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Abstract. From the minimal assumption of post-quantum semi-honest
oblivious transfers, we build the first ε-simulatable two-party computa-
tion (2PC) against quantum polynomial-time (QPT) adversaries that is
both constant-round and black-box (for both the construction and se-
curity reduction). A recent work by Chia, Chung, Liu, and Yamakawa
(FOCS’21) shows that post-quantum 2PC with standard simulation-
based security is impossible in constant rounds, unless either NP ⊆
BQP or relying on non-black-box simulation. The ε-simulatability we
target is a relaxation of the standard simulation-based security that al-
lows for an arbitrarily small noticeable simulation error ε. Moreover,
when quantum communication is allowed, we can further weaken the as-
sumption to post-quantum secure one-way functions (PQ-OWFs), while
maintaining the constant-round and black-box property.

Our techniques also yield the following set of constant-round and black-
box two-party protocols secure against QPT adversaries, only assuming
black-box access to PQ-OWFs:

– extractable commitments for which the extractor is also an ε-simulator;

– ε-zero-knowledge commit-and-prove whose commit stage is extractable
with ε-simulation;

– ε-simulatable coin-flipping;

– ε-zero-knowledge arguments of knowledge for NP for which the
knowledge extractor is also an ε-simulator;

– ε-zero-knowledge arguments for QMA.

At the heart of the above results is a black-box extraction lemma show-
ing how to efficiently extract secrets from QPT adversaries while dis-
turbing their quantum states in a controllable manner, i.e., achieving
ε-simulatability of the after-extraction state of the adversary.



1 Introduction

Extractability is an important concept in cryptography. A typical example is
extractable commitments, which enable an extractor to extract a committed
message from a malicious committer. Extractable commitments have played a
central role in several major cryptographic tasks, including (but not limited
to) secure two-party and multi-party computation (e.g., [19, 61, 36, 38]), zero-
knowledge (ZK) protocols (e.g., [63, 56]), concurrent zero-knowledge protocols
(e.g., [62, 59]), non-malleable commitments (e.g., [37, 52]) etc. Recently, two
concurrent works by Grilo, Lin, Song, and Vaikuntanathan [40] and Bartusek,
Coladangelo, Khurana, and Ma [5] (based on earlier works [22, 7, 23, 11]) demon-
strate new applications of extractable commitments in quantum cryptography.
They show that quantumly secure extractable commitments are sufficient for
constructing maliciously secure quantum oblivious transfers (OTs), which can
be compiled into general-purpose quantum MPC [49, 26].5

As noted in [40], it is surprisingly non-trivial to construct quantumly secure
extractable commitments. The reason is that quantum extractability requires
an extractor to extract the committed message while simulating the commit-
ter’s post-execution state. However, known rewinding-based classical extraction
techniques are not directly applicable as it is unclear if they could provide any
simulation guarantee when used against quantum adversaries. To address this
issue, recent works [40, 5] propose new polynomial-round quantum construc-
tions of quantumly secure extractable commitments from post-quantum one-way
functions (PQ-OWFs), which are functions efficiently computable in the classical
sense but one-way against quantum polynomial-time (QPT) adversaries. Relying
on assumptions stronger than PQ-OWFs, classical constructions of quantumly
secure extractable commitments (which we call post-quantum extractable com-
mitments) are known [10, 4, 9, 43, 58]. However, those constructions require (at
least) the existence of OTs.

Moreover, all existing post-quantum extractable commitments make non-
black-box use of their building-block primitives. This is not ideal as black-box con-
structions are often preferred over non-black-box ones. A black-box construction
only depends on the input/output behavior of its building-block cryptographic
primitive(s). In particular, such a construction is independent of the specific im-
plementation or code of the building-block primitive. Black-box constructions
enjoy certain advantages. For example, they remain valid even if the building-
block primitive/oracle is based on a physical object such as a noisy channel or
tamper-proof hardware [66, 21, 34]. Also, since the efficiency of black-box con-
structions does not depend on the implementation details of the primitive, their
efficiency can be theoretically independent of the code of lower-level primitives.
Indeed, it has been an important theme to obtain black-box constructions for
major cryptographic objects, e.g., [51, 24, 46, 47, 41, 49, 61, 36, 37, 55, 52, 39,
31, 44, 32, 50, 15, 33, 29, 54, 18].

5 They actually rely on extractable and equivocal commitments. However, since equiv-
ocality can be added easily, extractable commitments are the essential building block.
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In the classical setting, it is well-known that constant-round extractable com-
mitments can be obtained assuming only black-box access to OWFs [61, 25, 62,
63].6 Therefore, it is natural to ask the following analog question in the quantum
setting: Is it possible to construct constant-round post-quantum extractable com-
mitments assuming only black-box access to PQ-OWFs? We remark that this
question is open even if we do not require the scheme to be constant-round or
black-box.

The Black-Box Extraction Barrier. We observe that the recent lower bound
on black-box post-quantum ZK [17] suggests a negative answer to the above ques-
tion. Namely, if we have constant-round post-quantum extractable commitment
with black-box extraction, then we can construct constant-round post-quantum
ZK arguments for NP with black-box simulation based on standard techniques
(see [16, Appendix A] for details). However, [17] showed that such a ZK argument
cannot exist unless NP ⊆ BQP, which seems unlikely.7

ε-Simulation Security. On the other hand, another recent work [18] showed
that we can bypass the impossibility result by relaxing the requirement of ZK
to the so-called ε-ZK [27, 8, 28]. The standard ZK property requires a simulator
to simulate the verifier’s view in a way that no distinguisher can distinguish it
from the real one with non-negligible advantage. In contrast, the ε-ZK property
only requires the existence of a simulator such that for any noticeable ε(λ), the
simulated view can be distinguished from the real one with advantage at most ε.
As explained in [18], ε-ZK is still useful in several applications of ZK. The results
in [18] suggest the possibility of post-quantum extractable commitments if we
relax the simulation requirement on the extractor to a similar ε-close8 version.
We will refer to this weakened notion as extractability with ε-simulation.9 It
seems natural to hope that the techniques in [18] could be used in the context
of extractable commitments. Indeed, by plugging the ZK argument from [18]
into the OT-based construction [10, 9, 43, 58], we can obtain a non-black-box
construction of constant-round post-quantum extractable commitments with ε-
simulation, assuming constant-round post-quantum OTs. However, if we focus on
black-box constructions from the minimal assumption of PQ-OWFs, it is unclear
if the techniques in [18] would help. Therefore, we ask the following question:

Question 1: Is it possible to have constant-round post-quantum ex-
tractable commitments with ε-simulation, assuming only black-box access
to PQ-OWFs?

6 The term “black-box” here refers to both black-box constructions and black-box
extraction.

7 A concurrent work by Lombardi, Ma, and Spooner [57] showed that the impossibility
of [17] can be avoided if we consider a stronger computational model for simulators.
We provide more discussion in [16, Section 1.3].

8 Throughout this paper, “ε-close” means that the adversary’s distinguishing advan-
tage is at most ε.

9 In the main body, we call it strong extractability with ε-simulation since we also
define a weaker variant of that.
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Table 1. Comparison of Quantumly Secure Extractable Commitment.

Reference #Round Cla. Const. BB Const. BB Ext. Siml. Err. Assumption

[40] poly(λ) ✓ negl OWF
[5] poly(λ) ✓ ✓ negl OWF
[10] O(1) ✓ negl QFHE+QLWE
folklorea poly(λ) ✓ ✓ negl OT
folklore+[18] O(1) ✓ ✓ ε O(1)-round OT
Ours O(1) ✓ ✓ ✓ ε OWF

The “Cla. Const.”, “BB Const.”, and “BB Ext.” columns indicate if the scheme relies on clas-
sical constructions, black-box constructions, and extraction, respectively. In the “Siml. Err.”
column, negl and ε mean that the construction achieves the standard quantum extractability
and quantum extractability with ε-simulation, respectively. In “Assumption” column, QFHE
and QLWE means quantum fully homomorphic encryption and the quantum hardness of learn-
ing with errors, respectively.

a As noted in [9], the construction is implicit in [10, 43, 58].

In the more general context of 2PC and MPC, the implication of [17] is that
to obtain constant-round constructions with post-quantum security, we have to

1. rely on non-black-box simulation, or
2. aim for a relaxed security notion (e.g., ε-close simulation security).

