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Abstract. A software watermarking scheme can embed a message into
a program while preserving its functionality. The embedded message can
be extracted later by an extraction algorithm, and no one could remove
it without significantly changing the functionality of the program. A wa-
termarking scheme is public key if neither the marking procedure nor the
extraction procedure needs a watermarking secret key. Prior construc-
tions of watermarking schemes mainly focus on watermarking pseudo-
random functions (PRFs), and the major open problem in this direction
is to construct a public-key watermarkable PRF.

In this work, we solve the open problem via constructing public-key wa-
termarkable PRFs with different trade-offs from various assumptions,
ranging from standard lattice assumptions to the existence of indistin-
guishability obfuscation. To achieve the results, we first construct wa-
termarking schemes in a weaker model, where the extraction algorithm
is provided with a “hint” about the watermarked PRF key. Then we
upgrade the constructions to standard watermarking schemes using a
robust unobfuscatable PRF. We also provide the first construction of ro-
bust unobfuscatable PRF in this work, which is of independent interest.

1 Introduction

A software watermarking scheme allows one to embed a message into a program
without significantly changing its functionality. Moreover, any attempt to re-
move the embedded message would destroy the functionality of the watermarked
program. Watermarking schemes have many real-world applications, including
ownership protection, traitor tracing, etc., and recently, it is also applied in new
applications such as quantum copy-protection [ALL+21,KNY21].

The theoretical study of software watermarking is initiated by Barak et al.
[BGI+01] and Hopper et al. [HMW07], where formal definitions are presented.
They also explore the (im)possibility to achieve certain definitions of watermark-
ing and study connections between different definitions. However, neither of them
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provides a concrete construction. It is notoriously hard to construct watermark-
ing schemes with provable security, and early constructions [NSS99,YF11,Nis13]
are only proven secure against restricted adversaries, which are not allowed to
change the format of the watermarked object.

Cohen et al. [CHN+16] propose the first watermarking scheme with provable
security against arbitrary removal strategies. They also show that it is impossible
to watermark learnable functions. A natural class of non-learnable functions
are the cryptographic ones, such as pseudorandom function (PRF). Therefore,
Cohen et al. and subsequent works mainly study watermarking for cryptographic
functionalities, with a primary focus on watermarkable PRFs, which can be
applied to construct watermarking schemes for various primitives in minicrypt
and has many real-world applications as discussed in [CHN+16]. In this work,
we also consider watermarking schemes for PRFs.

Watermarking PRFs. A watermarkable PRF is a PRF family F with two addi-
tional algorithms, namely, the marking algorithm and the extraction algorithm.
The marking algorithm takes as input the mark key, a message, and a PRF key
k, and outputs a watermarked circuit, which approximately evaluates Fk(·). The
extraction algorithm extracts the embedded message from a watermarked cir-
cuit with an extraction key. Its main security property is unremovability, which
requires that given a watermarked circuit C∗ for a random PRF key (namely,
the challenge key), the adversary is not able to produce a circuit that agrees
with C∗ on almost all inputs, yet the extraction algorithm fails to extract the
original message from it. The mark key and the extraction key are generated
when setting up the scheme, and a watermarking scheme is public key if both
the mark key and the extraction key can be made public. Also, a secret-key
watermarking scheme has public extraction (resp. public marking) if it is secure
against an adversary with the extraction key (resp. mark key).

The first construction of watermarkable PRF is presented by Cohen et al.
in [CHN+16]. The construction is based on an indistinguishability obfuscation
(iO) and has public extraction. Then in [YAL+19], Yang et al. improve Cohen et
al.’s scheme to further achieve collusion resistant security, where the adversary
is allowed to view multiple watermarked circuits for the challenge key. However,
in both constructions, the mark key should be kept private.

In another line of work, Boneh et al. [BLW17] propose a new approach that
builds watermarkable PRF from variants of constrained PRFs [BW13,KPTZ13,
BGI14]. The scheme in [BLW17] is still instantiated from iO. Then in [KW17],
Kim and Wu present the first watermarkable PRF from standard assumptions.
Later, in [PS18, PS20], Peikert and Shiehian also instantiate the construction
in [BLW17] from standard lattice assumptions. However, these schemes need a
secret key in both the marking algorithm and the extraction algorithm.

Subsequent works explore how to construct watermarkable PRF with stronger
security from standard assumptions. In [QWZ18, KW19], watermarkable PRFs
that have public marking are constructed. The schemes also achieve security with
extraction queries, where the adversary can learn extraction results of its gener-
ated circuits. However, they do not have standard pseudorandomness against an
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adversary with the extraction key. Recently, in [YAYX20], Yang et al. upgrade
previous watermarkable PRFs from standard assumptions to further achieve col-
lusion resistance. Nonetheless, none of these schemes support public extraction.

Motivation. There are no candidate constructions of public-key watermarkable
PRFs in the literature. Even worse, in previous secret-key watermarkable PRFs,
the watermarking authority, who holds the secret key, can remove the watermark
embedded in any watermarked circuit. This is a severe threat to all users. In
contrast, in a public-key watermarking scheme, no one has this privilege since
the scheme does not have such secret key. Therefore, no trust assumption is
needed in a public-key watermarking scheme and it can provide a much better
security guarantee in practice. This raises the following natural question:

Can we construct public-key watermarkable PRFs?

There are a few technical barriers towards this goal. First, existing approaches
for achieving public marking [QWZ18,KW19] will lead to a watermarkable PRF
that is only pseudorandom against adversaries without the extraction key of
the scheme, and one can compromise its pseudorandomness using the extraction
key. This relaxed pseudorandomness is acceptable in the secret extraction setting
since the extraction key is held by an authority. However, there is no authority
for a public-key watermarking scheme. Thus, if we combine previous ideas for
obtaining public marking and that for obtaining public extraction, we will get a
public-key watermarkable “PRF” without pseudorandomness.

