
A New Approach to Efficient Non-Malleable
Zero-Knowledge?

Allen Kim, Xiao Liang[0000−0003−0858−9289], and Omkant Pandey

Stony Brook University, Stony Brook, USA
allekim@cs.stonybrook.edu

xiao.crypto@gmail.com

omkant@cs.stonybrook.edu

Abstract. Non-malleable zero-knowledge, originally introduced in the
context of man-in-the-middle attacks, serves as an important building
block to protect against concurrent attacks where different protocols may
coexist and interleave. While this primitive admits almost optimal con-
structions in the plain model, they are several orders of magnitude slower
in practice than standalone zero-knowledge. This is in sharp contrast
to non-malleable commitments where practical constructions (under the
DDH assumption) have been known for a while.
We present a new approach for constructing efficient non-malleable zero-
knowledge for all languages in NP, based on a new primitive called
instance-based non-malleable commitment (IB-NMC). We show how to
construct practical IB-NMC by leveraging the fact that simulators of
sub-linear zero-knowledge protocols can be much faster than the hon-
est prover algorithm. With an efficient implementation of IB-NMC, our
approach yields the first general-purpose non-malleable zero-knowledge
protocol that achieves practical efficiency in the plain model.
All of our protocols can be instantiated from symmetric primitives such
as block-ciphers and collision-resistant hash functions, have reasonable
efficiency in practice, and are general-purpose. Our techniques also yield
the first efficient non-malleable commitment scheme without public-key
assumptions.

Keywords: Non-malleability · Efficiency · Symmetric Assumptions.

1 Introduction

Non-malleable Zero-Knowledge. Dolev, Dwork, and Naor [27] introduced
the notion on non-malleable cryptography. They also provided constructions
of non-malleable zero-knowledge and non-malleable commitments in the plain

? This material is based upon work supported in part by DARPA SIEVE Award
HR00112020026, NSF CAREER Award 2144303, NSF grants 1907908, 2028920,
2106263, and 2128187. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government, DARPA, or NSF.

model assuming only the existence of one-way functions (OWFs). While these
primitives were originally introduced in the context of “man-in-the-middle” at-
tacks, they were soon used as a building block for constructing secure computa-
tion protocols. For example, non-malleable commitments were used extensively
to improve their round-efficiency [49, 69, 81, 41, 33, 3, 20], and non-malleable
zero-knowledge played a central role in protecting them against concurrent at-
tacks [13, 14, 19, 71, 76, 62, 12].

A long line of research has since focused on several aspects of these prim-
itives, including their round-complexity [27, 5, 74, 60, 55, 81, 57, 41, 21, 50],
black-box usage of underlying primitives [42, 45], and even concrete efficiency
[11] without assuming any trusted setup. Notably, constant-round non-malleable
commitments assuming only OWFs were first constructed in independent and
concurrent works of Goyal [41] and Lin and Pass [57]. Finally, four-round non-
malleable zero-knowledge assuming only OWFs was first achieved by Goyal et
al. [45] for all of NP; and three-round non-malleable commitments assuming in-
jective OWFs were constructed by Goyal, Pandey, and Richelson [43, 44]. Under
falsifiable assumptions [65, 34], these rounds are optimal for commitments [72],
and likely to be optimal for zero-knowledge as well [39, 32]. Stronger forms of
this notion such as concurrent non-malleability, eventually achieved optimally in
a series of works [73, 60, 21], are not considered in this work. We note that non-
malleability has been explored in several other contexts as well [27, 10, 26, 30].

Efficient Constructions. While the aforementioned results are almost optimal
for non-malleable zero-knowledge, their focus is primarily on feasibility as op-
posed to actual efficiency. To the best of our knowledge, the actual efficiency of
non-malleable zero-knowledge has never been explicitly addressed before. This is
in sharp contrast to non-malleable commitments, for which efficient plain-model
constructions are known (under the DDH assumption) [11].

We therefore consider the efficiency of some of the main approaches for
non-malleable zero-knowledge. Unless stated otherwise, we are concerned with
general-purpose protocols (that work for all languages in NP) in the plain model.

– The most common approach for non-malleable zero-knowledge is “commit-
and-prove.” At a high level, the prover first sends a non-malleable commit-
ment to the witness, and then uses (ordinary) zero-knowledge to prove that
the committed value is a valid witness [27, 7, 45, 21]. If the commitment
supports k-bit identities and has λ-bit security, the circuit corresponding
to the state-of-the-art non-malleable commitment [11] is at least 16k2λ2, or
over 100 million gates for k = 32, λ = 80. Zero-knowledge proofs for such cir-
cuits would take more than one minute using state-of-the-art (plain-model)
protocols such as Ligero [2] (even taking advantage of the amortization ad-
mitted by Ligero). This is true even if the actual statement, say proving
y = SHA256(x), requires less than a second [2] in the standalone case.1

1 Although details may vary, known protocols in this paradigm generally require some
form of non-algebraic consistency proof over a non-malleable commitment supporting
large identities and message spaces.

2

It is worth noting that using state-of-the-art commitments [11] additionally
requires assuming DDH, whereas “symmetric assumptions” such as OWFs
are sufficient in theory. Efficient non-malleable commitments without relying
on public-key assumptions such as DDH are therefore also not known. One
option here is to implement the consistency proofs in [11] with Ligero to
avoid DDH. However, this also results in large circuits.2 Jumping ahead, our
techniques offer new results for efficient non-malleable commitments, too.

– Non-malleable zero-knowledge without relying on non-malleable commit-
ments was first constructed by Barak [5], and by Pass and Rosen [74] under
improved assumptions. Both of these constructions were based on Barak’s
non-black-box simulation [4]. A critical component of these protocols is a
universal argument [6], which consists of a Merkle tree commitment to a
Probabilistically Checkable Proof (PCP), parts of which are opened later in
the protocol. Unfortunately, as shown by Ben-Sasson et al. [9], the underly-
ing PCP proof in the universal argument can be astronomically large even
for moderate parameters. To the best of our knowledge, the true efficiency
of non-black-box simulation based constructions is currently not well under-
stood.

– A third approach, due to Ostrovsky, Pandey, and Visconti [68], relies on
the DDH assumption, and efficiently converts any public-coin honest-verifier
statistical zero-knowledge argument into a (concurrent) non-malleable one
[7]. While this approach uses non-malleable commitments, it avoids general-
purpose proofs over them using ideas from the “simulatable commitment” of
Micciancio and Petrank [63]. Though efficient, this transformation quickly
becomes pretty slow. For example, for the standalone setting, it requires
roughly 20kλ log λ group exponentiations to support k bit identities at 2−λ

security level;3 this is roughly 0.32 million exponentiations for k = 32, λ =
80. In addition, it requires efficient non-malleable commitments as well as
efficient (and compatible) simulatable commitments, both of which are only
known from DDH. Ideally, we would like to use only symmetric assumptions.

Constructions in the Random Oracle Model (ROM). The protocols we
seek are straightforward to construct in the ROM [8] (see, e.g., [70, 31]). Briefly,
a random oracle (RO) is non-malleable by design, which completely sidesteps
this issue. Furthermore, zero-knowledge is also trivial since the simulator and

2 We remark that for non-malleable commitments based on non-malleable codes such
as [43], it is hard to estimate the overall complexity; the asymptotic analysis of under-
lying codes such as [1] has astronomically large constants, making them unsuitable
in practice.

3 The analysis in [68] does not separate identity lengths from security levels; it further
provides only asymptotic analysis which hides multiplicative constants and does not
specify the exact negligible and super-logarithmic functions. This makes it difficult
to assess the security level supported by their protocol. If the analysis is performed
to support λ-bit security and k-bit identities, the overhead is at least 20kλ log λ
group exponentiations.

3

the reduction are allowed to see adversary’s queries to the oracle and control the
responses. In the real world, a cryptographic hash function is used to replace the
RO, thus providing a concrete construction. This is an attractive methodology
that often leads to practical constructions. That being so, there are several rea-
sons to pursue constructions in the plain model, even if efficient constructions
are already known in the ROM. We highlight some of them here.

– A protocol such as a zero-knowledge proof in the ROM can be particularly
troublesome when it is used as a sub-protocol in a larger protocol. If the RO is
shared by other parts of the larger protocol, the security is jeopardized since
the security reduction for the sub-protocol does not hold when a particular
RO has already been selected by the larger protocol (see, e.g., [70, 15, 79]).
In addition, security proofs in this model often program the oracle, resulting
in loss of properties such as deniability which are otherwise implied by zero-
knowledge (see [70, 80]). Deniability is a natural and useful property that
has been explored in other contexts as well [16, 29, 67, 78].

– Using random oracles often sidesteps the main difficulty in achieving a par-
ticular task, such as CCA secure encryption or non-malleable commitments
from standard assumption. Therefore, a construction or security proof in the
ROM, while valuable, is usually not as insightful as its plain-model counter-
parts.

– Finally, while security proofs in the ROM are valuable, it requires a leap
of faith to believe that instantiating the random oracle with a real world
hash function maintains claimed security. Indeed, this is not always the case
[17, 28, 66, 40]. It stands to reason that whenever possible the ROM should
be avoided.

Improved constructions can be achieved in other trusted setup models as well.
Di Crescenzo, Ishai, and Ostrovsky [24] construct non-interactive non-malleable
commitments in the CRS model, and Di Crescenzo et al. [25] do so efficiently
under DDH. Lower rounds can also be achieved in the plain model under non-
falsifiable assumptions [69, 72, 58, 51].

