X]/(Xn + 1). Such rings have been widely used since they
benefit from a very fast arithmetic thanks to the fast Fourier transform. In the
Ring–LWE setting, one reduces all the samples modulo a large prime element
q ∈ Z called the modulus and hence considers the ring (Z/qZ)[X]/(Xn + 1).

When moving from structured lattices to structured codes, it would be tan-
talizing to consider the ring Fq[X]/(Xn − 1) as the analogue of Z[X]/(Xn + 1).
However, if the two rings have a similar expression they have a fundamental
difference. Note for instance that the former is finite while the latter is infinite.
From a more algebraic point of view, Fq[X]/(Xn − 1) is said to have Krull di-
mension 0 while Z[X]/(Xn + 1) has Krull dimension 1. In particular, the former
has only a finite number of ideals while the latter has infinitely many prime ide-
als. The main idea of the present article is to lift the decoding problem and to
see Fq[X]/(Xn − 1) as a quotient R/I of some ring R of Krull dimension 1. The
ideal I will be the analogue of the modulus. This setting can be achieved using
so-called function fields. It could be argued that the results of this article could
have been obtained without introducing function fields. However, we claim that
function fields are crucial for at least three reasons:

1. Introducing function fields permits to establish a strong connection between
cryptography based on structured lattices involving number fields on the one
hand and cryptography based on structured codes on the other hand.

2. Number theory has a rich history with almost one hundred years of devel-
opment of the theory of function fields. We expect that, as number fields
did for structured lattices, function fields will yield a remarkable toolbox to
study structured codes and cryptographic questions related to them.
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3. A third and more technical evidence is that a crucial part of the search
to decision reduction involves some Galois action. We claim that, even if
for a specific instantiation, this group action could have been described in
a pedestrian way on the finite ring Fq[X]/(Xn − 1), without knowing the
context of function fields, such a group action would really look like “a rabbit
pulled out of a hat”. In short, this group action, which is crucial to conclude
the search to decision reduction, cannot appear to be something natural
without considering function fields.

It is well–known for a long time that there is a noticeable analogy between
the theory of number fields and that of function fields. Starting from the ground,
the rings Z and Fq[T ] share a lot of common features. For instance, they both
have an Euclidean division. Now if one considers their respective fraction fields
Q and Fq(T ), finite extensions of Q yield the number fields while finite separable
extensions of Fq(T ) are called function fields because they are also the fields
of rational functions on curves over finite fields. Now, a similar arithmetic the-
ory can be developed for both with rings of integers, orders, places and so on.
Both rings of integers are Dedekind domains. In particular, every ideal factorizes
uniquely into a product of prime ideals, and the quotient by any non-zero ideal
is always finite. A dictionary summarizing this analogy between number fields
and function fields is represented in Table 1. Note that actually, many properties
that are known for function fields are only conjectures for number fields. The
best example is probably the Riemann hypothesis which has been proved by
Weil in the early 1940s in the function field case.

Number fields Function fields
Q Fq(T )
Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

K = Q[X]/(f(X)) K = Fq(T )[X]/(f(T,X))

OK

= Integral closure of Z
Dedekind domain

OK

= Integral closure of Fq[T ]
Dedekind domain

characteristic 0 characteristic > 0

Table 1. A Number-Function fields analogy

With this analogy in hand, the idea is to find a nice function field K with
ring of integers OK and an irreducible polynomial Q ∈ Fq[T ], called the modulus,
such that OK/QOK = Fq[X]/(Xn − 1). Following the path of [23], we are able
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to provide a search to decision reduction for our generic problem FF-DP when
two conditions hold:

1. The function field K is Galois.
2. The modulus Q does not ramify in OK , meaning that the ideal QOK factor-

izes in product of distinct prime ideals.
3. The distribution of errors is invariant under the action of the Galois group.

This framework is enough to provide a search to decision reduction useful
in the context of Lapin [18] or for a q–ary analogue of Ring–LPN used for se-
cure MPC [7]. It should be emphasized that, in the case of Lapin, the search
to decision reduction requires to adapt the definition of the noise which will
remain built by applying independent Bernouilli random variables but with a
peculiar choice of F2–basis of the underlying ring F2[X]/(f(X)). The chosen
basis is a normal basis, i.e. is globally invariant with respect to the Galois ac-
tion. This change of basis is very similar to the one performed in lattice based
cryptography when, instead of considering the monomial basis 1, X, . . . ,Xn−1

in an order Z[X]/(f(X)), one considers the canonical basis after applying the
Minkowski embedding. Indeed, the latter is Galois invariant. We emphasize that,
here again, the function field point of view brings in a Galois action which can-
not appear when only considering a ring such as F2[X]/(f(X)). This is another
evidence of the need for introducing function fields.

Outline of the Article. The present article is organised as follows. Section 2
recalls the necessary background about function fields (definitions and important
properties). In Section 3 we present the FF-DP problem (search and decision
versions) as well as our main theorem (Theorem 1) which states the search to
decision reduction in the function field setting. In Section 4 we give a self contain
presentation of Carlitz extensions. They will be used to instantiate our search
to decision reduction in Section 5, which provides our applications.

2 Prerequisites on Function Fields

In this section, we list the minimal basic notions on the arithmetic of function
fields that are needed in the sequel. A dictionary drawing the analogies has been
given in Table 1. For further references on the arithmetic of function fields, we
refer the reader to [36,32].

Starting from a finite field Fq, a function field is a finite extension K of Fq(T )
of degree n > 0 of the form

K = Fq(T )[X]/(P (T,X))

where P (T,X) ∈ Fq(T )[X] is irreducible of degree n. The field K∩Fq is referred
to as the field of constants or constant field ofK, where Fq is the algebraic closure
of Fq. In the sequel, we will assume that Fq is the full field of constants of K,
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which is equivalent for P (T,X) to be irreducible even regarded as an element of
Fq(T )[X] ([36, Cor. 3.6.8]).

Similarly to the number field case, one can define the ring of integers OK
as the the ring of elements of K which are the roots of a monic polynomial
in Fq[T ][X]. This ring is a Dedekind domain. In particular, any ideal P has a
unique decomposition Pe1

1 · · ·Per
r where the Pi’s are prime ideals.

