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Abstract. Given a small number of base oblivious transfers (OTs), how
does one generate a large number of extended OTs as efficiently as
possible? The answer has long been the seminal work of IKNP (Ishai et
al., Crypto 2003) and the family of protocols it inspired, which only use
Minicrypt assumptions. Recently, Boyle et al. (Crypto 2019) proposed
the Silent-OT technique that improves on IKNP, but at the cost of a
much stronger, non-Minicrypt assumption: the learning parity with noise
(LPN) assumption. We present SoftSpokenOT, the first OT extension to
improve on IKNP’s communication cost in the Minicrypt model. While
IKNP requires security parameter λ bits of communication for each
OT, SoftSpokenOT only needs λ/k bits, for any k, at the expense of
requiring 2k−1/k times the computation. For small values of k, this
tradeoff is favorable since IKNP-style protocols are network-bound. We
implemented SoftSpokenOT and found that our protocol gives almost a
5× speedup over IKNP in the LAN setting.
Our technique is based on a novel silent protocol for vector oblivious linear
evaluation (VOLE) over polynomial-sized fields. We created a framework
to build maliciously secure

(
N
1

)
-OT extension from this VOLE, revisiting

and improving the existing work for each step. Along the way, we found
several flaws in the existing work, including a practical attack against the
consistency check of Patra et al. (NDSS 2017).

1 Introduction

Oblivious transfer (OT) is a basic building block of multi-party computation
(MPC), and for many realistic problems, MPC protocols may require millions of
OTs. [Bea96] introduced the concept of OT extension, where a small number of
OTs called base OTs are processed to efficiently generate a much larger number
of extended OTs. [IKNP03] (hereafter, IKNP) was the first OT extension protocol
to make black-box use of its primitives, a significant improvement in efficiency.
Because of its speed, it is still widely used for semi-honest OT extension.

However, IKNP has a bottleneck: communication. It transfers λ bits for
every extended random OT. Recent works under the heading of Silent OT
[BCGI18,BCG+19b,SGRR19,BCG+19a,YWL+20,CRR21] have communication
complexity that grows only logarithmically in the number of oblivious transfers.
Consequently, they are favored when communication is slow. On the other hand,
⋆ Address: ldr709@gmail.com. Supported by a DoE CSGF Fellowship.
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Fig. 1: Sequence of ideal functionalities and protocols used for OT extension.
Here q = pk is the size of the small field VOLE, and L = Affine(FknC

p ) is the set
of allowed selective abort attacks against the base OT receiver. Protocols below
the arrows are consistency checks needed for maliciously security.

IKNP has the advantage for computational cost: of the Silent OT protocols, only
Silver [CRR21] uses a comparable amount of computation to IKNP. Additionally,
while IKNP uses only Minicrypt [Imp95] assumptions (i.e. the assumptions are
all provable in the random oracle model), Silent OT is based on the learning
parity with noise (LPN) problem, which is not Minicrypt. Efficient instantiations
depend on highly structured versions of this problem, with the most efficient
protocol, Silver, owing its efficiency to a novel variant of LPN that was introduced
solely for that work. Compared with a tried-and-true block cipher like AES, these
assumptions are too recent to have received as much cryptanalysis.

Improvements to IKNP also benefit a number of derived protocols. For mali-
ciously secure OT extension, the main approach [KOS15] (hereafter, KOS) is to
combine IKNP with a consistency check, although Silent OT can also achieve
malicious security. [KK13] achieved

(
N
1

)
-OT extension by noticing that part of

IKNP can be viewed as encoding the OT choice bits with a repetition code. They
replaced it with a more sophisticated error correcting code. [OOS17] (hereafter,
OOS) and [PSS17] (hereafter, PSS) then devised more general consistency check-
ing protocols to achieve maliciously secure

(
N
1

)
-OT extension. [CCG18] (hereafter,

CCG) generalized OOS to work over larger fields, which have better linear codes.
This allowed for fewer base OTs, but required more communication per extended
OT.

1.1 Our Results

Our technique, SoftSpokenOT, makes an asymptotic improvement over IKNP’s
communication cost. It is the first OT extension to do so in the Minicrypt model.
For any parameter k ≥ 1, SoftSpokenOT can implement

(
2
1

)
-OT maliciously

secure extension using only λ/k bits, compared to IKNP’s λ bits. This is a
communication–computation tradeoff, as the sender in our protocol must generate
λ·2k/k pseudorandom bits, while IKNP only needs to generate 2λ bits. In practice,
fast hardware implementations of AES make IKNP network bound, so when k
is small (e.g. k = 5) this extra computation will have no effect on the overall
protocol latency. And for k = 2, no extra computation is required, making it a
pure improvement over IKNP. Asymptotically, setting k = Θ(log(ℓ)) generates ℓ
OTs with sublinear communication Θ

(
λ·ℓ

log(ℓ)

)
, in polynomial time.

We present a sequence of protocols (Fig. 1), starting with base OTs, continuing
through vector oblivious linear evaluation (VOLE), and ending at OT extension.
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First, we present a novel silent protocol for VOLE over polynomial-sized fields,
which may be of independent interest. A VOLE generates correlated randomness
(u⃗, v⃗) and (∆, w⃗) where w⃗ − v⃗ = u⃗∆. Our next stepping stone is an ideal
functionality that we call subspace VOLE, which produces correlations satisfying
W − V = UGC diag( ⃗∆). Here, GC is the generator matrix for a linear code C.
Note that ∆-OT (a.k.a. correlated OT) is a special case of subspace VOLE, as
is the correlation used by PaXoS [PRTY20]. Our ∆-OT works over any field of
polynomial size, so it can encode the inputs for arithmetic garbling [BMR16].
Finally, we hash the subspace VOLE using a correlation robust (CR) hash to
build random

(
N
1

)
, a correlation (x,mx) and (m0, . . . ,mN−1) where the my are

all random. These may be used directly, or to encode lookup tables representing
multiple small-secret

(
2
1

)
-OTs [KK13].

We generalize OOS to construct a consistency checking protocol that achieves
maliciously secure subspace VOLE, albeit with a selective abort attack. However,
while proving our protocol secure, we found flaws (Sect. 4.1) in three existing
works on consistency checks for OT extension. For OOS this is minor — just
a flaw in their proof — and a special case of our new proof shows that OOS is
still secure. We found two attacks on KOS which show that it is not always as
secure as claimed, though it’s still secure enough in practice. We leave to future
research the problem of finding a sound proof of security for KOS. However,
PSS’s flaw is more severe, as we found a practical attack that can break their(
256
1

)
-OT extension at λ = 128 security in time 234 with probability 2−8.

There is an existing work on OT extension consistency checking that we did
not find to be flawed. CCG base their proof on [CDD+16]’s careful analysis of
consistency checking for homomorphic commitments. CCG’s check is similar
to ours in that it works over any field. However, similarly to [CDD+16] and
unlike CCG we use universal hashing to compress the random challenge of the
consistency check. Additionally, we prove a tighter concrete security bound than
either work, which halves the number of rows that must be consistency checked.

The final step, going from correlated randomness (i.e. subspace VOLE) to
extended OTs, requires a CR hash function. For malicious security, a mechanism
is needed to stop the receiver from causing a collision between CR hash inputs.
[GKWY20] solve this with a tweakable CR (TCR) hash, using a tweak to stop
these collisions. TCR hashes are more expensive than plain CR hashes, so Endemic
OT [MR19] instead prevent the receiver from controlling the base OTs, proving
that it is secure to forgo tweaks in this case. However, their proof assumes
stronger properties of the consistency checking protocol than are provided by
real consistency checks, allowing us to find an attack on their OT extension (see
the full version). We follow [CT21] in using a universal hash to prevent collisions,
only using the tweak to improve the concrete security of the TCR hash. We
optimize their technique by sending the universal hash in parallel with our new
consistency check — our proof shows that the receiver has few remaining choices
once it learns the universal hash.

We implemented SoftSpokenOT for
(
2
1

)
-OT in the libOTe [Rin] library. When

tested with a 1Gbps bandwidth limit, our protocol has almost a 5× speedup over
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IKNP with k = 5, resulting from a 5× reduction in communication. The only case
where SoftSpokenOT was suboptimal among the tested configurations was in the
WAN setting, where it took second place to Silver. However, the assumptions
needed by SoftSpokenOT are much more conservative than those used by Silver.

1.2 Technical Overview

SoftSpokenOT is a generalization of the classic oblivious transfer extension of
IKNP, which at its core is based on what can be viewed as a protocol for F2-
VOLE. This VOLE protocol starts by using a PRG to extend

(
2
1

)
-OT to message

size ℓ. The base OT sender, PS , gets random strings m⃗0, m⃗1 and the receiver,
PR, gets its choice bit b ∈ F2 and its chosen message m⃗b. PS then computes
u⃗ = m⃗0 ⊕ m⃗1 and v⃗ = m⃗1 = 0 m⃗0 ⊕ 1 m⃗1, while PR computes ∆ = 1 ⊕ b, and
w = m⃗b = ∆m⃗0 ⊕ (1 ⊕ ∆)m⃗1.1 Then w⃗ ⊕ v⃗ = ∆m⃗0 ⊕ ∆m⃗1 = ∆u⃗, which is a
VOLE correlation: PS gets a vector u⃗ ∈ Fℓ

2 and PR gets a scalar ∆ ∈ F2, and they
learn secret shares v⃗, w⃗ of the product. While u⃗ was chosen by the protocol, it
possible to derandomize u⃗ to be any chosen vector. If PS wants to use u⃗′ instead,
it can send ū = u⃗ ⊕ u⃗′ to PR, who updates its share to be w⃗′ = w⃗ ⊕∆ū. This
preserves the VOLE correlation, w⃗′ ⊕ v⃗ = ∆u⃗⊕∆ū = ∆u⃗′, while hiding u⃗′.

The next step of the IKNP protocol is to stack λ of these F2-VOLEs side by
side, while sending λ · ℓ bits to derandomize the u⃗ vectors to all be the same.
That is, for the ith VOLE, they get a correlation W·i ⊕ V·i = ∆iu⃗, where V·i
means the ith column of a matrix V . In matrix notation, this is an outer product:
W ⊕ V = u⃗ ⃗∆, where ⃗∆ is the row vector of all the ∆i. Then looking at the jth
row gives Wj·⊕Vj· = uj

⃗∆, which make uj the choice bit of a ∆-OT. That is, PR

has learned ⃗mj0 = Wj· and ⃗mj1 = Wj· ⊕ ⃗∆, while PS has its choice bit uj and
⃗muj

= Vj· , the corresponding message. Notice that this is a correlated OT, but
now the OT sender is PR and the OT receiver is PS — they have been reversed
from what they were for the base OTs. Hashing the ⃗mjx then turns them into
uncorrelated OT messages.