1.1 Our Results

We present a new approach for constructing efficient and general-purpose non-
malleable zero-knowledge in the plain model. Our protocols can be viewed as a
transformation which takes as input an efficient general-purpose zero-knowledge
protocol, such as Ligero [2], and yields a non-malleable zero-knowledge protocol
of (less but still) comparable efficiency. To the best of our knowledge, this is the
first construction of general-purpose non-malleable zero-knowledge that achieves
practical efficiency in the plain model. Our approach has the additional benefit
of requiring only symmetric assumptions (in addition to the assumptions of the
given proof system). Specifically, it suffices to assume collision-resistant hash
functions.

4

Table 1: Performance of our protocols for λ-bit security and k-bit identities.
NMZK proves a witness for SHA256.

Param. NMZK NMCom

(k, λ) P time (s) V time (s) Comm. (MB) P time (s) V time (s) Comm. (MB)

(32, 40) 1.68 0.74 19.68 2.52 1.12 19.74

(32, 80) 3.56 1.49 24.88 4.68 2.06 24.97

(64, 80) 5.04 2.23 28.84 6.72 3.09 28.93

While our primary focus is on non-malleable zero-knowledge, we also get new
results for non-malleable commitments. Specifically, we get the first efficient con-
struction of non-malleable commitments with large identities and message space
under symmetric assumptions. Though this improves upon the DDH assumption
required by the state-of-the-art construction [11], our construction is somewhat
slower in comparison.

Even though our focus is on efficiency, our results are theoretical in nature.
Our transformation makes use of non-malleable commitments in a fundamen-
tally new way. We define and construct a new primitive called instance-based
non-malleable commitments (IB-NMC), which admit more efficient modes than
a traditional non-malleable commitment. We show how IB-NMC can be used in
conjunction with the OR-Composition technique from [22, 23] to obtain efficient
simulation-sound protocols, which in turn yields efficient non-malleable proto-
cols for both zero-knowledge and commitments. This primitive may be useful in
other contexts as well.

The overhead of our transformation is within reach of practical computing.
Table 1 shows the running times and communication for our non-malleable pro-
tocols for some sample parameters. Due to space constraints, a detailed analysis
of the empirical results is postponed to the full version [53].

1.2 Overview of Techniques

We start by recalling the central efficiency bottleneck in constructing non-malleable
zero-knowledge for NP. We assume that efficient standalone zero-knowledge
(ZK) proofs already exist for all languages L ∈ NP in the plain model such as
[35, 2]. For concreteness, we will use Ligero [2].

The main inefficiency of non-malleable zero-knowledge stems from the fact
that almost all known constructions [7, 59, 56] make a non-black-box use of non-
malleable commitments. More specifically, the prover commits to a witness or a
trapdoor string using a non-malleable commitment and later relies on expensive
NP reductions to prove that it either committed a valid witness or a trapdoor
(i.e., an OR-statement); the latter is shown difficult to do for the man-in-the-
middle adversary M by relying on the non-malleability of the commitment. The
NP reduction corresponding to the OR-statement typically results in a circuit

5

description of formidable size since the non-malleable commitment usually con-
tains many calls to cryptographic functions such as block-ciphers. The resulting
protocols are prohibitively inefficient even with state-of-the-art ZK construc-
tions. Other approaches (based on non-black-box simulation or DDH outlined
earlier) are irrelevant to our construction.

The starting point of our work is the observation that the use of non-malleable
commitments in these protocols is merely a means to an end. In particular, the
honest prover generally commits to a random or an all-zero string in these com-
mitments; it is the simulator who makes real use of their non-malleable proper-
ties. Therefore, if we can create a situation in our protocols where the honest
prover does not have to execute even a single full non-malleable commitment,
we can improve the computational efficiency of these protocols. Let us briefly
highlight why achieving this property is extremely important for our goals: As
noted above, efficient non-malleable commitments in the plain model are based
on DDH [68, 11]. One option to avoid public-key assumptions is to instantiate
the scheme in [11] with Ligero; However, the running time of the resulting com-
mitment scheme alone (under moderate parameters) will run in more than one
minute. The actual non-malleable zero-knowledge protocol which depends on
these commitments in a non-black-box way will be much worse. We therefore
seek to avoid even one full execution of a non-malleable commitment in our ZK
protocol.

It is worthwhile to note that black-box constructions of non-malleable ZK
from non-malleable commitments are (surprisingly) not known. The closest work
in this regard is by Jain and Pandey [48], who construct simulation-sound ZK
from a stronger version of non-malleable commitments (called 1-1 CCA [18, 54])
in black-box. Currently, it is unclear if their approach can yield an efficient
protocol that avoids even one execution of the non-malleable commitment.

Instance-Based Non-Malleable Commitments. Returning back to our goal
of avoiding even one execution of full non-malleable commitment during the
proof, we consider a new relaxation of such commitments which we call instance-
based non-malleable commitments (IB-NMCs). Roughly speaking, an IB-NMC is
just like an ordinary non-malleable commitment except that it takes as input
a statement y (from an implicit NP language Y). The commitment has two
modes: if y /∈ Y , then it is an ordinary non-malleable commitment, and the
committer commits to any desired value v by following the actual commitment
algorithm C. Otherwise, if y ∈ Y , then the commitment is not guaranteed to
have any non-malleability property. However, in this case, there exists a much
faster algorithm C∗ that, with the help of a witness for y ∈ Y , can fake (or
simulate) an execution that looks indistinguishable from the real execution with
C for any value v.

To construct IB-NMC, we combine the following key ideas:

– The simulator of a general-purpose zero-knowledge proof can be much faster
than the real prover algorithm. This is best seen by considering the sub-
linear zero-knowledge arguments based on PCPs [52, 61]. In such protocols,

6

a prover commits to a full Merkle tree over the PCP proof; but note that the
simulator does not have to construct the whole tree. Instead, the simulator
can simply prepare the nodes of the opened paths in a consistent manner,
which is much faster. In particular, this is true for our chosen ZK system
Ligero.

– The well-known OR-Composition technique developed for Σ-protocols [22,
23] can be applied in our setting to give proofs for statements of the type
“either x ∈ L or y ∈ Y .” Recall that under this technique, a prover with
a witness for x constructs proofs correctly for the “x ∈ L” part, but uses
the simulator of the Σ-protocol for the “y ∈ Y ” part. Observe that if the
simulator for the “y ∈ Y ” part is fast (as discussed in the previous item),
then the composed proofs can be almost as fast as a proof only for x ∈ L.

– Finally, we apply the aforementioned observations to a suitable non-malleable
commitment scheme to get an efficient IB-NMC. In particular, we apply it to
a modification of the BGRRV protocol [11], leading to a construction based
solely on symmetric-key (or Minicrypt) assumptions (referred to as ΠMini

bgrrv).
More specifically, ΠMini

bgrrv has a commit phase and a proof phase where the
latter proves the “consistency” of the former. To get IB-NMC, we simply
change the proof phase to prove that either the first phase is consistent or
y ∈ Y (where y is an additional input to the committer); this proof is done
using the OR-composition of two Ligero protocols as described above.

We remark that this approach runs into several other issues that are not discussed
here, e.g., OR-composition in general applies only to Σ-protocols but Ligero is
not a Σ-protocol, the role of Y and how to choose it, etc. We will handle them in
Sec. 5. The use of a honest-verifier simulator to protect against malicious attacks
first appears in the work of Cramer, Damg̊ard, and Schoenmakers [22].

Non-Malleability via Simulation Soundness. While IB-NMC is an interest-
ing primitive, it is not clear how to use it at all to construct non-malleable zero
knowledge. Instead, we show that IB-NMC can be used successfully to construct
a fast simulation-sound ZK protocol [77, 48]. Constructing this protocol requires
repeated applications of the OR composition and the fake-proof technique dis-
cussed above. The simulation-sound protocol can be directly useful in larger
protocols since this notion suffices for typical applications of non-malleability.
Finally, we show how to use this protocol to get an efficient and full-fledged non-
malleable ZK as well as an efficient non-malleable commitment. In both cases,
the transformation inherits the assumptions of the underlying zero-knowledge
and IB-NMC, which in our case, are symmetric primitives only.

2 Preliminaries

We use λ ∈ N to denote the security parameter. Symbols
c
≈,

s
≈, and

id
= are used to

denote computational, statistical, and perfect indistinguishability respectively.
Let negl(λ) denote negligible functions. Familiarity with basic definitions in-
cluding commitments, witness indistinguishability, zero-knowledge, arguments

7

of knowledge, etc. is assumed; we refer to [36, 37] for formal treatment of these
notions. We also recall the definitions of CRHFs, extractable commitments, and
statistically-hiding commitments in [53, Appendix A].

Non-Malleable Interactive Proofs. We work with identity-based (or “tag-
based”) definitions of non-malleability and follow the definitions and conventions
from [74]. Let A be a (non-uniform) probabilistic Turing machine, specifying a
man-in-the-middle strategy. A runs in time polynomial in the security parameter
λ. Let z ∈ {0, 1}∗ be an arbitrary string (denoting the non-uniform “advice” for
A). Let 〈P, V, 〉 be an interactive proof system for an NP complete language L.
Let x ∈ L be a statement of length λ; we assume that P is PPT and receives
a witness w ∈ RL(x) as its auxiliary input. The definition is based on the
comparison between a man-in-the-middle execution and a stand-alone execution
among the above parties.

The man-in-the-middle experiment begins by selecting uniform randomness
for A, and honest parties P and V . A(x, z) interacts with P (x,w) on left acting
as a verifier in the proof for x ∈ L; A simultaneously participates in a right
proof with V , proving a related statement x̃, supposedly in L.4 Let the tag (or

“identity”) strings on left and right be id and ĩd respectively with |id| = |ĩd| = λ.

We let mimAV (id, ĩd, x, x̃, w, z) be a random variable describing the output of V
in the man-in-the-middle execution.

