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Abstract. We present a much-improved practical protocol, based on the
hardness of Module-SIS and Module-LWE problems, for proving knowl-
edge of a short vector s⃗ satisfying As⃗ “ t⃗ mod q. The currently most-
efficient technique for constructing such a proof works by showing that
the ℓ8 norm of s⃗ is small. It creates a commitment to a polynomial vector
m whose CRT coefficients are the coefficients of s⃗ and then shows that
(1) A ¨CRTpmq “ t⃗ mod q and (2) in the case that we want to prove that
the ℓ8 norm is at most 1, the polynomial product pm ´ 1q ¨ m ¨ pm ` 1q

equals to 0. While these schemes are already quite practical, the require-
ment of using the CRT embedding and only being naturally adapted to
proving the ℓ8-norm, somewhat hinders the efficiency of this approach.

In this work, we show that there is a more direct and more efficient way
to prove that the coefficients of s⃗ have a small ℓ2 norm which does not re-
quire an equivocation with the ℓ8 norm, nor any conversion to the CRT
representation. We observe that the inner product between two vectors
r⃗ and s⃗ can be made to appear as a coefficient of a product (or sum of
products) between polynomials which are functions of r⃗ and s⃗. Thus, by
using a polynomial product proof system and hiding all but one coeffi-
cient, we are able to prove knowledge of the inner product of two vectors
(or of a vector with itself) modulo q. Using a cheap, “approximate range
proof”, one can then lift the proof to be over Z instead of Zq. Our proto-
cols for proving short norms work over all (interesting) polynomial rings,
but are particularly efficient for rings like ZrXs{pXn

` 1q in which the
function relating the inner product of vectors and polynomial products
happens to be a “nice” automorphism.

The new proof system can be plugged into constructions of various
lattice-based privacy primitives in a black-box manner. As examples, we
instantiate a verifiable encryption scheme and a group signature scheme
which are more than twice as compact as the previously best solutions.

1 Introduction

The fundamental hardness assumption upon which lattice-based cryptography
rests is that it is computationally difficult to find a low-norm vector s satisfying

As “ t mod q. (1)
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It is then natural that for creating privacy-preserving protocols based on the
hardness of lattice problems, one is usually required to prove the knowledge of
an s satisfying the above, or a related, equality. Unlike in the analogous case
of discrete logarithms, where proving knowledge of a secret s satisfying gs “ t
turns out to have a very simple and efficient solution [36], the added requirement
of showing that }s} is small turns out to be a major complication for practical
lattice cryptography.

Over polynomial rings (i.e. rings of the form ZrXs{pfpXqq, where fpXq is
a monic, irreducible polynomial), one can give a fairly-efficient zero-knowledge
proof of knowledge of a vector s̄ and a polynomial c with small coefficients
satisfying

As̄ “ ct mod q, (2)

where }s̄} is some factor (depending on the dimension of s) larger than }s}

[24, 25]. While such proofs are good enough for constructing fairly efficient basic
protocols (e.g. signature schemes [24, 25, 4, 15]), the fact that the norm of
the extracted s̄ is noticeably larger than that of s, along with the presence of
the extra multiplicand c, makes these proofs awkward to use in many other
situations. This very often results in the protocols employing these proofs being
less efficient than necessary, or in not giving the resulting scheme the desired
functionality.

As simple examples of inefficiencies that may creep up when only being able
to prove (2), consider Regev-style lattice-based encryption schemes (e.g. [35, 32])
where s is the randomness (including the message) and t is the ciphertext. In
order to decrypt, it is necessary for t to have a short pre-image, and so being
able to only prove knowledge of (2) is not enough to guarantee that the cipher-
text t can be decrypted because it is ct that has a short pre-image, not t (and
c is not known to the decryptor). A consequence of this is that the currently
most-efficient lattice-based verifiable encryption scheme [26] has the undesirable
property that the expected decryption time is equal to the adversary’s running
time because the decryptor needs to essentially guess c. Employing this scheme
in the real world would thus require setting up a scenario where the adversary
cannot use too much time to construct the proof. Other lattice-based construc-
tions (e.g. group signature schemes [28]) were required to select much larger
parameters than needed in order to accommodate the presence of the multi-
plicand c and the “slack” between the length of the known solution s and the
solution s̄ that one can prove.

1.1 Prior Art for Proofs of (1)

Early protocols for exactly proving (1) used the combinatorial algorithm of Stern
[37] to prove that the ℓ8 norm of s is bounded by revealing a random permu-
tation of s. The main problem with these protocols was that their soundness
error was 2{3, and so they had to be repeated around 200 times to achieve an
acceptably small (i.e. 2´128) soundness error. This resulted in proofs for even
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basic statements3 being more than 1MB in size [23], while more interesting con-
structions required outputs on the order of dozens of Megabytes (e.g. [22]). A
noticeable improvement was achieved in [9] by generically combining Stern’s pro-
tocol with a “cut-and-choose” technique to noticeably decrease the soundness
error of each protocol run (at the expense of higher running times). This allowed
proofs for basic statements to be around 200KB in size.

A very different, more algebraic, approach for proving (1) utilized lattice-
based commitments and zero-knowledge proofs about committed values to prove
relations between the coefficients of s and also prove a bound on its ℓ8 norm.
The first such protocols [38, 11, 17] had proof sizes that were on the order of
several hundred kilobytes. These schemes were greatly improved in [3, 16], where
it was shown how to very efficiently prove products of polynomial products over
a ring and then linear relations over the CRT coefficients of committed values.
Optimizations of these techniques [31] decreased the proof size for the basic
example to around 33KB.

The high level idea for these proofs, when s has coefficients in the set t´1, 0, 1u,
is to create a BDLOP commitment [6] to a polynomial m whose CRT coefficients
are the coefficients of s, prove this (linear) relationship as well as the one in (1)
[16], and then prove that pm ´ 1q ¨ m ¨ pm ` 1q “ 0 [3].

There are a few intrinsic elements of this approach which hinder its efficiency,
especially in certain situations. The first is that m consists of large polynomial
coefficients, and so committing to it requires using a more expensive commit-
ment scheme, which is especially costly when s is long4 (we discuss this in more
detail when talking about various commitments in Section 1.3). Another down-
side is that for vectors s with somewhat-large coefficients, such as ones that are
obtained from trapdoor sampling (e.g. [1, 34]), proving the smallness of the ℓ8-
norm becomes significantly costlier because the degree of the polynomial product
increases. There is also an incompatibility between the requirement that the un-
derlying ring has a lot of CRT slots and negligible soundness error of the protocol
– thus a part of the protocol needs to be repeated for soundness amplification.
And finally, proving the ℓ2 norm, rather than the ℓ8 one, is very often what
one would like to do when constructing proofs for lattice-based primitives. This
is because efficient trapdoor-sampling used in many lattice primitives produces
vectors of (tightly) bounded ℓ2 norm, and noise also generation generally results
in tight ℓ2-norm bounds.

3 A standard example that has been used for comparison-purposes in several works
is 1024 ˆ 2048 integer matrix A, a 32-bit modulus q, and s having coefficients in
t´1, 0, 1u (or }s} ď

?
2048).

4 The aforementioned framework was most appropriate for committing to small-
dimensional messages (e.g. in protocols related to anonymous transactions (e.g.
[19, 31, 18]) and proving various relationships between them.
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1.2 Our Results

We propose a simpler, more efficient, and more direct approach for proving a
tight bound on the ℓ2 norm of s satisfying (1). Unlike in the previous approach,
we do not need to recommit to s in CRT form, and therefore don’t have a ring
algebra requirement which had a negative effect on the protocol soundness. Fur-
thermore, not needing to create a BDLOP commitment to s noticeably shrinks
the proof size. In particular, we define a commitment scheme which combines
the Ajtai [2] and BDLOP [6] commitments into one, and then put the long com-
mitment to s into the “Ajtai” part of the commitment scheme, which does not
increase the commitment size.5

We then observe that the inner product of two vectors over Z can be made
to appear as the constant coefficient of a polynomial product, or as a coefficient
in a sum of polynomial products. Our protocol for proving the ℓ2-norm of s is
then a specific application of a more general protocol that can prove knowledge
of constant coefficients of quadratic relations over polynomial rings for messages
that are committed in the “Ajtai” and “BDLOP” parts of our new commitment.
Our protocols are built up in a black-box manner from basic building blocks,
and can then also be used in a black box manner for implementing the zero-
knowledge proof parts of various lattice-based primitives. As examples, the ZK
proof of the basic relation from (1) is « 2.5X shorter than in previous works,
a verifiable encryption scheme can be as short as the one from [26] without the
constraint that the decryption time is proportional to the adversary’s attack
time, and we give a group signature scheme whose signatures are more than 2X
smaller than the currently most compact one.