SoftSpokenOT instead bases the OT extension on a F2k -VOLE, where u⃗ is
restricted to taking values in F2. We now only need λ/k of these VOLEs to get
the λ bits per OT needed to make the hash secure. Derandomizing u⃗ for each OT
then only needs λ/k bits per OT, as for each VOLE the elements of u⃗ are in F2,
reducing a major bottleneck of IKNP. Instead of

(
2
1

)
-OT, our F2k -VOLE is based

on
(

2k

2k−1
)
-OT, which can be instantiated using a well known protocol [BGI17]

based on a punctured PRF; see Sect. 6 for details.
In

(
2k

2k−1
)
-OT a random function F : F2k → Fℓ

2 is known to PS , while PR has
a random point ∆ and the restriction F ∗ of F to F2k \{∆}. The earlier equations
for the vectors u⃗, v⃗, and w⃗ were chosen to be suggestive of their generalizations:

u⃗ = F (0)⊕ F (1) =⇒ u⃗ =
⊕

x∈F
2k

F (x)

1 Note that this is backwards from the usual description of IKNP — it’s more usual
to set ∆ to be the b, the index of the message known to PR. A key insight in
SoftSpokenOT is that the unknown base OT message is the most important.
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v⃗ = 0F (0)⊕ 1F (1) =⇒ v⃗ =
⊕

x∈F
2k

xF (x)

w⃗ = ∆F ∗(0)⊕ (1⊕∆)F ∗(1) =⇒ w⃗ =
⊕

x∈F
2k

(x⊕∆)F ∗(x).

Notice that the formula for w⃗ multiplies F ∗(∆) by 0, which is good because F (∆)
is unknown to PR. Therefore, w⃗ ⊕ v⃗ =

⊕
x ∆F (x) = ∆u⃗.

Reducing communication by a factor of k comes at the expense of increasing
computation by a factor of 2k/k. While there are now only λ/k VOLES, they
each require both parties to evaluate F at every point (except the one that PR

does not know) in a finite field of size 2k.

2 Preliminaries

2.1 Notation

We start counting at zero, and the set [N ] is {0, 1, . . . , N − 1}. The finite field
with p elements is written as Fp, the vector space of dimension n as Fn

p , and
set of all m× n matrices as Fm×n

p . The vectors themselves are written with an
arrow, as x⃗, while matrices are capital letters M . Row vectors are written with a
backwards arrow instead: ⃗x. The componentwise product of vectors is x⃗⊙ y⃗ =

[x0y0 · · · xn−1yn−1]
⊤. Diagonal matrices are notated diag(x⃗) =

x0

xn−1

,
which makes x⃗⊙ y⃗ = diag(x⃗)y⃗. The ith row of a matrix M is Mi·, while the jth
column is M·j . The first r rows of M are M[r]·, and the first c columns are M·[c].

There are two finite fields we will usually work with: the subfield Fp, and
its extension field Fq, where q = pk. Usually p will be prime, but that is not
necessary. In a few places we will equivocate between Fq, Fk

p, and [q], using the
obvious bijections between them.

Linear Codes. Let C be a [nC , kC , dC ] linear code, that is, C is a kC-dimensional
subspace of FnC

p with minimum distance dC = min ⃗y∈C\{0} ∥ ⃗y∥0, where ∥ ⃗y∥0 is
the Hamming weight of ⃗y. For a matrix A, we similarly let the Hamming weight
∥A∥0 be the number of nonzero columns of A. Let GC ∈ FkC×nC

p be the generator
matrix of C. We follow the convention that the messages and code words are row
vectors, so a row vector ⃗x encodes to the codeword ⃗xGC ∈ C. The rows of the
generator matrix must form a basis of C, which can be completed into a basis TC
of FnC

p ; that is, the first kC rows of TC are GC . Then TC has an inverse T−1C , the
last nC − kC columns of which form a parity check matrix for C.

There are two specific codes that come up most frequently. The trivial code,
Fn
p , has all vectors as code words. That is, GFn

p
= TFn

p
= 1n, where 1n is the

n× n identity matrix. The repetition code, Rep(Fn
p ), consists of all vectors where

all elements are the same. Its generator matrix is GRep(Fn
p )

=
[
1 · · · 1

]
.

Algorithms. We use pseudocode for our constructions. In many cases there will
be two similar algorithms side by side (e.g. sender and receiver, or real and ideal),



6 Lawrence Roy

and we use whitespace to align matching lines. Sampling a value x uniformly at
random in a set X is written as x $← X.

2.2 Universal Hashes

We make extensive use of universal hashes [CW79], essentially as a more efficient
replacement for a uniformly random matrix. We depend on the extra structure
of the hash function being linear, so we give definitions specialized to that case.

Definition 2.1. A family of matrices R ⊆ Fm×n
q is a linear ϵ-almost universal

family if, for all nonzero x⃗ ∈ Fn
q , PrR $←R

[
Rx⃗ = 0

]
≤ ϵ.

Definition 2.2. A family of matrices R ⊆ Fm×n
q is linear ϵ-almost uniform

family if, for all nonzero x⃗ ∈ Fn
q and all y⃗ ∈ Fm

q , PrR $←R
[
Rx⃗ = y⃗

]
≤ ϵ.

For characteristic 2, this is equivalent to being ϵ-almost XOR-universal. Clearly, a
family that is ϵ-almost uniform is also ϵ-almost universal. We use two composition
properties of universal hashes.

Proposition 2.3. Let R and R′ be ϵ and ϵ′-almost universal families, respec-
tively. Then R′R for R ∈ R, R′ ∈ R′ is a (ϵ+ ϵ′)-universal family.

Proposition 2.4. Let R and R′ be ϵ-almost uniform families. Then [R R′] for
R ∈ R, R′ ∈ R′ is a ϵ-uniform family.

2.3 Ideal Functionalities

The protocols in this paper are analyzed in the Simplified UC model of [CCL15],
so whenever an ideal functionality takes inputs or outputs, the adversary is
implicitly notified and allowed to delay or block delivery of the message. The
functionalities deal with three entities: the sender PS , the receiver PR, and the
adversary A. Instead of the usual event-driven style (essentially a state machine
driven by the messages), we use a blocking call syntax for our ideal functionalities,
where it stops and waits to receive a message. While we will not need to receive
multiple messages at once, it would be consistent to use multiple parallel threads
of execution, with syntax like recv. x from PS

∥∥ recv. y from PR . We omit the
“operation labels” identifying the messages, instead relying on the variable names
and message order to show which send corresponds to each receive. We assume
the protocol messages themselves are delivered over an authenticated channel.

All of our functionalities are for different kinds of random input VOLE or
OT, meaning that the protocol pseudorandomly chooses the inputs of each party.
Essentially, the functionalities just generate correlated randomness. Using random
VOLE or OT, the parties can still choose their inputs using derandomization,
if necessary.2 However, we cannot guarantee that a corrupted participant does
not exercise partial control over the outputs of the protocols. For this reason,
2 See [MR19] for details on derandomizing OT messages.
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FN,ℓ,L
OT-1

for i ∈ [ℓ]:
if PS is corrupted:

recv. Fi ∈
(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗

i ∈ [N ] from A

recv. F ∗
i ∈ {0, 1}λ from A

Fi(x
∗
i ) := F ∗

i

else:
x∗
i

$← [N ]

F ∗
i := Fi(x

∗
i )

send {Fi}i∈[ℓ] to PS

Send/Abort
(
{x∗

i }i∈[ℓ], {F ∗
i }i∈[ℓ],L

)

FN,ℓ,L
OT-1

for i ∈ [ℓ]:
if PS is corrupted:

recv. Fi ∈
(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗

i ∈ [N ] from A

recv. F ∗
i ∈

(
{0, 1}λ

)[N ]\{x∗
i } from A

Fi(x) := F ∗
i (x), ∀x ∈ [N ] \ {x∗

i }
else:

x∗
i

$← [N ]

F ∗
i (x) := Fi(x), ∀x ∈ [N ] \ {x∗

i }
send {Fi}i∈[ℓ] to PS

Send/Abort
(
{x∗

i }i∈[ℓ], {F ∗
i }i∈[ℓ],L

)
Fig. 2: Ideal functionalities for a batch of ℓ endemic OTs, with

(
N
1

)
-OT on the

left and
(

N
N−1

)
-OT on the right. Differences are highlighted .

Fp,q,C,ℓ,L
VOLE

if PS is corrupted:
recv. U ∈ Fℓ×kC

p , V ∈ Fℓ×nC
q from A

else:
U $← Fℓ×kC

p , V $← Fℓ×nC
q

if PR is corrupted:
recv. ⃗∆ ∈ FnC

q ,W ∈ Fℓ×nC
q from A

V := −UGC diag( ⃗∆) +W
else:

⃗∆ $← FnC
q

W := UGC diag( ⃗∆) + V
send U, V to PS

Send/Abort( ⃗∆,W,L)

Fig. 3: Ideal functionality for endemic
subspace VOLE. C is a linear code.

Send/Abort(x ∈ X, y ∈ Y,L ⊆ 2X):
if PS is malicious:

recv. L ∈ L from PS

if x /∈ L:
send “check failed” to PR

abort
send x, y to PR

Fig. 4: Output with leakage function.
Sends x, y to PR, after allowing PS to
do a selective abort attack on x.

we use the endemic security notion of [MR19], where any corrupted participants
get to choose their protocol outputs, then the remaining honest parties receive
random outputs, subject to the correlation. One difference, however, is that in
our ideal functionalities an honest OT receiver doesn’t get to choose its choice
bits. Instead, all protocol inputs are random for honest parties.3

3 This is similar to the pseudorandom correlation generators (PCGs) used in [BCG+19b]
to build Silent OT. In fact, the small field VOLE constructed in Sect. 3.1 can be
viewed as a PCG.



8 Lawrence Roy

The ideal functionalities for length ℓ batches of
(
N
1

)
-OTs or

(
N

N−1
)
-OTs

are presented in Fig. 2. In each OT, the sender PS gets a random function
F : [N ]→ {0, 1}λ, which is chosen by the adversary if PS is corrupted. If N is
exponentially large, F should be thought of as an oracle, which will only be
evaluated on a subset of [N ]. The receiver PR gets a choice element x∗ ∈ [N ], as
well as F ∗, which is either the one point F (x∗) for

(
N
1

)
-OT, or the restriction

of F to every other point [N ] \ x∗ for
(

N
N−1

)
-OT. Again, if PR is corrupted then

the adversary gets to choose these values.
In Fig. 3, we present subspace VOLE, a generalized notion of VOLE. Instead

of a correlation of vectors w⃗− v⃗ = u⃗∆, where u⃗ ∈ Fℓ
p and v⃗ ∈ Fℓ

q are given to PS ,
and w⃗ ∈ Fℓ

q and ∆ ∈ Fq to PR [BCGI18], subspace VOLE produces a correlation
of matrices W − V = UGC diag( ⃗∆), where U gets multiplied by the generator
matrix GC of a linear code C. Subspace VOLE is essentially nC independent
VOLE correlations placed side-by-side, except that the rows of U are required
to be code words of C. For p = q = 2, this matches the correlation generated
internally by existing

(
N
1

)
-OT extensions.