In the sequel, we frequently focus on the following setting represented in the
diagram below: starting from a prime ideal p of Fq[T ] (which is nothing but the
ideal generated by an irreducible polynomial Q(T ) of Fq[T ]), we consider the
ideal P def

= pOK and its decomposition:

P = Pe1
1 · · ·Per

r .

P ⊂ OK K

p ⊂ Fq[T ] Fq(T )

The prime ideals Pi’s are said to lie above p. The exponents ei are referred to as
the ramification indexes, and the extension is said to be unramified at P when all
the ei’s are equal to 1. Another important constant related to a Pi is its inertia
degree, which is defined as the extension degree fi

def
= [OK/Pi : Fq[T ]/p] (one can

prove that OK/Pi and Fq[T ]/p are both finite fields). The Chinese Remainder
Theorem (CRT) induces a ring isomorphism between OK/P and

∏r
i=1 OK/P

ei
i .

In particular, when the extension is unramified at P, the quotient OK/P is a
product of finite fields. Finally, a well-known result asserts that

n = [K : Fq(T )] =
r∑
i=1

eifi. (3)

Finite Galois Extensions. Consider K/Fq(T ) a Galois function field (i.e. a
function field K which is a Galois extension of Fq(T )), with Galois group G

def
=

Gal(K/Fq(T )). Then, G keeps OK globally invariant. Furthermore, given p a
prime ideal of Fq[T ], the group G acts transitively on the set {P1, . . . ,Pr} of
prime ideals of OK lying above p: for any i ̸= j there exists σ ∈ Gal(K/Fq(T ))
such that σ(Pi) = Pj . In particular, all the ramification indexes ei (resp. the
inertia degrees fi) are equal and denoted by e (resp. f) so that P

def
= pOK =

(P1 . . .Pr)
e and (3) becomes n = efr. Another consequence which will be crucial

for the applications, is that the action of G on OK is well–defined on OK/P and
simply permutes the factors OK/Pe

i . The decomposition group of Pi over p is

DPi/p
def
= {σ ∈ G | σ (Pi) = Pi}.

It has cardinality e × f . In particular, when K is unramified at P, the ring
OK/Pi is the finite field Fqf and the action of DPi/p on it is the Frobenius
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automorphism: the reduction modulo Pi yields an isomorphism

DPi/p ≃ Gal(Fqf /Fq). (4)

Finally, all the decomposition groups of primes above p are conjugate: for any
i ̸= j there exists σ ∈ G such that DPi/p = σDPj/pσ

−1.

3 A Function Field Approach for Search to Decision
Reductions

Search and Decision Problems. In this section, we introduce a new generic
problem that we call FF-DP, which is the analogue of Ring–LWE in the context
of function fields. Then, we give our main theorem which states the search-to-
decision reduction of FF-DP. Since function fields and number fields share many
properties, the present search to decision reduction, will work similarly as in [23].

Consider a function field K/Fq(T ) with constant field Fq and ring of integers
OK and let Q(T ) ∈ Fq[T ]. Let P

def
= QOK be the ideal of OK generated by

Q. Recall that OK/P is a finite set. FF-DP is parameterized by an element
s ∈ OK/P called the secret and ψ be a probability distribution over OK/P
called the error distribution.

Definition 1 (FF-DP Distribution). A sample (a,b) ∈ OK/P × OK/P is
distributed according to the FF-DP distribution modulo P with secret s and error
distribution ψ if

• a is uniformly distributed over OK/P,
• b = as+ e ∈ OK/P where e is distributed according to ψ.

A sample drawn according to this distribution will be denoted by (a,b)← Fs,ψ.

The aim of the search version of the FF-DP problem is to recover the secret
s given samples drawn from Fs,ψ. This is formalized in the following problem.

Definition 2 (FF-DP, Search version). Let s ∈ OK/P, and let ψ be a prob-
ability distribution over OK/P. An instance of FF-DP problem consists in an
oracle giving access to independent samples (a,b) ← Fs,ψ. The goal is to re-
cover s.

Remark 2. This problem should be related to structured versions of the decoding
problem. Indeed, recall from the discussion in the introduction that, using the
polynomial representation, the decoding problem of random quasi-cyclic codes
corresponds to recovering a secret polynomial s(X) ∈ Fq[X]/(Xn − 1) given
access to samples of the form as + e ∈ Fq[X]/(Xn − 1) where a is uniformly
distributed in Fq[X]/(Xn − 1). This can be rephrased within the FF-DP frame-
work as follows. Consider the polynomial f(T,X)

def
= Xn + T − 1 ∈ Fq(T )[X].

When n is not divisible by the characteristic of Fq, f is a separable polynomial.
Moreover, by Eisenstein criterion f is irreducible. Define the function field K
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generated by f , namely the extension K def
= Fq(T )[X]/(f(T,X)). One can prove

that OK is exactly Fq[T ][X]/(f(T,X)). Now, let p be the ideal of Fq[T ] defined
by the irreducible polynomial T , and let P def

= pOK = TOK be the corresponding
ideal of OK . Then the following isomorphisms hold

OK/P ≃ Fq[T,X]/(T,Xn + T − 1) ≃ Fq[X]/(Xn − 1).

With this particular instantiation, OK/P is exactly the ambient space from
which the samples are defined in the structured versions of the decoding prob-
lem. As a consequence, FF-DP is a generalization of structured versions of the
decoding problem, when considering arbitrary function fields and ideals.

For cryptographic applications, we are also interested in the decision version
of this problem. The goal is now to distinguish between the FF-DP distribution
and the uniform distribution over OK/P× OK/P.

Definition 3 (FF-DP, Decision version). Let s be drawn uniformly at random
in OK/P and let ψ be a probability distribution over OK/P. Define D0 to be the
uniform distribution over OK/P×OK/P, and D1 to be the FF-DP distribution
with secret s and error distribution ψ. Furthermore, let b be a uniform element
of {0, 1}. Given access to an oracle Ob providing samples from distribution Db,
the goal of the decision FF-DP is to recover b.

Remark 3. For some applications, for instance to MPC, it is more convenient
to have the secret s drawn from the error distribution ψ instead of the uniform
distribution over OK/P. In the lattice-based setting, this version is sometimes
called LWE with short secret or LWE in Hermite normal form. However, both
decision problems are easily proved to be computationally equivalent, see [22,
Lemma 3]. The proof applies directly to FF-DP.