In the stand-alone execution, a machine S interacts with the honest verifier
V . As in the man-in-the-middle execution, V receives as input an instance x̃
and the identity ĩd. S receives x, an auxiliary input z and id as input. We let
staSV (id, ĩd, x, x̃, z) be a random variable describing the output of V in the stand-
alone execution.

Definition 1 (Non-Malleable Interactive Proof). An interactive proof
〈P, V 〉 for language L is said to be non-malleable w.r.t. tags of length m if for ev-
ery PPT man-in-the-middle adversary A, there exists a PPT stand-alone prover
S and a negligible function negl such that for every x ∈ L, every w ∈ RL(x),

every x̃ ∈ {0, 1}|x|, every id, ĩd ∈ {0, 1}m so that id 6= ĩd, and every z ∈ {0, 1}∗,
it holds that

Pr[mimAV (id, ĩd, x, x̃, w, z) = 1] < Pr[staSV (id, ĩd, x, x̃, z) = 1] + negl(|x|).

We will refer to synchronizing adversaries: they are the man-in-the-middle
attackers who, upon receiving a message in one session, immediately respond
with the corresponding message in the other session. An adversary is said to be
non-synchronizing if it is not synchronizing.

Definition 2 (Non-Malleable Zero Knowledge). An interactive proof be-
tween prover P and verifier V is said to be non-malleable zero knowledge if it is
a non-malleable interactive proof that also has the zero-knowledge property.

4 We remark that statement x̃ may be chosen either adaptively depending on the left
execution, or statically by announcing it before the left execution begins.

8

Simulation Soundness. The notion of simulation soundness [77] is a form
of non-malleable ZK. Typically it is all one needs when building higher-level
constructs using non-malleable ZK. In the non-interactive setting, it requires
that a man-in-the-middle adversary cannot generate convincing proofs for false
statements, even given access to a simulator who can generate false proofs.

The definition for the interactive setting appears in [48]. It requires a single
machine S—the simulator—which guarantees indistinguishability of the view for
true statements (to capture ZK), and the soundness for statements on the right
hand side even in the presence of simulated false proofs on the left hand side.
We use MIMA〈P,V 〉(x,w, z, id) to denote the joint view of the adversary A in the
same man-in-the-middle execution described above.

Definition 3 (Simulation-Sound Zero-Knowledge). An interactive argu-
ment 〈P, V 〉 for a language L is said to be a simulation-sound zero-knowledge
argument if for every PPT man-in-the-middle algorithm A, there exists a ex-
pected PPT algorithm S (the simulator) such that:

– (Indistinguishable Simulation) For every x ∈ L, every w ∈ RL(x), every
id ∈ {0, 1}λ, and every (auxiliary input) z ∈ {0, 1}∗:

S(x, z, id)
c
≈ MIMA〈P,V 〉(x,w, z, id)

– (Simulation Soundness) There exists a negligible function negl(·) such
that for every x ∈ {0, 1}λ, every id ∈ {0, 1}λ, and every z ∈ {0, 1}∗:

Pr
[
ν ← S(x, z, id) : x̃ /∈ L ∧ ĩd 6= id ∧ b̃ = 1

]
≤ negl(λ)

where x̃, ĩd and b̃ denote the statement, identity, and verifier’s decision in
the right-side view of the simulated joint-view ν.

Non-Malleable Commitments. We use the tag-based definition from [60,
43]. Specifically, we compare an ideal interaction with a real one. In the ideal
interaction, a man-in-the-middle adversary A interacting with a committer C
in the left session, and a receiver R in the right. We denote the relevant entities
used in the right interaction as “tilde’d” version of the corresponding entities
on the left. In particular, suppose that C commits to v in the left interaction,
and A commits to ṽ on the right. Let MIMv denote the random variable that
is the pair (View, ṽ), consisting of the adversary’s entire view of the man-in-the-
middle execution as well as the value committed to by A on the right (assuming
C commits to v on the left). The ideal interaction is similar, except that C
commits to some arbitrary fixed value (say 0|v|, i.e. an all-zero string of length
|v|) on the left. Let MIM0 denote the pair (View, ṽ) in the ideal interaction. We

ensure that A uses a distinct identity (or “tag”) ĩd on the right from the identity
id it uses on the left. This is done by stipulating that MIMv and MIM0 both
output a special value ⊥id when A uses the same identity in both the left and
right executions. Let MIMv(z) and MIM0(z) denote real and ideal interactions
resp., when A’s auxiliary input is z.

9

Definition 4 (Non-Malleable Commitments). A tag-based statistically bind-
ing commitment scheme 〈C,R〉 is non-malleable if ∀ PPT A, and ∀v ∈ {0, 1}λ,

it holds that {MIMv(z)}λ∈N,z∈{0,1}∗
c
≈ {MIM0(z)}λ∈N,z∈{0,1}∗ .

3 Preparatory Work

In this section, we prepare the ingredients for use in the construction of our
non-malleable zero-knowledge protocol. More specifically, we recall how Ligero’s
ZK simulator works (from [2]). Also, we show a slightly-modified version of the
non-malleable commitment from [11]. We will recall related notation/techniques
only to the extent that is adequate to understand our construction. See the full
version of the current paper for a more detailed review of Ligero [53].

On Notation. In [2], the authors first built a public-coin zero-knowledge inter-
active PCP (ZKIPCP) scheme. They then converted the ZKIPCP to a 6-round
honest-verifier ZK protocol relying on Kilian’s transformation [52, 61]. Finally,
they further converted it to a 7-round (fully) zero-knowledge protocol using the
techniques from [46, 47]5. Henceforth, we will use Ligero to denote their honest-
verifier ZK protocol, and use Ligero′ to denote their fully ZK construction.

Simulator HVSim for Ligero. We will use the fact that simulating a Ligero
(i.e., the honest-verifier version of [2]) proof is much faster than the real prover
algorithm if the challenge of the verifier is known. The simulator’s algorithm
will be denoted by HVSim (HV for “honest-verifier”). There are two parts to
be simulated: the first one is simulating the ZKIPCP interaction (a.k.a. the
challenge-response slot); and the second one is simulating paths of the Merkle
tree that are consistent with opened parts of the ZKIPCP proof string π (a.k.a.
the oracle query-answer slot). The full description of HVSim is presented in
Algo. 1.

Algorithm 1: HVSim: Honest-Verifier Zero-Knowledge Simulator for Ligero

Input: a statement x, a collision-resistant hash function h, and a ZKIPCP query b:

1. Run the honest-verifier simulator algorithm corresponding to the ZKIPCP system for
statement x and verifier randomness (h, b) to obtain a (perfectly) simulated ZKIPCP
transcript. By definition, the transcript contains simulated parts of the “proof string” π.
Let L = {(i, πi)} denote these simulated parts where i ∈ [|π|] denotes position in the
proof. Thus, L is simply the list of opened leaves in a Merkle tree (constructed below).
Note that n = |π| is the total number of leaves and known in advance. The simulated
transcript also contains the honest verfier’s challenge, which is simuilated as a random
string b, and the corresponding (simulated) response c

2. Generate the paths of the Merkle tree that are consistent with L = {(i, πi)}. This is
straightforward, we provide the steps below for completeness:

5 We remark that [2] also presented another approach—applying Fiat-Shamir trans-
formation to their ZKIPCP will give a (fully) ZK protocol directly; moreover, the
resulting protocol will be non-interactive. But this approach is irrelevant in the cur-
rent paper as we are interested in constructions in the plain model (without random
oracles).

10

(a) For every element z = (i, πi) in L, let i′ represent the index corresponding to the
sibling of z in the Merkle tree (note that i′ exists for every i by definition). We first
check if the sibling of z exists in L by checking if any element in L contains index i′.
If no sibling for z exists in L, we add a new element z′ = (i′, ri) into L, where ri is
a random string with length equal to the output length of h.

(b) Let L∗ be the empty set. For every z, along with its sibling z′, in L, we let z∗ =
h(z||z′). We add z∗ to L∗. In the end, the cardinality of L∗ is equal to |L|/2.

(c) Set L = L∗ and L∗ = ∅. Repeat Steps 2a to 2c while |L| > 1.

(d) The remaining element in L is the root of the Merkle tree.

Instantiating BGRRV with Symmetric Primitives. We will need an ex-
tractable non-malleable commitment (ENMC) that is fast and, preferably, based
only on symmetric-key primitives. We work with a modified version of Brenner
et al.’s protocol [11] (which is in turn based on [45]). This modified version uses
Ligero′ (the malicious-verifier version of Ligero) as the ZK proof system in the
consistency-proof stage of the protocol. For concreteness, this instantiation is
completely specified in Prot. 1. We refer to it as ΠMini

bgrrv.

Protocol 1: ΠMini
bgrrv: Extractable Non-Malleable Commitment in Minicrypt

Public Input: an identity id ∈ {0, 1}k, a large prime q, an integer `, and vector spaces
V1, . . . , Vn ⊂ Z`q which are derived from id. These parameters satisfy the following relation:

` = 2(k + 1) and n = k + 1. (For the meanings of these parameters, we refer the readers to
[11].)

Private Input: commiter C takes m ∈ Z`−1
q as its private input (the value to be committed).

Committing Stage. The committing stage consists of the following steps.

1. R→ C: Send the first message ρ of the Naor’s commitment scheme [64].

2. C → R: C chooses random values r1, . . . , rn ∈ Zq . This defines vectors z1, . . . , zn ∈ Z`q
where zi = (ri,m). C sends commitments (m̂, r̂) where:

m̂ =
(
Comρ(m1; s1), . . . ,Comρ(m`−1; s`−1)

)
, r̂ =

(
Comρ(r1; s′1), . . . ,Comρ(rn; s′n)

)
,

where Comρ denotes the second round of Naor’s commitment w.r.t. first message ρ. Note
that this commits C to every coordinate of zi. For future reference, define the following
language which contains valid commitment and message pairs:

LComρ :=
{

(c, a) : ∃b s.t. c = Comρ(a; b)
}
.