The first approach was taken in [2] (based on [10]), leading to a constant-round
post-quantum MPC protocol with non-black-box simulation. On the other hand,
the second approach has not been explored in the existing literature of post-
qauntum 2PC or MPC (except for the special case of ZK as in [18]). It is possible
to construct constant-round post-quantum 2PC with ε-close simulation by com-
bining constant-round post-quantum semi-honest OTs and the constant-round
post-quantum ε-ZK in [18]. However, the naive approach will lead to a non-black-
box construction. In contrast, in the classical setting, constant-round black-box
constructions of 2PC [61] and MPC [19, 36] are known from the minimal assump-
tion of constant-round semi-honest OT. The above discussion suggests that one
has to relax the security requirement when considering the post-quantum coun-
terparts of these tasks. We will refer to 2PC and MPC with ε-close simulation
as ε-2PC and ε-MPC respectively. Then, an interesting question is:

Question 2: Do there exist constant-round black-box post-quantum ε-
2PC and ε-MPC, assuming only constant-round semi-honest OTs secure
against QPT adversaries?

1.1 Our Results

We answerQuestion 1 affirmatively and addressQuestion 2 partially, showing
a positive answer only for the two-party case. We first construct constant-round
black-box post-quantum extractable commitments with ε-simulation from PQ-
OWFs. See Table 1 for comparisons among quantumly secure extractable com-
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mitments. Such commitments imply new constant-round and black-box protocols
for general-purpose 2PC secure against QPT adversaries. In particular, we get

– post-quantum ε-2PC from semi-honest OTs, and
– post-quantum ε-2PC from PQ-OWFs, assuming that quantum communica-

tion is possible. (Henceforth, we will use OWFs to denote PQ-OWFs.)

As an intermediate tool to achieve the above results, we construct a constant-
round post-quantum ε-ZK commit-and-prove, assuming only black-box access to
OWFs. Black-box zero-knowledge commit-and-prove [47, 37, 39, 45, 50, 53] is a
well-studied primitive in classical cryptography; it enables a prover to commit to
some message and later to prove in zero-knowledge that the committed message
satisfies a given predicate in a black-box manner. In addition to being secure in
the post-quantum setting, our construction enjoys the extra property that the
commit stage is extractable (albeit with only ε-simulation of the adversary’s
post-extraction state). Such a constant-round ε-simulatable ExtCom-and-Prove
protocol implies the following set of two-party protocols:

– constant-round black-box post-quantum coin-flipping with ε-simulation,
– constant-round black-box post-quantum ε-ZK arguments of knowledge for

NP with ε-simulating knowledge extractor, and
– constant-round black-box ε-ZK arguments for QMA.

In the following, we provide more discussion about them.

Coin-Flipping. Coin-flipping is a two-party protocol to generate a uniformly
random string that cannot be biased by either of parties (w.r.t. the standard
simulation-based security). In the classical setting, constant-round black-box
constructions from OWFs are known [61]. On the other hand, known post-
quantum constructions are based on stronger assumptions (like QLWE) than
OWFs, and require either polynomial rounds [58] or non-black-box simulation
[2]. Our construction can be understood as the post-quantum counterpart of the
classical construction by Pass and Wee [61], albeit with ε-simulation.

Arguments of Knowledge with Simulating Extractor.Arguments of knowl-
edge intuitively require an extractor to extract a witness from any efficient mali-
cious prover whenever it passes the verification. In the classical setting, constant-
round black-box constructions from OWFs are known [61]. In the post-quantum
setting, there are two existing notions of arguments of knowledge depending on
whether we require the extractor to simulate the prover’s post-execution state or
not. For the “without-simulation” version, Unruh [64] gave a polynomial-round
black-box construction from OWFs.10 For the “with-simulation” version, all ex-
isting constructions require both polynomial rounds and assumptions stronger
than OWFs (like QLWE) [43, 58, 3].11 Our construction improves both the round

10 Though Unruh originally assumes injective OWFs, [18] pointed out that any OWF
suffices.

11 Though not claimed explicitly, it seems also possible to obtain constant-round con-
struction with non-black-box simulation from QLWE and QFHE based on [10].
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complexity and the required assumption, at the cost of weakening ZK and ex-
tractability to their ε-simulation variants. On the other hand, we note that the
construction in [3] achieves proofs of knowledge, while ours only achieves argu-
ments of knowledge. We also note that even without knowledge extractability,
our construction improves the construction in [18, Section 6], which is a non-
black-box construction of constant-round ε-ZK arguments for NP from OWFs.

ZK Arguments for QMA. QMA is a quantum analog of NP. Known con-
structions of ZK proofs or arguments for QMA rely on either polynomial-round
communication [14, 13, 12] or non-black-box simulation [10]. If we relax the ZK
requirement to ε-ZK, constant-round black-box ε-ZK proofs were already con-
structed in [18]; but that construction needs to assume collapsing hash functions,
which are stronger than OWFs. Our construction improves the assumption to the
existence of OWFs at the cost of weakening the soundness to the computational
one (i.e., an argument system).

Discussion. Due to space constraints, we provide additional discussion on min-
imality of assumptions, other potential applications, and a comparison with the
concurrent work by Lombardi, Ma, and Spooner [57] in the full version [16,
Sections 1.2 and 1.3].

2 Technical Overview

2.1 Extractable Commitment with ε-Simulation

Our main technical tool for constructing ε-simulatable extractable commitments
is a generalization of the extract-and-simulate technique from [18].

Extract-and-Simulation Lemma in [18]. We briefly recall the extract-and-
simulate lemma shown in [18, Lemma 4.2].12 At a high level, that lemma can be
interpreted as follows.13 Let A be a quantum algorithm with an initial state ρ.
Suppose that A outputs some unique classical string s∗ or otherwise outputs a
failure symbol Fail. Then, there exists a simulation-extractor SE such that for any
noticeable function ε (on the security parameter), the following two experiments
are ε-close:

Expreal

Run A(ρ),
If A outputs Fail,

Output Fail
Else output A’s final state.

Expext

(sExt, ρExt)← SEA(ρ)(1ε
−1

)
Run A(ρExt),
If A outputs Fail ∨ sExt ̸= s∗,
Output Fail

Else output A’s final state.
12 In [18], the lemma was called “extraction lemma”. Here, we add “simulation” to

emphasize that the extractor not only extracts but also simulates the adversary’s
state.

13 There are two versions of their lemma: the statistically-binding case and the
strong collapse-binding case. The abstraction given here is a generalization of the
statistically-binding case.
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Generalizing the Lemma. Note that their lemma will enable us to extract s∗

from A only if A reveals the value s∗ at the end. As shown in [18], this already
suffices for the constant-round ZK proof by Goldreich and Kahan [35], where the
verifier first commits to the challenge and opens it (i.e., “reveals it at the end”)
later. However, this does not seem to help obtain extractable commitments,
because the committed message is not revealed at the end the commit stage (i.e.,
before decommitment happens); but the definition of extractable commitments
does require extraction before decommitment happens.

To deal with this issue, we generalize the [18] lemma as follows. Let A be a
quantum algorithm that on an initial state ρ, outputs a classical symbol Succ
or Fail. Moreover, suppose that there are a unique classical string s∗ and a
“simulation-less extractor” ExtSim-less that outputs s∗ or otherwise Fail. Also,
suppose that

Pr
[
Ext

A(ρ)
Sim-less = s∗

]
≥ (Pr[A(ρ) = Succ])c − negl(λ) (1)

for some constant c. Our generalized lemma says that the ε-closeness between
Expreal and Expext holds in this setting as well.

One can think of A as a joint execution of a malicious committer and honest
receiver where it outputs Succ if and only if the receiver accepts. In this setting,
one can understand the above lemma as a lifting lemma from “simulation-less
extractor” to “ε-simulation extractor” in the setting where the extracted string
is unique. In the main body, we present the lemma in a more specific form
(Lem. 1), where it is integrated with Watrous’ rewinding lemma [65] and Unruh’s
rewinding lemma [64], because that is more convenient for our purpose. We will
overview the intuition behind the above generalized lemma toward the end of
this subsection.

Weakly Extractable Commitment. Next, we explain how to construct post-
quantum extractable commitments using our extract-and-simulate lemma. We
go through the following two steps:

1. Construct a commitment scheme wExtCom that satisfies a weak version of
post-quantum extractability with ε-simulation.

2. Upgrade wExtCom into a scheme ExtCom with full-fledged post-quantum
extractability with ε-simulation (which we call strong extractability with
ε-simulation to distinguish it from the weak one).