Selective Aborts. Our base
(

N
N−1

)
-OT OT and subspace VOLE protocols achieve

malicious security by using a consistency check to enforce honest behavior.
However, the consistency checks allow a selective abort attack where PS can
confirm a guess of part of PR’s secret outputs. This is modeled in the ideal
functionality using the function Send/Abort (Fig. 4). Let x ∈ X be the value
subject to the selective abort attack, and y ∈ Y be the rest of PR’s output. When
PS is malicious, it can guess a subset L ⊆ X, and if it is correct (i.e. x ∈ L) then
the protocol continues as normal. But if the guess is wrong then PR is notified of
the error, and the protocol aborts.

The subset L that PS guesses is restricted to being a member of L, for some
set of allowed guesses L ⊆ 2X . It is required to be closed under intersection, and
contain the whole set X. For VOLE, where X is a vector space, we also require
that L − ⃗Loff ∈ L when L ∈ L and ⃗Loff ∈ X. We use one main set of allowed
guesses, Affine(Fn

q ). It is the set of all affine subspaces of Fn
q , i.e. all subsets that

are defined by zero or more constraints of the form a0x0 + · · ·+ an−1xn−1 = an,
for constants a0, . . . , an ∈ Fq. Since Fq can be viewed as the vector space Fk

p, we
have a superset relationship Affine(Fnk

p ) ⊇ Affine(Fn
q ). There is also {X}, the

trivial guess set, which only allows a malicious PS to guess that x ∈ X. This
guess is trivially true, and so leaks no information at all.

Pre-committed Inputs. Our malicious OT extension protocol uses a universal
hash to stop PR from causing collisions between two distinct extended OTs, which
is sent in parallel with the VOLE consistency check for efficiency. However, the
universal hash must be chosen after PR (who acts as the VOLE sender) picks its
VOLE outputs U, V and its guess L. In Fig. 5, we modify the VOLE functionality
to notify the VOLE receiver once U, V, L are almost fixed — unfortunately, the
consistency check still allows U, V, L to vary somewhat. Specifically, U may have
polynomially many options (which can be computationally hard to find), L can
get shifted by an offset ⃗Loff, and V can depend on the part of ⃗∆ that is guessed.
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Fp,q,C,ℓ,L,M
VOLE-pre

if PS is malicious:
recv. Wpre ⊆ {0, 1}∗ from A

recv. Upre : Wpre → Fℓ×kC
p from A

recv. Vpre : Wpre × FnC
q → Fℓ×nC

q from A

recv. Lpre : Wpre → L from A

send “commit” to PR

run Fp,q,C,ℓ,L
VOLE

instead of Send/Abort:
if PS is malicious:

recv. wpre ∈ Wpre, ⃗Loff ∈ FnC
q from A

if U ̸= Upre(wpre) ∨ V ̸= Vpre(wpre, ⃗∆) ∨ ⃗∆+ ⃗Loff /∈ Lpre(wpre)
send “check failed” to PR

abort
send ⃗∆,W to PR

Fig. 5: Modification of Fig. 3 to get an ideal functionality for subspace VOLE with
a pre-commitment notification. We make two additional requirements on A. There
must be a polynomial upper bound M ≥ |Wpre| on the number of input choices
PS has. And, for all ⃗∆, ⃗∆+ ⃗Loff ∈ Lpre(wpre) must imply V = Vpre(wpre, ⃗∆), to
ensure that checking Vpre does not make the selective abort any more powerful.

To address these difficulties, we identify the possible input choices with
witnesses wpre, and have A output a witness checker, i.e. an implicitly defined
set Wpre of valid witnesses. Then we require U , V , and L to be fixed in terms
of wpre, using functions Upre(wpre), Vpre(wpre, ⃗∆), and Lpre(wpre). We require a
polynomial upper bound M ≥ |Wpre| on the number of witnesses. Additionally,
so that the correctness check for Vpre does not leak any information, for all ⃗∆ we
require that ⃗∆+ ⃗Loff ∈ Lpre(wpre) implies V = Vpre(wpre, ⃗∆).

These changes are behind “if PS is malicious” checks, so in the semi-honest
case FVOLE is a equivalent to FVOLE-pre. For malicious security, FVOLE-pre gives
the adversary less power than FVOLE because it forces some of the choices to be
made early, so any protocol for FVOLE-pre is also a protocol for FVOLE.

2.4 Correlation Robust Hashes

The final step of OT extension is to hash the output from the subspace VOLE.
This requires a security assumption on the hash function H. We generalize the
notion of a tweakable correlation robust (TCR) hash function [GKWY20] to our
setting. While this definition will most likely be used with p = 2 for efficiency,
there are extra theoretical difficulties associated with p > 2.

Definition 2.5. A function H ∈ FnC
q × T → {0, 1}λ is a (p, q, C, T ,L)-TCR

hash if the oracles given in Fig. 6 are indistinguishable.4 Formally, for any PPT
4 Note that we do not consider multi-instance security. In fact, there is a generic attack:
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TCR-realH,p,q,C,L

⃗∆ $← FnC
q

query( ⃗x ∈ FkC
p \ {0}, ⃗y ∈ FnC

q , τ ∈ T ):
return H( ⃗xGC ⊙ ⃗∆+ ⃗y, τ)

leak(L ∈ L):
abort if ⃗∆ /∈ L

(a) Real world.

TCR-idealH,p,q,C,L

⃗∆ $← FnC
q

query( ⃗x ∈ FkC
p \ {0}, ⃗y ∈ FnC

q , τ ∈ T ):
z $← {0, 1}λ
return z

leak(L ∈ L):
abort if ⃗∆ /∈ L

(b) Ideal world.

Fig. 6: Oracles for TCR definition. Calls to query must not be repeated on the
same input.

adversary A that does not call query twice on the same input ( ⃗x, ⃗y, τ),

AdvTCR =
∣∣∣Pr[ATCR-realH,p,q,C,L

() = 1
]
− Pr

[
ATCR-idealH,p,q,C,L

() = 1
]∣∣∣ ≤ negl.

Our definition is quite similar to the TCR of [GKWY20] in the special case
where C is the repetition code. However, we explicitly include selective abort
attacks in the TCR definition, while they require that the hash be secure for any
distribution for ⃗∆ with sufficient min-entropy. Their definition has issues when
instantiated from idealized primitives such as random oracles, because, when the
TCR is used for OT extension, the distribution for ⃗∆ would have to depend on
these primitives [CT21]. In the standard model, their definition is impossible to
instantiate: H( ⃗∆, 0) must be random by TCR security, yet restricting ⃗∆ so that
the first bit of H( ⃗∆, 0) is zero only reduces the min-entropy by approximately
one bit and allows an efficient distinguisher. [CT21] fix the former issue with
a definition TCR* that only applies to the ideal model, while ours allows the
possibility of standard model constructions.

We now give two hash constructions, which we prove secure in the full version.
Correlation robust hashes were inspired by random oracles (ROs), so it should
be no surprise that a RO is a TCR hash.

Proposition 2.6. A random oracle RO : FnC
q × {0, 1}t → {0, 1}λ is a (p, q, C,

{0, 1}t,Affine(FknC
p ))-TCR hash, with distinguisher advantage at most τmax

(
q+ 1

2q
′)q−dC . Here, τmax is the maximum number of times query is called with

the same τ , q is the number of RO queries made by the distinguisher, and q′ is
the number of calls to query.

The next construction comes from [GKW+20]. It is the classic x 7→ π(x)⊕ x
permutation-based hash function, but it uses an ideal cipher so that the tweak can
be the key. Changing keys in a block cipher requires recomputing the round keys,
so there is a cost to changing the tweak with this method. It needs a injection ι
to encode its input; when p = 2, ι can be the identity map.

given N instances, the attacker chooses an L that contains ⃗∆ with probability 1/N ,
then brute forces ⃗∆ for instances where ⃗∆ ∈ L. Thus, it is N -times cheaper to brute
force attack H for N instances than to target a single one.
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PS PR

Fq,1,L
OT-1

for x ∈ Fq:
r⃗x := PRG(F (x))

u⃗ :=
∑

x∈Fq r⃗x

v⃗ := −
∑

x∈Fq r⃗x x

output u⃗, v⃗

∆ := x∗

for x ∈ Fq \ {∆}:
r⃗x := PRG(F ∗(x))

w⃗ :=
∑

x∈Fq\{∆}

r⃗x (∆− x)

output ∆, w⃗

F x∗, F ∗

Fig. 7: Protocol for small field VOLE. If Fq,1,L
OT-1

instead outputs “check failed”, it
should be passed straight through to PR.

Proposition 2.7. Let Enc : {0, 1}t × {0, 1}λ → {0, 1}λ be an ideal cipher, and
ι : FnC

q → {0, 1}λ be an injection. Then H( ⃗y, τ) = Enc(τ, ι( ⃗y)) ⊕ ι( ⃗y) is a (p,

q, C, {0, 1}t,Affine(FknC
p ))-TCR hash. The distinguisher’s advantage is at most

τmax
(
(2q+ 1

2q
′)q−dC + 1

2q
′2−λ

)
, with q and q′ as in Prop. 2.6.

3 VOLE

3.1 For Small Fields

We already presented our F2k -VOLE in Sect. 1.2. This VOLE is generalized
in Fig. 7 to work over any small field Fq, specifically fields where q is only
polynomially large, with u⃗ taking values in any subfield Fp. It is based on a(

q
q−1

)
-OT, and a pseudorandom generator PRG : {0, 1}λ → Fℓ

p. While this is a
VOLE protocol, we analyze it using our subspace VOLE definition by setting C
to be the length one, dimension one code, i.e. GC = [1]. This makes U , V , and
W all become column vectors and ⃗∆ become a scalar.

Theorem 3.1. The VOLE given in Fig. 7 in the Fq,1,L
OT-1

hybrid model securely
realizes Fp,q,Fp,ℓ,L

VOLE , in both the semihonest and malicious models.

Proof. The proof of correctness is simple enough. Notice that the x = ∆ term of
the sum for w⃗ would be multiplied by ∆−∆ = 0, so it makes no difference that
it must be excluded because PR does not know r⃗∆. Therefore,

w⃗ =
∑

x∈Fq\{∆}

r⃗x (∆− x) =
∑
x∈Fq

r⃗x (∆− x) =
∑
x∈Fq

r⃗x ∆−
∑
x∈Fq

r⃗x x = u⃗∆+ v⃗. (1)

Corrupt PS. After receiving F from A, the simulator will compute u⃗, v⃗ honestly
and submit them to Fp,q,Fp,ℓ,L

VOLE . If PS is malicious, it will also forward L ∈ L to
the ideal functionality. In the real world, Fq,1,L

OT-1
will generate a random x∗ = ∆

and send it to PR, who will compute w⃗ = u⃗∆ + v⃗ by Eq. (1). In the ideal
world, Fp,q,Fp,ℓ,L

VOLE will pick ∆ randomly, receive u⃗, v⃗ from the simulator, and
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compute w⃗ = u⃗∆+ v⃗. These are identical, implying that these two worlds are
indistinguishable and that this case is secure.