A distinguisher between two distributions D0 and D1 is a probabilistic poly-
nomial time (PPT) algorithm A that takes as input an oracle Ob corresponding
to a distribution Db with b ∈ {0, 1} and outputs an element A(Ob) ∈ {0, 1}.

Search to Decision Reduction. We are now ready to present our main the-
orem.

Theorem 1 (Search to decision reduction for FF-DP). Let K/Fq(T ) be a
Galois function field of degree n with field of constants Fq, and denote by OK
its ring of integers. Let Q(T ) ∈ Fq[T ] be an irreducible polynomial. Consider the

ideal P def
= QOK . Assume that P does not ramify in OK , and denote by f its

inertia degree. Let ψ be a probability distribution over OK/P, closed under the
action of Gal(K/Fq(T )), meaning that if e← ψ, then for any σ ∈ Gal(K/Fq(T )),
we have σ(e)← ψ. Let s ∈ OK/P.

Suppose that we have an access to Fs,ψ and there exists a distinguisher be-
tween the uniform distribution over OK/P and the FF-DP distribution with uni-
form secret and error distribution ψ, running in time t and having an advantage
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ε. Then there exists an algorithm that recovers s ∈ OK/P (with an overwhelming
probability in n) in time

O

(
n4

f3
× 1

ε2
× qf deg(Q) × t

)
.

Remark 4. We have assumed implicitly in the statement of the theorem that we
have an efficient access to the Galois group of K/Fq(T ) and its action can be
computed in polynomial time.

Remark 5. There are many degrees of freedom in the previous statement: choice
of the function field K (and on the degree n), choice of the polynomial Q (and on
f and deg(Q)). For our instantiations, we will often choose the “modulus” Q to
be a linear polynomial (deg(Q) = 1) and K will be a (subfield of) a cyclotomic
function field.

Remark 6. Due to the continuity of error distributions used in lattice-based
cryptography, a technical tool called the smoothing parameter was introduced
by Micciancio and Regev in [25]. It characterizes how a Gaussian distribution is
close to uniform, both modulo the lattice, and is ubiquitously used in reductions.
However, in the function field setting, we do not need to introduce such a tool
because the error distribution is discrete and already defined on the quotient
OK/P.

Remark 7 (MFF-DP). Instead of considering one secret s ∈ OK/P, we could use
multiple secrets (s1, . . . , sd) ∈ (OK/P)

d. The goal is now to recover the secrets
from samples (a,b) with a = (a1, . . . ,ad) uniformly distributed over (OK/P)d

and b = ⟨a, s⟩ + e =
∑d
i=1 aisi + e with e ← ψ. This generalization has been

considered in lattice-based cryptography under the terminology Module-LWE
[20], because the secret can be thought as an element of Od

K which is a free
OK-module or rank d, before a reduction modulo P on each component.

Following [20, Section 4.3], it is possible to adapt Theorem 1 ; the search to
decision reduction only yielding an overhead of d (the number of secrets). The
running time would now be

O

(
d× n4

f3
× 1

ε2
× qf deg(Q) × t

)
.

Sketch of Proof of Theorem 1. The proof of this Theorem is very similar to the
one for Ring–LWE and lattices [23]. It uses four steps that we quickly describe.
Let P = P1 . . .Pr, where r = n/f , be the factorisation of P in prime ideals.

Step 1. Worst to Average Case. In the definition of Problem 3 the secret s
is supposed to be uniformly distributed over OK/P, while in the search version
the secret is fixed. This can easily be addressed, for any sample (a,b) ← Fs,ψ

with fixed secret s, it is enough to pick s′ ← OK/P and output (a,b+ as′).
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Step 2. Hybrid Argument. Sample (a,b) is said to be distributed according
to the hybrid distribution Hi if it is of the form (a′,b′+h) where (a′,b′)← Fs,ψ

and h ∈ OK/P is uniformly distributed modulo Pj for j ⩽ i and 0 modulo the
other factors. Such an h can easily be constructed using the Chinese Remainder
Theorem. In particular, for i = 0, h is 0 modulo all the factors of P, therefore
h = 0 and H0 = Fs,ψ. On the other hand, when i = r, the element h is uniformly
distributed over OK/P, therefore Hr is exactly the uniform distribution over
OK/P.
By a hybrid argument, we can turn a distinguisher A for FF-DP with advantage
ε, into a distinguisher between (Hi0 ,Hi0+1) for some i0 with advantage ⩾ ε/r.
Everything is analysed as if we knew this index i0. In practice we can run A

concurrently with all the r instances.

Step 3. Guess and Search. The idea is to perform an exhaustive search in
OK/Pi0+1 and to use A to recover ŝ

def
= s mod Pi0+1. Let gi0+1

?
= ŝ be our

guess and set g ≡ gi0+1 mod Pi0+1 and 0 otherwise. For each sample (a,b) we
compute a′ def

= a+v and b′ def
= b+h+vg = a′s+e+h′ where h′ = h+v(g−s) with

v ≡ vi0+1 uniform modulo Pi0+1, and h uniform modulo the Pj for j ⩽ i0 + 1
and 0 otherwise. One can verify that,h′ ≡ hj mod Pj for j ⩽ i0

h′ ≡ (gi0+1 − ŝ)vi0+1 mod Pi0+1

h′ ≡ 0 mod Pj for j > i0 + 1.

If the guess gi0+1 is correct, (a′,b′) is distributed according to Hi0 . Other-
wise, it is distributed according to Hi0+1 because vi0+1 is uniformly distributed
over OK/Pi0+1 which is a field. The distinguisher will succeed with probability
1/2 + ε/r > 1/2. It suffices to repeat the procedure Θ((r/ε)2) times, and do a
majority voting to know whether the guess gi0+1 is correct or not. We do that
for all the qf deg(Q) possible guesses.