We first explain Step 1, the construction of wExtCom. Actually, our construc-
tion of wExtCom is exactly the same as the classical extractable commitments
from OWFs given in [61], which are in turn based on earlier works [25, 62, 63]. Let
Com be a computationally-hiding and statistically-binding commitment scheme
(say, Naor’s commitment [60]). Then, the commitment scheme wExtCom works
as follows.

Commit Stage:
1. To commit to a messagem, the committer C generates k = ω(log λ) pairs

of 2-out-of-2 additive secret shares {(v0i , v1i )}ki=1, i.e., they are uniformly
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chosen conditioned on that v0i ⊕v1i = m for each i ∈ [k]. Then, C commits
independently to each vbi (b ∈ {0, 1}) in parallel by using Com. We denote
these commitments by {(com0

i , com
1
i )}ki=1.

2. R randomly chooses c = (c1, ..., ck)← {0, 1}k and sends it to C.
3. C decommits {comci

i }ki=1 to {vcii }ki=1, and R checks that the openings
are valid.

Decommit Stage:
1. C sends m and opens all the remaining commitments; R checks that all

openings are valid and v0i ⊕ v1i = m for all i ∈ [k].

Suppose that a malicious committer C∗ generates commitments {(com0
i , com

1
i )}ki=1

in Step 1, and let ρ be its internal state at this point. Then, we consider A(ρ)
that works as follows:

– Choose c = (c1, ..., ck)← {0, 1}k at random.
– Send c to C∗ and simulate Step 3 of C∗ in the commit stage to get {vcii }ki=1

and the corresponding decommitment information.
– If all the openings are valid, output Succ; otherwise output Fail.

To use our extract-and-simulate lemma, we need to construct a simulation-
less extractor ExtSim-less satisfying Inequality (1). A natural idea is to use Unruh’s
rewinding lemma [64]. His lemma directly implies that if A returns Succ with

probability δ, then we can obtain valid {vcii }ki=1 and {vc
′
i
i }ki=1 for two uniformly

random challenges, c = (c1, . . . , ck) and c′ = (c′1, . . . , c
′
k), with probability at

least δ3. In that case, unless c = c′ (which happens with negligible probability),
we can “extract”m = v0i ⊕v1i from position i ∈ [k] that satisfies ci ̸= c′i. However,
such an “extractor” does not satisfy the assumption for our generalized extract-
and-simulate lemma in general, because v0i ⊕v1i may be different for each i ∈ [k].

Therefore, to satisfy this requirement, we have to introduce an additional
assumption that {(com0

i , com
1
i )}ki=1 is consistent, i.e., if we denote the corre-

sponding committed messages as {(v0i , v1i )}ki=1, then there exists a unique m
such that v0i ⊕ v1i = m for all i ∈ [k].14 With this assumption, we can apply our
generalized extract-and-simulate lemma. It enables us to extract the committed
message and simultaneously ε-simulate C∗’s state, conditioned on that the re-
ceiver accepts in the commit stage. The case where the receiver rejects can be
easily handled using Watrous’ rewinding lemma [65] as we will explain later. As
a result, we get an ε-simulating extractor that works well conditioned on that
the commitments generated in Step 1 are consistent. We will refer to such a weak
notion of simulation-extractability as weak extractability with ε-simulation (see
Def. 7 for the formal definition).

Moreover, since Unruh’s rewinding lemma naturally gives a simulation-less
extractor in the parallel setting (where C∗ interacts with many copies of R in
parallel), we can prove the parallel version of the weak extractability with ε-
simulation similarly. More generally, we prove that wExtCom satisfies a further

14 The corresponding message is well-defined (except for negligible probability) since
we assume that Com is statistically binding.
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generalized notion of extractability which we call the special parallel weak ex-
tractability with ε-simulation (see Def. 10 for the formal definition). Roughly
speaking, it requires an ε-simulating extractor to work in n-parallel execution as
long as the commitments in some subset of [n] are consistent and the commit-
ted messages in those sessions determine a unique value. We remark that this
parallel extractability will play an important role in the weak-to-strong compiler
which we discuss next.

Weak-to-Strong Compiler. The reason why we cannot directly prove that
wExtCom satisfies the strong extractability with ε-simulation is related to an
issue that is often referred to as over-extraction in the classical literature (e.g.,
[37, 30, 52]). Over-extraction means that an extractor may extract some non-⊥
message from an invalid commitment, instead of detecting the invalidness of the
commitment. In particular, there does not exist a unique “committed message”
when the commitment is ill-formed in wExtCom, and extraction of such a non-
unique message may collapse the committer’s state. To deal with this issue,
we have to add some mechanism which could help the receiver (and thus the
extractor) detect (in)validness of the commitment.

One possible approach is to revisit the techniques developed in the classi-
cal setting, performing necessary surgery to make the proof work against QPT
adversaries. However, as demonstrated by the above cited works, existing tech-
niques in the classical setting are already delicate. Even if it would work eventu-
ally, such a non-black-box treatment would further complicate the proof undesir-
ably. Therefore, we present an alternative approach that deviates from existing
ones in the classical setting. As we will show later, this new approach turns out
to be quantum-friendly.

Roughly speaking, our construction ExtCom works as follows:

Commit Stage:
1. The committer C generates shares {vi}ni=1 of a verifiable secret sharing

(VSS) scheme of the message to be committed to, and then commits to
each vi using wExtCom separately in parallel.

2. C and the receiver R execute a “one-side simulatable” coin-flipping pro-
tocol based on wExtCom to generate a random subset T of [n] of a certain
size.15 Specifically, they do the following:
(a) R commits to a random string r1 by wExtCom.
(b) C sends a random string r2 in the clear.
(c) R opens r1. Then, both parties derive the subset T from r1 ⊕ r2.

3. C opens the commitments corresponding to the subset T , and R checks
their validness and consistency.

15 We remark that it is a non-trivial task to construct constant-round two-party coin-
flipping from OWFs in the quantum setting, achieving the (even ε-)simulation-based
security against both parties. Indeed, that will be one application of the strongly ex-
tractable commitment with ε-simulation, which we are now constructing. However,
this is not a circular reasoning. Here, we need simulation-based security only against
a malicious receiver. For such a one-side simulatable coin-flipping, the weakly ex-
tractable commitment wExtCom (with ε-simulation) suffices.

9



Decommit Stage:

1. C opens all the commitments. R checks those openings are valid. If they
are valid, R runs the reconstruction algorithm of VSS to recover the
committed message.

Using a similar argument as that for the soundness of the MPC-in-the-head
paradigm [48, 36],we can show that if a malicious committer passes the verifica-
tion in the commit stage, then:

1. Most of the commitments of wExtCom generated in Step 1 are valid as a
commitment; and

2. The committed shares in those valid commitments determines a unique mes-
sage that can be recovered by the reconstruction algorithm of VSS.

Then, we can apply the special parallel weak extractability with ε-simulation
of wExtCom to show the strong extractability with ε-simulation of ExtCom. We
remark that essentially the same proof can be used to show that the parallel
execution of ExtCom is still strongly extractable (with ε-simulation). We refer to
this as the parallel-strong extractability with ε-simulation. It will play a critical
role in our construction of ExtCom-and-Prove (see Sec. 2.2).

Dealing with Rejection in Commit Stage. So far, we have only focused on
the case where the receiver accepts in the commit stage. However, the definition
of (both weak and strong) extractability requires that the final state should be
simulated even in the case where the receiver rejects in the commit stage. In this
case, of course, the extractor does not need to extract anything, and thus the
simulation is straightforward. A non-trivial issue, however, is that the extractor
does not know if the receiver rejects in advance. This issue can be solved by a
technique introduced in [10]. The idea is to just guess if the receiver accepts,
and runs the corresponding extractor assuming that the guess is correct. This
gives an intermediate extractor that succeeds with probability almost 1/2 and its
output correctly simulates the desired distribution conditioned on that it does
not abort. Such an extractor can be compiled into a full-fledged extractor that
does not abort by Watrous’ rewinding lemma [65].