3. R→ C: Send random challenge vectors {vi}i=1,...,n where each vi ∈ Vi ⊂ Z`q .

4. C → R: C sends evaluations {wi}, where each wi = 〈vi, zi〉 ∈ Zq .

Consistency Proof. Using Ligero′, C proves that the preamble was executed correctly. That
is, C proves the following statement: ∃

(
(m1, s1), . . . , (m`−1, s`−1), (r1, s′1), . . . , (rn, s′n)

)
such

that

– m̂ =
(
Comρ(m1; s1), . . . ,Comρ(m`−1; s`−1)

)
, and

– r̂ =
(
Comρ(r1; s′1), . . . ,Comρ(rn; s′n)

)
, and

– wi = 〈zi,vi〉 ∀i ∈ [n] where zi = (ri,m1, . . . ,m`−1).

Notation: Henceforth, we denote the above language as Lρconsis. We say that the above

Consistency Proof stage is proving that (m̂, r̂, {wi}i∈[n]) is in language Lρconsis.

11

Observe that each message from the ΠMini
bgrrv receiver, informally speaking,

is efficiently simulatable during “rewindings” given all prior information. That
is, each message must be of one of the following three types: (i) it is a public
random string; (ii) it can be sampled from scratch; or (iii) it is simply a complete
opening of a previous commitment (and thus repeatable in rewind threads if
needed). This observation will play an important role later when we prove the
non-malleability of our ZK protocol (more specifically, in Claim 1). But we also
emphasize that this observation is crucial only in the non-synchronous setting
(but not in the synchronous setting).

Extractability of BGRRV. We remark that BGRRV is an extractable com-
mitment scheme. Extraction can be performed from the preamble stage by sim-
ply rewinding to the second message, obtaining a valid answer for a different
challenge, and then solving two equations in Zp.

4 Our Non-Malleable Zero Knowledge Protocol

In this section, we present the generic framework of our non-malleable zero-
knowledge. Later in Sec. 5, we will instantiate each component of this protocol
in special ways so that the final protocol admits an efficient implementation
using only symmetric-key primitives. We use the following ingredients:

1. An extractable commitment scheme ExtCom. We will use the standard 3-
round scheme from [75]. Note that the first committer message of this scheme
is statistically-binding.

2. A tag-based commitment scheme ENMC that is both non-malleable and ex-
tractable; for concreteness, we will use scheme ΠMini

bgrrv specified in Prot. 1.
We assume for convenience that the commitments are generated using Naor’s
scheme [64] w.r.t. an implicit first string ρ chosen by the receiver of the com-
mitment (and dropped from the notation henceforth).

We assume that the first committer message of ENMC is statistically binding.
For concreteness, we say that a string c is an honest ENMC commitment
to a value v with tag id if there exists randomness r such that c is the first
committer message of ENMC produced by the honest committer algorithm
on input value v, tag id, and randomness r.

3. A statistically witness-indistinguishable argument of knowledge sWIAoK.

Our construction is shown in Prot. 2 below. At a high level, the protocol
is as follows: V starts by committing to a random string σ. P then uses an
extractable non-malleable commitment ENMC to commit to an all-zero string.
Then V decommits to its commitment made at the beginning of the protocol.
Finally, P and V execute a sWIAoK protocol, where P proves to V that either
it knows a witness to x, or that the commitment in ENMC equals σ.

12

Protocol 2: 〈P, V 〉NMZK: Non-Malleable Zero-Knowledge

Public input: Security parameter λ, statement x (supposedly in an NP language L), and

a tag id ∈ {0, 1}≤λ.

Private input: P takes the witness w as its private input.

1. V commits to a random string σ ← {0, 1}λ, using the extractable commitment scheme
ExtCom. We denote the first committer message by com1.

2. P commits to σ′ = 0λ using the extractable non-malleable commitment ENMC with tag
id. We denote the first committer message of this stage by com2.

3. V sends σ along with decommitment information for com1.

4. If Step 3 decommitment is valid, P proves the following compound statement to V using
a statistical witness-indistinguishable argument of knowledge sWIAoK:

– there exists a w such that R(x,w) = 1; or

– com2 is an honest ENMC commitment to σ with tag id.

For future reference (σ′, r) is called the trapdoor witness for statement (com2, id) if r is

s.t. com2 is the 1st committer message of ENMC on input σ′, tag id, and randomness r.

Theorem 1. The protocol 〈P, V 〉NMZK (shown in Prot. 2) is a non-malleable
zero-knowledge argument of knowledge for NP.

To prove Thm. 1, we first need to prove that 〈P, V 〉NMZK is a zero-knowledge
argument of knowledge. This follows from standard techniques. Due to space
constraints, we postpone it to the full version [53]. In the following, we show the
non-malleability of 〈P, V 〉NMZK.

Lemma 1. 〈P, V 〉NMZK is non-malleable.

We prove Lem. 1 in subsequent subsections. We first present in Sec. 4.1 the
proof regarding synchronous adversaries (who send their right messages as soon
as they receive the corresponding left message). Then, we deal with the general
case of non-synchronous adversaries in Sec. 4.2.

When reading the proofs in the synchronous setting, it would be helpful to
keep in mind also the non-synchronous case. We add remarks at the end of each
hybrid to address this. We hope it can improve the readability when we talk
about the non-synchronous setting later.

4.1 Non-Malleability against Synchronous Adversaries

To prove non-malleability, we need to build a simulator which can convince V
with roughly the same probability as a man-in-the-middle adversary Amim (up
to some negligible difference), but without the help of the left interaction. We
first define the following invariant condition.

Definition 5 (Invariant Condition). The probability that the value σ̃′ com-
mitted in com2 by Amim is equal to σ̃ committed in com1 by the honest verifier
is negligible.

13

Note that if the invariant condition holds and Amim gives a convincing proof,
we can extract the witness w̃ for x̃ by running the sWIAoK extractor.

At a high level, our proof goes in the following way. We start with the man-
in-the-middle setting, where an honest prover P (x,w) interacts with Amim in
the left interaction, and Amim proves to an honest verifier V for a statement
x̃ 6= x in the right. We will build a sequence of hybrids, where we gradually
substitute P (x,w) and V (x̃) with our simulator. Between each pair of adjacent
hybrids, we show that the view of Amim does not change and that the invariant
condition holds. In the last hybrid, we do not need the real witness w in the
left interaction, and we can extract Amim’s witness w̃ via the sWIAoK extractor
(we are guaranteed to extract w̃ because of the invariant condition). With the
extracted w̃, our simulator can give a “straight-line” proof for the statement x̃ to
V , which completes the proof of non-malleability. Next, we describe the hybrids.

Hybrid H0. This is the real execution of the MIM game. Specifically, H0 sets
up the left and right executions for Amim with P (x,w) and V , respectively. H0

outputs the joint view of Amim containing both left and right executions.

Invariant condition. If the invariant condition does not hold, then consider the
prover machine P ∗ which behaves identically to H0 except that it forwards the
right ExtCom to an external committer. Using this P ∗ we can violate the hiding
of ExtCom by extracting the value committed in the right ENMC.

Hybrid H1. This hybrid is identical to H0, except that whenever the left ExtCom
is accepting, H1 extracts the committed value σ in the left ExtCom. If the ex-
tractor fails (σ = ⊥), H1 outputs ⊥ and halts; otherwise it continues as H0.

H0
s
≈ H1. The outputs of H0 and H1 differ only when σ = ⊥; and due to the

extractability of ExtCom, that happens with only negligible probability.

Invariant condition. The invariant condition holds in H1 since it holds in H0 and
the two hybrids are statistically close.

Remark 1. Note that the above proofs for both indistinguishability and invariant
condition are independent of Amim’s scheduling of the messages. Thus, they also
hold in the non-synchronous scenario.

Hybrid H2. This hybrid is identical to H1, except that H2 sets σ′ = σ in
Stage-2 ENMC on left.

H1
c
≈ H2 follows immediately from the computational-hiding property of ENMC.

Invariant condition. The fact that the invariant condition holds can be reduced
to the non-malleability of ENMC. Specifically, we consider a man-in-the-middle
adversary AENMC for ENMC that acts as follows: AENMC internally runs H2 ex-
cept that it obtains the left ENMC execution from an outsider committer on the
left and forwards the right ENMC interaction to an external receiver. Further-
more, the external committer commits as follows: recall that H2 already has the

14

extracted value σ before the left ENMC begins; AENMC forwards σ′0 = 0λ and
σ′1 = σ to the external committer who then commits to one of them at random.
AENMC halts when H2 halts. Now consider a distinguisher D (that incorporates
the above adversary AENMC), and by definition of non-malleability, receives the
value AENMC commits to in the right interaction, say σ̃. Clearly, if the invariant
condition does not hold in H2 then the distribution of σ̃ is different depending on
whether AENMC receives commitment to σ′0 or σ′1. This condition can be tested
by D (which incorporates AENMC), thus violating the non-malleability of ENMC.

Remark 2. Observe that in the non-synchronous case, the proof of indistin-
guishability will go through, but the proof of invariant condition will not. This
is because the extraction of α on left from ExtCom may rewind some parts of
ENMC on right, and this is not allowed by the non-malleability definition. We
will deal with this issue in Sec. 4.2.

Hybrid H3. Identical to H2 except that it switches from real witness w to the
trapdoor witness (i.e., values and randomness corresponding to σ′ = σ) in the
Stage-4 sWIAoK on left.

H3
s
≈ H2 follows directly from the statistical WI property of sWIAoK.