Our proof system for the basic equality from (1) is around 14KB, and ap-
proximately 8KB of that consists of just the “minimum” commitment (i.e. a
commitment to just one element in Rq that doesn’t include s) and its opening
proof. This shows that our construction is quite close to being optimal for any
approach that requires creating a commitment to s using known lattice-based
commitment schemes. Since all zero-knowledge proofs that we’re aware of for
showing that a secret s satisfies fpsq work by first committing to s, it appears
that any significant improvement to this proof system (e.g. another factor of 2)
would require noticeable improvements in fundamental lattice primitives, basing
security on stronger assumptions, or a noticeable departure from the current
approach.

We now give a detailed overview of the techniques and results in this work,
and then sketch how our framework can be used to construct lattice-based pri-
vacy protocols.

1.3 Techniques Overview

Throughout most of the introduction and paper, we will concentrate on the
ring Rq “ ZqrXs{pXd ` 1q, as our constructions are most efficient here because

5 The BDLOP part of the commitment scheme is then used for low-dimensional aux-
iliary elements that will need to be committed to later in the protocol.
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they can utilize a specific automorphism in this ring. Towards the end of this
section and in the full version of the paper [27], we describe how to adapt our
construction, and most applications, to other rings that do not have this algebraic
structure. All our constructions will be based on the hardness of the Module-SIS
and Module-LWE problems and one should think of the degree of the underlying
ring d to be something small like 64 or 128 (we use 128 for all our instantiations).

Commitment Schemes. In the original Ajtai commitment scheme, implicit in
[2], one commits to a message s1 using randomness s2, where }si} are small, as

A1s1 ` A2s2 “ t mod q. (3)

It’s easy to see that creating a second valid opening ps1
1, s

1
2q for the same com-

mitment value t is equivalent to solving the SIS problem over Rq, and the hid-
ing aspect of the commitment scheme is based on the indistinguishability of
pA2,A2s2q from uniform. A useful feature of the above commitment scheme is
that the dimension of the message s1 does not increase the commitment size.
And since the hardness of SIS does not really depend on the dimension of the
solution, increasing the dimension of s1 does not negatively impact the security
either. On the other hand, one does need the coefficients of s1 to be small.

A different commitment scheme, called the BDLOP scheme [6], commits to
a message m using randomness s as

„

A
B

ȷ

¨ s `

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (4)

where only the randomness s needs to have a small norm. An opening of this
commitment is just s since it uniquely determines m, and so it is again easy to
see that two different openings lead to a solution to SIS for the matrix A. The
hiding property of this commitment is based on the indistinguishability from

uniform of

ˆ„

A
B

ȷ

,

„

A
B

ȷ

¨ s

˙

.

This scheme has two advantages and one disadvantage over the one in (3).
The disadvantage is that both the commitment size and the opening size grow
linearly with the dimension of the message vector m. An advantage is that
the coefficients of m can be arbitrarily large modulo q. The other advantage
is that if one plans ahead and sets the dimension of s large enough, one can
very cheaply append commitments of new elements in Rq. For example, if we
have already created a commitment to m as in (4) and would like to commit
to another polynomial vector m1, we can compute B1s ` m1 “ t1

B mod q, where

B1 is some public randomness. If

¨

˝

»

–

A
B
B1

fi

fl ,

»

–

A
B
B1

fi

fl ¨ s

˛

‚ is indistinguishable from

uniform, then ptA, tB , t
1
Bq is a commitment to m,m1. Note that committing to k

extra Rq elements requires growing the commitment size by only k Rq elements,
something that cannot be done using the scheme from (3).
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For optimality, our construction will require features from both of these
schemes, and it actually turns out to be possible to combine the two of them
into one. So to commit to a message s1 with a small norm, and a message m
with unrestricted coefficients (modulo q), one can create a commitment

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (5)

where the randomness is s2. We will call this combination of the Ajtai and BD-
LOP commitment scheme, the ABDLOP commitment. The savings over creating
two separate commitments is that instead of needing the t term from (3) and
the tA term from (4), we only have the tA term. So we get an Ajtai commitment
to s1 for free! And similarly, the opening does not require both s2 from (3) and
s from (4).

One can show that (5) is indeed a commitment scheme and has an effi-
cient zero-knowledge opening proof.6 Furthermore, there is also an efficient zero-
knowledge proof (much like in [6]) which allows one to efficiently show that the
committed values s1,m satisfy a relation over Rq

R1s1 ` Rmm “ u mod q, (6)

where the matrices R1,Rm, and the vector u are public. This proof system is
given in Figure 4, and we just mention that the proof size is not affected by the
sizes of R1 and Rm. In other words, the proof size for proving linear relations
over Rq is the same as the proof size of just proving knowledge of the committed
values. The only way in which this proof puts a restriction on the underlying ring
is that the modulus q must be large enough so that the extracted SIS solution
is hard, and that the challenge set C is such that the difference of challenges is
(with high probability) invertible. This can be done by choosing the modulus q
in a way that Xd ` 1 splits into very few irreducible factors of the form Xk ´ ri
modulo q (or the prime factors of q), which in turn implies that all elements of
Rq with small coefficients are invertible [33].

The way this commitment scheme will be used in our protocols is that we
will put high-dimensional messages with small coefficients into s1, while putting
small-dimensional values with large coefficients – generally auxiliary “garbage
terms” that we will need to commit to during the protocol which aid in proving
relations among the elements in s1 – into m.

Inner Products over Zq. Suppose that instead of just wanting to prove linear
relations over Rq, as above, we wanted to prove linear relations over Zq. That
is, if we let R1, Rm be integer matrices, and we write s⃗1 and m⃗ to be integer
vectors whose coefficients are the integer coefficients of the polynomial vectors
s1 and m, then we would like to prove that R1s⃗1 ` Rmm⃗ “ u⃗ mod q.

6 As for the Ajtai and BDLOP commitments, the opening needs to be carefully defined
because the ZK proof only proves approximate relations as in (2). The details are in
Section 3.1.
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An important observation is the following: if r⃗ “ pr0, r1, . . . , rd´1q, s⃗ “

ps0, s1, . . . , sd´1q P Zd
q are vectors and rpXq “

ř

i riX
i, spXq “

ř

i siX
i P Rq

are the corresponding polynomials, then xr⃗, s⃗y mod q is equal to the constant co-
efficient of the polynomial product rpX´1q ¨ spXq over Rq.

7 Similarly, for r⃗, s⃗ P

Zkd
q , one can define the corresponding polynomial vectors r “ pr1, . . . , rkq, s “

ps1, . . . , skq P Rk
q to have the same coefficients as r⃗, s⃗ in the straightforward man-

ner, then xr⃗, s⃗y mod q is equal to the constant coefficient of
ř

i ripX
´1q ¨ sipXq,

where the multiplication is performed over Rq.

For a polynomial h “ h0`h1X`. . .`hd´1X
d´1 P Rq, we will write rh to mean

the constant coefficient h0. The procedure to prove that xr⃗, s⃗y mod q “ α is then

to create polynomial vectors r, s such that Ćxr, sy (where the inner product is over
Rq) is equal to xr⃗, s⃗y. One can hope to use the protocol from Figure 4 to prove
the linear relation over Rq, which would imply the linear relation over Zq. The
problem is that naively proving the relation over Rq would necessarily require
the prover to reveal all the coefficients of xr, sy instead of just the constant one,
which implies giving out extra information about the committed vector s⃗, and
so is clearly not zero-knowledge.

We now outline the solution to this problem for general linear functions. For
a linear function f : Rk

q Ñ Rq, we would like to prove that the committed values

s1,m in the ABDLOP commitment satisfy rfps1,mq “ 0 (for aesthetics, we will

write rfpxq to mean Ćfpxq). In order to mask all but the constant coefficient, we
use a masking technique from [16], where the prover first creates a commitment
to a polynomial g P Rq such that rg “ 0 and all of its other coefficients are chosen
uniformly at random. In our proof system, he commits to this polynomial in the
“BDLOP part” of (5) by outputting tg “ xb, s2y ` g, where b is some random
public polynomial vector. The verifier then sends a random challenge γ P Zq,
and the prover computes

h “ γ ¨ fps1,mq ` g. (7)

The prover then creates a proof, as in Figure 4, that the committed values
s1,m, and g satisfy this linear relation, and sends h along with this proof to the
verifier. The verifier simply checks the validity of the linear proof, and also that
rh “ 0 mod q.