Step 4. Galois Action. Since K/Fq(T ) is Galois, for any j ̸= i0 we take
σ ∈ Gal(K/Fq(T )) such that σ(Pj) = Pi0 . Now, (σ(a), σ(a)σ(s) + σ(e)) ←
Fσ(s),ψ because ψ is Galois invariant. The above procedure enables to recover
σ(s) mod Pi0 . Applying σ−1 yields s mod Pj . Therefore, we are able to recover
s mod Pj for any j. To compute the full secret s it remains to use the CRT. ⊓⊔

4 Cyclotomic Function Fields and the Carlitz Module

In Section 3, we introduced the generic problem FF-DP and noticed that our
search to decision reduction needed Galois function fields. In [23], it was pro-
posed to use cyclotomic number fields to instantiate the Ring–LWE problem.
Here, we propose to instantiate FF-DP with the function field analogue, namely
Carlitz extensions. We give a self contained presentation of the theory of Carlitz
extensions. The interested reader can refer to [32, ch. 12], [26] and the excellent
survey [9] for further reference.
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Carlitz extensions are function fields analogues of the cyclotomic extensions of
Q. A dictionary summarizing the similarities is given in Table 2. These extensions
were discovered by Carlitz in the late 1930s but the analogy was not well known
until the work of his student Hayes who studied them in [17] to give an explicit
construction of the abelian extensions of the rational function field Fq(T ) and
prove an analogue of the usual Kronecker-Webber theorem which states that any
abelian extension of Q is a subfield of cyclotomic number fields. This result was
generalized in the following years with the work of Drinfeld and Goss to yield
a complete solution to Hilbert twelfth problem in the function field setting. In
the number field setting, such an explicit construction is only known for abelian
extensions of Q (cyclotomic extensions) and imaginary quadratic number fields
(via the theory of elliptic curves with complex multiplication).

The first idea that comes to mind when one wants to build cyclotomic func-
tion fields is to adjoin roots of unity to the field Fq(T ). However, roots of unity
are already algebraic over Fq. In other words, adding them only yields so–called
extensions of constants.

Example 1. Let ζn be an n–th root of unity in Fq(T ). Note that it belongs to
some finite extension of Fq. Let Fqm be the extension of Fq of minimal degree
such that ζn ∈ Fqm (it can be Fq itself). Then

Fq(T )[ζn] = Fqm(T ),

and the field of constants of Fq(T )[ζn] is Fqm .

However, in our reduction setting, such extensions will only increase the size
of the search space in Step 3. More precisely, if K is an algebraic extension of
Fq(T ), the constant field of K is always a subfield of OK/P for any prime ideal
P of OK . But recall that in our search to decision reduction, we need to do an
exhaustive search in this quotient OK/P, so we need it to be as small as possible.
Henceforth, we cannot afford constant field extensions. For Carlitz extensions,
this will be ensured by Theorem 6.

4.1 Roots of Unity and Torsion

As mentioned in the beginning of this section, it is not sufficient to add roots of
unity. One has to go deeper into the algebraic structure that is adjoined to Q.
Indeed, the set of all m–th roots of unity, denoted by µm ⊂ C, turns out to be
an abelian group under multiplication. Moreover, µm is in fact cyclic, generated
by any primitive root of unity.

In commutative algebra, abelian groups are Z-modules. Here the action of Z
is given by exponentiation: n ∈ Z acts on ζ ∈ µm by n · ζ def

= ζn. This action of Z
can in fact be extended to all Q×

. When working with modules over a ring, it is
very natural to consider the torsion elements, i.e. elements of the module that
are annihilated by an element of the ring. The torsion elements in the Z–module
Q×

are the ζ ∈ Q×
such that ζm = 1 for some m > 0; these are precisely the
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roots of unity. In other words, the cyclotomic number fields are obtained by
adjoining to Q torsions elements of the Z–module Q×

.
Under the analogy summed up in Table 1, replacing Z by Fq[T ] and Q by

Fq(T ), we would like to consider some Fq[T ]–module and adjoin to Fq(T ) the
torsion elements. Note that Fq[T ]–modules are in particular Fq–vector spaces,
hence the action of Fq[T ] should be linear. This new module structure can be
defined using so called Carlitz polynomials: for each polynomial M ∈ Fq[T ],
we define its Carlitz polynomial [M ](X) as a polynomial in X with coefficients
in Fq[T ], and M ∈ Fq[T ] will act on α ∈ Fq(T ) by M · α def

= [M ](α) with
[M ](α + β) = [M ](α) + [M ](β). In other words, [M ](X) should be an additive
polynomial. In positive characteristic this can easily be achieved by considering
q–polynomials, i.e. polynomials whose monomials are only q–th powers of X,
namely of the form

P (X) = p0X + p1X
q + · · ·+ prX

qr .

4.2 Carlitz Polynomials

The definition of Carlitz polynomial will proceed by induction and linearity.
Define [1](X)

def
= X and [T ](X)

def
= Xq + TX. For n ⩾ 2, define

[Tn](X)
def
= [T ]([Tn−1](X)) = [Tn−1](X)q + T [Tn−1](X).

Then, for a polynomial M =
∑n
i=0 aiT

i ∈ Fq[T ], define [M ](X) by forcing Fq–
linearity:

[M ](X)
def
=

n∑
i=0

ai[T
i](X).

Example 2. We have,

• [T 2](X) = [T ](Xq + TX) = Xq2 + (T q + T )Xq + T 2X

• [T 2 + T + 1](X) = [T 2](X) + [T ](X) + [1](X) = Xq2 + (T q + T + 1)Xq +
(T 2 + T + 1)X

By construction, Carlitz polynomials are additive polynomials, and Fq–linear.
Furthermore, for two polynomials M,N ∈ Fq[T ], [MN ](X) = [M ]([N ](X)) =
[N ]([M ](X)). In particular, Carlitz polynomials commute with each other under
composition law, which is not the case in general for q–polynomials.

4.3 Carlitz Module

Endowed with this Fq[T ]–module structure, Fq(T ) is called the Carlitz module.

Definition 4. For M ∈ Fq[T ], M ̸= 0, let ΛM
def
= {λ ∈ Fq(T ) | [M ](λ) = 0}.

This is the module of M–torsion of the Carlitz module.
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Example 3. ΛT = {λ ∈ Fq(T ) | λq + Tλ = 0} = {0} ∪ {λ | λq−1 = −T}.

In the same way that µm is an abelian group (i.e. a Z–module), note that
ΛM is also a submodule of the Carlitz module: for λ ∈ ΛM and A ∈ Fq[T ],
[A](λ) ∈ ΛM . In particular, ΛM is an Fq–vector space.