Corrupt PR. After receiving F ∗, x∗ from A, the simulator will compute ∆ = x∗

and w⃗ honestly, and submit them to Fp,q,Fp,ℓ,L
VOLE . We do a hybrid proof, starting

from the real world and going to the ideal world.

1. In the real world, Fq,1,L
OT-1

sets F (x) = F ∗(x) for x ̸= x∗, generates F (x∗)
randomly, and sends them to PS , who will compute r⃗x = PRG(F (x)) and
u⃗, v⃗. By Eq. (1), v⃗ = w⃗ − u⃗∆.

2. Because F (x∗) is only used to compute r⃗x∗ , the security of PRG implies that
r⃗x∗ can be replaced with a uniformly sampled value.

3. Instead of sampling r⃗x∗ randomly, sample u⃗ uniformly at random and set
r⃗x∗ = u⃗−

∑
x ̸=x∗ r⃗x. This is an identical distribution.

4. We are now at the ideal world, where Fp,q,Fp,ℓ,L
VOLE will pick u⃗ randomly, receive

∆, w⃗ from the simulator, and compute v⃗ = w⃗ − u⃗∆.

If both parties are corrupt then security is trivial, as then the simulator can
just forward messages between the corrupted parties.

Efficient Computation. Let a be a generator of Fq over Fp. For computation, it’s
convenient to represent v⃗ as a sequence of Fp vectors: v⃗ = v⃗0+av⃗1+· · ·+ak−1v⃗k−1.
Similarly, the index x becomes x0 + ax1 + · · ·+ ak−1xk−1. Naïve computation of
v⃗ using the sum then becomes v⃗i =

∑
x xir⃗x, but this would require O(kq) vector

additions and scalar multiplications over Fp.
This can be improved to O(q + q

p + q
p2 + · · · ) = O(q) vector additions and

no scalar multiplications. For all x′ ∈ Fq where x′0 = 0, let r⃗′x′ =
∑

x0∈Fp
r⃗x′+x0 ,

and notice that all v⃗1, . . . , v⃗k−1 (and u⃗) depend only on the r⃗′x′ . Therefore,
after computing all q

p vectors r⃗′x′ , the outputs v⃗1, . . . , v⃗k−1 can be found by
recursion on a smaller problem size. As a byproduct, computing the r⃗′x′ produces
sequences of partial sums

∑
x0≤i r⃗x′+x0

, and adding all of these together then gives∑
x′
∑

x0
(p−x0)r⃗x′+x0

= v⃗0. PR can use the same algorithm to compute w⃗ by just
reordering the r⃗x vectors at the start, because

∑
x r⃗x(∆− x) =

∑
x r⃗x+∆(−x).

Concatenation. While this does not directly follow directly from the UC theorem,
it should be clear that running the protocol Fig. 7 on a batch of n OTs will
produce a batch of n VOLEs. The proof trivially generalizes. More precisely, it
achieves Fp,q,Fn

p ,ℓ,L
VOLE in the Fq,n,L

OT-1
hybrid model, where Fn

p is the trivial code with
GFn

p
= 1n. This will be the basis for our subspace VOLE.

3.2 For Subspaces

For
(
2
1

)
-OT extension, the next step would be for PS to send a correction to make

all columns of U be identical, so that each column would use the same set of
choice bits. Efficient

(
N
1

)
-OT extension protocols like [KK13] instead must correct

the rows of U to lie in an arbitrary linear code C, rather than the repetition code.
We implement subspace VOLE to handle these more general correlations.
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PS PR

Fp,q,FnC
p ,ℓ,{X}

VOLE[
U C

]
:= U ′T−1

C

output U, V
W := W ′ −

[
0 C

]
TC diag( ⃗∆)

output ⃗∆,W

U ′, V ⃗∆,W ′

C ∈ Fℓ×(nC−kC)
p

Fig. 8: Protocol for subspace VOLE.

Our protocol for subspace VOLE is presented in Fig. 8. It starts out with
a VOLE correlation W ′ − V = U ′ diag(∆). Then, PS divides U ′ into parts, the
message U ∈ Fℓ×kC

p and the correction syndrome C ∈ Fℓ×nC−kC
p , sending the

correction to PR. PR then corrects W to maintain the VOLE correlation property
after PS removes C. Unfortunately, PS can just lie when it sends C to PR, so the
protocol only achieves semi-honest security. Since the leakage set L only matters
for malicious security, we simplify by assuming that L is trivial (i.e. {X}).

Theorem 3.2. The protocol in Fig. 8 is a semi-honest realization of Fp,q,C,ℓ,{X}
VOLE

in the Fp,q,Fn
p ,ℓ,{X}

VOLE hybrid model.

Proof. First, the protocol outputs correctly satisfy the VOLE correlation:

W = W ′ −
[
0 C

]
TC diag( ⃗∆)

= V + U ′ diag( ⃗∆)−
[
0 C

]
TC diag( ⃗∆)

= V +
([
U C

]
TC −

[
0 C

]
TC

)
diag( ⃗∆)

= V + UGC diag( ⃗∆).

For security, notice that any U, V, ⃗∆,W output by the protocol and any C that the
adversary eavesdrops on (because the communication is over an authenticated, but
not private, channel) corresponds to a unique U ′, V, ⃗∆,W ′ from the underlying
VOLE. Specifically, U ′ =

[
U C

]
TC and W ′ = W +

[
0 C

]
TC diag( ⃗∆). This implies

the adversary does not learn anything new by corrupting either party, as they
could already predict what that party knows. They only gain the power to
program that the base VOLE’s outputs for that party, but the simulator gains
the corresponding power to program that party’s protocol outputs to match. In
more detail, S should receive from A the programed base VOLE outputs for the
corrupted parties, simulate doing exactly what they would do in the protocol
(while sampling a fake C $← Fℓ×(nC−kC)

p if PS is honest), and program the protocol
outputs to be the result.

In the ideal world, S generates a uniformly random consistent adversary
view U, V, ⃗∆,W (together with U ′ or W ′ if PS or PR was corrupted). In the
real world, the underlying VOLE functionality picks U ′, V, ⃗∆,W ′ uniformly at
random subject to the constraints of the VOLE correlation and any outputs
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PS PR

output U[h]·, V[h]·
output “commit”
R $←R

∼
U := RU
∼
V := RV

abort if
∼
V ̸= RW −

∼
UGC diag( ⃗∆):

output ⃗∆,W[h]·

R ∈ R

∼
U ∈ Fm×kC

q ,
∼
V ∈ Fm×kC

q

Fig. 9: Consistency checking protocol, which should be used with Fig. 8. R must
be a ϵ-universal hash family, where all R ∈ R is Fh

p -hiding. The “abort if" means
that “check failed” is output if the check fails. If instead of giving ⃗∆,W ′ to PR,
the base VOLE outputs “check failed” , PR should continue to play along with the
protocol and only output “check failed” when it completes.

programmed by the adversary, and then the adversary gets to see the protocol
run. There is a bijection between consistent adversary views and outputs of the
underlying VOLE U ′, V, ⃗∆,W ′, and this bijection implies that these two views
are identically distributed.

4 Malicious Security

Our small field VOLE construction in Sect. 3.1 was easily proved maliciously
secure. It does not involve any communication, and so there are no opportunities
for any of the parties to lie. However, Sect. 3.2 requires PS to reveal part of
U , allowing a malicious PS to lie. Following KOS and OOS, we solve this by
introducing a consistency check (Fig. 9) that is run immediately afterwards, to
provide a guarantee that if PS lies then the protocol will either abort or work
properly. Then the last few rows of U , V , and W are thrown away so that the
values revealed in the consistency check do not leak anything. This still allows
the possibility of selective abort attacks, however.

KOS, OOS, PSS, and CCG all compute their consistency checks by multiplying
each row of U with a random value — an element of an extension field for KOS
or just a vector for OOS and PSS. V and W are also multiplied by random
values, in a consistent way. We follow [CDD+16] in generalizing this to use linear
universal hashes. Any linear ϵ-almost universal hash family R ⊆ Fm×ℓ

q will work,
as long as the following condition is met by every R ∈ R, which guarantees that
throwing away the last few rows of U is sufficient to keep the others hidden.

Definition 4.1. A matrix R ∈ Fm×ℓ
q is Fh

p -hiding if the first h inputs to R will
stay hidden when the remaining inputs are secret and uniformly random. More
precisely, if x⃗ $← Fℓ

p then Rx⃗ must be independently random from x⃗[h]

Note that if R is Fh
p -hiding then that it is Fh

q -hiding, so if R is able to keep
U ∈ Fℓ×kC

p hidden then it will keep V ∈ Fℓ×nC
q hidden as well.
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Many useful universal hashes with elements in Fp satisfy this definition,
including hashes based on polynomial evaluation or cyclic redundancy checks.
That is, the last m columns of R will span the others, so R will be Fh

p -hiding for
h = ℓ−m. However, this only works if the universal hash is over Fp, rather than Fq,
as otherwise there won’t be enough entropy in the last m columns to completely
hide the other inputs. On the other hand, using a hash over Fq gives better
compression. For a universal hash over Fp, the best possible ϵ is about p−m, while
for Fq it is q−m = p−km. We believe that the best approach is to compose two
universal hashes, first applying a Fℓ−m′

p -hiding hash R ∈ R ⊆ Fm′×ℓ
p , then further

reducing the output down to m entries with a second hash R′ ∈ R′ ⊆ Fm×m′

q

where m′ ≥ km. The composed hash will be Fℓ−m′

p -hiding, and will still be
universal by Prop. 2.3.

Remark 4.2. PS outputs U[h]·, V[h]· in the first round, just after sending C and
much before the protocol has actually completed. In applications where U will
be derandomized immediately (e.g. chosen point OT extension), it is convenient
to derandomize U at the same time as sending C. The protocol returning early
is what allows this within the UC framework.

Remark 4.3. After sending C, PS will not have many useful options to choose
from, so the protocol notifies PR with “commit” (as in Fp,q,C,h,L,M

VOLE-pre ) to indicate
that PS ’s inputs (mostly) fixed. In Sect. 5, this notification is used to send a
second universal hash at the same time as R.

4.1 Flaws in Existing Consistency Checks

Given the similarity of Fig. 9 to the KOS, PSS, and OOS consistency checks, it
seems natural to adapt their proofs to the subspace VOLE consistency checking
protocol. However, it turns out that all three are flawed. To avoid three separate
sets of notations for very similar protocols, we discuss their protocols and proofs
using our notation. See the full version for a more detailed discussion of these
flaws, using their original notation.

We first present the flaw in OOS, because it is most similar to our protocol.

Flaw in OOS’s Proof. To get the OOS consistency check, take the protocol
in Fig. 9 and set p = q = 2 and R =

[
X 1m

]
, where X $← Fm×ℓ−m

2 is uniformly
random. There are a couple of differences, but these do not affect the consistency
check proper. Our sender is their receiver and vice versa, because they are
implementing OT extension and we are doing subspace VOLE. And, they send a
correction C for the whole of U ′ at once, instead of just the syndrome, because
their OT choice bits are chosen rather than random.