Invariant condition. Since we are in the synchronous setting, the invariant con-
dition holds since the executions in the two hybrids are identical up to the end
of Stage-2, at which point the invariant condition is already determined; any
changes after that stage have no effect on the invariant condition.

Remark 3. As in Rmk. 2, in the non-synchronous case, the argument for in-
distinguishability still holds, but the argument for the invariant condition will
require extra caution. This is because the left sWIAoK may get aligned with the
right ENMC so that the switch of witness may affect the invariant condition. We
will deal with this issue in Sec. 4.2.

Simulator for Non-Malleability. The indistinguishability among the above
hybrids implies that: if Amim gives a convincing proof in the right interaction
of H0, it should also give a convincing proof in the right interaction of H3.
We construct a simulator Sim in the following way. Given a man-in-the-middle
adversaryAmim, Sim first invokesH3 withAmim. IfAmim indeed gives a convincing
proof in the right interaction, Sim extracts Amim’s witness w̃ from sWIAoK on the
right execution; otherwise, Sim aborts. The invariant condition in H3 guarantees
that Sim can extract such a w̃. With w̃, Sim then executes protocol 〈P, V 〉NMZK

(in “straight-line”) with an honest verifier. It convinces the honest verifier with
roughly the same probability as Amim (except for negligible difference due to
Sim’s failure in extracting w̃). This finishes the proof of non-malleability against
synchronous adversaries.

15

4.2 Non-Malleability against Non-Synchronous Adversaries

As mentioned in Rmk. 1 to 3, the proofs for indistinguishability among all hy-
brids, as well as the invariant condition for H0 and H1, remain unchanged in the
non-synchronous setting. Therefore, we only need to prove the invariant condi-
tions for H2 and H3, which will be done in the sequel. (We first show the proof
for H3 since it is simpler.)

The Invariant Condition for H3. Recall that the witness indistinguishability
of the sWIAoK is statistical. It follows that the invariant condition must hold in
H3 for non-synchronous adversaries as well. If not, an exponential time distin-
guisher can recover the value committed by Amim, thus breaks the statistical WI
by testing whether the invariant condition.

The Invariant Condition for H2. Before giving the formal lemma and proof,
we provide the high-level idea. As mentioned in Rmk. 2, the problem happens if
the Amim interleaves the left ExtCom messages with the right ENMC messages. In
such a schedule, we cannot reduce the invariant condition to the non-malleability
of ENMC without rewinding the outside challenger in ENMC’s man-in-the-middle
game. Recall that both H1 and H2 rewind the left ExtCom to extract the com-
mitted value σ.

We first note that if the reduction can simulate the receiver-to-committer
messages in ENMC, then there is no issue during rewinding since in the right
interaction, the reduction can forward messages between Amim and the out-
side challenger to the “main thread” and simply simulate them in “rewinding”
threads. This (informally-explained) property is indeed satisfied by our ΠMini

bgrrv

commitment (Prot. 1).
In the following, we show the formal claim and its proof.

Claim 1. The invariant condition holds in Hybrid H2 described in Sec. 4.1 for
non-synchronous adversaries.

Proof. This proof relies on the special structure of ENMC (when instantiated as
the ΠMini

bgrrv protocol shown in Prot. 1). We will refer to different rounds of ΠMini
bgrrv,

which are recalled below for convenience (see and compare with Prot. 1):

– (1): R sends the first message for Naor’s commitment, which consists of
public coins only.

– (2): C sends the second message of Naor’s commitment.

– (3): R sends some (public) random vectors as his challenge.

– (4): C responds to R’s challenges. C also sends the first message (which
consists of some public coins that specifies a CRHF) of a Ligero′ instance,
which is used for consistency proof.

– (5)-(10): These are rounds 2 to 7 of Ligero′ between C and R. Note that
(5) is the (statistically-hiding) commitments to verifier’s random challenge
Γ1 and Γ2; (7) is R’s decommitment to Γ1 and (9) is R’s decommitment to
Γ2.

16

With the structure of ENMC in mind, we now start to prove Claim 1. First,
observe that ExtCom has only one “slot” that is rewound to extract σ. Therefore,
we only need to worry about the schedule where some messages of the right
ENMC are “nested” in this slot. In the following, we show that the invariant
condition hold for all schedules.

In the following, we use (i) (i ∈ [10]) to denote the i-th step of the right
ENMC (as recalled above). We denote the first message of the rewindable slot
in the left ExtCom as top, and the last message as bottom. See Fig. 1 for an
illustration of these notations. Note that in Fig. 1, no messages can appear
between “adjacent messages” of the right ENMC, for example, message (2)-(3),
(6)-(7) etc. This is because honest parties send their next message as soon as
they receive the previous message.

Easy Cases. First, note that if bottom happens before (1), we can rewind
the slot without rewinding the right ENMC. Therefore, the same proof for the
invariant condition in H2 in the synchronous setting also applies here. Also, it
is an easy case when (10) happens before bottom. In this case, Amim cannot
generate the right ENMC messages based on the left ENMC interactions, since
the left ENMC has not started yet. Therefore, the invariant condition holds
automatically. Another easy case is when (1) gets nested in the slot. In such a
case, rewinding the slot will cause a fresh execution of the right ENMC, so it
will not cause any problem when we try to reduce the invariant condition to the
non-malleability of ENMC. At a high level, this is because we can always forward
the messages when we do the last rewinding to the outside non-malleability
challenger in the reduction. But we suppress the details here since we will provide
a formal argument of such type when we handle the hard cases next.

Hard Cases. We now focus on the remaining schedules (beyond those discussed
in Easy cases). These schedules consist of the situations where

– (1) happens before top, and

– (10) happens after bottom.

There are 10 such cases in total. Since these 10 schedules can be handled via
similar arguments, in the following, we will use the one in Fig. 1 as a represen-
tative to present a full proof, and then discuss how to extend the same proof to
the remaining 9 cases in the full version [53].

For the schedule shown in Fig. 1, we build a man-in-the-middle adversary
AENMC attacking the non-malleability of ENMC. Recall that in the non-malleability
game, the man-in-the-middle adversary AENMC talks to an honest committer in
the left, and to an honest receiver in the right. We will refer to them as the left
challenger and right challenger respectively. Our AENMC acts in the following
way:

1. AENMC starts by running the hybrid experiment H2 internally with Amim

up to the step right before (1). It then invokes the right challenger for the
non-malleability game of ENMC, and forwards the messages between the

17

Fig. 1: Special Schedules in the Non-Synchronous Scenario

challenger and Amim as the right interaction. It plays the left interaction in
the same way as the simulator in H2, until the execution reaches top for the
first time.

2. AENMC now needs to execute the slot (top, bottom) in the “main-thread”,
and then rewind this slot for (w.l.o.g.) k = poly(λ) times to extract the σ
value in the left interaction. To do that, AENMC proceeds as follows:

(a) For the main-thread execution, AENMC plays the right interaction by
forwarding messages between Amim and the outside right challenger.

(b) From the 1st to the k-th rewinding, AENMC will prepare the right ENMC
incoming messages (i.e. (5), (7), and (9)) by himself, instead of forward-
ing them between Amim and the outside right challenger. To do that,
AENMC samples fresh Γ1 and Γ2, and commits to them as message (5); it
sends the honest decommitments to (the fresh) Γ1 as message (7); sim-
ilarly, it sends the honest decommitments to (the fresh) Γ2 as message
(9). We emphasize that AENMC can indeed decommit to them because
the commitments in (5) (in these rewinding threads) are generated by
himself.

Note that the simulated messages during rewinding have identical distribu-
tion as the main-thread (5), (7), and (9), which guarantees that Amim’s
view does not change. Thus, after the above rewindings, σ can be extracted
except for negligible probability, for which AENMC just halts outputting ⊥.

3. AENMC continues the internal (main-thread) interaction until the left ENMC
starts. He then invokes the outside left challenger by sending the values
σ′0 = 0λ and σ′1 = σ. Then, ENMC forwards the messages between Amim

and the outside left challenger and Amim as the left ENMC interaction. In
the right interaction, ENMC acts as the simulator in H2 except that when
Amim sends the message (10), it forwards the message to the outside right
challenger.

4. AENMC continues to finish the internal interaction with Amim as in H2 for
the remaining parts of the protocol.

18

Now consider a distinguisher D (that incorporates the above adversary AENMC),
and by definition of non-malleability, receives the value AENMC commits to in
the right interaction, say σ̃. Clearly, if the invariant condition does not hold in
H2 then the distribution of σ̃ is different depending on whether AENMC receives
commitment to σ′0 or σ′1. This condition can be easily tested by D (since it
incorporates AENMC), thus violating the non-malleability of ENMC.

The above argument proves Claim 1 for the special scheduling shown in Fig. 1.
Due to space constraints, we postpone the discussion for the other 9 schedules
to the full version [53].

4.3 Generalization to “Almost Public-Coin” Statistically ZK

In this part, we take another look at the proof in Sec. 4.2 with the following
purpose: in Sec. 4.2, we proved the invariant condition in H2, relying on the
special structure of ΠMini

bgrrv. In particular, we assumed that the Consistency
Proof stage of ΠMini

bgrrv is conducted by Ligero′. However, we argue that Ligero′

can be replaced by any “almost public-coin” (explained below) statistically zero-
knowledge argument.