Example 4. The module ΛT defined in Example 3 is an Fq–vector space of di-
mension 1. In particular, for λ ∈ ΛT , and A ∈ Fq[T ], [A](λ) must be a multiple
of λ. In fact the Carlitz action of A on λ is through the constant term of A:
writing A = TB +A(0) we have

[A](λ) = [TB +A(0)](λ) = [B]([T ](λ)︸ ︷︷ ︸
=0

) +A(0)[1](λ) = A(0)λ.

More generally, even if in general ΛM is not of dimension 1 over Fq, it is
always a cyclic Fq[T ]–module: as an Fq[T ]–module it can be generated by only
one element. This is specified in the following theorem.

Theorem 2 ([26, Lemma 3.2.2]). There exists λ0 ∈ ΛM such that ΛM =
{[A](λ0) | A ∈ Fq[T ]/(M)} and the generators of ΛM are the [A](λ0) for all
A prime to M . The choice of a generator yields a non canonical isomorphism
ΛM ≃ Fq[T ]/(M) as Fq[T ]–modules.

Remark 8. The previous theorem needs to be related to the cyclotomic case:
given the choice of a primitive m–th root of unity, there is a group isomorphism
between µm and Z/mZ. Moreover all the m–th roots of unity are of the form ζk

for k ∈ J0,m− 1K and the generators of µm are the ζk for k prime to m.

4.4 Carlitz Extensions

Recall that the cyclotomic number fields are obtained as extensions of Q gener-
ated by the elements of µm. In the similar fashion, for a polynomial M ∈ Fq[T ],
let

KM
def
= Fq(T )(ΛM ) = Fq(T )(λM ),

where λM is a generator of ΛM . One of the most important facts about the
cyclotomic number field Q(ζm) is that it is a finite Galois extension of Q, with
Galois group isomorphic to (Z/mZ)×. There is an analogue statement for the
Carlitz extensions.

Theorem 3 ([26, Th. 3.2.6]). Let M ∈ Fq[T ], M ̸= 0. Then KM is a finite
Galois extension of Fq(T ), with Galois group isomorphic to (Fq[T ]/(M))×. The
isomorphism is given by{

(Fq[T ]/(M))× −→ Gal(KM/Fq(T ))
A 7−→ σA,

where σA is completely determined by σA(λM ) = [A](λM ).
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Remark 9. In particular, Carlitz extensions are abelian.

Another important fact about cyclotomic extensions is the simple descrip-
tion of their ring of integers. Namely, for K = Q(ζm), we have OK = Z[ζm] =
Z[X]/(Φm(X)) where Φm denotes the m–th cyclotomic polynomial. This prop-
erty also holds for Carlitz extensions.

Theorem 4 ([32, Th. 2.9]). Let OM be the integral closure of Fq[T ] in KM .
Then OM = Fq[T ][λM ]. In particular, let P (T,X) ∈ Fq[T ][X] be the minimal
polynomial of λM . Then,

KM = Fq(T )[X]/(P (T,X)) and OM = Fq[T ][X]/(P (T,X)).

Example 5. Reconsider Example 3 and the module ΛT = {0}∪{λ | λq−1 = −T}.
The polynomial Xq−1+T is Eisenstein in (T ) and therefore is irreducible. Hence,

KT = Fq(T )[X]/(Xq−1 + T ).

Moreover it is Galois, with Galois group (Fq[T ]/(T ))× ≃ F×q . A non-zero element
a ∈ F×q will act on f(T,X) ∈ KT by

a · f(T,X)
def
= f(T, [a](X)) = f(T, aX).

The integral closure of Fq[T ] in KT is

OT
def
= Fq[T ][X]/(Xq−1 + T )

and

OT/((T + 1)OT ) = Fq[T ][X]/(T + 1, Xq−1 + T ) = Fq[X]/(Xq−1 − 1). (5)

Finally, the following theorem characterizes the splitting behaviour of primes
in Carlitz extensions. A very similar result holds for cyclotomic extensions.

Theorem 5 ([32, Th. 12.10]). Let M ∈ Fq[T ], M ̸= 0, and let Q ∈ Fq[T ] be
a monic, irreducible polynomial. Consider the Carlitz extension KM and let OM
denote its ring of integers. Then,

• If Q divides M , then QOM is totally ramified.
• Otherwise, let f be the smallest integer f such that Qf ≡ 1 mod M . Then
QOM is unramified and has inertia degree f . In particular, Q splits com-
pletely if and only if Q ≡ 1 mod M .

Note that in Ring–LWE, the prime modulus q is often chosen such that q ≡ 1
mod m so that it splits completely in the cyclotomic extension Q(ζm).

Example 6. In the previous example, T + 1 ≡ 1 mod T and therefore (T + 1)
splits completely in OT . Indeed,

OT/((T + 1)OT ) = Fq[X]/(Xq−1 − 1) =
∏
α∈F×

q

Fq[X]/(X − α)

is a product of q − 1 copies of Fq.
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It is crucial for the applications that the constant field of K be not too big
because, in the search to decision reduction, it determines the search space in
Step 3 of the proof of Theorem 1. The following non-trivial theorem gives the
field of constants of Carlitz extensions.

Theorem 6 ([32, Cor. of Th. 12.14]). Let M ∈ Fq[T ], M ̸= 0. Then Fq is
the full constant field of KM .

The similarities between Carlitz function fields and cyclotomic number fields
are summarized in Table 2.

Q Fq(T )
Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

µm = ⟨ζ⟩ ≃ Z/mZ (groups) ΛM = ⟨λ⟩ ≃ Fq[T ]/(M) (modules)

d | m ⇔ µd ⊂ µm (subgroups) D | M ⇔ ΛD ⊂ ΛM (submodules)

a ≡ b mod m ⇒ ζa = ζb A ≡ B mod M ⇒ [A](λ) = [B](λ)

K = Q[ζ] K = Fq(T )[λ]
OK = Z[ζ] OK = Fq[T ][λ]

Gal(K/Q) ≃ (Z/mZ)× Gal(K/Fq(T )) ≃ (Fq[T ]/(M))×

Cyclotomic Carlitz

Table 2. Analogies between cyclotomic and Carlitz

5 Applications

In the current section, we present two applications of our proof techniques. It
provides search to decision reductions to generic problems whose hardness as-
sumption has been used to assess the security of some cryptographic designs.
The first application concerns Oblivious Linear Evaluation (OLE) which is a
crucial primitive for secure multi-party computation. The second one is an au-
thentication protocol called Lapin. Both designs rely on the hardness of variants
of the so-called Learning Parity with Noise (LPN) problem.