The proof leaks no information about all but the constant coefficient of
fps1,mq because they are masked by the completely random coefficients of

g. To see that this proof is sound, note that for all g, if rfps1,mq ‰ 0, then

Prγrγ ¨ rfps1,mq ` rg “ 0s ď 1{q1, where q1 is the smallest prime factor of q. In
order to reduce the soundness error down to ϵ, the prover would need to create
a commitment to λ different gi, where p1{q1qλ “ ϵ and then reply to λ different
challenges γi by creating λ different hi as in (7). Since the gi are just one poly-
nomial in Rq, the hi are also just one polynomial each, and so amplifying the
proof requires sending just 2λ extra elements in Rq.

7 For a polynomial rpXq “
d´1
ř

i“0

riX
i

P Rq, rpX´1
q “ r0 ´

d´1
ř

i“1

riX
d´i.
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The above shows that proving one relation rfps1,mq “ 0 requires a small
number λ of extra polynomials g and h. Usually, we will want to prove many
such linear equations, and so it would be quite inefficient if our proof size grew
linearly in their number. But, just like in the basic protocol in Figure 4, we can
show that the number of equations that we need to prove does not affect the
size of the proof. If we would like to prove k equations rfips1,mq “ 0, the prover
still sends the term g in the first round (let’s ignore the amplification for now),
but this time instead of sending just one random challenge γ P Zq, the verifier
sends k random challenges γi. The prover then creates the equation

h “
ÿ

i

γi ¨ fips1,mq ` g, (8)

and sends h along with a proof that the s1,m, and g satisfy the above. The
verifier checks the proof and that rh “ 0 mod q. Hence, the fact that this proof
leaks no information and that the soundness error is again 1{q1 is virtually
identical as for (7).

Quadratic Relations and Norms. In the above, we saw an overview of how
one can prove knowledge of inner products over Rq and Zq when one of the
values is committed to and the other is public. We now show how to do the
same thing when both values are in the commitment – in other words, how to
prove quadratic relations over committed values.

The most efficient protocol for proving quadratic relations between commit-
ted polynomials in Rq is given in [3]. That protocol assumes that the elements
were committed using the BDLOP commitment scheme, and one can show that
a similar approach works for the ABDLOP scheme as well. And so one can prove
arbitrary quadratic relations over Rq between the committed polynomials in the
polynomial vector s1 and m in (5). We will now explain how to use this proof
system, together with the ideas presented above, to construct a proof that the
s satisfying (1) has small ℓ2-norm. For simplicity of this description, let’s just
suppose that we would like to prove that }s} “ β instead of }s} ď β.8 The idea
is to first commit to s as part of the s1 part of (5) (i.e. in the “Ajtai part” of
the ABDLOP scheme). Then we use the observation from the previous section
that notes that if s1 “ ps1, . . . , skq P Rk

q , then }s}2 is the constant coefficient
of

ř

i sipX
´1q ¨ sipXq. We cannot directly use the proof system for linear proofs

because that one assumed that one of the multiplicands was public. We thus
need to extend the protocol from [3] to prove knowledge of

ř

i sipX
´1q ¨ sipXq

when having a commitment to s.
Let us recall the main ideas from [3] and then see how they can be applied to

the ABDLOP commitment. Suppose, for example, that we wanted to prove that

8 To prove the latter, one would commit to a vector b⃗ which is the binary represen-
tation of the integer β2

´ }s}
2 and then prove that it is indeed binary and that

x⃗b, p1, 2, 22, ...0, . . . , 0qy is β2
´ }s}

2; which implies that the latter is positive. Note

that it is still a quadratic relation in the committed values s and b⃗.
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s1s2 ´ s3 “ 0, and we had commitments to si in the Ajtai part of the ABDLOP
commitment (i.e. the si are part of the s1 in (5)). If one looks at the protocol in
Figure 4 for proving knowledge of committed values in the ABDLOP protocol,
then we note that the prover sends the vector z1 “ cs1 ` y1. This z1 consists of
terms zi “ sic ` yi, where c is a polynomial challenge (with small coefficients)
and yi is a masking polynomial whose job is to hide si.

The high level idea in which the protocol from [3] (and some that preceded it
[11, 17, 38]) proves quadratic relations is by having the verifier create a quadratic
equation (in c) out of the linear equations zi “ csi ` yi. That is, the verifier
computes

z1z2 ´ cz3 “ ps1s2 ´ s3qc2 ` g1c ` g0, (9)

where g1 and g0 are some terms which depend on yi and si and are committed
to by the prover prior to receiving the challenge c.9 The above is a quadratic
equation in the variable c (since all the other terms are already committed
to), and so if the prover shows that z1z2 ´ cz3 “ g1c ` g0 (i.e. it’s actually a
linear equation) it will imply that with high probability the quadratic coefficient,
s1s2 ´ s3 is equal to 0.

To prove that the constant coefficient of spX´1q ¨ spXq is some value β, one
can try to do something similar. Here, it becomes important that the function
mapping s to spX´1q is an automorphism (call it σ) for Rq. Given the term
z “ sc ` y, the verifier is able to compute

σpzq¨z´σpcq¨c¨β2 “ pσpsq¨s´β2q¨σpcq¨c`σpsq¨y ¨σpcq`s¨σpyq¨c`σpyq¨y, (10)

and, if the above is equal to g2 ¨σpcq ` g1 ¨ c` g0, would like to conclude that the
coefficients in front of σpcq ¨ c is 0. Unfortunately, we can’t conclude this because
the c and σpcq are not independent. What we instead do is choose the challenges
c from a set that is fixed under this automorphism – that is, σpcq “ c. Then (10)
becomes

σpzq ¨ z ´ c2β2 “ pσpsq ¨ s ´ β2q ¨ c2 ` pσpsq ¨ y ` s ¨ σpyqq ¨ c ` σpyq ¨ y, (11)

and we again have a quadratic equation in c. Luckily, the requirement that
σpcq “ c does not restrict the challenge set too much. In particular, if we choose

c P Rq to be of the form c “ c0 `
d{2´1

ř

i“1

ci ¨ pXi ´ Xd´iq, where ci P Zq, then

c “ σpcq.10 So we are free to set d{2 coefficients of the challenge polynomial
instead of the usual d. So obtaining the same soundness requires the coefficients
to be a little larger, but this has a rather small effect on the proof size.

The protocol in Figure 5 is a very general protocol for proving that a quadratic
function in the coefficients of s1 and m, and the automorphisms of s1 and m,

9 [3] showed that the yi were already implicitly committed to by the first part of the
protocol.

10 This is easy to see because σpXi
´Xd´i

q “ X´i
´Xi´d, and multiplying by ´Xd

“ 1,
we obtain σpXi

´ Xd´i
q “ ´Xd´i

` Xi.
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is satisfied as long as the challenge set is fixed under the particular automor-
phism. If we only want to prove the ℓ2 norm, then we do not want to prove a
quadratic function over Rq, but rather we just want to prove something about
the constant coefficient of a quadratic relation over Rq. To do this, we employ
the same masking technique as in (7) that we used for our linear proofs over Zq.
Furthermore, just like in the linear proofs setting, if we need to prove multiple
quadratic relations, we can first combine them into one equation, and then the
proof size does not increase. Also note that we can clearly combine linear and
quadratic equations together into one quadratic equation. The full protocol is
presented in Figure 7.

We are almost done, except for the fact that all of our proofs are modulo q.
That is, the protocol only proves that }s}2 “ β2 mod q, which is not the same
as proving }s}2 “ β2. In order to prove that there is no “wraparound” modulo
q, we employ a version of the “approximate range proof” technique to show
that the coefficients of s are all small-enough. We do not need a sharp bound
on these coefficients, but just need to show that they are small-enough that no
wraparound occurs. For this, we use the technique [7, 8, 29, 20] of committing
to a masking vector y⃗ (in the BDLOP part of (5)), receiving a ´1{0{1 challenge
matrix R, and outputting z⃗ “ Rs⃗ ` y⃗ (and doing a rejection sampling to hide
s⃗). It can be shown that if }z⃗} is small, then }s⃗} is also small. The dimension of
y⃗ and z⃗ is small (between 128 and 256), and so the extra commitment to y⃗ and
the revealing of z⃗ is inexpensive. The protocol for the approximate range proof,
and the general protocol proving these approximate range proofs in combination
with other quadratic functions are given in the full version of the paper [27].

Putting Everything Together. The structure for proving (1) involves creat-
ing an ABDLOP commitment as in (5) with s1 “ s and making the randomness
s2 long enough to accommodate future commitments to a few intermediate terms
necessary in the proof. One then uses the aforementioned proofs to show that
}s1} is small, and that the linear equation in (1) is satisfied. Notice that we
don’t really need any ring structure on the equation in (1); if it is over Zq, we
can simply prove it using the linear proofs over Zq. This is computationally more
expensive than if the equation were over Rq, because for every multiplication
over Zq, we have to compute one multiplication over Rq, but the proof size will
be the same.