Motivation. Before delving into the details, let us first explain why we want
to generalize the proof to almost public-coin ZK protocols: While Ligero′ is ef-
ficient, using it directly in the Consistency Proof stage of ΠMini

bgrrv results in
unacceptable running time. This is because the language Lρconsis (defined to-
ward the end of Prot. 1) has a huge circuit size. As mentioned in Sec. 1.2, we
will (in Sec. 5.3) introduce the new idea of converting ΠMini

bgrrv to an instance-
based non-malleable commitment to achieve better efficiency. Looking ahead,
the instance-based ΠMini

bgrrv shares the same structure of the original ΠMini
bgrrv, with

the only difference being that the Consistency Proof stage is not conducted
by Ligero′ anymore. Instead, it will be done using a customized statistical ZK
protocol called Π′or, which we construct by applying (a modified version of)
the OR-composition technique [22] on Ligero (i.e., the honest-verifier version of
Ligero′). We need to show that the same proof in Sec. 4.2 will still go through
when we replace (the original) ΠMini

bgrrv with this instance-based ΠMini
bgrrv (i.e., when

we replace Ligero′ in the Consistency Proof stage with Π′or). Fortunately, this
is possible because Π′or shares the same structure as Ligero′, in terms of the ap-
plication in Sec. 4.2. In particular, Π′or also enjoys the same “almost public-coin”
property of Ligero′, and this is exactly why the same proof in Sec. 4.2 can be
applied when we replace Ligero′ with Π′or. The purpose of this subsection is to
distill this “almost public-coin” property and explain how it helps in the proof
in Sec. 4.2.

Almost Public-Coin Protocols. Let us summarize how the proof in Sec. 4.2
makes use of the structure of ΠMini

bgrrv. As we mentioned in the beginning of
Sec. 4.2, ΠMini

bgrrv has 10 rounds that can be understood as two stages:

1. Commit Stage: This includes rounds (1) to (4), and

19

2. Consistency Proof: This includes rounds (4) to (10), which is exactly the
statistically ZK protocol Ligero′.

We emphasize that all the receiver’s messages are public coins except for rounds
(5) and (7), which constitute the commitment and corresponding decommit-
ment to some random coins. This public-coin property is the main reason that
AENMC works properly: in Step 2, AENMC needs to simulate the receiver’s message
in rewinding threads; because all the receiver’s messages (except for rounds (5)
and (7)) are public-coin, AENMC can simply sample them freshly for each rewind-
ing; moreover, round (5) (resp. (7)) is a commitment (resp. the corresponding
decommitment) to random coins, so AENMC can also sample and commit to (resp.
decommit honestly to) random coins itself. Therefore, the rewinding threads can
be shown to be identically distributed as the main thread.

In light of the above, it is clear that the ΠMini
bgrrv can be replaced with any

ENMC that enjoys the above public-coin property. In particular, the Commit
Stage of ΠMini

bgrrv is public-coin by design; the Consistency Proof stage, when
implemented with Ligero′, is public-coin (again, except for (5) and (7) as dis-
cussed above) because Ligero′ is obtained in a special way: it is obtained by
applying the Goldreich-Kahan transform on the honest-verifier version Ligero,
which is a public-coin protocol.

Looking ahead, our Π′or enjoys the above public-coin property. As we will
show in Sec. 5.3, Π′or is obtained by applying Goldreich-Kahan transform on a
protocol Πor (which will appear in Sec. 5.2), which is also a public-coin honest-
verifier ZK argument. Therefore, the above argument applies.

In summary, when we replace ΠMini
bgrrv with its instance-based version, the

same proof in Sec. 4.2 will still go through.

5 Improving Efficiency through Fake Executions

5.1 Road Map of This Section

In this section, we describe how to instantiate our NMZK protocol 〈P, V 〉NMZK

(shown in Prot. 2) to achieve concrete efficiency. The major bottlenecks are:

1. Step 4 of 〈P, V 〉NMZK is a statistical WIAoK on the OR-composition of the
statement x and a trapdoor statement (let us denote it as (x ∨ xtr)). This
proof is non-black-box on the Step 2 commitments and involves expensive
NP reduction.

2. Step 2 of 〈P, V 〉NMZK is instantiated with ΠMini
bgrrv (Prot. 1), whose Consis-

tency Proof step involves an expensive ZK proof.

To address Item 1, we want to employ the OR-composition technique in [22]
to construct the desired sWIAoK from Ligero. This will allow the prover to finish
the proof for (x ∨ xtr) by conducting a (light) proof for x, and running the fast
Ligero simulator HVSim for the xtr part. This will be much more efficient than
running Ligero on (x∨xtr) directly. However, this approach encounters obstacles:

20

Ligero does not have the properties required by [22]. We show how to solve related
problems in Sec. 5.2.

To address Item 2, we wish to reuse the OR-composition technique described
above. But it does not immediately apply because the target statement of the
Consistency Proof does not have the (x∨ xtr) structure; instead, it is a single
statement xcom ∈ Lρconsis, which is related to some vector of commitments6. Run-
ning Ligero for xcom is prohibitively expensive. To handle this issue, observe that
this ΠMini

bgrrv protocol is executed as a part of our 〈P, V 〉NMZK protocol on some
statement xzk. Therefore, we change the statement of Consistency Proof to
(xzk ∨ xcom), and then use the above OR-composition technique to boost the
efficiency. We denote this extended non-malleable commitments as instance-
based non-malleable commitments (IB-NMC). We elaborate on the above idea
in Sec. 5.3.

Non-Malleability from Simulation-Soundness. Unfortunately, the above
strategy induces an extra problem—replacing the Step 2 ENMC by the above
instance-based version (i.e. the IB-NMC) jeopardizes the security of 〈P, V 〉NMZK

(Prot. 2). Specifically, it is not clear whether the resulting protocol is still non-
malleable. However, we will be able to prove that it is a simulation-sound ZK
protocol (which is already sufficient for many applications). Finally, we show in
Sec. 5.4 (resp. Sec. 5.5) how to use this simulation-sound ZK protocol to obtain
non-malleable ZK protocols (resp. non-malleable commitments), with (almost)
no efficiency overhead.

5.2 OR-Composition of Ligero

The OR-composition [22] was originally designed for Σ protocols, i.e., 3-round
public-coin HVZK protocols with special soundness, which requires that a wit-
ness can be extracted from two convincing transcripts with distinct challenges.
To prove an OR statement x ∨ x′, the OR-composition invokes a parallel exe-
cution of two Σ-protocol instances: (a1, b1, c1) for proving x and (a2, b2, c2) for
proving x′, which are called the left and right execution respectively. But the
verifier sends only a single round-2 challenge b; the prover has the freedom to
“decompose” it as b = b1 ⊕ b2 to finish the two parallel executions. The prover
may only have a witness for, say, the x part; since it can always “equivocate”
one share of b, it will first “finish” (in other words, fake) the left execution by
running the HVZK simulator for the Σ-protocol by setting b2 in advance; it can
answer any b1 = b⊕ b2 as it has the witness for x.

We want to apply the above OR-composition to Ligero. However, Ligero is
not a Σ-protocol—it has six rounds (i.e., two challenge-response slots). Indeed,
it is known that straightforward generalization of OR-composition to multi-slots
protocols (i.e., the original OR-composition is applied on each slot separately)
will yield an unsound protocol.

6 Recall that the language Lρconsis is defined toward the end of ΠMini
bgrrv (Prot. 1).

21

The First Attempt. In more detail, recall that Ligero’s messages are denoted
as (h, a, b, c, b̃, c̃), where (h, b, b̃) are nothing but public random coins. If we do
the straightforward generalization of the above OR-composition (to prove an OR
statement x ∨ x′), it will work as follows: assuming P knows witness w for x, P

uses HVSim(x′) to simulate a proof (h2, a2, b2, c2, b̃2, c̃2) for the x′ part (because
P does not have witness for it). Meanwhile, P generates the proof for x honestly,
in the following manner: V sends h and P derives h1 as h1 = h⊕h2; P runs the
honest Ligero prover’s algorithm on input (x,w) to generate a1, assuming the

first Ligero verifier’s message is h1. Similarly, when V sends b (resp. b̃), P will

set b1 = b⊕ b2 (resp. b̃1 = b̃⊕ b̃2), and compute the response c1 (resp. c̃1) using
the honest Ligero prover’s algorithm (as it has witness w for x).

However, the above approach suffers from the following “cross attack”: Since
P ∗ has the opportunity to decide how to decompose h, b, and b̃, it can pick a bad
b1 and a bad b̃2. That is, a cheating prover can choose malicious challenges in
the first slot of the left execution and the second slot of the right execution, and
there is no soundness guarantee for Ligero when a malicious prover can control
(even) one challenge out of the two slots.

Solution. To resolve this problem, we ask P to commit to its decomposition
in advance. More accurately, we ask P to generate com = SHCom(h2‖b2‖b̃2; r)
at the very beginning of the protocol, where SHCom is a statistically-hiding
commitment. Then, we continue as the above. At the end of the execution, we
ask P to give a statistical WI argument of knowledge sWIAoK for the following
statement:

– com is committing to either (h1, b1, b̃1) or (h2, b2, b̃2).7

Intuitively, due to the (knowledge) soundness of sWIAoK, P ∗ cannot conduct the
above “cross attack” anymore.

We denote this protocol as Πor. Due to space constraints, we put the formal
description of Πor in the full version [53], where we also provide the complete
security proof. Here, we want to emphasize that this approach invokes very small
efficiency overhead compared with the plain OR-composition described in The
First Attempt: what we add is simply a statistically-hiding commitment and a
sWIAoK for its consistency. Using a modified version of Ligero as the underlying
sWIAoK (see [53, Appendix C.3]), this only adds an extra computation cost of
32 milliseconds and an extra communication cost of 6.4MB. See [53, Appendix
C.2] for more details.

Regarding Malicious-Verifiers ZK. It is not hard to see that the above Πor

is also an honest-verifier ZK argument (of knowledge). Using the Goldreich-
Kahan technique [38] (as done in [46, 2]), we can convert it to a fully-secure ZK
argument, i.e., against malicious verifiers. We denote the resulting protocol as
Π′or, and present the full description of it in [53, Protocol 11]. Looking ahead,

7 Note that (h1, b1, b̃1) and (h2, b2, b̃2) will be known to V when the protocol reaches
the final sWIAoK stage.

22

Π′or will be used in the instance-based non-malleable commitment in the next
subsection (in Prot. 3).