Proof Idea for the Generalized Extract-and-Simulate Lemma. Finally,
we briefly explain the idea for the proof of our generalized extract-and-simulate
lemma. The basic idea is similar to the original extract-and-simulate lemma
in [18]—Use Jordan’s lemma to decompose the adversary’s internal state into
“good” and “bad” subspaces, and amplify the extraction probability in the good
subspace while effectively ignoring the bad-subspace components. However, the
crucial difference is that in [18], they define those subspaces with respect to the
success probability of A whereas we define them with respect to the success
probability of ExtSim-less. That is, for a noticeable δ, we apply Jordan’s lemma to
define a subspaces S<δ and S≥δ such that

1. When ExtSim-less’s input is in S<δ (resp. S≥δ), it succeeds in extracting s∗

with probability < δ (resp. ≥ δ).
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2. Given a state in S≥δ, we can extract s∗ with overwhelming probability within
O(δ−1) steps.

3. The above procedure does not cause any interference between S<δ and S≥δ.

We define SE to be an algorithm that runs the procedure in Item 2 and
outputs s (which is supposed to be s∗ in the case of success) and the post-
execution state of A. First, we consider simpler cases where the initial state of
the experiments is a pure state |ψ⟩ that is in either S≥δ or S<δ.

Case of |ψ⟩ ∈ S≥δ: In this case, Item 2 implies that SE outputs s∗ with over-
whelming probability. In general, such an almost-deterministic quantum pro-
cedure can be done (almost) without affecting the state (e.g., see the Almost-
as-Good-as-New Lemma in [1, Lemma 2.2]). Therefore, Expreal and Expext are
negligibly indistinguishable in this case.

Case of |ψ⟩ ∈ S<δ: For any state |ψ<δ⟩ ∈ S<δ, Item 1 implies

Pr
[
Ext

A(|ψ<δ⟩)
Sim-less = s∗

]
≤ δ.

On the other hand, our assumption (i.e., Inequality (1)) implies

Pr
[
Ext

A(|ψ<δ⟩)
Sim-less = s∗

]
≥ (Pr[A(|ψ<δ⟩) = Succ])c − negl(λ)

for some constant c. By combining them, we have

Pr[A(|ψ<δ⟩) = Succ] ≤ (δ + negl(λ))1/c .

We note that the second output of SE in Expext is in S<δ if the initial state is
in S<δ by Item 3. Therefore, if we run Expreal or Expext with an initial state

in S<δ, it outputs Fail with probability > 1 − (δ + negl(λ))1/c. Recall that
when an experiment outputs Fail, no information about the internal state of
A is revealed. Thus, the distinguishing advantage between those experiments
can be bounded by O(δ1/c).

In general, the initial state is a superposition of S<δ component and S≥δ
component. Thanks to Item 3, we can reduce the general case to the above two
cases. When doing that, there occurs an additional loss of the 4-th power of δ due
to a technical reason. Still, we can bound the distinguishing advantage between
the two experiments by O(δ1/(4c)). This can be made to be an arbitrarily small
noticeable function because δ is an arbitrarily small noticeable function. This
suffices for establishing the ε-closeness of those experiments.

2.2 Black-Box ε-Simulatable ExtCom-and-Prove

Black-box zero-knowledge commit-and-prove allows a committer to commit to
some message m (the Commit Stage), and later prove in zero-knowledge that
the committed m satisfies some predicate ϕ (the Prove Stage). What makes this
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primitive non-trivial is the requirement of black-box use of cryptographic build-
ing blocks; otherwise, it can be fulfilled easily by giving a standard commitment
to m first, and then running any zero-knowledge system over the commitment
in a non-black-box manner.

Our construction follows the classical “MPC-in-the-head” paradigm [47, 37]
with the following modifications. To make the commitment stage extractable, we
ask the committer to use the ε-simulatable parallel-strongly extractable commit-
ment. We remark that the parallel-strong extractability is essential for obtaining
a constant round construction since the committer has to parallelly commit to
many secret shares of its message in the construction. Another caveat is that
the protocol relies on coin-flipping to conduct a “cut-and-choose” type of argu-
ment. As explained in Sec. 2.1, we can implement a “one-sided simulatable” coin
flipping from (weakly) extractable commitments. Based on this observation, we
upgrade the classical security proof to the quantum setting.

Due to space constraints, we provide a more detailed overview of this con-
struction in [16, Section 2.2].

2.3 Black-Box ε-Simulatable 2PC

It is well-known that there exist black-box constant-round constructions of general-
purpose 2PC from semi-honest OTs and (simulation-secure) commitments in the
universally-composable (UC) model [49, 42, 19]. In the stand-alone setting, it
had been a folklore that a similar conversion works if we assume suitable parallel-
simulation-secure commitments, but we are not aware of any work that formally
proved it until the recent work of [40]. [40] addressed this issue by defining a
functionality called F tso-com, and showed that the above conversion works in the
F tso-com-hybrid model in the stand-alone setting. F tso-com is a two-party ideal
functionality that allows a committer to commit to an a-priori fixed polyno-
mial number t(λ) of messages in parallel, and later decommit to a subset of
these commitments named by the receiver (thus, “so” stands for “selectively
opening”).

Thus, for obtaining a black-box constant-round construction of general-purpose
ε-simulatable 2PC, all we need to do is to construct a constant-round black-
box commitment scheme that implements F tso-com with ε-close simulation. It is
straightforward to construct such a commitment scheme based on our ExtCom-
and-Prove protocol, since it enables the committer to prove any predicate on
committed values, which of course supports revealing a subset of them.

Moreover, if we are allowed to use quantum communication, [40] showed
that we can construct black-box constant-round (maliciously-secure) OTs in the
F tso-com-hybrid model. Thus, we can drop the additional assumption of semi-
honest OTs in this case.

We provide a more detailed technical overview in [16, Section 2.3].

3 Preliminaries

We postpone basic notations, definitions, and known lemmas to [16, Section 3].

12



3.1 Post-Quantum Extractable Commitment

We give a definition of post-quantum (strongly) extractable commitments with
ε-simulation. We will omit the security parameter from the input to parties when
it is clear from the context.

Definition 1 (Post-Quantum Commitment). A post-quantum commit-
ment scheme Π is a classical interactive protocol between interactive PPT ma-
chines C and R. Let m ∈ {0, 1}ℓ(λ) (where ℓ(·) is some polynomial) is a message
that C wants to commit to. The protocol consists of the following stages:

– Commit Stage: C(m) and R interact with each other to generate a tran-
script (which is also called a commitment) denoted by com,16 C’s state STC ,
and R’s output bcom ∈ {0, 1} indicating acceptance (i.e., bcom = 1) or re-
jection (i.e., bcom = 0). We denote this execution by (com,STC , bcom) ←
⟨C(m), R⟩(1λ). When C is honest, STC is classical, but when we consider a
malicious quantum committer C∗(ρ), we allow it to generate any quantum
state STC∗ . Similarly, a malicious quantum receiver R∗(ρ) can output any
quantum state, which we denote by OUTR∗ instead of bcom.

– Decommit Stage: C generates a decommitment decom from STC . We de-
note this procedure by decom← C(STC).

17 Then it sends a message m and
decommitment decom to R, and R outputs a bit bdec ∈ {0, 1} indicating ac-
ceptance (i.e., bdec = 1) or rejection (i.e., bdec = 0). We assume that R’s ver-
ification procedure is deterministic and denote it by Verify(com,m, decom).18

W.l.o.g., we assume that R always rejects (i.e., Verify(com, ·, ·) = 0) when-
ever bcom = 0. (Note that w.l.o.g., com can include bcom because we can
always modify the protocol to ask R to send bcom as the last round message.)

The scheme satisfies the following correctness requirement:

1. Correctness. For any m ∈ {0, 1}ℓ(λ), it holds that

Pr

bcom = bdec = 1 :
(com,STC , bcom)← ⟨C(m), R⟩(1λ)
decom← C(STC)
bdec ← Verify(com,m, decom)

 = 1.

Definition 2 (Computationally Hiding). A post-quantum commitment Π
is computationally hiding if for any m0,m1 ∈ {0, 1}ℓ(λ) and any non-uniform
QPT receiver R∗(ρ), the following holds:

{OUTR∗ : (com,STC ,OUTR∗)← ⟨C(m0), R
∗(ρ)⟩(1λ)}λ

c
≈{OUTR∗ : (com,STC ,OUTR∗)⟨C(m1), R

∗(ρ)⟩(1λ)}λ.
16 That is, we regard the whole transcript as a commitment.
17 We could define STC to be decom itself w.l.o.g. However, we define them separately

because this is more convenient when we define ExtCom-and-Prove, which is an
extension of post-quantum extractable commitments.