We also note that the modulus in (1) does not have to be the same as in the
commitment scheme. In fact, it will often be necessary to use a larger modulus
in the commitment scheme because it has to be larger than }s}2. For example,
we can set the commitment scheme modulus to p ¨ q and then simply lift the
equation in (1) to this modulus by multiplying both sides of it by p. As long as
the challenge differences are invertible in the ring Rq and Rp, all the protocols
go through unchanged.

Another possibility is, instead of proving As “ t mod q, one proves that

As ´ t “ r ¨ q (12)

10



over the integers. If each row of A consists of m integer coefficients, then each
coefficient of r has magnitude at most mq. One can then do the proof system
using a larger modulus p, and also prove that each coefficient of q´1pAs´tq mod
p is small using the approximate range proof. The advantage of this method over
using pq as the modulus for the commitment scheme, as above, is that it allows
the commitment scheme modulus p to be a prime, and so one needs fewer terms
for coefficient masking (see the discussion after (7)), which could save a few
kilobytes in the complete proof. A disadvantage is that there is now the extra
secret r term that needs to be dealt with.

Useful Extensions. While we concentrated on proving the smallness of the
ℓ2-norm of a vector s⃗ (or more generally the knowledge of the inner product
between two vectors), it is also possible to use our techniques to prove many other
inter-vector relations. In particular, a useful relation (e.g. if dealing with general
functions/circuits) is proving the knowledge of the component-wise product r⃗˝ s⃗.
This can be generally accomplished by proving a polynomial product over a ring
Rp of two vectors r and s whose CRT coefficients are r⃗ and s⃗. The important
thing is to choose a prime p such that the polynomial Xd ` 1 factors into linear
factors modulo p. As mentioned above, by simply subtracting off the remainder as
in (12), one can use different moduli for the commitment scheme for the relations
that we would like to prove. Thus one can choose a “CRT-friendly” modulus
for the underlying relation, while using a modulus that allows the polynomial
differences to be invertible (so not a CRT-friendly one) for the commitment
scheme.

We also point out that proving inner products can be directly used to prove
another very natural function – showing that all the coefficients of a vector are
from the set t0, 1u. For this, one uses the observation that s⃗ has coefficients in
t0, 1u if and only if xs⃗, 1⃗ ´ s⃗y “ 0. And since given a commitment for s⃗, one can
maul it into a commitment to 1⃗´s⃗, one can generically apply the aforementioned
protocol in Figure 7.

Using Other Rings. In proving that the norm of a polynomial s was small,

we exploited the fact that in the ring R, ČspX´1q ¨ s “ }s}2 and that spX´1q

was an automorphism. In the full version of the paper, we show that the same
high level ideas can also be made to work for rings that don’t have this algebraic
structure. Specifically, for all rings R “ ZrXs{pXd ` fd´1X

d´1 ` . . .` f1X ˘ 1q,

there exists a linear function g : R Ñ R such that Čgprq ¨ s is equal to xr⃗, s⃗y.

If g is not an automorphism, then proving knowledge of }s}2 “ Čgpsq ¨ s would
require the prover to commit to both s and gpsq, and then also prove the linear
relationship between the commitments of s and gpsq. Opening two commitments
instead of one will increase the proof size, but this is slightly mitigated by the
fact that the challenges no longer need to be restricted to be fixed under any
automorphism.

11



Sample Constructions. In the full version of the paper, we present various
instantiations of lattice-based primitives that can be constructed using our zero-
knowledge proof system. We now give a very high-level description of a group
signature scheme. In a group signature scheme, the Setup Authority uses a mas-
ter secret keys to distribute member secret keys to the members of the group. The
members can then use their secret keys to sign messages on behalf of the group.
An entity known as the Opener (or group manager) also has a special secret key
that allows him to obtain the identity of the signer of any message. The privacy
criterion states that it should be impossible, for everyone but the Opener, to
trace back a signature to the particular user, nor link that two signatures were
signed by the same user. Conversely, the traceability requirement states that
every message signed by a user with identity µ will get traced back to him by
the Opener. Group signatures are an interesting primitive in their own right, but
are particularly useful in determining the practicality of zero-knowledge proofs
as they contain some ingredients which are prevalent throughout privacy-based
cryptography.

We show how we can use our improved ZK proof to construct a lattice-based
group signature following the framework of [13, 28]. The master public key is
rA | Bs,u, and the secret key of a group member with identity µ is a short vector
„

s1
s2

ȷ

such that

rA | B ` µGs ¨

„

s1
s2

ȷ

“ u mod q. (13)

The setup authority with a trapdoor for the lattice L “ tx : rA | Bs ¨ x “

0 mod qu can create such short vectors which are distributed according to a
discrete Gaussian distribution [1, 34].

The group member’s signature of a message consists of a Module-LWE en-
cryption of his identity µ as

„

A1

b

ȷ

¨ r `

„

0
rp{2uµ

ȷ

“ t mod p, (14)

where A1,b is the public key (of the Opener) and r is the randomness, together

with a a ZKPoK that he knows µ, r, and

„

s1
s2

ȷ

satisfying (13) and (14). The

message that the user is signing is, as usual, put into the input of the hash
function used in the Fiat-Shamir transform of the ZKPoK.

To create this signature, the user commits to s1, s2, r, µ in the “Ajtai” part
of the ABDLOP commitment (5). He then proves that the norms of s1, s2, r are
small, that µ has 0{1 coefficients, and that (14) and (13) hold. Notice that (14)
is just a linear equation and proving (13) is proving the quadratic relation As1 `

Bs2 ` Gµs2 “ u mod q. All of these proofs fit into the appropriate quadratic
functions and the full description of the group signature is given in the full
version of the paper.

The security of the scheme rests on the fact that creating a valid proof on a µ
that is not the user’s identity implies having a solution to (13) on a new identity,
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which is directly equivalent to breaking the ABB signature scheme [1, 34], which
in turn implies breaking the Module-SIS problem. Prior to this work, proving
tight bounds on the ℓ2 norm of polynomial vectors with somewhat large coef-
ficients was not very efficient, and so constructions of group signature schemes
using this approach [13, 28] did not prove (13), but rather proved an approx-
imate version of it as in (2) – i.e. they proved knowledge of s̄1, s̄2, c satisfying

rA | B ` µGs ¨

„

s̄1
s̄2

ȷ

“ cu mod q, (15)

where }s̄i} " }si}.

A consequence of being only able to prove the above is a vicious cycle of the
larger norms and the presence of c resulting in a larger extracted solution to
the Module-SIS problem, which in turn requires having a larger modulus for SIS
security, which then also requires a larger lattice dimension for LWE security.
Furthermore, because these schemes relied on the verifiable encryption scheme
of [26], they also did not prove (14), but rather an approximate version of it as
in (2). The implication is that in order to decrypt, the Opener needed to guess
the unknown c, which in expectation requires the same number of guesses as the
adversary’s number of calls to the random oracle during the proof. Thus special
care would be needed to instantiate the scheme in an environment that would
not allow the adversary to be able to have too much time to try and forge a
signature. We believe that efficiently eliminating this requirement in all lattice-
based schemes requiring a verifiable encryption scheme is a notable improvement
on the state of affairs.

Public Key Size Signature Size
Opening Time Independent
of Adversary’s Forgery Time

[28] 96KB 203KB ˆ

This Work 48KB 92KB ✓

Table 1: Our group signature and that of [28].

We compare the instantiation of the group signature from this paper to the
previously most efficient one from [28] in Table 1. We mention that there are also
tree-based group signatures (e.g. [18, 10]) which have shorter outputs for small
group sizes, but have the disadvantage that the signing time, verification time,
and public key size are linear in the group size. The signature length of these
schemes also grows slightly with the group size, and for groups having more than
« 221 members, our scheme has a comparable signature size (in addition to a
much smaller public key and signing/verification times).

11 This paper presents a verifiable decryption scheme, but the proof size for a verifiable
encryption scheme constructed in the same manner would be similar. At the very
least, it needs to be as large as the proof of the basic equation in (1).
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Proof Size

[30] 33KB

This Work 14KB

Ciphertext Size Proof Size
Decryption Time
Independent of
Forgery Time

[26] 9KB 9KB ˆ

[30]11 4KB 33 - 44KB ✓
This Work 1KB 19KB ✓

Table 2: The table on the left compares the difference in proof size of proving knowl-
edge of short s⃗, e⃗ satisfying As⃗ ` e⃗ “ t⃗ mod q, where A P Z1024ˆ1024

q and q « 232,
and }ps⃗, e⃗q} ď

?
2048. The protocol from [30] needs to make the additional restriction

that all the coefficients in s⃗, e⃗ are from t´1, 0, 1u. The table on the right compares our
instantiation of a verifiable encryption scheme from this paper with [26] and [30].