5.1 LPN and its Structured Variants

Let us start this subsection by the definitions of the distribution that is involved
in the LPN problem.
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Definition 5 (Learning Parity with Noise (LPN) distribution). Let k be
a positive integer, s ∈ Fkq be a uniformly distributed vector and p ∈ [0, 12 ). A
sample (a, b) ∈ Fkq × Fq is distributed according to the LPN distribution with
secret s if

• a is uniformly distributed over Fkq ,

• b
def
= ⟨a, s⟩+ e where ⟨· , ·⟩ denotes the canonical inner product over Fkq and e

is a q–ary Bernouilli random variable with parameter p, namely P(e = 0) =
1− p and P(e = a) = p

q−1 for a ∈ F×q .

A sample drawn according to this distribution will be denoted (a, ⟨a, s⟩ + e) ←
DLPN

s,p .

Remark 10. This definition is a generalization of the usual LPN distribution
defined over F2. In this situation, the error distribution is a usual Bernouilli:
P(e = 0) = 1− p and P(e = 1) = p.

Similarly to the LWE problem, structured versions of LPN have been defined
([18,12,7]).

Definition 6 (Ring–LPN distribution). Fix a positive integer r, a public
polynomial f(X) ∈ Fq[X] of degree r and s ∈ Fq[X]/(f(X)) be a uniformly
distributed polynomial. A sample (a,b) is distributed according to the RLPN dis-
tribution with secret s if

• a is drawn uniformly at random over Fq[X]/(f(X));

• b
def
= as + e where e

def
= e0 + e1X + · · · + er−1X

r−1 ∈ Fq[X]/(f(X)) has
coefficients ei’s which are independent q–ary Bernouilli random variables
with parameter p.

A sample drawn according to this distribution will be denoted (a,as + e) ←
DRLPN

s,p .

Note that the map{ Fq[X]/(f(X)) −→ Fq[X]/(f(X))
m(X) 7−→ a(X)m(X) mod f(X)

can be represented in the canonical basis by an r × r binary matrix A. Using
this point of view, one sample of RLPN can be regarded as r specific samples of
LPN.

Search to Decision. Here we present search to decision reductions in two differ-
ent settings corresponding to two choices of the modulus f(X) in the Ring–LPN
problem. Both have been used in the literature for specific applications that are
quickly recalled.
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A q–ary Version of Ring–LPN with a Totally Split Modulus f . In [7],
the authors introduce Ring–LPN over the finite field Fq and with a modulus f
which is totally split, i.e. has distinct roots, all living in the ground field Fq.

Motivation: Oblivious Linear Evaluations for secure Multiparty Com-
putation (MPC). A crucial objective in modern secure MPC is to be able to
generate efficiently many random pairs (u, r), (v, s) where u, r, v, s are uniformly
distributed over Fq with the correlation uv = r + s.

In [7], the authors propose a construction of such pairs (u, r), (v, s) of ele-
ments in a ring R, where R = Fq[X]/(f(X)) such that f is split with simple
roots in Fq. Using the Chinese remainder Theorem, one deduces deg f pairs
(ui, ri), (vi, si) with ui, vi, ri, si ∈ Fq. The pseudo-randomness of u,v rests on
the hardness of the Ring–LPN assumption.

Search to Decision Reduction in the [7]-case. Consider the case of Ring–
LPN over R = Fq[X]/(f(X)), where

f(X)
def
=

∏
a∈F×

q

(X − a) = Xq−1 − 1.

Let us re-introduce the Carlitz function field of Examples 3 and 5, namely

KT = Fq(T )[X]/(Xq−1 + T ).

According to Equation (5) in Example 5, we have

OT/(T + 1)OT ≃ Fq[X]/(Xq−1 − 1),

which is precisely the ring we consider for the Ring–LPN version of [7]. Therefore,
instantiating our FF-DP problem with this function field, modulus T + 1, ideal
P

def
= (T+1)OK and applying Theorem 1, we directly obtain the following search

to decision reduction.

Theorem 7 (Search to decision reduction for totally-split Ring–LPN).
Let KT be the Carlitz extension of T–torsion over Fq, and denote by OT its ring

of integers. Consider the ideal P def
= (T + 1)OKT

. Then P splits completely in
q − 1 factors P1 . . .Pq−1 and

OK/P ≃
q−1∏
i=1

OK/Pi ≃ Fq × · · · × Fq.

Let ψ denote the uniform distribution over polynomials in Fq[X]/(Xq−1 − 1) of
fixed Hamming weight, or the q–ary Bernouilli distribution. Let s ∈ Fq[X]/(Xq−1−
1). Suppose that we have access to Fs,ψ and that there exists a distinguisher be-
tween the uniform distribution over Fq[X]/(Xq−1 − 1) and Fs,ψ with uniform
secret and error distribution ψ, running in time t and having advantage ε.



On Codes and Learning with Errors over Function Fields 21

Then there exists an algorithm that recovers s with overwhelming probability
(in q) in time

O

(
q5 × 1

ε2
× t

)
.

Proof. The only thing that remains to be proved is that the error distribution
is Galois invariant. According to Theorem 3 and Example 5, the Galois group
of KT /Fq(T ) is isomorphic to (Fq[T ]/(T ))× ≃ F×q . Furthermore, we proved that
an element b ∈ F×q acts on f(T,X) ∈ KT by

b · f(T,X) = f(T, [b](X)) = f(T, bX).