18 Note that Verify is well-defined since our syntax does not allow R to keep a state
from the commit stage.
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Definition 3 (Statistically Binding). A post-quantum commitment Π is sta-
tistically binding if for any unbounded-time comitter C∗, the following holds:

Pr

∃ {mb, decomb}b∈{0,1},m0 ̸= m1

∧ Verify(com,mb, decomb) = 1
for b ∈ {0, 1}

: (com,STC∗ , bcom)← ⟨C∗, R⟩(1λ)

 = negl(λ).

Definition 4 (Committed Values). For a post-quantum commitment Π, we
define the value function as follows:

valΠ(com) :=

{
m if ∃ unique m s.t. ∃ decom,Verify(com,m, decom) = 1

⊥ otherwise
.

We say that com is valid if valΠ(com) ̸= ⊥ and invalid if valΠ(com) = ⊥.

Then we give the definition of the strong extractability with ε-simulation.
The definition is similar to that of post-quantum extractable commitments in
[10, 9] except that we allow an (arbitrarily small) noticeable approximation error
similarly to post-quantum ε-zero-knowledge [18]. We note that we call it the
strong extractability since we also define a weaker version of extractability in
Def. 7 in Sec. 5.1.

Definition 5 (Strong Extractability with ε-Simulation). A commitment
scheme Π is strongly extractable with ε-simulation if there exists a QPT algo-
rithm SE (called the ε-simulation strong-extractor) such that for any noticeable
ε(λ) and any non-uniform QPT C∗(ρ),{
SEC

∗(ρ)(1λ, 1ε
−1

)
}
λ

c
≈ε

{
(valΠ(com),STC∗) : (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ)

}
λ
.

We also define the parallel version.

Definition 6 (Parallel-Strong Extractability with ε-Simulation). A com-
mitment scheme Π is parallelly strongly extractable with ε-simulation if for any
integer n = poly(λ), there exists a QPT algorithm SEpar (called the ε-simulation
parallel-strong-extractor) such that for any noticeable ε(λ) and any non-uniform
QPT C∗(ρ),{

SEC
∗(ρ)

par (1λ, 1ε
−1

)
}
λ

c
≈ε

{
(Λ{bcom,j}n

j=1
({val(comj)}nj=1),STC∗) :

({comj}nj=1,STC∗ , {bcom,j}nj=1)
← ⟨C∗(ρ), Rn⟩(1λ)

}
λ

where ({comj}nj=1,STC∗ , {bcom,j}nj=1) ← ⟨C∗(ρ), Rn⟩(1λ) means that C∗(ρ) in-
teracts with n copies of the honest receiver R in parallel and the execution results
in transcripts {comj}nj=1, the final state STC∗ , and outputs {bcom,j}nj=1 of each
copy of R and

Λ{bcom,j}n
j=1

({val(comj)}nj=1) :=

{
{valΠ(comj)}nj=1 if ∀ j ∈ [n] bcom,j = 1

⊥ otherwise
.
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Remark 1. We remark that the above definition only requires the extractor to
extract the committed values when R accepts in all the parallel sessions. In
particular, when R accepts in some sessions but not in others, the extractor
does not need to extract the committed values at all. An alternative stronger
(and probably more natural) definition would require the extractor to extract
valΠ(comj) for all j ∈ [n] such that R accepts in the j-th session. But we define
it in the above way since it suffices for our purpose and we do not know if our
construction satisfies the stronger one.

4 Extract-and-Simulate Lemma

We prove a lemma that can be seen as an ε-simulation variant of Unruh’s rewind-
ing lemma ([64, Lemma 7]) in typical applications. This lemma is the technical
core of all the results in this paper.

4.1 Statement of Extract-and-Simulate Lemma

Our lemma is stated as follows.

Lemma 1 (Extract-and-Simulate Lemma). Let C be a finite set. Let {Πi}i∈C
be orthogonal projectors on a Hilbert space H such that the measurement {Πi, I−
Πi} can be efficiently implemented. Let |ψinit⟩ ∈ H be a unit vector.

Suppose that there are a subset S ∈ C2 and a QPT algorithm A = (A0,A1)
that satisfies the following:

1. S consists of an overwhelming fraction of C2, i.e., |S|
|C|2 = 1− negl(λ).

2. For all i ∈ C, there exists a classical string si such that

Pr

[
A0

(
i,

Πi |ψinit⟩
∥Πi |ψinit⟩ ∥

)
= si

]
= 1.

3. There exists a classical string s∗ such that for any (i, j) ∈ S,

Pr[A1 (i, j, si, sj) = s∗] = 1.

Let Exp(λ, {Πi}i∈C , |ψinit⟩) be an experiment that works as follows:

– Choose i← C.
– Apply the measurement {Πi, I −Πi} on |ψinit⟩.
• If the state is projected onto Πi, the experiment outputs i, the classical

string s∗, and the resulting state Πi|ψinit⟩
∥Πi|ψinit⟩∥ .

19

• If the state is projected onto I − Πi, the experiment outputs i, ⊥, and
the resulting state (I−Πi)|ψinit⟩

|(I−Πi)|ψinit⟩| .

Then, there is a QPT algorithm SE such that for any noticeable ε,

{SE(1λ, 1ε
−1

, {Πi}i∈C ,A, |ψinit⟩)}λ
s
≈ε {Exp(λ, {Πi}i∈C , |ψinit⟩)}λ.

Due to space constraints, we postpone the proof to the full version [16, Section
4.2]. But note that the key ideas of this proof are already described in Sec. 2.1.

19 We stress that we do not assume that the experiment is efficient. Especially, it may
be computationally hard to find s∗ from Πi|ψinit⟩

∥Πi|ψinit⟩∥
.
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5 Black-Box ε-Simulation-Extractable Commitments in
Constant Rounds

In this section, we present our construction of post-quantum commitment that
satisfies the (parallel) strong extractability with ε-simulation. Namely, we prove
the following lemma.

Lemma 2. Assume the existence of post-quantum secure OWFs. Then, there
exists a constant-round construction of post-quantum commitment that satisfies
computational hiding (Def. 2), statistical binding (Def. 3), and (parallel) strongly
extractable commitment with ε-simulation. Moreover, this construction makes
only black-box use of the assumed OWF.

Toward proving that, we first construct a scheme that satisfies a weaker no-
tion of ε-simulatable extractability in Sec. 5.1. In Sec. 5.2, we present a compiler
that converts the weak scheme in Sec. 5.1 into one that satisfies the (parallel)
strong extractability with ε-simulation.

5.1 Weakly Extractable Commitment

We construct a commitment scheme that satisfies weak notions of extractability
defined in Def. 7 and 10 based on OWFs. The description of the scheme is
given in Prot. 1, where Com is a statistically-binding and computationally-hiding
commitment scheme (e.g., Naor’s commnitment). We remark that the scheme is
identical to the classical extractable commitment in [61], which in turn is based
on earlier works [25, 62, 63].

Protocol 1: Extractable Commitment Scheme wExtCom

The extractable commitment scheme, based on any commitment scheme Com,
works in the following way.
Input:

– both the committer C and the receiver R get security parameter 1λ as the
common input.

– C gets a stringm ∈ {0, 1}ℓ(λ) as his private input, where ℓ(·) is a polynomial

Commitmment Phase:
1. The committer C commits using Com to k = λ pairs of strings {(v0i , v1i )}ki=1

where (v0i , v
1
i ) = (ηi,m ⊕ ηi) and ηi are random strings in {0, 1}ℓ for 1 ≤

i ≤ k.20We denote those commitments by com = {com0
i , com

1
i }ki=1.

2. Upon receiving a challenge c = (c1, . . . , ck) from the receiver R, S opens the
commitments to v := (vc11 , . . . , v

ck
k ) with the corresponding decommitment

decom := (decomc1
1 , . . . , decom

ck
k ).

3. R checks that the openings are valid.

Decommitment Phase:
– C sends σ and opens the commitments to all k pairs of strings. R checks

that all the openings are valid, and also that m = v01 ⊕ v11 = · · · = v0k ⊕ v1k.

20 Actually, the scheme will be secure as long as we use Com to commit k = ω(log λ)
pairs of strings.
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Proof of Security. The correctness and the statistically-binding property of
wExtCom follows straightforwardly from that of Com. The computationally-
hiding property of wExtCom can be reduced to that of Com by standard ar-
guments.