Part of the group signature includes a verifiable encryption scheme, in which
the encryptor proves that the encryption is valid. When looked at separately, this
scheme has a similar size to the one from [26], but with the noticeable advantage
of not having a dependency between the decryption time and the adversary’s
forgery time. We also give a comparison of the proof size for the basic system in
(1) between our proof system and the prior best one from [30] that followed the
framework of [3] and [16]. The comparisons for the verifiable encryption scheme
and the basic proof system are in table 2 and detailed descriptions of the proofs
can be found in the full version of the paper.

Acknowledgements. We would like to thank Ward Beullens for generalising
Lemma 3 for all powers-of-two k (initially, the lemma only covered k “ 1) and
also Damien Stehlé and Elena Kirshanova for their very useful feedback. This
work is supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1, . . . , qn be a product
of n odd primes where q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. We
write v⃗ P Zm

q to denote vectors over a ring Zq. Matrices over Zq will be written
as regular capital letters R. By default, all vectors are column vectors. We write
v⃗||w⃗ for a usual concatenation of v⃗ and w⃗ (which is still a column vector). For
v⃗, w⃗ P Zk

q , v⃗ ˝ w⃗ is the usual component-wise multiplication. For simplicity, we
denote u⃗2 “ u⃗ ˝ u⃗. We write x Ð S when x P S is sampled uniformly at random
from the finite set S and similarly x Ð D when x is sampled according to the
distribution D. Let rns :“ t1, . . . , nu.

For a power of two d and a positive integer p, denote R and Rp respectively
to be the rings ZrXs{pXd ` 1q and ZprXs{pXd ` 1q. Lower-case letters denote
elements in R or Rp and bold lower-case (resp. upper-case) letters represent
column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial

f P Rp, denote f⃗ P Zd
q to be the coefficient vector of f . By default, we write its
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i-th coefficient as its corresponding regular font letter subscript i, e.g. fd{2 P Zp

is the coefficient corresponding to Xd{2 of f P Rp. For the constant coefficient,

however, we will denote f̃ :“ f0 P Zp. The ring R has a group of automorphisms
AutpRq that is isomorphic to Zˆ

2d. Let σi P AutpRqq be defined by σipXq “ Xi.
For readability, we denote for an arbitrary vector m P Rk:

σipmq :“ pσipm1q, . . . , σipmkqq

and similarly σipRq for any matrix R. When we write xu,vy P Z for u,v P Rk,
we mean the inner product of their corresponding coefficient vectors.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the ℓ8

and ℓp norms for w “ w0 ` w1X ` . . . ` wd´1X
d´1 P R as follows:

}w}8 “ max
j

}wj}8, }w}p “
p

b

}w0}
p
8 ` . . . ` }wd´1}

p
8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j

}wj}8, }w}p “
p
a

}w1}p ` . . . ` }wk}p.

By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq.
Denote Sγ “ tx P Rq : }x}8 ď γu.

2.2 Probability Distributions

We first define the discrete Gaussian distribution used for the rejection sampling.

Definition 1. The discrete Gaussian distribution on Rℓ centered around v P Rℓ

with standard deviation s ą 0 is given by

Dℓ
v,spzq “

e´}z´v}
2

{2s2

ř

z1PRℓ e´}z1}2{2s2
.

When it is centered around 0 P Rℓ we write Dℓ
s “ Dℓ

0,s.

We will use the following tail bound, which follows from [5, Lemma 1.5(i)].

Lemma 1. Let z Ð Dm
s . Then Pr

”

}z} ą t ¨ s
?
md

ı

ă

´

te
1´t2

2

¯md

.

Next, we recall the binomial distribution.

Definition 2. The binomial distribution with a positive integer parameter κ,
written as Binκ is the distribution

řκ
i“1pai ´ biq, where ai, bi Ð t0, 1u. The

variance of this distribution is κ{2 and it holds that Binκ1
˘ Binκ2

“ Binκ1`κ2
.
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2.3 Module-SIS and Module-LWE Problems

Security of the [6] commitment scheme used in our protocols relies on the
well-known computational lattice problems, namely Module-LWE (MLWE) and
Module-SIS (MSIS) [21, 15]. Both problems are defined over Rq.

Definition 3 (MSISκ,m,B). Given A Ð Rκˆm
q , the Module-SIS problem with

parameters κ,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă }z} ď B. An algorithm A is said to have advantage ϵ in solving
MSISκ,m,B if

Pr
“

0 ă }z}8 ď B ^ Az “ 0
ˇ

ˇA Ð Rκˆm
q ; z Ð ApAq

‰

ě ϵ.

Definition 4 (MLWEm,λ,χ). The Module-LWE problem with parameters m,λ ą

0 and an error distribution χ over R asks the adversary A to distinguish between
the following two cases: 1) pA,As ` eq for A Ð Rmˆλ

q , a secret vector s Ð χλ

and error vector e Ð χm, and 2) pA, bq Ð Rmˆλ
q ˆ Rm

q . Then, A is said to
have advantage ϵ in solving MLWEm,λ,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; s Ð χλ; e Ð χm; b Ð ApA,As ` eq

‰

(16)

´ Pr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; b Ð Rm

q ; b Ð ApA, bq
‰
ˇ

ˇ ě ϵ.

We also recall the (simplified) Extended Module-LWE problem [30].

Definition 5 (Extended-MLWEm,λ,χ,C,s). The Extended Module-LWE prob-
lem with parameters m,λ ą 0, probability distribution χ over Rq, challenge space
C Ď Rq and the standard deviation s asks the adversary A to distinguish between
the following two cases:

1. pB,Br, c, z, sign pxz, cryqq for B Ð Rmˆpm`λq
q , a secret vector r Ð χm`λ

and z Ð D
pm`λq
s , c Ð C

2. pB,u, c, z, sign pxz, cryqq for B Ð Rmˆpm`λq
q ,u Ð Rm

q , z Ð D
pm`λq
s , c Ð C,

where signpaq “ 1 if a ě 0 and 0 otherwise. Then, A is said to have advantage
ϵ in solving Extended-MLWEm,λ,χ,C,s if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆpm`λq

q ; r Ð χm`λ; z Ð D
pm`λq
s ; c Ð C; b Ð ApB,Br, z, c, sq

ı

´ Pr
”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆλ

q ; u Ð Rm
q ; z Ð D

pm`λq
s ; c Ð C ; b Ð ApB,u, z, c, sq

ı
ˇ

ˇ

ˇ
ě ϵ.

where s “ sign pxz, cryq.

2.4 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z
whose distribution should be independent of a secret message/randomness vector
r, so that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z “ y ` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, c Ð C is a challenge
polynomial, and y is a “masking” vector. In order to remove the dependency of
z on r, one applies rejection sampling [25].
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Lemma 2 (Rejection Sampling [25, 14, 30]). Let V Ď Rℓ be a set of
polynomials with norm at most T and ρ : V Ñ r0, 1s be a probability distribution.
Fix the standard deviation s “ γT . Then, the following statements hold.

1. Let M “ expp14{γ ` 1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ
s, set z “

y ` v, and run b Ð Rej1pz,v, sq as defined in Fig. 1. Then, the probability
that b “ 0 is at least p1´2´128q{M and the distribution of pv, zq, conditioned
on b “ 0, is within statistical distance of 2´128 of the product distribution
ρ ˆ Dℓ

s.
2. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ

s, set z “ y`v, and
run b Ð Rej2pz,v, sq as defined in Fig. 1. Then, the probability that b “ 0
is at least 1{p2Mq and the distribution of pv, zq, conditioned on b “ 0, is
identical to the distribution F where F is defined as follows: sample v Ð ρ,
z Ð Dld

s conditioned on xv, zy ě 0 and output pv, zq.
3. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ, β Ð t0, 1u and y Ð Dℓ

s, set
z “ y ` p´1qβv, and run b Ð Rej0pz,v, sq as defined in Fig. 2. Then,
the probability that b “ 0 is at least 1{M and the distribution of pv, zq,
conditioned on b “ 0, is identical to the product distribution ρ ˆ Dℓ

s.

Rej1pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Rej2pz⃗, v⃗, sq

01 If xz⃗, v⃗y ă 0
02 return 1 (i.e. reject)
03 u Ð r0, 1q

04 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

05 return 1 (i.e. reject)
06 Else
07 return 0 (i.e. accept)

Fig. 1: Two rejection sampling algorithms: the one used generally in previous works
[25] (left) and the one proposed recently in [30] (right).