The Galois action on KT and OT induces an action of F×q on

OT/(T + 1)OT ≃ Fq[X]/(Xq−1 − 1)

by b ·m(X)
def
= m(bX). Note that, this operation has no incidence on the Ham-

ming weight of m: it actually does not change its Hamming support. Therefore,
we easily see here that Galois action keeps the noise distribution invariant. ⊓⊔

Remark 11. Note that our search to decision reduction could have been per-
formed here without introducing the function field and only considering the
ring Fq[X]/(Xq−1 − 1). Recall that the first ingredient of the reduction is to
decompose this ring by the Chinese Remainder Theorem. Here it would give
the product

∏
a∈F×

q
Fq[X]/(X − a). The final step of the reduction requires the

introduction of a group action which induces a permutation of the factors in∏
a∈F×

q
Fq[X]/(X − a). It is precisely what the group action b ·m(X) = m(bX)

does: it sends the factor Fq[X]/(X − a) onto Fq[X]/(X − b−1a). However, intro-
ducing this action on the level of Fq[X]/(Xq−1−1) does not look very natural. It
turns out that the introduction of function fields permits to interpret this action
in terms of a Galois one.

Remark 12. If we replace the Carlitz extension K by some subfield of invariants
under the action of a given subgroup of the Galois group, it is possible to extend
the result to the case where f(X) =

∏
a∈H(X − a) where H is some subgroup

of F×q . It is even possible to treat the case where the roots of f form a coset of
a given subgroup of F×q .

Ring–LPN with a Modulus f Splitting in Irreducible Polynomials of
the Same Degree. Another cryptographic design whose security rests on the
Ring–LPN assumption is an authentication protocol named Lapin [18]. In the
conclusion of their article, the authors mention that

“it would be particularly interesting to find out whether there exists an
equivalence between the decision and the search versions of the problem
similar to the reductions that exist for LPN and Ring–LWE”.
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For this protocol, the problem is instantiated with the binary field F2 and with
a modulus polynomial f which splits as a product of m distinct irreducible
polynomials

f(X) = f1(X) · · · fm(X).

In this setting and using our techniques, we can provide a search to decision
reduction when the fi’s have all the same degree d. Furthermore, for the re-
duction to run in polynomial time, we need to have d = O(log(deg f)). Note
that the explicit parameters proposed as an example in [18] do not satisfy these
assumptions but it would be easy to propose alternative parameters fulfilling
them.

In this setting, the Chinese Reminder Theorem entails that

F2[X]/(f(X)) ≃
m∏
i=1

F2[X]/(fi(X)),

and the right–hand side is a product of m copies of F2d . Such a product can be
realised as follows. Consider a function field K which is a Galois extension of
F2(T ) with Galois group G and denote by OK the integral closure of F2[T ] in
K. Suppose that the ideal (T ) of F2[T ] is unramified in OK with inertia degree
d. Then TOK splits into a product of prime ideals:

TOK = P1 · · ·Pm and OK/TOK ≃
m∏
i=1

OK/Pi,

where, here again, the right–hand side is a product of m copies of F2d .
Next, the idea is now to apply Theorem 1 in this setting. However, there

is here a difficulty since for our search to decision reduction to hold, the noise
should arise from a Galois invariant distribution. Thus, if we want the noise
distribution to be Galois invariant we need to have a Galois invariant F2–basis
of the algebra OK/TOK . The first question should be whether such a basis exists.
The existence of such a basis can be deduced from deep results of number theory
due to Noether [27,8] and asserting the existence of local normal integral bases
at non ramified places. Here we give a pedestrian proof resting only on basic
facts of number theory.

Proposition 1. Let K/Fq(T ) be a finite Galois extension of Galois group G
and OK be the integral closure of Fq[T ] in K. Let Q ∈ Fq[T ] be an irreducible
polynomial such that the corresponding prime ideal is unramified and has inertia
degree d. Denote by P1 · · ·Pm the decomposition of the ideal QOK . Then, G
acts on the finite dimensional algebra OK/QOK and there exists x ∈ OK/QOK
such that (σ(x))σ∈G is an Fq–basis of OK/QOK .

Proof. Consider the decomposition group DP1/Q. As explained Section 2 and in
particular in Equation (4), since QOK is unramified, this decomposition group is
isomorphic to Gal(OK/QOK ,Fq) = Gal(Fqd ,Fq). This entails in particular that
#DP1/Q = d.
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According to the Chinese Remainder Theorem,

OK/QOK ≃ OK/P1 × · · · × OK/Pm.

Next, from the Normal basis Theorem (see for instance [21, Thm. 2.35]), there
exists a ∈ OK/P1 such that (σ(a))σ∈DP1/Q

is an Fq–basis of OK/P1. Now, let

b
def
= (a, 0, . . . , 0) ∈

m∏
i=1

OK/Pi ≃ OK/QOK .

We claim that (σ(b))σ∈G is an Fq–basis of OK/QOK . Indeed, denote by V the
Fq–span of {σ(b) | σ ∈ G} and suppose that V is a proper subspace of OK/QOK .
Then, there exists i ∈ J1,mK such that

V ∩ OK/Pi ⊊ OK/Pi,

where we denote by OK/Pi the subspace {0}×· · ·×{0}×OK/Pi×{0}×· · ·×{0}
of

∏
i OK/Pi.

Since G acts transitively on the Pi’s, there exists σ0 ∈ G such that σ0(P1) =
Pi. Then, σ0(b) ∈ V ∩ OK/Pi and so does σσ0(b) for any σ ∈ DPi/P . Since
V ∩OK/Pi ⊊ OK/Pi, then dimFq

V < d while #DPi/Q = d. Hence, there exist
nonzero elements (λσ)σ∈DPi/Q

∈ Fdq such that∑
σ∈DPi/Q

λσσσ0(b) = 0. (6)

Applying σ−1
0 to (6), we get ∑

σ∈DPi/Q

λσσ
−1
0 σσ0(b) = 0.

As mentioned in Section 2, we have σ−1
0 DPi/Qσ0 = DP1/Q and we deduce that

the above sum is in OK/P1 and, since a is a generator of a normal basis of Fq,
we deduce that the λσ’s are all zero. A contradiction. ⊓⊔

The previous proposition asserts the existence of a normal Fq–basis of the
space OK/QOK , i.e. a Galois invariant basis. For any such basis, (bσ)σ∈G one
can define a Galois noise distribution by sampling linear combinations of ele-
ments of this basis whose coefficients are independent Bernouilli random vari-
ables. Our Ring–LPN distribution is hence defined as pairs (a,b) ∈ OK/QOK ×
OK/QOK such that a is drawn uniformly at random and b = as+ e where e is
a noise term drawn from the previously described distribution.