Lemma 3 (Computational Hiding). wExtCom is computationally hiding.

The proof is similar to the classical counterpart in [61]. We postpone it to
the full version [16, Section 5.1].

We prove that wExtCom satisfies a weak version of the extractability which
we call the weak extractability with ε-simulation. Intuitively, it requires the
simulation-extractor to perform extraction and ε-simulation properly, as long
as the commitment is valid. A formal definition is given below.

Definition 7 (Weak Extractability with ε-Simulation). A commitment
scheme Π is weakly extractable with ε-simulation if there exists a QPT algorithm
SEweak (called the ε-simulation weak-extractor) such that for any noticeable ε(λ)
and any non-uniform QPT C∗(ρ),{

Γcom(mExt, S̃TC∗) : (com,mExt, S̃TC∗)← SEC
∗(ρ)(1λ, 1ε

−1

)
}
λ

c
≈ε

{
Γcom(valΠ(com),STC∗) : (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ)

}
λ

where Γcom(m,STC∗) :=

{
(m, STC∗) if valΠ(com) ̸= ⊥
⊥ otherwise

.

Lemma 4 (Weak Extractability with ε-Simulation). wExtCom is weakly
extractable with ε-simulation (as per Def. 7).

Before proving Lem. 4, we prepare several definitions.

Definition 8 (Validness of com). For a sequence com = {com0
i , com

1
i }ki=1

of commitments of the scheme Com, we say that com is valid if there exists
m ∈ {0, 1}ℓ such that valCom(com

b
i ) ̸= ⊥ for all i ∈ [k] and b ∈ {0, 1} and

valCom(com
0
i )⊕ valCom(com

1
i ) = m for all i ∈ [k] where valCom(com

b
i ) is the value

function as defined in Def. 4. We denote by valCom(com) to mean such m if com
is valid and otherwise ⊥.

Definition 9 (Accepting Opening of com). For a sequence com = {com0
i , com

1
i }ki=1

of commitments of the commitment scheme Com and c = (c1, ..., ck) ∈ {0, 1}k,
we say that (v = (v1, ..., vk), decom = (decom1, ..., decomk)) is an accepting open-
ing of com w.r.t. c if VerifyCom(com

ci
i , vi, decomi) = 1 for all i ∈ [k].

Then we prove Lem. 4.

Proof of Lem. 4. For simplicity, we assume that Com satisfies perfect binding.
It is straightforward to extend the proof to the statistically binding case by
excluding the bad case where any commitment of Com is not bounded to a
unique message, which happens with a negligible probability.
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Remark that the weak extractability with ε-simulation only requires the ex-
tractor to correctly extract and simulate if the commitment generated in the
commit stage is valid in the sense of Def. 4. When the commitment is valid,
com generated in Step 1 is also valid in the sense of Def. 8 (because otherwise a
committer cannot pass the verification in the decommitment stage). Therefore,
it suffices to prove that the extractor works for any fixed valid com.

Let C∗(ρ) be a non-uniform QPT malicious committer. For c ∈ {0, 1}k, let Uc

be the unitary corresponding to the action of C∗ in Step 2. That is, for the state
ρ′ before Step 2, it applies Uc to get Ucρ

′U†
c and measures designated registers

V and D to get the message v and opening information decom in Step 2. Let
Π test

c be the projection that maps onto states that contain an accepting opening
v and decom of com w.r.t. c (as defined in Def. 9) in V⊗D. For c ∈ {0, 1}k, we
define Πc := U†

cΠ
test
c Uc.

We apply Lem. 1 for {Πc}c∈{0,1}k with the following correspondence.

– H is the internal space of C∗.
– The initial state is ρ′.21

– C = {0, 1}k.
– S = {((c1, ..., ck), (c′1, ..., c′k)) : ∃i ∈ [k] s.t. ci ̸= c′i}
– A0 applies Uc on its input, measures V to get v, applies U†

c , and outputs v.

– A1 is given as input (c, c′) ∈ S, vc = (vc11 , ..., v
ck
k ), and vc′ = (v

c′1
1 , ..., v

c′k
k ).

A1 outputs vcii ⊕v
c′i
i for the smallest i ∈ [k] such that ci ̸= c′i. Note that such

i exists since we assume (c, c′) ∈ S.

If com is valid, we can see that the assumptions for Lem. 1 are satisfied as
follows:

1. By the definition of S, it is easy to see that |S|
|C|2 = 1− 2−k = 1− negl(λ).

2. For any c, if A0 takes a state in the span of Πc as input, it outputs sc :=
(valCom(com

c1
1 ), ..., valCom(com

ck
k )) with probability 1 by the definition of Πc

and the perfect binding property of Com.
3. For any (c, c′) ∈ S, if A1 takes as input the sc and sc′ defined as follows:{

sc = (valCom(com
c1
1 ), . . . , valCom(com

ck
k ))

sc′ = (valCom(com
c′1
1 ), . . . , valCom(com

c′k
k ))

;

then, it outputs s∗ := valCom(com) as defined in Def. 8 since we assume that
com is valid.

Let S̃E be the ε-simulation extractor of Lem. 1 in the above setting. Then Lem. 1
gives us the following:

{S̃E(1λ, 1ε
−1

, {Πc}c∈{0,1}k ,A, ρ′)}λ
s
≈ε {Exp(λ, {Πc}c∈{0,1}k , ρ′)}λ

where Exp(λ, {Πc}c∈{0,1}k , ρ′) is as defined in Lem. 1. That is, Exp(λ, {Πc}c∈{0,1}k , ρ′)
works as follows:
21 Though we assume that the initial state |ψinit⟩ is a pure state in Lem. 1, the lemma

holds for any mixed state since a mixed state can be seen as a probability distribution
over pure states.
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– Choose c← {0, 1}k.
– Apply the measurement {Πc, I −Πc} on ρ′.
• If the state is projected onto Πc, the experiment outputs c, the classical

string valCom(com), and the resulting state.
• If the state is projected onto I −Πc, the experiment outputs c, ⊥, and

the resulting state.

One can see that the state in the third output of Exp(λ, ρ′) is similar to the
final state of C∗ in the real execution except that C∗ applies the unitary Uc

instead of the measurement {Πc, I − Πc} and measures V and D. By noting
that Π test

c Uc = UcΠc and that measuring V and D is the same as first applying
the measurement {Π test

c , I − Π test
c } and then measuring V and D, if we apply

Uc on the third output of Exp(λ, {Πc}c∈{0,1}k , ρ′) and then measure V and D,
the state is exactly the same as the final state of C∗.

Therefore, the following extractor SEweak works for the weak ε-simulation
extractability:

SEC
∗(ρ)

weak (1λ, 1ε
−1

) :

1. Run the commit stage of wExtCom between C∗(ρ) and the honest receiver
R until C∗ sends com in Step 1. Let ρ′ be the internal state of C∗ at this
point.

2. Run (c,mExt, ρExt) ← S̃E(1λ, 1ε
−1

, {Πc}c∈{0,1}k ,A, ρ′) where A = (A0,A1)
is as defined above. Remark that the definition of Πc depends on com, and
it uses com generated in the previous step.

3. Apply Uc on ρExt to generate UcρExtU
†
c and measures registers V and D to

get v and decom. Let ρfinal be the state after the measurement.
4. Output (mExt, ρfinal).

On the Parallel Execution of wExtCom. We can prove that wExtCom satisfies
a parallel version of the weak extractability with ε-simulation in a similar way.
In the following, we prove that wExtCom satisfies even a generalized version of
that, which we call special parallel weak extractability with ε-simulation. Look-
ing ahead, this will be used in the proof of the (parallel) ε-simulation strong
extractability of Prot. 2 in Sec. 5.2.

Intuitively, it requires the following: Suppose that a malicious committer C∗

interacts with n copies of the honest receiver R in parallel, and let comj be the
commitment generated in the j-th execution. Suppose that comj is valid for all
j ∈ V for some subset V ⊆ [n]. Let F : {0, 1}ℓ ∪ {⊥} → {0, 1}∗ be a function
that is determined by {val(comj)}j∈V , i.e., F (m1, ...,mn) takes a unique value
m∗ as long as mj = val(comj) for all j ∈ V . Then, the extractor can extract
m∗ while simulating the post-execution state of C∗. A formal definition is given
below.