We recall how parameters s and M in the first statement Lemma 2 are
selected. Concretely, the repetition rate M is chosen to be an upper-bound on:

Dℓ
spzq

Dℓ
v,spzq

“ exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

28s}v} ` }v}2

2s2

˙

“ M. (17)

For the inequality we used the which says that with probability at least 1´ 2128

we have |xz,vy| ă 14s}v} for z Ð Dℓ
s [5, 25]. Hence, by setting s “ 13}v} we

obtain M « 3.
Recently, Lyubashevsky et al. [30] proposed a modified rejection sampling

algorithm (see Rej2pz,v, sq in Fig. 1) where it forces z to satisfy xz,vy ě 0, oth-
erwise it aborts. With this additional assumption, we can set M in the following
way:

exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

}v}2

2s2

˙

“ M. (18)
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Hence, for M « 3 one would select s “ 0.675 ¨ }v}. Note that the probability for
z Ð Dℓ

s that xz,vy ě 0 is at least 1{2. Hence, the expected number of rejections
would be at most 2M “ 6. On the other hand, if one aims for M “ 6 repetitions
using (17), then s “ 8 ¨ }v}. Thus, [30] manages to reduce the standard deviation
by more than a factor of 10. Further, we remark that this method is still not
as efficient as using bimodal Gaussians [14], since even though the value M is
calculated exactly as in (18), the expected number of rejections is at most M
and not 2M . We summarise the results from [14, 30] in the latter two statements
of Lemma 2.

Rej0pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1

M exp

ˆ

´
}v⃗}2

2s2

˙

cosh
´

xz⃗,v⃗y

σ2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Fig. 2: Bimodal rejection sampling [14].

Finally, we highlight that the procedure in the second statement of Lemma 2
reveals the sign of xz,vy. This is still fine when working with “one-time commit-
ments” [30] since we only leak one bit of information if v is a randomness vector
which is generated every execution. However, secure signature schemes cannot
be produced using this method because each generation of a signature reveals
some information about the secret key.

By using this technique, zero-knowledge property (or rather commit-and-
prove simulatability as described in later sections) of our protocols relies on
the (simplified) Extended-MLWE problem [30] where the adversary is given the
additional one bit of information about the secret. We describe this problem in
Section 2.3.

2.5 Challenge Space

In our applications, the set V Ď Rℓ will consist of vectors of the form cr where
c P Rq is sampled from a challenge space C and r P Rℓ

q comes from a set of secret
(either randomness or message) vectors. In order to set the standard deviation
for rejection sampling, we need to bound the norm of such vectors. Here, we
present a new way to bound }cr}.

Lemma 3. Let r P Rℓ
q and c P Rq. Then, for any power-of-two k, we have

}cr} ď 2k
a

}σ´1 pckq ck}1 ¨ }r}.

We provide the proof in the full version of the paper. In order to apply this
lemma, we fix a power-of-two k and set the challenge space C as:

C :“ tc P Sσ
κ : 2k

b

}σ´1 pckq ck}1 ď ηu (19)
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where
Sσ
κ :“ tc P Sκ : σpcq “ cu . (20)

and the σ P AutpRqq will be specified in our protocols. Also, we denote C̄ :“
tc ´ c1 : c, c1 P C and c ‰ c1u to be the set of differences of any two distinct
elements in C. In practice, σ P tσ1, σ´1u. We will choose the constants η such
that (experimentally) the probability for c Ð Sσ

κ to satisfy 2k
a

}σ´1 pckq ck}1 ď η
is at least 99%. In our experiments, we observe that the bounds in Lemma 3 are
about 4 ´ 6X larger than the actual norms }cr}.

For security of our protocols, we need κ ă 1
2

?
2
q
1{2
1 to ensure the invertibility

property of the challenge space C, i.e. the difference of any two distinct elements
of C is invertible over Rq. Indeed, this property follows from [33]. However, if we
set σ :“ σ´1 then we can apply our new result in the full version of the paper
and thus we only need κ ă q1{2. Secondly, to achieve negligible soundness error
under the MSIS assumption, we will need |C| to be exponentially large. In Table 3
we propose example parameters to instantiate the challenge space C for different
automorphisms σ. Finally, for implementation purposes, in order to sample from
C, we simply generate c Ð Sσ

κ and check whether 2k
a

}σ´1 pckq ck}1 ď η. Hence,
we cannot choose k to be too large.

σ d κ η |Sσ
κ | |C|

σ1 128 1 27 2202 2201

σ´1 128 2 59 2148 2147

Fig. 3: Example parameters to instantiate the challenge space C :“ tc P Sκ : σpcq “

c ^ 2k
a

}σ´1 pckq ck}1 ď ηu for a modulus q such that its smallest prime divisor q1 is
greater than 8. In our examples we picked k “ 32.

Setting the Standard Deviation. By definition of the challenge space C and
Lemma 3, if we know that }r} ď α, then we can set the standard deviation
s :“ γηα where γ ą 0 defines the repetition rate M . On the other hand, if
}r}8 ď ν, e.g. because r Ð Sℓ

ν , then we can set s :“ γνη
?
ℓn.

3 The ABDLOP Commitment Scheme and Proofs of
Linear Relations

In this section we formally present the ABDLOP commitment scheme together
with ZKPoK of the committed messages. In the same protocol, we also include
a proof of knowledge that the committed messages satisfy some arbitrary linear
relations over Rq (Figure 4). In the full version of the paper, we also show how
one can use this commitment scheme and proof of knowledge to prove knowledge
of linear relations over Zq . This latter proof is best modelled as a commit-
and-prove protocol because it will be creating some intermediate commitments
under the same randomness, which cannot be simulated. In particular, what we
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prove is that the view, for all possible committed messages, is computationally
indistinguishable from commitments to 0.

3.1 The ABDLOP Commitment Scheme

Figure 4 presents the ABDLOP commitment scheme, which commits to messages
s1 and m, using randomness s2, and then proves knowledge of these messages
and that they satisfy the relation R1s1 `Rmm “ u. The challenge space C is as
in (19). The standard deviations s1 and s2 are set as in Section 2.4 so as to pro-
vide a balance between the running time of the algorithm (the lower the values,
the higher the probability that the protocol will need to be repeated) and the
security of the commitment scheme based on the hardness of the MSIS problem
(the higher the values, the easier the problem becomes). Because the most com-
mon way in which our commitment scheme will be used involves committing to
some values, proving that they satisfy some relations, and then never using the
commitment again, we use a more efficient rejection sampling (Rej2 in Figure 1)
from [30], which ends up leaking one bit of the secret, on the randomness part
of the commitment (i.e. s2). If one will not be throwing out this commitment,
then one should use Rej1 for everything.

The hiding property of the commitment scheme follows from theMLWE prob-

lem when s2 is chosen from some distribution such that

ˆ„

A2

B

ȷ

,

„

A2

B

ȷ

¨ s2

˙

is

indistinguishable from uniform. The zero-knowledge property of the protocol
follows from the standard argument from [25, 30] showing that z1, z2 are dis-
tributed according to Dm1

s1 and Dm2
s2 (possibly with 1 bit of leakage for the latter)

independent of s1 and s2. The correctness of the protocol then follows due to the
fact that mid-dimensional integer vectors sampled from a discrete Gaussian with
standard deviation si has norm at most si

?
2mid with overwhelming probability

[5].
The commitment opening needs to be defined to be whatever one can extract

from the protocol. Since the protocol is an approximate proof of knowledge, it
does not prove knowledge of s1, s2 satisfying A1s1 ` A2s2 “ tA, but instead an
approximate proof as in (2). Lemma 4 states that under the assumption that
the Module-SIS problem is hard, the extracted values ps̄1, s̄2q are unique and
they satisfy the desired linear equation R1s̄1 ` RmptB ´ Bs̄2q “ u, where m is
implicitly defined as tB ´Bs̄2. The last statement proved in the Lemma shows,
as in [3], that not only are the extracted commitments si, unique but also zi´cs̄i
is uniquely determined by the first two moves of the protocol. This is crucial to
efficiently proving knowledge of polynomial products later in the paper.

As far as the communication complexity of the protocol, it is important to
note that in the real protocol, one would not actually send w and v, but instead
send their hash. Then one would verify the hash of the equalities. Therefore
proving linear relations over Rq is not any more costly, communication-wise,
than just proving knowledge of the committed values. We don’t write the hashes
in our protocols because when they eventually get converted to non-interactive
ones using the Fiat-Shamir transform, the hashes will naturally enter the picture.
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We will refer to the protocol in Figure 4 asΠ
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq,

where the fi are linear functions mapping ps1,mq to Rq such that fips1,mq “ 0,
represented by the rows of R1,Rm, and u.