Let [U C̄] = U ′T−1C ⊕
[
0 C

]
, so C̄ is the error in the correction syndrome C

sent by the malicious PS . Similarly, let Ū = RU ⊕
∼
U and V̄ = RV ⊕

∼
V be the

errors in the consistency check messages sent by PS . The consistency check then
becomes V̄ = [Ū RC̄]TC diag( ⃗∆) (see the proof of Thm. 4.5 for details). OOS
define a set E ⊆ [nC ] of column indices i where

(
[Ū RC̄]TC

)
·i is nonzero. These

are the indices i where ∆i will have to be guessed by PS in order to pass the
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consistency check. They then attempt to prove that the indices in E will be the
only ones that PS lied about. That is, their simulator tries to correct U to get
PS ’s real output U⋆, so that if Z = [U⋆ C]TC ⊕ U ′ then the indices of all the
nonzero columns of Z are in E. This would let S update V accordingly, getting
V ⋆ = V ⊕ Z diag( ⃗∆), which it could find because PS must guess ∆i for i ∈ E.

The flaw is in their proof that S can (with high probability, assuming that
the check passes) extract U⋆. Their technique is to look at Y = [U C̄]TC =
U ′ ⊕

[
0 C

]
TC, whose rows would be in C if PS were honest, and remove the

columns in E to get a punctured matrix Y−E . Then they decode the rows of
Y−E using the punctured code C−E to get U⋆, since Y ⊕ Z = U⋆GC and Z−E
should be 0. For this to work, they need the rows of Y−E to be in C−E . They try
to prove this using the following lemma.

Lemma 4.4 (OOS, Lem. 1). Let D be a linear code and B ∈ Fℓ×nD
2 be a

matrix, where not all rows of B are in D. If X $← Fm×ℓ−m
2 and R =

[
X 1m

]
,

then the probability that all rows of RB are in D is at most 2−m.

They apply this lemma with D = C−E and B = Y−E . Note that RY =

[Ū RC̄]TC ⊕
∼
UGC , so RY−E =

∼
UGC−E

has all rows in C−E . They conclude that
with all but negligible probability, all rows of Y−E are in C−E . However, the
lemma cannot be used in this way. The lemma requires that D and B be fixed in
advance, before X is sampled, yet C−E and Y−E both depend on E. Recall that
E is the set of nonzero columns of [Ū RC̄]TC , which depends on both R directly,
and on the consistency check message

∼
U sent by PS after it learns X.

While this shows that OOS’s proof is wrong, we have not found any attacks
that contradict their theorem statement. Additionally, a special case of our new
proof (Thm. 4.5) shows that the OOS protocol is still secure, with statistical
security only one bit less than was claimed.

Attack For PSS’s Protocol. The PSS consistency checking protocol is similar
to OOS’s, though they only consider Walsh–Hadamard codes, and they generate
R $← Fm×ℓ

2 using a coin flipping protocol. In Lemma IV.5, they have a similar
proof issue to OOS, using Corollary IV.2 on dependent values when the corollary
assumes they are independent. However, we focus on a more significant problem.

The most important difference from OOS is that PSS attempt to compress
the consistency check by summing the columns of

∼
V to get ∼v =

∼
V [1 · · · 1]⊤. The

consistency check is then that ∼v must equal
(
RW ⊕

∼
UGC diag( ⃗∆)

)
[1 · · · 1]⊤ =

RW [1 · · · 1]⊤⊕
∼
UGC∆⃗. Let C̄, Ū , and v̄ be defined analogously to our discussion

of OOS. Then the consistency check is v̄ = [Ū RC̄]TC∆⃗. This means that a
malicious receiver only needs to guess XORs of multiple bits from ⃗∆, rather than
the individual bits themselves.

We used this to create an attack against PSS. Have PS lie about the bits in
U ′ in length N intervals, where in the first OT it lies about the first N bits of U ′0·,
and in the next OT the second N bits of U ′1·, and so on. Here, N is a parameter
defining the tradeoff between computational cost and attack success rate. Then
[Ū RC̄]TC will have rows spanned by these N bit intervals, so [Ū RC̄]TC∆⃗ only
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depends on ⌈nC
N ⌉ different values:

⊕N−1
j=0 ∆Ni+j for i ∈

[
⌈nC
N ⌉

]
. Therefore, the

consistency check passes with probability 2−⌈nC/N⌉, even though we have lied
about all nC bits. Later, having gotten away with these lies, the hashes output
by the OT extension can be brute forced to solve for each N -bit chunk of ⃗∆
individually. This breaks the OT extension in time ⌈nC

N ⌉2
N−1. At the λ = 128

security level, nC = 256, so by setting N = 32 we get an attack with success
probability 2−8 that uses only 234 hash evaluations.

Flaw in KOS’s Proof. To turn out consistentcy check into KOS’s, start by
fixing p = q = 2 and C = Rep(Fλ

2 ). Let R = Fλ×ℓ
2 , which means that R is

Fℓ−λ−σ
2 -hiding with probability at least 1−2−σ. They use a coin flipping protocol

to make sure that PR cannot pick an R that is is not hiding. Let α a primitive
element of F2λ , meaning that {1, α, . . . , αλ−1} is a basis for F2λ over F2. The first
half of the consistency check,

∼
U , works as normal, except that it gets encoded

into a field element u =
⊕

i

∼
U i·α

i = α⃗⊤
∼
U , where α⃗ = [1, α, . . . , αλ−1]⊤. The

other half,
∼
V , is compressed from λ2 bits down to λ bits by turning it into a

single field element v =
⊕

ij

∼
V ijα

i+j = α⃗⊤
∼
V α⃗. Similarly, let w = α⃗⊤RWα⃗ and

δ = ⃗∆α⃗. Then the consistency check becomes

v = α⃗⊤RWα⃗⊕ α⃗⊤
∼
UGC diag( ⃗∆)α⃗

= w ⊕ uGC diag( ⃗∆)α⃗ = w ⊕ u[1 · · · 1] diag( ⃗∆)α⃗ = w ⊕ uδ.

Because C is a repetition code, U ′ is supposed to be derandomized so that all
columns are identical to U . Let Y = U ′ ⊕

[
0 C

]
TC be the derandomization of U ′.

Then columns i and j are called consistent if they imply the same values of U ,
i.e. if Y·i = Y·j . Also let S∆ be the set of possible ∆ that cause the consistency
check to succeed. KOS’s proof of security for malicious PS depends entirely on
their Lemma 1, which states several properties of their consistency check. Most
importantly, it implies that for any u, v sent by PS , with probability 1 − 2−λ

there exists k ∈ N such that |S∆| = 2k and k is at most the size of the largest
group of consistent columns.

KOS gave no proof for Lemma 1, instead citing the full version of their paper,
which has not been made public. However, the authors of KOS were kind enough
to give an unpublished draft [KOS21]. Unfortunately, their proof has a similar
flaw to OOS’s, because they assume that R is sampled after S∆ is known.

Unlike OOS, we found a counterexample to show that KOS’s Lemma 1 is
false, which we call a collision attack. Let the malicious PS choose C uniformly
at random (so Y will also be uniformly random) but still provide an honest v
during the consistency check. Because of the correction PR applies, W will be

W = V ⊕ (U ′ ⊕
[
0 C

]
TC) diag( ⃗∆) = V ⊕ Y diag( ⃗∆)

Let ⃗y = α⃗⊤RY . The consistency check is then

v = α⃗⊤RV α⃗⊕ α⃗⊤RY diag( ⃗∆)α⃗⊕ uGC diag( ⃗∆)α⃗

0 = ( ⃗y ⊕ u[1 · · · 1]) diag( ⃗∆)α⃗.
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If u is set to be some element yi of ⃗y, the consistency check at least won’t depend
on ∆i. Since Y is uniformly random, ⃗y will be as well, so the probability of a
collision among the yi is roughly λ22−λ−1. If there is a collision yi = yj and PR

sets u = yi, then |S∆| = 2k = 4. This contradicts KOS’s Lemma 1 because k
should be at most 1 as no two columns are consistent.

In the full version we present (using KOS’s notation) a stronger attack against
special parameters of KOS. Assuming that a certain MinRank problem always
has a solution (and heuristically it should have 2λ/5 solutions on average), the
attack succeeds in recovering ∆ with probability 2−

3
5λ using O(2λ/5) random

oracle queries. While this is still not a practical attack, according to KOS’s proof
of their Theorem 1, an attack with this few random oracle queries should only
succeed with probability O(2−

4
5λ).

4.2 Our New Proof

The biggest hurdle in the proof is the case where PS is malicious. If PS lies when
it sends C, then it will have to guess some entries of ∆, but which entries depends
on what

∼
U it decides to send. As with OOS’s flawed proof, PS does not have to

make up its mind until after seeing R, and generally speaking universal hashes
are only strong when used on data that was chosen independently of the hash.
We need to find some property that only depends on C and R so that we can
show that it holds (with high probability) based on C being independent of R,
then use it to prove security.

The property we found was that R should preserve all the lies in C. More
precisely, if C̄ is the difference between the honest C and the one PS sent, then
RC̄ and C̄ should have the same row space.5 The idea is that, if R were the
identity, the consistency check would clearly ensure that whatever incorrect
value C that PS provides, it can still guess matrices U, V that make the VOLE
correlation hold. Although R is not the identity matrix, the check still ensures
that the VOLE correlation holds for

∼
U,

∼
V . The lie-preserving property of R then

shows that they contain enough information to correct the whole of U and V so
that they do satisfy the VOLE correlation.

The proof of [CDD+16] is based on a similar lie-preserving property, but
they analyze this property independently from the consistency check. This leads
to a bound of Θ(

√
ϵ) on the distinguisher’s advantage. We instead consider

these events together, because the distinguisher only succeeds when it violates
the property and passes the consistency check. The product of these event’s
probabilities is smaller than either individual probability, so we prove a much
smaller distinguisher advantage bound of Θ(ϵ).