Definition 10 (Special Parallel Weak Extractability with ε-Simulation
). We say that a commitment scheme Π satisfies the special parallel weak
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extractability with ε-simulation if the following is satisfied. For any integer n =
poly(λ) and an efficiently computable function F : {{0, 1}ℓ ∪ {⊥}}n → {0, 1}∗,
there exists SEF that satisfies the following: For commitments {comj}nj=1, we
say that {comj}nj=1 is F -good if it satisfies the following:

1. there exists V ⊆ [n] such that comj is valid (i.e., valΠ(comj) ̸= ⊥) for all
j ∈ V ; and

2. there exists a unique m∗ such that F (m′
1, ...,m

′
n) = m∗ for all (m′

1, ...,m
′
n)

such that m′
j = valΠ(comj) for all j ∈ V .

Then it holds that{
ΓF,{comj}n

j=1
(mExt,STC∗) : ({comj}nj=1,mExt,STC∗)← SEC

∗(ρ)
F (1λ, 1ε

−1

)
}
λ

c
≈ε

{
ΓF,{comj}n

j=1
(F (valΠ(com1), ..., valΠ(comn)),STC∗)

: ({comj}nj=1,STC∗ , {bcom,j}nj=1)← ⟨C∗(ρ), Rn⟩(1λ)

}
λ

,

where ({comj}nj=1,STC∗ , {bcom,j}nj=1) ← ⟨C∗(ρ), Rn⟩(1λ) means that C∗(ρ) in-
teracts with n copies of the honest receiver R in parallel and the execution results
in transcripts {comj}nj=1, the final state STC∗ , and outputs {bcom,j}nj=1 of each
copy of R and

ΓF,{comj}n
j=1

(m,STC∗) :=

{
(m,STC∗) if {comj}nj=1 is F -good

⊥ otherwise
.

Lemma 5 (Special Parallel Weak Extractability with ε-Simulation).
wExtCom satisfies the special parallel weak extractability with ε-simulation (as
per Def. 10).

The proof of Lem. 5 is similar to that of Lem. 4. Due to space constraints,
we postpone it to the full version [16, Section 5.1].

5.2 Strongly Extractable Commitment

In this section, we present the strongly extractable commitment with ε-simulation.
The scheme is shown in Prot. 2. It relies on the following building blocks:

1. the ε-simulatable weakly extractable commitment wExtCom given in Prot. 1.
We remark that the security of Prot. 2 relies on the particular wExtCom pre-
sented in Prot. 1 because we also need the special parallel weak extractability
with ε-simulation (Def. 10); we do not know if Prot. 2 can be based on any
wExtCom satisfying the weak extractability with ε-simulation as in Def. 7.

2. a (n+1, t)-perfectly verifiable secret sharing scheme VSS = (VSSShare,VSSRecon).
We require that t is a constant fraction of n such that t ≤ n/3. There are
known constructions (without any computational assumptions) satisfying
these properties [6, 20].
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Protocol 2: ε-Simulatable Strongly Extractable Commitment ExtCom

Let n(λ) be a polynomial on λ. Let t be a constant fraction of n such that
t ≤ n/3.
Input: both the (committer) C and the receiver R get security parameter 1λ

as the common input; C gets a string m ∈ {0, 1}ℓ(λ) as his private input, where
ℓ(·) is a polynomial.

Commit Stage:
1. C emulates n+1 (virtual) players {Pi}i∈[n+1] to execute the VSSShare pro-

tocol “in his head”, where the input to Pn+1 (i.e., the Dealer) is m. Let
{vi}i∈[n+1] be the views of the n+ 1 players describing the execution.

2. C and R involve in n executions of wExtCom in parallel, where in the i-th
instance (i ∈ [n]), C commits to vi.

3. R picks a random string r1 and commits to it using wExtCom.
4. C picks a random string r2 and sends it to R.
5. R sends to C the value r1 together with the corresponding decommitment

information w.r.t. the wExtCom in Step 3. Now, both parties learn a coin-
tossing result r = r1 ⊕ r2, which specifies a size-t random subset T ⊆ [n].

6. C sends to R in one round the following messages: {vi}i∈T together with the
corresponding decommitment information w.r.t. the wExtCom in Step 2.

7. R checks the following conditions:
(a) All the decommitments in Step 6 are valid; and
(b) for any i, j ∈ T , views (vi, vj) are consistent w.r.t. the VSSShare execu-

tion as described in Step 1.
If all the checks pass, R accepts; otherwise, R rejects.

Decommit Stage:
1. C sends {vi}i∈[n] together with all the corresponding information w.r.t. the

wExtCom in Step 1 of the Commit Stage.
2. R constructs {v′i}i∈[n] as follows: in Step 1 of the Decommit Stage, if the
i-th decommitment is valid, R sets v′i := vi; otherwise, R sets v′i := ⊥.

3. R outputs m′ := VSSRecon(v
′
1, . . . , v

′
n).

Security. Correctness and statistical binding property of ExtCom follows straight-
forwardly from that of wExtCom. We show that ExtCom is computationally-
hiding and (parallel) strong extractable with ε-simulation.

Lemma 6 (Computational Hiding). ExtCom is computationally hiding.

Computational hinding property can be shown based on the weak extractabil-
ity of wExtCom used in Step 3, computational hiding property of wExtCom used
in Step 2, and the secrecy property of VSS by a standard hybrid argument. The
proof is postponed to the full version [16, Section 5.2].

In the following, we prove the (parallel-)strong extractability with ε-simulation.
Though we finally prove the parallel version, we first give a proof for the stand-
alone version since that is simpler and the proof is readily extended to that of
the parallel version.
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Lemma 7 (Strong Extractability with ε-Simulation). ExtCom is strongly
extractable with ε-simulation (as per Def. 5).

Proof. Suppose that a non-uniform QPT committer C∗ interacts with the honest
receiver R in the commit stage of ExtCom. We consider two cases where R accepts
or rejects, respectively. By using Watrous’ rewinding lemma [65] in a similar
way to the proof of Lem. 1, it suffices to construct a simulator that correctly
extracts and simulates for each case separately. Moreover, when R rejects, the
commitment is invalid and thus the extractor does not need to extract anything.
Thus, there is a trivial perfect simulation extractor for this case: it can simply
run the interaction between C∗(ρ) and R by playing the role of R and outputs
the final state of C∗. What is left is to construct an extractor that correctly
extracts and simulates assuming that R accepts in the committing stage. That
is, it suffices to prove the following claim.

Claim 1 (Extraction and Simulation for Accepting Case). There exists a QPT
algorithm SEAcc such that for any noticeable ε(λ) and any non-uniform QPT
C∗(ρ), it holds that{

Γbcom(mExt,STC∗) : (mExt,STC∗ , bcom)← SEC
∗(ρ)

Acc (1λ, 1ε
−1

)
}
λ

c
≈ε

{
Γbcom(valExtCom(com),STC∗) : (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ)

}
λ
,

where Γbcom(m,STC∗) :=

{
(m,STC∗) if bcom = 1

⊥ otherwise
.

Remark 2. One may think that the above claim is similar to the weak ex-
tractability with ε-simulation (Def. 7). However, the crucial difference is that
the extractor SEAcc should declare if the simulation has succeeded by outputting
bcom in the clear. On the other hand, in Def. 7, SEweak is only required to in-
directly declare that depending on if com is valid, which may not be known by
SEweak.

Proof of Claim 1. Let wExtCom.comi be the i-th commitment of wExtCom in
Step 2 in the commit stage. In the execution of (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ),
let Good be the event that {wExtCom.comi}ni=1 is VSSRecon-good in the sense of
Def. 10, i.e.,

– there exists V ⊆ [n] such that wExtCom.comi is valid (i.e., valwExtCom(wExtCom.comi) ̸=
⊥) for all i ∈ V , and

– there exists m∗ such that VSSRecon(v
′
1, . . . , v

′
n) = m∗ for all (v′1, . . . , v

′
n) such

that
∀i ∈ V, v′i = valwExtCom(wExtCom.comi).

Let Bad be the complementary event of Good. We prove the following claim.

Claim 2. It holds that

Pr
[
Bad ∧ bcom = 1 : (com,STC∗ , bcom)← ⟨C∗(ρ), R⟩(1λ)

]
= negl(λ). (2)
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Claim 2 can be proven based on a similar argument to those used in previous
black-box commit-and-prove literature [47, 37, 39, 54]. We postpone the proof
to [16, Section 5.2].