Lemma 4. The protocol in Figure 4 is a proof of knowledge of ps̄1, s̄2, c̄q P

Rm1
q ˆ Rm2

q ˆ C̄ satisfying

1. A1s̄1 ` A2s̄2 “ tA
2. }s̄ic̄} ď 2si

?
2mid for i “ 1, 2

3. R1s̄1 ` RmptB ´ Bs̄2q “ u

Furthermore, under the assumption that MSISn,m1`m2,B is hard for B “

8η
a

ps1
?
2m1dq2 ` ps2

?
2m2dq2,

4. This ps̄1, s̄2q is unique
5. For any two valid transcripts pw,v, c, z1, z2q and pw,v, c1, z1

1, z
1
2q, it holds

that zi ´ cs̄i “ z1
i ´ c1s̄i.

We present the proof of Lemma 4 in the full version of the paper.

4 Proofs of Quadratic Relations

In this section we show how to prove various quadratic equations between com-
mitted messages using the ABDLOP commitment. More concretely, suppose we
have message vectors s1 P Rm1

q and m P Rℓ
q such that }s1} ď α. Let σ P AutpRqq

be a public automorphism over R of degree k and for presentation purposes de-
fine:

pσipxqqiPrks :“ px, σpxq, . . . , σk´1pxqq P Rka
q

for arbitrary vector x P Ra
q . Then, we consider the following statements:

– Single quadratic equation with automorphisms. For a public kpm1`ℓq-variate
quadratic function f over Rq,

f
`

pσips1qqiPrks, pσipmqqiPrks

˘

“ 0.

– Many quadratic equations with automorphisms. For N public kpm1 ` ℓq-
variate quadratic functions f1, . . . , fN over Rq,

fj
`

pσips1qqiPrks, pσipmqqiPrks

˘

“ 0 for j P rN s.

– Many quadratic equations with automorphisms and a proof that polynomial
evaluations have no constant coefficients. For N`M public kpm1`ℓq-variate
quadratic functions f1, . . . , fN and F1, . . . , FM over Rq, the following hold:

‚ fj
`

pσips1qqiPrks, pσipmqqiPrks

˘

“ 0 for j P rN s,

‚ let xj :“ Fj

`

pσips1qqiPrks, pσipmqqiPrks

˘

P Rq for j P rM s. Then x̃1 “

. . . “ x̃M “ 0.

Remark 1. Similarly as for [3], our techniques can be easily generalized to prove
higher degree relations. Concretely, if we want to prove degree k equations, we
end up committing to k ´ 1 additional garbage terms. Throughout this paper,
however, we will only consider quadratic relations.
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Private information: ps1,m, s2q P Rm1`m2`ℓ
q so that }s1} ď α and }s2}8 ď ν

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q , R1 P RNˆm1

q ,
Rm P RNˆℓ

q ,
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,u “ R1s1 ` Rmm

Prover Verifier

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

v :“ R1y1 ´ RmBy2
w,v -

c Ð C
c�

z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if Rejipzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -
Accept iff:

1. }z1} ď s1
?
2m1d, }z2} ď s2

?
2m2d

2. A1z1 ` A2z2 ´ ctA “ w
3. R1z1 ` RmpctB ´ Bz2q ´ cu “ v

Fig. 4: Proof of knowledge Π
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq of ps1, s2, c̄q P Rm1

q ˆ

Rm2
q ˆ C̄ satisfying (i) A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for

i “ 1, 2 and (iii) fips1,mq “ 0 for i P rN s where each f1, . . . , fN : Rm1`ℓ
q Ñ Rq is a

linear function. The linear functions fi are represented by the corresponding rows of
matrices u,R1,Rm and prove u “ R1s1 ` Rmm where RNˆm1

1 ,RNˆℓ
m ,u P RN

q are
public.

4.1 Single Quadratic Equation with Automorphisms

Let ptA, tBq be the commitment to the message pair ps1,mq under randomness
s2, i.e.

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

.

Suppose the prover wants to prove knowledge of the message

s “

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

P Rkpm1`ℓq
q

such that fpsq “ 0 where f is a kpm1 ` ℓq-variate quadratic function over Rq.
Note that each function f can be written explicitly as:

fpsq “ sTR2s ` rT1 s ` r0
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where r0 P Rq, r1 P Rkpm1`ℓq
q and R2 P Rkpm1`ℓqˆkpm1`ℓq

q .
In order to prove this relation, let us consider the protocol for proving linear

equations overRq in Fig. 4. In the last round, the honest prover sends themasked
openings zi “ csi ` yi of si for i “ 1, 2 where the challenge space C is defined
as in (19) with the σ automorphism. Even though this is not the case for m, we
can define the masked opening of m as

zm :“ ctB ´ Bz2 “ cm ´ By2.

By construction, zm can be computed by the verifier.
Define the following vectors y and z:

y :“

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

P Rkpm1`ℓq
q (21)

and

z :“

„

pσipz1qqiPrks

pσipzmqqiPrks

ȷ

“ c

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

`

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

“ cs ` y. (22)

Here we used the fact that for c P C, σpcq “ c. Then, we have

zTR2z ` crT1 z ` c2r0 “ c2
`

sTR2s ` rT1 s ` r0
˘

` cg1 ` g0 (23)

where polynomials g1 and g0 are defined as:

g1 “ sTR2y ` yTR2s ` rT1 y, g0 “ yTR2y.

Hence, we want to prove that the quadratic term in the expression zTR2z `

crT1 z`c2r0 vanishes. This is done by first sending a commitment t to the polyno-
mial g1, i.e. t “ bT s2`g1 as well as v :“ g0`bTy2 in the clear. Then, given t and
the masked opening z2 of s2, the verifier can compute f “ ct´bT z2 “ cg1´bTy2.
Finally, it checks whether

zTR2z ` crT1 z ` c2r0 ´ f
?
“ v

which is a simple transformation of (23) when sTR2s ` rT1 s ` r0 “ 0.
We present the full protocol in Fig. 5 which follows the commit-and-prove

paradigm [12, 30]. Namely, we assume the prover has already sent the commit-
ments tAtB to the verifier using fresh randomness s2 Ð χm2 . Prover starts
by sampling masking vectors y1 Ð Dm1

s1 ,y2 Ð Dm2
s and computing w “

A1y1 ` A2y2. Then, it calculates g1 “ sTR2y ` yTR2s ` rT1 y, where y is
defined in (21), and the commitment t “ bT s2 ` g1 to g1. Finally, the prover
sets v “ yTR2y ` bTy2 and sends w, t, v to the verifier.

Next, given a challenge c Ð C, the prover computes zi “ csi `yi for i “ 1, 2
and applies rejection sampling. If it does not abort, the prover outputs z1, z2.

Eventually, the verifier checks whether z1 and z2 have small norms, A1z1 `

A2z2 “ w ` ctA and zTR2z ` crT1 z ` c2r0 ´ f “ v where z is defined in (22)
and f is defined as f “ ct ´ bT z2.

We summarise security properties of the protocol in Fig. 5 in the full version
of the paper.
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

r0 P Rq, r1 P Rkpm1`ℓq
q ,R2 P Rkpm1`ℓqˆkpm1`ℓq

q , σ P AutpRqq

sTR2s ` rT1 s ` r0 “ 0

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

y :“

„

pσi
py1qqiPrks

´pσi
pBy2qqiPrks

ȷ

g1 :“ sTR2y ` yTR2s ` rT1 y
t :“ bT s2 ` g1
v :“ yTR2y ` bTy2

w, t, v -
c Ð C

c�
z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if Rejipzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -

z :“

„

pσi
pz1qqiPrks

pσi
pctB ´ Bz2qqiPrks

ȷ

f :“ ct ´ bT z2
Accept iff

}z1} ď s1
?
2m1d and

}z2} ď s2
?
2m2d and

A1z1 ` A2z2 “ w ` ctA and
zTR2z ` crT1 z ` c2r0 ´ f “ v

Fig. 5: Commit-and-prove protocol Πp2q
pps2, s1,mq, σ, fq for messages ps1,mq P

Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy:A1s1`A2s2 “ tA,Bs2`m “ tB
(ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 and (iii) f

`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 where

function f : Rkpm1`ℓq
q Ñ Rq is defined as fpxq :“ xTR2x` rT1 x` r0. Here, we assume

that the commitment ptA, tBq was generated honestly and already sent by the prover.
In particular, s2 Ð χm2 .
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

µ1, . . . , µN Ð Rq
µ1, . . . , µN�

f :“
řN

j“1 µjfj
Run Πp2q

pps2, s1,mq, σ, fq

Fig. 6: Commit-and-prove protocol Π
p2q
many pps2, s1,mq, σ, pf1, f2, . . . , fN qq for messages

ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA,
Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (where si are used in Fig. 5) and

(iii) fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s. Vector b is used in the sub-protocol

Πp2q.