Theorem 4.5. The subspace VOLE protocol in Fig. 8 combined with the con-
sistency checking protocol in Fig. 9 is a maliciously secure implementation of
Fp,q,C,h,L,M

VOLE-pre if L ⊇ Affine(FnC
q ), assuming that R ⊆ Fm×ℓ

q is a ϵ-almost univer-
sal family where all R are Fh

p-hiding. The distinguisher has advantage at most

5 This fails if there are too many lies; however the VOLE would likely abort anyway.
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Sp,q,C,ℓ
sub-VOLE-mal-R

recv. ⃗∆ ∈ FnC
q ,W ′ ∈ Fℓ×nC

q from A

send ⃗∆,W ′ to PR

C $← Fℓ×(nC−kC)
p

send C to PR

W := W ′ −
[
0 C

]
TC diag( ⃗∆)

send ⃗∆,W[h]· to Fp,q,C,h,L,M
VOLE-pre

recv. R ∈ R from PR

U$
$← Fℓ×kC

q
∼
U := RU$
∼
V := RW −

∼
UGC diag( ⃗∆)

send
∼
U,

∼
V to PR

Precom(C̄, R,R−1):
Wpre := {Ū ∈ Fm×kC

q | t ≥ ∥ [Ū RC̄]TC∥0}
U⋆

pre(Ū) := U −R−1Ū

V ⋆
pre(Ū , ⃗∆) := V +R−1[Ū RC̄]TC diag( ⃗∆)

L′
0 := L′ − ⃗∆0 for some ⃗∆0 ∈ L′

Lpre(Ū) := L′
0 ∩ { ⃗∆ | 0 = [Ū RC̄]TC diag( ⃗∆)}

return Wpre, U
⋆
pre, V

⋆
pre, Lpre

Sp,q,C,ℓ
sub-VOLE-mal-S

recv. U ′ ∈ Fℓ×nC
p , V ∈ Fℓ×nC

q from A

send U ′, V to PS

recv. L′ ∈ L from PS :
recv. C ∈ Fℓ×(nC−kC)

p from PS

[U C̄] := U ′T−1
C −

[
0 C

]
R $←R
abort if rank(RC̄) < rank(C̄)

find R−1 ∈ Fℓ×m
q s.t. R−1RC̄ = C̄

Wpre, U
⋆
pre, V

⋆
pre, Lpre := Precom(C̄, R,R−1)

send Wpre, U
⋆
pre, V

⋆
pre, Lpre to Fp,q,C,h,L,M

VOLE-pre
send R to PS

recv.
∼
U ∈ Fm×kC

q ,
∼
V ∈ Fm×nC

q from PS

Ū := RU −
∼
U ; U⋆ := U⋆

pre(Ū)

V̄ := RV −
∼
V ; V ⋆ := V −R−1V̄

send U⋆
[h]·, V

⋆
[h]· to Fp,q,C,h,L,M

VOLE-pre

find ⃗Loff ∈ −L′ s.t. V̄ = [Ū RC̄]TC diag( ⃗Loff)
abort if none exist
send Ū , ⃗Loff to Fp,q,C,h,L,M

VOLE-pre

Fig. 10: Simulators for malicious security of Fig. 8 combined with Fig. 9, for a
single corrupt party. Sp,q,C,ℓsub-VOLE-mal-R is for corrupt PR, while Sp,q,C,ℓsub-VOLE-mal-S is for
corrupt PS .

ϵq
q−1 + q−t−1, where t = dC

1+

√
1+

dC
nC
− 1

n2
C

≥ dC
2 and M = nC(dC − t).

Note: when instantiated as in OOS, ϵ = 2−m and q = 2, so our proof shows
that OOS has only 1 bit less statistical security than was claimed. The q−t−1 term
only matters for the pre-commitment property, which OOS does not consider.

Proof. There are four cases, depending on which parties are corrupted. If both
parties are corrupted then the real protocol can be simulated trivially, by ignoring
the ideal functionality and just passing messages between the corrupted parties. If
both players are honest, the situation is very similar to the semi-honest protocol
(Thm. 3.2). The only difference is the additional two rounds, which can be
simulated by picking a random R ∈ R, as well as sampling fake PS values U$

$←
Fℓ×kC
p and V$

$← Fℓ×nC
p and simulating the third round as

∼
U = RU$,

∼
V = RV$.

Since both parties are honest, U and V are uniformly random, and so Def. 4.1
guarantees that these fakes are indistinguishable from the real consistency check.

The situation is similar when only PR is corrupted (simulator in Fig. 10, top
left). Following the same principle as for the semi-honest protocol, S starts by
performing the computations that an honest PR would, while randomly sampling
a fake syndrome C to send. To simulate the consistency check, after receiving
R, the simulator fakes

∼
U like in the honest–honest case, then solves for

∼
V as

the only possibility that will pass the consistency check. The real protocol and
the simulation are indistinguishable because the honesty of PS implies that the
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consistency check will always pass, so the formula for
∼
V must always hold, and

PR cannot tell that
∼
U was generated from the fake U$ because R is Fh

p -hiding.
The most interesting case is when PS is corrupt. We present a hybrid proof,

starting with the real world, where the real protocol gets executed using the
underlying ideal functionality Fp,q,FnC

p ,ℓ,L
VOLE , and work towards the ideal world,

where the simulator (Fig. 10, right) liaises between the corrupted sender and the
desired ideal functionality Fp,q,C,h,L,M

VOLE-pre .

1. Compute what PS ’s honest output would be, and the difference between the
honest syndrome and the one PS provided: [U C̄] = U ′T−1C −

[
0 C

]
. Add a

check after PS sends
∼
U and

∼
V , where if rank(RC̄) < rank(C̄), “check failed”

is sent to PR and the protocol aborts. The environment’s advantage for this
step is the probability that this abort triggers and the protocol would not
have aborted anyway. We bound this probability using the following lemma.

Lemma 4.6. Let R ⊆ Fm×n
q be a linear ϵ-almost universal family, and let A

be any matrix in Fn×l
q . Then, ER $←R

[
qrank(A)−rank(RA)− 1

]
≤ ϵ(qrank(A)− 1).

Proof. By the rank–nullity theorem, R defines an isomorphism Fn
q / ker(R) ∼=

colspace(R). Its restriction to colspace(A) gives an isomorphism colspace(A) /
ker(R) ∼= colspace(RA). Therefore,

rank(RA) = dim
(
colspace(RA)

)
= dim(colspace(A))− dim(colspace(A) ∩ ker(R))

= rank(A)− dim(colspace(A) ∩ ker(R)).

We then want to bound the expected value of X = qdim(colspace(A)∩ker(R)) −
1 = |colspace(A) ∩ ker(R) \ {0}|. That is, X is the number of nonzero
v ∈ colspace(A) such that Rv = 0. By Def. 2.1, for any particular v ̸= 0 the
probability that Rv = 0 is at most ϵ. Since X is the sum of |colspace(A) \
{0}| = qrank(A)− 1 indicator random variables, we get E[X] ≤ ϵ(qrank(A)− 1).

For the real protocol to not abort,
∼
V = RW−

∼
UGC diag( ⃗∆) must hold. Be-

cause PR is uncorrupted, ⃗∆ is sampled uniformly in FnC
q and W ′ is computed

as U ′ diag( ⃗∆) + V . Therefore,

W = W ′ −
[
0 C

]
TC diag( ⃗∆) = (U ′ −

[
0 C

]
TC) diag( ⃗∆) + V

= [U C̄]TC diag( ⃗∆) + V.

Let Ū = RU −
∼
U and V̄ = RV −

∼
V be the differences between the honest

consistency check messages and the ones sent by PS . Then the consistency
check is equivalent to −V̄ = [Ū RC̄]TC diag( ⃗∆). Next, we need to bound

P = Pr
[
abort ∧ check passes

]
= Pr

[
rank(RC̄) < rank(C̄) ∧ −V̄ = [Ū RC̄]TC diag( ⃗∆)

]
.
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Triggering this condition requires guessing [Ū RC̄]TC diag( ⃗∆), i.e. guessing
∆i for every nonzero column

(
[Ū RC̄]TC

)
·i. Let N = ∥ [Ū RC̄]TC∥0 be the

number of these nonzero columns. A lower bound for N is rank([Ū RC̄]TC),
because every zero column does not contribute to the rank. TC is invertible,
so multiplying by it does not change the rank. Adding extra columns only
increases rank, so rank([Ū RC̄]) ≥ rank(RC̄). Up until the consistency check,
the behavior of PR has been independent of ⃗∆, and N is also independent of
⃗∆, so Pr

[
check | N

]
≤ q−N . Let r = rank(C̄)−rank(RC̄), so N ≥ rank(C̄)−r.

Then P ≤ E
[
q− rank(C̄)+r

1r≥1
]
, since the added abort occurs exactly when

r ≥ 1, and expectation of conditional probability is marginal probability.
Now, apply Lem. 4.6 to C̄ to get E[qr − 1] ≤ ϵ(qrank(C̄)− 1). If r ≥ 1 then

qr

qr−1 ≤
q

q−1 . Multiply both sides by qr − 1 to get

qr1r≥1 ≤
q

q − 1
(qr − 1).

P ≤ E
[
q− rank(C̄)+r

1r≥1
]
≤ ϵ

q

q − 1

(qrank(C̄) − 1)

qrank(C̄)
≤ ϵ

q

q − 1

2. After checking that rank(RC̄) = rank(C̄), find R−1 ∈ Fℓ×m
q such that

R−1RC̄ = C̄. To do this, find the reduced row echelon forms F = ARC̄
and F ′ = BC̄ of RC̄ and C̄, where A ∈ Fm×m

q and B ∈ Fℓ×ℓ
p are invertible

matrices. Because they have the same rank, RC̄ and C̄ must have the same
row space. The uniqueness of reduced row echelon forms implies that all
nonzero rows of F and F ′ will be identical, so

F ′ =

[
F
0

]
and C̄ = B−1F ′ = B−1

[
1m

0

]
F = B−1

[
1m

0

]
ARC̄,

which gives a formula for R−1.
Correct PS ’s VOLE correlation as U⋆ = U −R−1Ū and V ⋆ = V −R−1V̄ .

Then, assuming that the consistency check passes,

W = [U C̄]TC diag( ⃗∆) + V

=
[
(U⋆ +R−1Ū) C̄

]
TC diag( ⃗∆) + V ⋆ +R−1V̄

= U⋆GC diag( ⃗∆) + V ⋆ +R−1
([

Ū RC̄
]
TC diag( ⃗∆) + V̄

)
= U⋆GC diag( ⃗∆) + V ⋆.

3. Let Wpre = Fm×kC
q , then run Precom(C̄, R,R−1) to get the pre-commitment

functions U⋆
pre, V

⋆
pre, Lpre as in the simulator, as well as ⃗∆0 ∈ L′ and L′0 = L′−

⃗∆0. Also, find some ⃗Loff ∈ −L′ where V̄ = [Ū RC̄]TC diag( ⃗Loff). Replace the
underlying guess ⃗∆ ∈ L′ and the consistency check −V̄ = [Ū RC̄]TC diag( ⃗∆)

with ⃗∆+ ⃗Loff ∈ Lpre(Ū). When such an ⃗Loff exists, we need to show that this
is equivalent to the consistency check. L′0 is the linear subspace obtained by
shifting L′ to go through the origin, so ⃗∆+ ⃗Loff ∈ L′0 if and only if ⃗∆ ∈ L′
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because ⃗∆ + ⃗Loff is the difference of two elements of the affine subspace
L′. When ⃗∆+ ⃗Loff ∈ L′0, we have that ⃗∆+ ⃗Loff ∈ Lpre(Ū) is equivalent to
0 = [Ū RC̄]TC diag( ⃗∆ + ⃗Loff), which equals [Ū RC̄]TC diag( ⃗∆) + V̄ . The
latter being zero is the consistency check.