5.3 Instance-Based Non-Malleability

Recall that we use ΠMini
bgrrv (Prot. 1) as our ENMC. The primary efficiency bot-

tleneck in ΠMini
bgrrv is the consistency proof, which is done using Ligero′. Since an

honest committer is never cheating, our goal is to provide the prover an easier
way to get through this proof. Toward this goal, we first show an instance-based
version of ΠMini

bgrrv, denoted as 〈CL, RL〉. The instance-based version simply gives
the option of using a witness for a true statement in the consistency proof phase
of ΠMini

bgrrv. At a high level, the parties get a statement x as input which may or
may not be true. If x is true, the committer can additionally take as input a wit-
ness w ∈ RL(x) and succeed in the proof phase by using w instead of completing
the consistency proof for any message m. This allows the honest prover to fake
the ENMC execution using a faster simulator thanks to the OR-composition. If
x is false, the committer commits to a valid value m. It is also possible to do
both: commit to m properly and execute consistency proof as well as proof for x.
We present the full construction in Prot. 3,8 and establish its security in Lem. 2
and 3.

Protocol 3: 〈CL, RL〉(x): Instance-Based Non-Malleable Commitment

Instance-based ΠMini
bgrrv is the following commitment scheme, denoted as 〈CL, RL〉, defined

for an arbitrary NP language L: the common input to both algorithms is a statement x;
in addition, CL takes a (private) auxiliary input that is either of the form (m,⊥) or (⊥, w)
where w is a witness for x ∈ L. Recall that ΠMini

bgrrv is denoted by 〈C,R〉 and depicted in
Prot. 1. The protocol proceeds in two phases:

– Commit Stage: In this stage RL proceeds identically to algorithm R of ΠMini
bgrrv and let ρ

be its first message. For input (m,⊥), CL proceeds exactly as C proceeds in the commit
stage on input m. For input (⊥, w), CL simply sends random values of appropriate size
as the second and fourth messages of the commit stage (when interacting with RL).
Recall that the execution of the Commit Stage of ΠMini

bgrrv will yield messages m̂, r̂,
and {wi}i∈[n]) (see Prot. 1). We denote st := (m̂, r̂, {wi}i∈[n]).

– Proof Stage: In this stage, CL proves that (x, st) ∈ L ∨ Lρconsis using Π′or, i.e., the
fully ZK version of Πor (see [53, Protocol 11]). For input (m,⊥), CL uses the simulator
HVSim for the left part (i.e., for x), and completes right part (i.e., for st) honestly by
using the witness for st (from the first phase). For input (⊥, w) it uses w to succeed in
the left part of the proof and simulator HVSim to succeed in the right part.

If the common statement is fixed to x, we denote the instance-based ΠMini
bgrrv by 〈CL, RL〉(x).

The executions corresponding to inputs (m,⊥) will be called real or honest executions,

and those corresponding to (⊥, w), fake or simulated executions of ΠMini
bgrrv (or ENMC).

Lemma 2. Let L be an NP language. For every x /∈ L protocol 〈CL, RL〉(x)
(Prot. 3) is an extractable non-malleable commitment scheme.

Proof. We observe that for every x /∈ L, the Proof Stage of the protocol is a
ZK argument for st ∈ Lρconsis (i.e., consistent execution of the commit stage). In

8 We warn that this version cannot be used in our NMZK protocol yet. See Sec. 5.4.

23

this case, 〈CL, RL〉(x) is simply an instantiation of the original ΠMini
bgrrv protocol.

The claim then follows from the security of ΠMini
bgrrv.

Lemma 3. Let L be an NP language with witness relation RL. For every mes-
sage m and every (x,w) ∈ RL, the following holds:

{view0 ← 〈CL((m,⊥)), RL〉(x) : view0}
c
≈ {view1 ← 〈CL((⊥, w)), RL〉(x) : view1} .

Proof. This lemma follows from the following two observations: (i) committer’s
messages in the commit stage are pseudorandom (since second message of Naor’s
commitment is pseudorandom), and (ii) the proof stage is WI (it is indeed ZK).
Since the proof follows from a standard hybrid argument, we omit the details.

Remark 4 (On Efficiency). It is worth noting that if x admits a fast Ligero proof,
then fake executions are faster than the real executions since the simulator for
Ligero for the right part (i.e., the real consistency proof for st) is much faster
than the prover. As mentioned in Sec. 1.2, this is how we manage to obtain
significant improvement on the efficiency.

5.4 Efficient Simulation-Sound Zero-Knowledge

The main benefit of the instance-based ΠMini
bgrrv in Prot. 3 is that if x ∈ L admits

fast proofs, it can be used in place of standard ΠMini
bgrrv in our NMZK protocol.

Unfortunately, the resulting protocol is not a NMZK for true x! Nevertheless, the
resulting protocol is simulation-sound (as per Def. 3), and equally importantly,
efficient. We refer to this protocol by Πss and specify it in Prot. 4.

Protocol 4: Πss: Simulation-Sound ZKAoK

The common input is x and prover’s input is a witness w for x ∈ L, where L is the desired

NP language. This protocol is identical to protocol 〈P, V 〉NMZK (Prot. 2) except that the

Step 2 ENMC is replaced with the instance-based non-malleable commitment (Prot. 3) with

the following inputs: the common input is x and committer’s auxiliary input in the Proof

Stage of the commitment is (⊥, w). Observe that the honest prover only performs a simulated

execution of the non-malleable commitment.

Theorem 2. Protocol Πss (Prot. 4) is a simulation-sound zero-knowledge argu-
ment of knowledge.

Due to space constraints, we postpone the proof of Thm. 2 to the full version
[53].

5.5 Putting It All Together: Fast NMZK and NMCom

Now we show how to get efficient and full-fledged non-malleable zero-knowledge
and commitment protocols with the help of our efficient simulation-sound ZKAoK
protocol Πss and the statistically WIAoK protocol Πor.

24

Fast NMZK Protocol. We present our final NMZK protocol in Prot. 5. At a
high level, the prover in Prot. 5 sets up a “trapdoor statement” in the form of
a commitment cm, and proves using Πss that cm is a commitment to 0. Later,
the prover proves using protocol Πor that either the statement is true or that
cm is a commitment to 1. The honest prover always commits to 0 and thus
remains fast. The simulator commits to 1 instead. The security of Prot. 5 can
be proven Following a similar proof as that of Lem. 1. Due to space constraints,
we postpone the proof to the full version [53].

Protocol 5: 〈P , V 〉final: Non-Malleable ZKAoK

The common inputs are statement x, tag id, and security parameter λ. Prover’s private
input is a witness w ∈ RL(x), where L is the desired NP language. The protocol proceeds
as follows:

1. P commits to 0λ using 2-round Naor commitment; let ρ be the first message of this
commitment and cm = Comρ(0λ) the second message.

2. P and V execute Πss with tag id, where P proves that cm is a valid commitment to 0λ.

3. P and V execute Πor, where P proves that:

– x ∈ L, or

– cm is a valid commitment to 1λ, i.e., (cm, 1λ) ∈ LComρ .

Fast NMCom Protocol. Our non-malleable commitment protocol is presented
in Prot. 6. At a high level, Prot. 6 works in the same way as the non-malleable
zero-knowledge protocol above, except that x is replaced with a commitment to
the desired value. Its security proof follows closely from the proof Lem. 1. The
details are omitted.

Protocol 6: 〈C, R〉final: Non-Malleable Commitment

The common input is a tag id and the security parameter λ. Private input of the committer
is a value v ∈ {0, 1}λ. The protocol proceeds as follows:

1. C commits to v using two-round Naor commitment; let R’s first message be ρ, and
c = Comρ(v) denote the second message.

2. C further commits to 0λ using ρ as first message. Let cm = Comρ(0λ).

3. C proves that cm is valid commitment to 0λ using Πss with tag id.

4. C proves using Πor that:

– there exists v such that c is a valid commitment to v, i.e., (c, v) ∈ LComρ , or

– cm is a valid commitment to 1λ, i.e., (cm, 1λ) ∈ LComρ .

References

1. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 774–783. ACM Press
(May / Jun 2014). https://doi.org/10.1145/2591796.2591804

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

25

https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1145/3133956.3134104

3. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487.
Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0 16

4. Barak, B.: How to go beyond the black-box simulation barrier. In:
42nd FOCS. pp. 106–115. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959885

5. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: 43rd FOCS. pp. 345–355. IEEE Computer Society
Press (Nov 2002). https://doi.org/10.1109/SFCS.2002.1181957

6. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM Jour-
nal on Computing 38(5), 1661–1694 (2008)

7. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowl-
edge. In: 47th FOCS. pp. 345–354. IEEE Computer Society Press (Oct 2006).
https://doi.org/10.1109/FOCS.2006.21

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for de-
signing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu,
R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993).
https://doi.org/10.1145/168588.168596

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete effi-
ciency of probabilistically-checkable proofs. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC. pp. 585–594. ACM Press (Jun 2013).
https://doi.org/10.1145/2488608.2488681

10. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of
non-malleable hash and one-way functions. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 524–541. Springer, Heidelberg (Dec 2009).
https://doi.org/10.1007/978-3-642-10366-7 31

11. Brenner, H., Goyal, V., Richelson, S., Rosen, A., Vald, M.: Fast non-malleable
commitments. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 1048–
1057. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813721

12. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concur-
rently composable security with shielded super-polynomial simulators. In: Coron,
J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 351–
381. Springer, Heidelberg (Apr / May 2017). https://doi.org/10.1007/978-3-319-
56620-7 13