4.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously proveN quadratic
relations. Clearly, if one were to prove them separately using the approach from
Section 4.1, one would end up committing to N garbage polynomials g. Here,
we circumvent this issue by linear-combining the N equations into one quadratic
equation and prove it using the protocol in Fig. 5. This results in committing to
only one garbage polynomials at the cost of reducing the soundness error by a
negligible additive factor.

More precisely, suppose that we want to prove for N public kpm1 `ℓq-variate
quadratic functions f1, . . . , fN over Rq that

fj
`

pσips1qqiPrks, pσipmqqiPrks

˘

“ 0 for i P rN s. (24)

We let the verifier begin by sending challenges µ1, . . . , µN Ð Rq. Then, we define
a single quadratic function

f :“
N
ÿ

i“j

µjfj

and prove that

f
`

pσips1qqiPrks, pσipmqqiPrks

˘

“ 0 (25)

using the protocol from Fig. 5. Now, we observe that if one of the conditions in

(24) does not hold, then Equation 25 is satisfied with probability at most q
´d{2
1

(recall that Xd ` 1 splits into two irreducible factors modulo each qi).

The protocol is provided in Fig. 6. We skip the full security analysis since it
will be implicitly included in the more general case in the next subsection.
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4.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (24)) and
additionally prove that for quadratic kpm1 ` ℓq-variate polynomials F1, . . . , FM ,
evaluations Fj

`

pσips1qqiPrks, pσipmqqiPrks

˘

have the constant coefficient equal to
zero. Concretely, if we denote

xj :“ Fj

`

pσips1qqiPrks, pσipmqqiPrks

˘

P Rq

then rxj “ 0 for j P rM s.
For simplicity we first present an approach with soundness error 1{q1. We

apply the strategy from [16] and first commit to a random masking polynomial
g Ð tx P Rq : rx “ 0u. Then, given random challenges γ1, . . . , γM Ð Zq, we send

h :“ g `

M
ÿ

j“1

γjFj

`

pσips1qqiPrks, pσipmqqiPrks

˘

(26)

to the verifier. Then, it simply checks whether the constant coefficient of h is
indeed equal to zero. What is left to prove is that h is well-formed, i.e. (26)

holds. This is done by defining the quadratic function fN`1 : Rkpm1`ℓ`1q
q Ñ Rq

as follows.
Let x1 P Rkm1

q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`1q
q and denote

x2,j :“ x
pmq

2,j ∥ x
pgq

2,j P Rℓ`1
q for j P rks, x

pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

.

Then,

fN`1 px1,x2q :“ x
pgq

2,1 `

M
ÿ

j“1

γjFj

´

x1,x
pmq

2

¯

´ h.

By construction, if px1,x2q “ pσips1qqiPrks, pσipm ∥ gqqiPrks then

x1 “ σips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1 “ g.

Moreover,(26) holds if and only if

fN`1

`

pσips1qqiPrks, pσipm ∥ gqqiPrks

˘

“ 0.

Recall that we also want to prove (24). We can define analogous polynomials

f1, . . . , fN : Rkpm1`ℓ`1q
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

.

Hence, we simply want to prove that for every j “ 1, 2, . . . , N ` 1:

fj
`

pσips1qqiPrks, pσipm ∥ gqqiPrks

˘

“ 0.

Finally, this can then be directly done using the protocol

Πp2q
many pps2, s1,m, gq, σ, pf1, f2, . . . , fN`1qq
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,Bg P Rλˆm2

q ,b P

Rm2
q

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN , F1, . . . , FM : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

g :“ pg1, . . . , gλq Ð tx : Rq : x̃ “ 0u
λ

tg :“ Bgs2 ` g
tg -

Γ “ pγi,jq Ð ZλˆM
q

pγi,jqiPrλs,jPrMs�
for i P rλs :

hi :“ gi `
řM

j“1 γi,jFj psq

h1, . . . , hλ-
define f1, . . . , fN`λ as in (28) and (29)

run Π
p2q
many

`

ps2, s1,m ∥ gq, σ, pfiqiPrN`λs

˘

Accept iff

Π
p2q
many verifies and

h̃1 “ . . . “ h̃λ “ 0

Fig. 7: Commit-and-prove protocol Π
p2q

eval pps2, s1,mq, σ, pf1, . . . , fN q, pF1, . . . , FM qq for
messages ps1,mq P Rm1`ℓ

q , randomness s2 P Rm2
q and c̄ P C̄ which satisfy:

A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2, (iii)

fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s (where si are used in Fig. 5) and (iv)
all the evaluations Fj

`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

, where j P rM s, have constant coeffi-

cients equal to zero. Vector b is used in the sub-protocol Π
p2q
many.

in Fig. 6.
We provide intuition for the soundness argument. Assume that the verifier

is convinced that h is of the correct form (26) and rh “ 0. Also, note that a
cheating prover committed to g before seeing the challenges γ1, . . . , γM . Hence,
if for some j P rM s, the constant coefficient of Fj

`

pσips1qqiPrks, pσipmqqiPrks

˘

is
non-zero, then the cheating prover has probability at most 1{q1 of guessing the

constant coefficient of
řM

j“1 γjFj

`

pσips1qqiPrks, pσipmqqiPrks

˘

.

Boosting Soundness. We exponentially decrease the soundness error by par-
allel repetition. Namely, in order to obtain q´λ

1 soundness error, we commit to
λ random masking polynomials g “ pg1, . . . , gλq Ð tx : Rq : rx “ 0uλ as follows:

tg :“ Bgs2 ` g.

Then, we send tg to the verifier which in return outputs the challenge matrix
pγi,jqiPrλs,jPrMs Ð ZλˆM

q . Then, we compute the vector h “ ph1, . . . , hλq as
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follows:

»

—

—

—

–

h1

h2

...
hλ

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

g1
g2
...
gλ

fi

ffi

ffi

ffi

fl

`

»

—

–

γ1,1 γ1,2 ¨ ¨ ¨ γ1,M
...

... ¨ ¨ ¨
...

γλ,1 γλ,2 ¨ ¨ ¨ γλ,M

fi

ffi

fl

»

—

—

—

–

F1

`

pσips1qqiPrks, pσipmqqiPrks

˘

F2

`

pσips1qqiPrks, pσipmqqiPrks

˘

...
FM

`

pσips1qqiPrks, pσipmqqiPrks

˘

fi

ffi

ffi

ffi

fl

(27)

and send it to the verifier. It directly checks if all polynomials h1, . . . , hλ P Rq

have constant coefficients equal to zero.

As before, we still need to prove that vector h was constructed correctly. We
reduce this problem to proving quadratic relations. Namely, we define polyno-

mials fN`1, . . . , fN`λ : Rkpm1`ℓ`λq
q Ñ Rq as follows.

Let x1 P Rkm1
q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`λq

q and denote

x2,j :“
´

x
pmq

2,j ,x
pgq

2,j

¯

P Rℓ`λ
q for j P rks,

x
pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

, x
pgq

2,1 :“
´

x
pgq

2,1,1, . . . , x
pgq

2,1,λ

¯

.

Then,

fN`i px1,x2q :“ x
pgq

2,1,i `

M
ÿ

j“1

γi,jFj

´

x1,x
pmq

2

¯

´ hi for i P rλs. (28)

By construction, if px1,x2q “ pσips1qqiPrks, pσipm ∥ gqqiPrks then

x1 “ pσips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1,i “ gi.

Furthermore, Equation (27) is true if and only if for all j P rλs we have:

fN`j

`

pσips1qqiPrks, pσipm ∥ gqqiPrks

˘

“ 0.

Since we also need to prove (24), for convenience we define polynomials f1, . . . , fN :

Rkpm1`ℓ`λq
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

. (29)

Finally, we simply run Πquad´many

`

ps2, s1,m,gq, σ, pfjqjPrN`λs

˘

from Fig. 6. We
summarise the protocol in Fig. 7 and provide commitment and proof size analysis
in the full version of the paper.

Note that with this approach we need to commit to additional λ garbage
polynomials. In the full version of the paper we describe an optimisation which
reduces the number of garbage polynomials by a factor of two in a scenario for
σ :“ σ´1. As discussed in the introduction, this will indeed be the automorphism
that is going to be used throughout the paper.
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