We must also show that if the consistency check would pass, then a
solution ⃗Loff must exist. Assume that there exists some ⃗∆1 ∈ L′ that would
pass the consistency check, i.e. −V̄ = [Ū RC̄]TC diag( ⃗∆1). Then − ⃗∆1 ∈ −L′
is a valid solution for ⃗Loff.

4. Factor out the sampling of ∆, the computation of W[h]· = U⋆
[h]· diag( ⃗∆) +

V ⋆
[h]·, and the selective abort attack ⃗∆ + ⃗Loff ∈ Lpre(Ū) into the ideal

functionality Fp,q,C,h,L,M
VOLE-pre . The ideal functionality also includes an abort if

U⋆ ̸= U⋆
pre(Ū) or V ⋆ ̸= V ⋆

pre(Ū , ⃗∆), and we must show that neither will occur.
The former cannot occur because that is exactly how U⋆ is calculated. For
the latter, when the consistency check passes we have

V ⋆
pre(Ū , ⃗∆) = V +R−1[Ū RC̄]TC diag( ⃗∆) = V −R−1V̄ = V ⋆.

5. We are now almost at the ideal world. We just need to changeWpre to be {Ū ∈
Fm×kC
q | t ≥ ∥ [Ū RC̄]TC∥0}, as in the simulator, and show that |Wpre| ≤M .

Changing Wpre is only detectable if Ū /∈ Wpre and the consistency check still
passes. Then the adversary must guess ∥ [Ū RC̄]TC∥0 ≥ t+ 1 entries of ⃗∆,
which has negligible probability q−t−1. We just need to choose t to be as
large as possible while keeping M small.

Finding a Ū such that [Ū RC̄]TC = ŪGC + [0 RC̄]TC has few nonzero
columns is equivalent to a bounded distance decoding problem over Fqm .
That is, interpreting each column as an element of Fqm , ŪGC must be a code
word close to −[0 RC̄]TC in Hamming weight. The simplest choice would
be to set t to be the decoding radius ⌊dC−1

2 ⌋ of C, guaranteeing that there
is at most a single element of Wpre. To get a tighter bound, we use the
Cassuto–Bruck list decoding bound [CB04], which implies M ≤ nC(dC − t)
when t = dC

1+

√
1+

dC
nC
− 1

n2
C

.

Optimizations. There are a couple ways that the communication complexity
of Fig. 9 can be improved. First, if the universal hash R contains a lot of
entropy, a seed s ∈ {0, 1}λ may be sent instead, so R = PRG(s). The only
place the randomness of R was used was to upper bound the probability that
rank(RC̄) < rank(C̄). C̄ cannot depend on s, so if using a PRG changed this
probability more than negligibly then there would be an attack against the PRG.

A second optimization is to hash
∼
V with a local random oracle Hash before

sending it, because all that’s needed is an equality check. The simulator (in the
malicious PS case) could then extract

∼
V from its hash, then continue as usual.

Interestingly, for concrete security it would be fine even if Hash were just an
arbitrary collision resistant hash. Looking at just C̄ and

∼
U , the simulator can

see which entries of ⃗∆ are being guessed, though not what the guesses are. By
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PR PS

for i ∈ [ℓ]:
⃗x∗
i := Ui·

output { ⃗x∗
i }i∈[ℓ] Fp,q,C,ℓ,L

VOLE
R $←R

for i ∈ [ℓ]:
r⃗i := R⃗i

F ∗
i := H(Vi· + r⃗⊤i , t(i, ⃗x∗

i ))
output {F ∗

i }i∈[ℓ]

for i ∈ [ℓ]:
r⃗i := R⃗i

⃗yi( ⃗x) := Wi· + r⃗⊤i − ⃗xGC ⊙ ⃗∆
Fi( ⃗x) := H( ⃗y( ⃗x), t(i, ⃗x))

output {Fi}i∈[ℓ]

“commit”

R

U, V

⃗∆,W

Fig. 11:
(
pkC

1

)
-OT extension protocol. Note that the parties for the base VOLE

are swapped, with PS (instead of PR) getting ⃗∆. If PS receives “check failed” from
the VOLE then the protocol is aborted immediately. For semi-honest security,
the “commit” and R steps are skipped, and r⃗i := 0.

looping through a random subset of 2σ possible guesses (and for the usual setting
of σ = 40 this is quite feasible), S can find the preimage of Hash(

∼
V ) often enough

to only give the distinguisher an additional advantage of 2−σ.

5 OT Extension

Now that we have constructed subspace VOLE, it is time to go back to our
original goal: OT extension. Like previous OT extensions, we hash our correlated
randomness in order to get random OTs. For malicious security, our protocol
(Fig. 11) follows [CT21] in using a universal hash to avoid collisions between
extended OTs, avoiding the need for a TCR hash. However, a TCR hash allows
for better concrete security (at they expense of performance) by reducing τmax,
which is the maximum number of queries H( ⃗y, τ) on the same tweak τ . We allow
an arbitrary function t(i, ⃗x) to control how many different hashes use the same
tweak. Unlike [CT21], our analysis allows R to be sent in parallel with the VOLE
protocol, saving a round of communication.

For generality, we allow any finite field, but we expect that p = 2 will be most
efficient in almost all cases. We equivocate between the choices Ui· in FkC

p from
the VOLE, and the choices x∗i in

[
pkC

]
expected for OT. This can be thought of

as writing x∗i in base p.

Theorem 5.1. The protocol in Fig. 11 achieves FpkC ,ℓ,{X}
OT-1

with malicious se-
curity in the Fp,q,C,ℓ,L,M

VOLE-pre hybrid model, assuming that H : FnC
q × T → {0, 1}λ is

a (p, q, C, T ,L)-TCR hash, and R ⊆ FnC×⌈logq(ℓ)⌉
q is an ϵ-almost uniform family.

The distinguisher advantage is at most ϵMℓ(tmax − 1)/2 + AdvTCR, where tmax
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PS PR

output U

Fp,p,Rep(Fn
′

p ),ℓ,L
VOLE

R $←R

output V R output ⃗∆R,WR

“commit”

R

U, V

⃗∆,W

Fig. 12: Non-leaky maliciously secure subspace VOLE for the repetition code. If PR

receives “check failed” from the VOLE then the protocol is aborted immediately.

is the maximum number of distict OTs that can have the same tweak under t.
For the TCR itself, τmax will be the maximum number of evaluations Fi( ⃗x) where
t(i, ⃗x) outputs a given tweak. For semi-honest security, R is unused; instead set
ϵ = q−nC and M = 1.

Proof. See the full version of this work.

5.1 ∆-OT

A common variant of OT extension is ∆-OT (a.k.a. correlated OT), where all
OT messages follow the pattern m0,m1 = m0 ⊕∆. It is useful for authenticated
secret sharing and garbled circuits. More generally, over a larger field, it works
as mx = m0 + x∆, and is useful for encoding the inputs to arithmetic garbling
[BMR16].

∆-OT works easily as a special case of subspace VOLE where q = p and
C = Rep(Fn

p ),6 except which party is called the sender and which the receiver is
swapped, like with OT extension. However, in the malicious setting our subspace
VOLE allows a selective abort attack, and while for some applications (such as
garbling) it may be allowed to leak a few bits for ∆, in others it may not. [BLN+15]
solve this problem by multiplying the ∆-OT messages by a uniformly random
rectangular matrix, throwing away some of the OT message. With high probability,
any correlation among the bits of ∆ is also lost, resulting in a non-leaky ∆-OT.
In Fig. 12, we generalize this idea to use a universal hash, which can be more
computationally efficient than a random matrix.

Theorem 5.2. The protocol in Fig. 12 achieves Fp,p,Rep(Fn
p ),ℓ,{X}

VOLE with malicious

security in the Fp,p,Rep(Fn′
p ),ℓ,Affine(Fn′

p ),M

VOLE-pre hybrid model, assuming that R ⊆ Fn′×n
p

is a ϵ-almost uniform family and n′ ≥ n. The advantage is bounded by ϵM(pn−1).

Proof. See the full version of this work.

Note that ifR has the optimal ϵ = p−n
′
, such as when it is a uniformly random

matrix, the environment’s advantage is upper bounded by Mpn−n
′
. Therefore,

n′ should be set to n+ logp(2)σ for security.

6 Note that subspace VOLE with q = pk and C = Rep(Fn
p ) can easily be turned into

VOLE for q = p and C = Rep(Fkn
p ), by interpreting Fq as a vector space over Fp.
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PS PR

Fp,k,L
OT-1

G, t := BuildPPRF(F )

output G output EvalPPRF(x∗, F ∗, t)

{Fi}i∈[k] {x∗
i , F

∗
i }i∈[k]{

tix ∈ {0, 1}λ
}
1≤i<k,x∈[p]

BuildPPRF(F ):
for x ∈ [p]:

s1x := F0(x)

for i := 1 to k − 1:
for y ∈

[
pi
]
, x ∈ [p]:

si+1
py+x := PRGx(s

i
y)

for x ∈ [p]:
tix := Fi(x)⊕

⊕
y∈[pi]

si+1
py+x

return (y 7→ sky), t

EvalPPRF(x∗, F ∗, t):
for x ∈ [p] \ {x∗

0}:
s∗ 1
x := F ∗

0 (x)
y∗
1 := x∗

0

for i := 1 to k − 1:
for y ∈

[
pi
]
\ {y∗

i }, x ∈ [p]:
s∗ i+1
py+x := PRGx(s

∗ i
y )

for x ∈ [p] \ {x∗
i }:

s∗ i+1
py∗

i +x := tix ⊕ F ∗
i (x)⊕

⊕
y∈[pi]\{y∗

i }

s∗ i+1
py+x

y∗
i+1 := py∗

i + x∗
i

return y∗, (y 7→ s∗ k−1
y )

Fig. 13: Protocol for
(

q
q−1

)
-OT based on

(
p

p−1
)
-OT, using a punctured PRF.

6 Base OTs

Our small field VOLE (Fig. 7) is based on
(

q
q−1

)
-OT, yet actual base OTs are

generally
(
2
1

)
-OT. We follow [BGI17] in using a punctured PRF to efficiently

construct
(

N
N−1

)
-OT. Our protocol (see Fig. 13) is based on the optimized version

in [SGRR19], which generates
(

pk

pk−1
)
-OT from k

(
p

p−1
)
-OTs.

It depends on a PRG : {0, 1}λ →
(
{0, 1}λ

)p. The xth block of λ bits from this
PRG is written as PRGx(s). The PRG is used to create a GGM tree [GGM86].