Definition 7 (Galois modulus). Let r and d be positive integers. A polyno-
mial f(X) ∈ Fq[X] of degree r is called a Galois modulus of inertia d if there
exists a Galois function field K/Fq(T ) and a polynomial Q(T ) ∈ Fq[T ] of degree
one such that Fq[X]/(f(X)) ≃ OK/QOK and the ideal QOK has inertia degree
d and does not ramify.
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This definition entails that for a polynomial f(X) ∈ Fq[X] to be a Galois
modulus, it needs to factorize in Fq[X] as a product of distinct irreducible poly-
nomials of same degree d.

Carlitz extensions permit to easily exhibit many Galois moduli of given iner-
tia d. Indeed, let M(T ) ∈ Fq[T ] be any divisor of T d − 1 which vanishes at least
at one primitive d–th root of unity. Set

r
def
=

#
(
Fq[X]/(M(X))

)×

d
·

Then, any polynomial f(X) ∈ Fq[X] which is a product of r distinct irreducible
polynomials of degree d is a Galois modulus. Indeed, Fq[X]/(f(X)) is isomorphic
to a product of r copies of F2d and, since the multiplicative order of T modulo
M(T ) is d, from Theorem 5 so does OM/TOM .

Example 7. The polynomial f(X)
def
= X63+X7+1 ∈ F2[X] is a Galois modulus

of inertia 9. Indeed, let M(T )
def
= T 6 + T 3 + 1 and consider KM the Carlitz

extension of M–torsion. Denote by OM the integral closure of F2[T ] in OM .
Then T 9 ≡ 1 mod M and 9 is the smallest integer that has this property. By
Theorem 5, the ideal TOM splits into 7 ideals P1, . . . ,P7 and has inertia 9, and
one can prove that OM/(TOM ) ≃ F2[X]/(f(X)).

Remark 13. The polynomial f(X) of Example 7 is also lightness-preserving in
the sense of [12, Def 2.22] which can be used to instantiate Ring-LPN.

We are now ready to define a new noise distribution which is Galois invariant
for Ring–LPN. We propose to consider it in Lapin as it enables to apply our
search to decision reduction. In the following definition, B denotes a normal basis
whose existence is ensured by Proposition 1. Note that B need not be exactly
the normal basis constructed in the proof of Proposition 1. This is discussed
further, after the statement of Theorem 8.

Definition 8 (Normal Ring–LPN distribution). Let r, d be positive integers,
p ∈ [0, 12 ) and let f(X) ∈ Fq[X] be a Galois modulus of degree r with inertia d.

Denote by B
def
= (σ(c)(X))σ∈Gf

the normal basis of Fq[X]/(f(X)) where Gf is
the Galois group of the related function field.

A sample (a,b) is distributed according to the Normal RLPN distribution
relatively to basis B, with secret s if

• a is drawn uniformly at random over Fq[X]/(f(X));

• b
def
= as + e, where e(X)

def
=

∑
σ∈Gf

eσσ(c)(X) ∈ Fq[X]/(f(X)) has coef-
ficients ei’s which are independent q–ary Bernouilli random variables with
parameter p.

Theorem 8. The decision Ring–LPN is equivalent to its search version for the
normal Ring–LPN distribution.



On Codes and Learning with Errors over Function Fields 25

Let us discuss further the choice of the noise distribution and hence that of
a Galois-invariant basis. In [18], the authors discuss the case of Ring–LPN when
the modulus f splits and mention that in this situation, the Ring–LPN problem
reduces to a smaller one by projecting the samples onto a factor Fq[X]/(fi(X))
of the algebra Fq[X]/(f(X)). The projection onto such a factor, reduces the size
of the inputs but increases the rate of the noise.

It should be emphasized that the Galois invariant basis constructed in the
proof of Proposition 1 yields a noise which is partially cancelled when applying
the projection OK/QOK → OK/Pi, hence, this choice of normal basis might be
inaccurate. On the other hand, Proposition 1 is only an existence result and it
turns out actually that a random element of OK/QOK generates a normal basis
with a high probability. Indeed, the existence of such a normal basis can be
reformulated as OK/QOK is a free Fq[G]–module of rank 1 and a generator a ∈
OK/QOK is an Fq[G]–basis of OK/QOK . Now, any other element of Fq[G]×a is
also a generator of a normal basis. Consequently, the probability that a uniformly
random element of OK/QOK is a generator of a normal basis is

#Fq[G]×

#Fq[G]
·

If for instance, G is cyclic of order N prime to q. Then XN − 1 splits into a
product of distinct irreducible factors u1 · · ·ur and Fq[G] ≃ Fq[X]/(XN − 1) ≃∏
i Fq[X]/(ui(X)). In this context, the probability that a uniformly random el-

ement of OK/QOK generates a normal basis is∏r
i=1(q

deg ui − 1)

qN
·

Conclusion

We introduced a new formalism to study generic problems useful in cryptography
based on structured codes. This formalism rests on the introduction of function
fields as counterparts of the number fields appearing in cryptography based on
structured lattices. Thanks to this new point of view, we succeeded in producing
the first search to decision reduction in the spirit of Lyubashevsky, Peikert and
Regev’s one for Ring-LWE. We emphasize that such reductions were completely
absent in cryptography based on structured codes and we expect them to be a
first step towards further search to decision reductions.

If one puts into perspective our current assessment with lattice-based cryp-
tography, [23] focuses on cyclotomic number fields, and defines the error distribu-
tion to be a Gaussian over Rn through the Minkowski embedding. Furthermore,
the modulus q is chosen to split completely. Then, following this result, [20] uses
a “switching modulus” technique in order to relax the arithmetic assumption on
the prime modulus, so that it can be arbitrarily chosen. Finally, the search to
decision reduction is proved in [31] to hold even when the extension is not Ga-
lois, using the Oracle with Hidden Center Problem (OHCP) technique from [28].
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Note that this powerful technique has been used recently to provide a search to
decision reduction in the context of NTRU [29]. Even though our work does not
reflect these recent progresses, we believe, as it was shown by our instantiations,
that the introduction of the function field framework paves the way for using
these techniques in the code setting in order to get a full reduction applying to
cryptosystems such as HQC or Bike.
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