13. Canetti, R.: Security and composition of multiparty cryptographic
protocols. Journal of Cryptology 13(1), 143–202 (Jan 2000).
https://doi.org/10.1007/s001459910006

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

15. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7 4

16. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(Aug 1997). https://doi.org/10.1007/BFb0052229

17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC. pp. 209–218. ACM Press (May 1998).
https://doi.org/10.1145/276698.276741

26

https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2002.1181957
https://doi.org/10.1109/FOCS.2006.21
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1007/978-3-642-10366-7_31
https://doi.org/10.1145/2810103.2813721
https://doi.org/10.1007/978-3-319-56620-7_13
https://doi.org/10.1007/978-3-319-56620-7_13
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1145/276698.276741

18. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS. pp. 541–550. IEEE Com-
puter Society Press (Oct 2010). https://doi.org/10.1109/FOCS.2010.86

19. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494–503.
ACM Press (May 2002). https://doi.org/10.1145/509907.509980

20. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291–319. Springer, Heidelberg
(Nov 2020). https://doi.org/10.1007/978-3-030-64378-2 11

21. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 127–157. Springer, Heidelberg (Aug
2017). https://doi.org/10.1007/978-3-319-63715-0 5

22. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y. (ed.)
CRYPTO’94. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994).
https://doi.org/10.1007/3-540-48658-5 19

23. Damg̊ard, I.: On σ-protocols. http://www.cs.au.dk/~ivan/Sigma.pdf (2002)
24. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable

commitment. In: 30th ACM STOC. pp. 141–150. ACM Press (May 1998).
https://doi.org/10.1145/276698.276722

25. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (May 2001). https://doi.org/10.1007/3-
540-44987-6 4

26. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC. pp. 601–610.
ACM Press (May / Jun 2009). https://doi.org/10.1145/1536414.1536496

27. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended
abstract). In: 23rd ACM STOC. pp. 542–552. ACM Press (May 1991).
https://doi.org/10.1145/103418.103474

28. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions.
In: 40th FOCS. pp. 523–534. IEEE Computer Society Press (Oct 1999).
https://doi.org/10.1109/SFFCS.1999.814626

29. Dwork, C., Sahai, A.: Concurrent zero-knowledge: Reducing the need for timing
constraints. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 442–457.
Springer, Heidelberg (Aug 1998). https://doi.org/10.1007/BFb0055746

30. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. ICS pp. 434–452
(2010)

31. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: International Conference on Cryptology in India. pp.
60–79. Springer (2012)

32. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-
knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 3–33. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78372-7 1

33. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (May
2016). https://doi.org/10.1007/978-3-662-49896-5 16

27

https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/3-540-48658-5_19
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1145/276698.276722
https://doi.org/10.1007/3-540-44987-6_4
https://doi.org/10.1007/3-540-44987-6_4
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1145/103418.103474
https://doi.org/10.1109/SFFCS.1999.814626
https://doi.org/10.1007/BFb0055746
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-662-49896-5_16

34. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011). https://doi.org/10.1145/1993636.1993651

35. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: 25th {USENIX} Security Symposium ({USENIX} Security 16). pp.
1069–1083 (2016)

36. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge, UK (2001)

37. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge, UK (2004)

38. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology 9(3), 167–190 (Jun 1996)

39. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology 7(1), 1–32 (Dec 1994).
https://doi.org/10.1007/BF00195207

40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm.
In: 44th FOCS. pp. 102–115. IEEE Computer Society Press (Oct 2003).
https://doi.org/10.1109/SFCS.2003.1238185

41. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 695–704. ACM Press (Jun
2011). https://doi.org/10.1145/1993636.1993729

42. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: 53rd FOCS. pp. 51–60. IEEE Computer So-
ciety Press (Oct 2012). https://doi.org/10.1109/FOCS.2012.47

43. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1128–1141. ACM Press (Jun
2016). https://doi.org/10.1145/2897518.2897657

44. Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list
decoding. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS). pp. 686–699. IEEE (2019)

45. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th FOCS. pp. 41–50. IEEE Computer Society Press (Oct 2014).
https://doi.org/10.1109/FOCS.2014.13

46. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (Mar 2012).
https://doi.org/10.1007/978-3-642-28914-9 9

47. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-
knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer,
Heidelberg (Feb 2014). https://doi.org/10.1007/978-3-642-54242-8 6

48. Jain, A., Pandey, O.: Non-malleable zero knowledge: Black-box construc-
tions and definitional relationships. In: Abdalla, M., Prisco, R.D. (eds.)
SCN 14. LNCS, vol. 8642, pp. 435–454. Springer, Heidelberg (Sep 2014).
https://doi.org/10.1007/978-3-319-10879-7 25

49. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party
computation with a dishonest majority. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9 36

50. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 139–
171. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70503-3 -
5

28

https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/BF00195207
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1145/1993636.1993729
https://doi.org/10.1109/FOCS.2012.47
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1007/978-3-642-28914-9_9
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-319-70503-3_5

51. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds.
In: Umans, C. (ed.) 58th FOCS. pp. 564–575. IEEE Computer Society Press (Oct
2017). https://doi.org/10.1109/FOCS.2017.58

52. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992).
https://doi.org/10.1145/129712.129782

53. Kim, A., Liang, X., Pandey, O.: A new approach to efficient non-malleable zero-
knowledge. Cryptology ePrint Archive, Paper 2022/767 (2022), https://eprint.
iacr.org/2022/767, https://eprint.iacr.org/2022/767

54. Kiyoshima, S.: Round-efficient black-box construction of composable multi-
party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44381-1 20

55. Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M.
(ed.) 41st ACM STOC. pp. 189–198. ACM Press (May / Jun 2009).
https://doi.org/10.1145/1536414.1536442

56. Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19571-6 17

57. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 705–714. ACM
Press (Jun 2011). https://doi.org/10.1145/1993636.1993730

58. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. In: Umans, C. (ed.)
58th FOCS. pp. 576–587. IEEE Computer Society Press (Oct 2017).
https://doi.org/10.1109/FOCS.2017.59

59. Lin, H., Pass, R., Tseng, W.L.D., Venkitasubramaniam, M.: Concurrent
non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7 23

60. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 571–588. Springer, Heidelberg (Mar 2008). https://doi.org/10.1007/978-3-540-
78524-8 31

61. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE
Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.365746

62. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In:
47th FOCS. pp. 367–378. IEEE Computer Society Press (Oct 2006).
https://doi.org/10.1109/FOCS.2006.43

63. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
140–159. Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-
9 9

64. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (Aug 1990).
https://doi.org/10.1007/0-387-34805-0 13

65. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug
2003). https://doi.org/10.1007/978-3-540-45146-4 6

29

https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2022/767
https://eprint.iacr.org/2022/767
https://eprint.iacr.org/2022/767
https://doi.org/10.1007/978-3-662-44381-1_20
https://doi.org/10.1145/1536414.1536442
https://doi.org/10.1007/978-3-642-19571-6_17
https://doi.org/10.1145/1993636.1993730
https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1007/978-3-642-14623-7_23
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/FOCS.2006.43
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-540-45146-4_6

66. Nielsen, J.B.: Separating random oracle proofs from complexity theo-
retic proofs: The non-committing encryption case. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (Aug 2002).
https://doi.org/10.1007/3-540-45708-9 8

67. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(Aug 2011). https://doi.org/10.1007/978-3-642-22792-9 30

68. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transforma-
tions for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (Feb 2010).
https://doi.org/10.1007/978-3-642-11799-2 32

69. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-85174-5 4

70. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4 19

71. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9 10

72. Pass, R.: Concurrent security and non-malleability (invited talk). In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, p. 540. Springer, Heidelberg (Mar 2011).
https://doi.org/10.1007/978-3-642-19571-6 32

73. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In:
46th FOCS. pp. 563–572. IEEE Computer Society Press (Oct 2005).
https://doi.org/10.1109/SFCS.2005.27

74. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 533–
542. ACM Press (May 2005). https://doi.org/10.1145/1060590.1060670

75. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (Mar 2009). https://doi.org/10.1007/978-3-642-00457-5 24

76. Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal compos-
ability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC. pp. 242–251.
ACM Press (Jun 2004). https://doi.org/10.1145/1007352.1007394

77. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS. pp. 543–553. IEEE Computer Society Press
(Oct 1999). https://doi.org/10.1109/SFFCS.1999.814628

78. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM
Press (May / Jun 2014). https://doi.org/10.1145/2591796.2591825

79. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (Aug 2007).
https://doi.org/10.1007/978-3-540-74143-5 12

80. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (Dec
2009). https://doi.org/10.1007/978-3-642-10366-7 25

81. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: 51st FOCS. pp. 531–540. IEEE Computer Society Press (Oct 2010).
https://doi.org/10.1109/FOCS.2010.87

30

https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-642-22792-9_30
https://doi.org/10.1007/978-3-642-11799-2_32
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-19571-6_32
https://doi.org/10.1109/SFCS.2005.27
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1145/1007352.1007394
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-642-10366-7_25
https://doi.org/10.1109/FOCS.2010.87

	List of Corrections
	A New Approach to Efficient Non-Malleable Zero-Knowledge
	Introduction
	Our Results
	Overview of Techniques

	Preliminaries
	Preparatory Work
	Our Non-Malleable Zero Knowledge Protocol
	Non-Malleability against Synchronous Adversaries
	Non-Malleability against Non-Synchronous Adversaries
	Generalization to ``Almost Public-Coin'' Statistically ZK

	Improving Efficiency through Fake Executions
	Road Map of This Section
	OR-Composition of Ligero
	Instance-Based Non-Malleability
	Efficient Simulation-Sound Zero-Knowledge
	Putting It All Together: Fast NMZK and NMCom

	References