Starting at the root of the tree, PR gets p−1 of the p children from Fp,k,Affine(Fk
p)

OT-1
,

and at every level down the tree the protocol maintains the property that PR

knows all but one of the nodes at that level. Each level i of the tree is numbered
from 0 to pi−1, with the yth node in the layer containing the value siy. This means
that the children of node siy are si+1

py+x = PRGx(s
i
y), for x ∈ [p]. PS computes

the whole GGM tree in BuildPPRF, finds the totals tix =
⊕

y s
i+1
py+x for each x,

and uses the ith base OT to send all but one of these totals to PR. Let y∗i be
the index of the node on the active path in layer i, i.e., the layer i node that
PR cannot learn. Then PR will know every siy except for siy∗

i
, so it can compute

si+1
py∗

i +x = tix ⊕
⊕

y ̸=y∗
i
si+1
py+x. Thus, it learns si+1

y for all y ̸= y∗i+1. In the full

version, we prove that the leaves becomes the messages of an
(

pk

pk−1
)
-OT.

Theorem 6.1. Figure 13 constructs Fq,1,{X}
OT-1

out of Fp,k,{X}
OT-1

, and is secure in
the semi-honest model.
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PS PR

∼s,
∼
t := ProvePPRF(G)

output PRG′
1 ◦G

abort if ∼s ̸= VerifyPPRF(y∗, G∗,
∼
t)

output y∗,PRG′
1 ◦G∗

∼s,
∼
t ∈ {0, 1}2λ

ProvePPRF(G):
for y ∈ [q]:

∼sy := PRG′
0(G(y))

∼
t :=

⊕
y∈[q]

∼sy

∼s := Hash(∼s0 ∥ · · · ∥ ∼sq−1)

return ∼s,
∼
t

VerifyPPRF(y∗, G∗,
∼
t):

for y ∈ [q] \ {y∗}:
∼s∗y := PRG′

0(G
∗(y))

∼s∗y∗ :=
∼
t ⊕

⊕
y∈[q]\{y∗}

∼s∗y

∼s := Hash(∼s∗0 ∥ · · · ∥ ∼s∗q−1)
return ∼s

Fig. 14: Consistency checking for
(

q
q−1

)
-OT. This makes Fig. 13 maliciously secure.

While the protocol only does a single
(

q
q−1

)
-OT from a batch of k

(
p

p−1
)
-OTs,

it should be clear that a batch of n
(

q
q−1

)
-OT can be constructed from a batch of

nk
(

p
p−1

)
-OTs. For p = 2, the base

(
p

p−1
)
-OTs are just

(
2
1

)
-OTs. For p > 2, they

can be constructed from chosen message
(
p
1

)
-OT, by sending just the messages

PR is supposed to see.

6.1 Consistency Checking

In Fig. 14, we present the consistency check from the maliciously secure
(

2k

2k−1
)
-

OT of [BCG+19a]. We prove a stronger property of their check, that PS can
only check guesses for the x∗i s individually, not all of them together, which
shows that any possible selective abort attack is in Affine(Fk

p). This assumes
that that PRG is collision resistant for its whole output, so there are no s ≠ s′

such that PRGx(s) = PRGx(s
′) for all x ∈ [p]. As in [BCG+19a], the protocol

needs a second PRG, PRG′ : {0, 1}λ → {0, 1}2λ×{0, 1}λ, which must be collision
resistant in its first output PRG′0. In the consistency check, PS sends the total of
all ∼sky = PRG′0(sky) so that PR can reconstruct ∼sky∗ . PR then evaluates a collision
resistant hash of all the ∼sky and checks that it matches the hash from PS . As we
prove in the full version, this commits PS to a single possibility for each ∼sky .

Theorem 6.2. Figure 14 (composed with Fig. 13) is a maliciously secure

Fq,1,Affine(Fk
p)

OT-1
in the Fp,k,Affine(Fk

p)

OT-1
hybrid model.

7 Implementation

We implemented7 our
(
2
1

)
-OT semi-honest and malicious protocols in the libOTe

library [Rin], so that we could assess efficiency and parameter choices. We focus
7 Source code is at https://github.com/ldr709/softspoken-implementation.

https://github.com/ldr709/softspoken-implementation
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only on the case of binary fields (p = 2), as for this problem there is little benefit
to using a larger p. First, we discuss the choices we made in instantiation.

For semi-honest security, our protocol depends on only a PRG and a TCR
hash. We instantiate the TCR hash using Prop. 2.7, with AES as the ideal cipher.
To keep τmax low, we set t(i, ⃗x) = ⌊i/1024⌋, changing the tweak every 1024 OTs.
We also used the hash as a PRG, evaluating it as H(s, t(0)), H(s⊕ 1, t(1)), . . .
for a seed s. This allows the same AES round keys to be used across the many
different PRG seeds used by OT extension, while AES-CTR would need to store
many sets of round keys — too many to fit in L1 cache.

Malicious security additionally requires a universal hash for Fig. 9. As recom-
mended in Sect. 4, we construct the universal hash in two stages. First, take each
block of 64 bits from x⃗ and interpret it as an element of F264 . These blocks become
the coefficients of a polynomial over F264 , which is evaluated at a random point
to get Rx⃗. We choose the constant term to always be zero, which makes this a
uniform family (not just universal), allowing the use of Prop. 2.4 to sum multiple
hashes together. Limiting each hash to 220 blocks (each 64-bits long) before
switching to the next (generated from a PRG seed) makes this a 2−44-almost
uniform family over F2. The second stage R′ of the universal hash is over F2k . It
further compresses the output in F64

2k down to only F⌈40/k⌉
2k

. We made the simple
choice of a uniformly random matrix in F⌈40/k⌉×64

2k
, which achieves the optimal

ϵ = 2−k⌈
40
k ⌉ for a uniform family of this size. Fig. 11 also needs a uniform hash,

and we use F2128-multiplication of the tweak with the hash key.
The punctured PRF (Fig. 14) requires collision resistant primitives PRG,

PRG′, and Hash. For PRG, we assume that it is hard to find s ̸= s′ such that
H(s, 0) = H(s′, 0) and H(s, 1) = H(s′, 1), which is true in the ideal cipher model
(see full version). We use Blake2 [ANWW13] for PRG′8 and Hash.

7.1 Performance Comparison

In Tables 1 and 2, we present benchmarks of our implementation in both the
semi-honest and malicious settings, for a variety of communication settings and
parameter choices. We also compare to existing OT extensions. All results were
measured on an Intel i7-7500U laptop CPU, with the sender and receiver each
running on a single thread. The software was compiled with GCC 11.1 with -O3
and link-time optimizations enabled, and executed on Linux. In the localhost
setting, there is no artificial limit on the communication between these threads,
though the kernel has overhead in transferring the data, which is why our k = 2
is faster than k = 1 even in this case. We simulated communicating over a
LAN by applying a latency of 1 ms and a 1 Gbps bandwidth limit. For the
WAN setting, this becomes 40 ms and 100 Mbps. Base OTs were generated
using the EKE-based OT of [MRR21].9 The choice bits of SoftSpokenOT were
derandomized immediately, as were the choice bits for Ferret, to provide the most

8 H would also work, assuming that PRG′
0 concatenates two output blocks from H.

9 Silent OT needs more than λ base OTs, and so as an optimization it generates them
using KOS, which needs only λ base OTs.
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Semi-honest Security Malicious Security

Protocol Communication Time (ms) Time (ms)
KB bits/OT localhost LAN WAN localhost LAN WAN

IKNP [IKNP03] / KOS [KOS15] 160010 128 391 1725 15525 443 1802 15662
SoftSpoken (k = 1) 160009 128 243 1590 15420 298 1637 15648
SoftSpoken (k = 2) 80009 64 210 815 7730 255 893 7985
SoftSpoken (k = 3) 53759 43 223 568 5208 322 677 5419
SoftSpoken (k = 4) 40008 32 261 433 3995 311 530 4114
SoftSpoken (k = 5) 32510 26 337 348 3271 454 465 3447
SoftSpoken (k = 6) 27509 22 471 488 2811 588 613 2985
SoftSpoken (k = 7) 23760 19 777 843 2380 899 966 2554
SoftSpoken (k = 8) 20008 16 1259 1314 1916 1293 1322 2130
SoftSpoken (k = 9) 18759 15 2302 2338 2439 2460 2457 2590
SoftSpoken (k = 10) 16259 13 3984 3983 4097 4126 4132 4223
Ferret [YWL+20] 2976 2.38 2156 2160 2825 2240 2242 3108
Silent (Quasi-cyclic) [BCG+19a] 127 0.10 7735 7736 8049
Silent (Silver, weight 5) [CRR21] 127 0.10 613 613 746

Table 1: Time and communication required to generate 107 OTs, averaged over 50
runs. The best entry in each column is bolded, and the second best is underlined.
Communication costs for maliciously secure versions are within 10 KB of the
semi-honest ones. The setup costs are included.

Semi-honest Security

Protocol
Time (ms)

Comm. localhost LAN WAN
KB PR PS PR PS PR PS

IKNP [IKNP03] 4.2 27 19 32 21 94 54
SoftSpoken (k in 1–10) 8.3–9.8 27–29 28–30 32–44 33–45 86–101 127–142
Silent (Quasi-cyclic) [BCG+19a] 53.4 31 33 32 34 102 146
Silent (Silver, weight 5) [CRR21] 53.4 28 30 33 35 102 147
Ferret [YWL+20] 1166.8 65 65 70 65 552 342

Malicious Security
KOS [KOS15] 4.2 28 28 33 32 105 145
SoftSpoken (k in 1–10) 9.3–16.8 27–33 28–34 32–38 32–38 100–109 141–151
Ferret [YWL+20] 1175.3 73 73 75 73 608 553

Table 2: One-time setup costs for OT protocols in Table 1. SoftSpokenOT
protocols have nearly identical setup costs, and so only a range is given.

direct comparison with IKNP and KOS. The choice bits for the Silent OTs were
not derandomized, slightly biasing the comparison in their favor.

Although for k = 1 our protocol is the same as IKNP in the semi-honest
setting, our implementation is significantly faster. This mainly comes from a new
implementation of 128×128 bit transposition, based on using AVX2 to implement
Eklundh’s algorithm [TE76]. This gave a 6× speedup for bit transposition, which
is a significant factor of IKNP’s overall runtime.

In our benchmark, Silver did not perform as well as IKNP in the localhost
setting, while [CRR21] found that Silver was nearly 60% faster than IKNP. We
attribute this difference to using a lower quality computer, which has less memory
bandwidth than the machine used for their benchmark. This is important for
Silver’s transposed encoding, a memory intensive operation. Compared to Silent
OT, we achieve better concrete performance in the localhost and LAN settings,
but the extremely low communication of Silent OT puts Silver in first place for
the WAN setting. We claim another a benefit to our protocol over Silver, since
SoftSpokenOT only needs fairly conservative assumptions about well-studied
objects like block ciphers, while Silver depends on hardness of LPN for a novel
family of codes that has yet to receive much cryptanalysis. More conservative
versions of Silent OT, based on either quasi-cyclic codes [BCG+19a] or local
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linear codes [YWL+20], are slower than SoftSpokenOT across the tested settings.
For malicious security, we use a more efficient universal hash function compared

to KOS, who require the additional generation of 128 bits from a PRG for every
OT as part of the consistency check. We have not benchmarked maliciously
secure implementations of Silent OT and Silver, but they likely have very similar
performance to the semi-honest case.
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