Given Claim 2, it is straightforward to finish the proof of Claim 1 by using
Lem. 5. Claim 2 means that the Good occurs whenever bcom = 1 except for neg-
ligible probability. Since SEAcc is only required to correctly extract and simulate
when bcom = 1, it suffices to give an extractor that correctly extracts and simu-
lates when {wExtCom.comi}ni=1 satisfies the condition for Good. Since wExtCom
satisfies the special parallel weak extractability with ε-simulation as shown in
Lem. 5, SEVSSRecon

given in Def. 10 (where we set F := VSSRecon) directly gives
SEAcc. Specifically, SEAcc as described below suffices for Claim 1.

SEC
∗(ρ)

Acc (1λ, 1ε
−1

):

1. Run ({wExtCom.comi}ni=1,mExt,STC∗
2
) ← SEC

∗
2 (ρ)

VSSRecon
(1λ, 1ε

−1

) where C∗
2 de-

notes the action of C∗ until Step 2 in the commit stage where it outputs
{wExtCom.comi}ni=1.

2. Simulate the interaction between C∗ and R from Step 3 where the state of
C∗ is initialized to be STC∗

2
. Let bcom be R’s decision (i.e., bcom = 1 if and

only if R accepts) and STC∗ be the post-execution state of S
3. Output (mExt,STC∗ , bcom).

This finishes the proof of Claim 1.

This eventually concludes the proof of Lem. 7.

The above proof can be extended to prove the parallel-strong extractability
(i.e. Lem. 8). We postpone it to the full version [16, Section 5.2].

Lemma 8 (Parallel-Strong Extractability with ε-Simulation). ExtCom
is parallel-strongly extractable with ε-simulation.

6 Black-Box ε-Simulatable ExtCom-and-Prove in
Constant Rounds

Roughly speaking, ε-simulatable ExtCom-and-Prove is a strongly extractable
commitment scheme with ε-simulation with the additional functionality that the
committer can later prove any statement of the committed message. Besides the
security requirements as strongly extractable commitments with ε-simulation, we
additionally require soundness, which states that the committer cannot prove a
false statement on the committed message, and ε-zero-knowledge property, which
is defined similarly to in [18]. See [16, Definition 17] for the formal definition.

We show the following lemma.

Lemma 9. Assume the existence of post-quantum secure OWFs. Then, there
exists a constant-round ε-simulatable ExtCom-and-Prove scheme. Moreover, this
construction makes only black-box use of the assumed OWF.
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Construction. The construction is shown in Prot. 3. It makes black-box use of
the following building blocks:

1. The ε-simulatable, parallel-strong extractable commitment ExtCom constructed
in Sec. 5.2, which in turn makes black-box use of any post-quantum secure
OWFs.

2. A statistically-binding, computationally-hiding (against QPT adversaries)
commitment Com. This is also known assuming only black-box access to
post-quantum secure OWFs.

3. A (n+1, t)-perfectly secure verifiable secret sharing scheme VSS = (VSSShare,VSSRecon)
(see [16, Section 3.3]);

4. A (n, t)-perfectly secure MPC protocol Πmpc (see [16, Section 3.4]).

For the VSS and MPC protocols, we require that t is a constant fraction of n
such that t ≤ n/3. There are information-theoretical constructions satisfying
these properties [6, 20].

Protocol 3: ε-Simulatable ExtCom-and-Prove

Parameter Setting: Let n(λ) be a polynomial on λ. Let t be a constant
fraction of n such that t ≤ n/3.
Input: Both P and the receiver V get 1λ as the common input; P gets a string
m ∈ {0, 1}ℓ(λ) as his private input, where ℓ(·) is a polynomial.

Commit Stage:
1. P emulates n+1 (virtual) players {Pi}i∈[n+1] to execute the VSSShare pro-

tocol “in his head”, where the input to Pn+1 (i.e., the Dealer) is m. Let
{vi}i∈[n+1] be the views of the n+ 1 players describing the execution.

2. P and V involve in n executions of ExtCom in parallel, where in the i-th
instance (i ∈ [n]), P commits to vi.

Decommit Stage:
1. P sends {vi}i∈[n] together with the corresponding decommitment informa-

tion w.r.t. the ExtCom in Step 2 of the Commit Stage.
2. V checks that all the decommitments in Step 1 of the Decommit Stage are

valid. If so, V outputs VSSRecon(v1, . . . , vn) and then halts; otherwise, V
outputs ⊥ and then halts.

Prove Stage: both parties learn a polynomial-time computable predicate ϕ.
1. P emulates “in his head” n (virtual) players {Pi}i∈[n], where Pi’s in-

put is vi (from Step 1 of the Commit Stage). These n parties exe-
cute Πmpc for the following functionality: the functionality reconstructs
m′ := VSSRecon(v1, . . . , vn) and sends the value ϕ(m′) to all the parties as
their output. For i ∈ [n], let v′i be the view of party Pi during Πmpc.

2. P and V involve in n executions of Com in parallel, where in the i-th
instance (i ∈ [n]), P commits to v′i.

3. V picks a random string r1 and commits to it using ExtCom.
4. P picks a random string r2 and sends it to V .
5. V sends to P the value r1 together with the corresponding decommitment

information w.r.t. the ExtCom in Step 3. Now, both parties learn a coin-
tossing result r = r1 ⊕ r2, which specifies a size-t random subset T ⊆ [n].
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6. P sends to V in one round the following messages:
(a) {vi}i∈T together with the corresponding decommitment information

w.r.t. the ExtCom in Step 2 of the Commit Stage; and
(b) {v′i}i∈T together with the corresponding decommitment information

w.r.t. the Com in Step 2 of the Prove Stage.
7. V checks the following conditions:

(a) All the decommitments in Steps 6a and 6b are valid; and
(b) for any i ∈ T , vi is the prefix of v′i ; and
(c) for any i, j ∈ T , views (v′i, v′j) are consistent w.r.t. the VSSShare execu-

tion in Step 1 of the Commit Stage and the Πmpc execution as described
in Step 1 of the Prove Stage.

If all the checks pass, V accepts; otherwise, V rejects.

Security. It is straightforward to see that Prot. 3 is constant-round and makes
only black-box access to OWFs. Completeness follows from that of VSS, ExtCom,
Com, and Πmpc. In the following, we show ε-simulatable extractability (in Lem. 10),
soundness (in Lem. 11), and ε-zero-knowledge (in Lem. 12). Due to space con-
straints, we postpone their proofs to [16, Section 6.5].

Lemma 10 (ε-Simulation Extractability). Assume ExtCom is parallel-strongly
extractable with ε-simulation. Then, Prot. 3 satisfies security as ε-simulation ex-
tractable commitment.

Lemma 11 (Soundness). Assume ExtCom and Com are statistically binding,
ExtCom is computationally-hiding, VSS is (n+1, t)-perfectly verifiable-committing
and Πmpc is (n, t)-perfectly robust. Then, Prot. 3 satisfies the soundness require-
ment (see [16, Definition 17]).

Lemma 12 (ε-Zero-Knowledge). Assume ExtCom and Com are computationally-
hiding, ExtCom is weakly extractable with ε-simulation, VSS is (n + 1, t)-secret
(see [16, Definition 1]), and Πmpc is (n, t)-semi-honest computationally private
(see [16, Definition 4]). Then, Prot. 3 satisfies the ε-zero-knowledge property
defined in [16, Definition 17].

Applications. Applications of our ε-simulatable ExtCom-and-Prove protocol
are postponed to the full version, where we will show to to obtain ε-simulatable
coin-flipping [16, Section 6.2], zero-knowledge argument of knowledge with an ε-
simulatable knowledge extractor [16, Section 6.3], and black-box ε-zero-knowledge
for QMA [16, Section 6.4].

7 Black-Box ε-Simulatable PQ-2PC in Constant Rounds

The ε-simulatable ExtCom-and-Prove protocol constructed in Sec. 6 yields the
following theorems. Due to space constraints, their proofs are postponed to the
full version [16, Sections 7 and 8].
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Theorem 3. Assuming the existence of a constant-round semi-honest bit-OT
secure against QPT adversaries, there exists a black-box, constant-round con-
struction of ε-simulatable 2PC protocol secure against QPT adversaries.

Theorem 4. Assuming the existence of OWFs secure against QPT adversaries,
there exists a black-box, constant-round construction of ε-simulatable 2PC pro-
tocol secure against QPT adversaries. This protocol makes use of quantum com-
munication.
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