Moreover, known techniques for constructing watermarkable PRFs with pub-
lic extraction rely on iO. Despite recent breakthrough [JLS21] that constructs
indistinguishability obfuscations from well-founded assumptions, the construc-
tion is not post-quantum secure. Thus, new ideas that construct watermarkable
PRFs with public extraction from standard lattice assumptions are desired.

Our Results. In this work, we affirmatively answer the above question and
present constructions of public-key watermarking schemes for PRFs. To over-
come the technical issues, we introduce a new framework that constructs wa-
termarkable PRFs from an unobfuscatable PRF [BGI+01] with robust learn-
ability [BP13] and a new primitive called hinting watermarkable PRF, which
relaxes a standard watermarking scheme by allowing its extraction algorithm
to use an extra “hint” about the watermarked PRF key. We remark that via
our framework, we can obtain (public-key) watermarkable PRFs with standard
pseudorandomness from (public-key) hinting watermarkable PRFs with relaxed
pseudorandomness, and this solves the first technical issue described above. We
then construct public-key hinting watermarkable PRFs from either standard lat-
tice assumptions or iO, with different trade-offs that will be discussed below. To
obtain the lattice based constructions, we introduce some new techniques for
achieving public extraction from standard lattice assumptions. Besides, we con-
struct the first unobfuscatable PRF with robust learnability in this work. The
new framework, notion and constructions may find further applications.1

1 For example, we can apply our new framework to upgrade the watermarking schemes
in [QWZ18, KW19] to achieve full pseudorandomness, by viewing them as (secret-
key) hinting watermarkable PRFs. This solves an open problem in these two works.
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Message Public Public Unremovability Pseudorandomness
Assumptions

Embedding Marking Extraction ε CR UK MK

[CHN+16] 3 7 3 ≈ 1
2

7 3 7 Lattice+iO

[BLW17] 3 7 7 negl 7 3 7 Lattice+iO

[YAL+19] 3 7 3 negl 3 3 7 Lattice+iO

[KW17] 3 7 7 negl 7 3 7 Lattice

[QWZ18] 3 3 7 ≈ 1
2

7 7 7 Lattice

[KW19] 3 3 7 ≈ 1
2

7 3‡ 7 Lattice

[YAYX20]
3 7 7 negl 3 3 7 Lattice

3 3 7 ≈ 1
2

3 3‡ 7 Lattice

7 3 3 negl - 3 3 Lattice

3 3 3 1/exp 3 3 3 Lattice

7 3 3 ≈ 1
6

- 3 3 Lattice+FHE

3 3 3 negl 7 3 3 Lattice+iO

This Work

3 3 3 ≈ 1
6

7 3 3 Lattice+FHE+iO

‡: A weaker T -restricted pseudorandomness (see [KW19]) is achieved.

Table 1: Properties achieved by existing watermarkable PRFs. For the parameter
ε, the term “≈ 1

2
” denotes that ε = 1

2
− 1

poly
, the term “negl” denotes that ε can

be any negligible function, the term “1/exp” denotes that ε is equal to a concrete
value that is exponentially-small, and the term “≈ 1

6
” denotes that ε = 1

6
− 1

poly
. We

use “CR” to denote collusion resistant unremovability. We consider pseudorandomness
against an adversary with the mark key and the extraction key (even for a secret-key
watermarking scheme). We use “UK” to denote pseudorandomness of PRF evaluations
using unmarked keys and use “MK” to denote pseudorandomness of PRF evaluations
using marked keys.

By instantiating our constructions, we obtain public-key watermarkable PRFs
from different assumptions. We consider three types of assumptions in this work,
namely, standard lattice assumptions, the assumption that the GSW encryption
scheme [GSW13] is circular secure2, and the existence of iO. The three assump-
tions are denoted as “Lattice”, “FHE”, and “iO” respectively. Also, we consider
constructions in either the mark-embedding setting, where a program is either
marked or unmarked, or the message-embedding setting, where a marked pro-
gram is embedded with a message. Besides, we use ε to denote the fraction of
inputs of the watermarked circuits that can be modified by the adversary when
defining unremovability. More precisely, let λ be the security parameter, we have:

• From Lattice, we construct a public-key watermarkable PRF in the mark-
embedding setting, where ε = negl(λ), i.e., the scheme guarantees that an
adversary cannot remove the mark in a watermarked circuit if it modifies
the circuit on a negligible fraction of inputs.

• From Lattice, we construct a public-key watermarkable PRF in the message-
embedding setting. The scheme also has collusion resistant security. A caveat
of this construction is that it only has exponentially-small ε, i.e., the adver-
sary can modify the watermarked circuit on at most M = 2n/2poly(λ) inputs,
where n is the input length. Nonetheless, we still have M = 2poly(λ).

2 Formal definition for this assumption can be found in the full version.
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Secret-Key Watermarkable
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Public-Key Hinting Watermarkable PRF Robust Unobfuscatable PRF

Public-Key Watermarkable PRF

Sec. 7

Full Version
Full VersionSec. 5.2 Sec. 6.2 Full Version

Fig. 1 The roadmap for constructing public-key watermarkable PRFs from concrete
assumptions. The dotted lines denote results from previous work.

• From Lattice and FHE, we construct a public-key mark-embedding water-
markable PRF with ε = 1/6− 1/poly(λ).

• From Lattice and iO, we construct a public-key message-embedding water-
markable PRF with ε = negl(λ).

• From Lattice, FHE and iO, we construct a public-key message-embedding
watermarkable PRF with ε = 1/6− 1/poly(λ).

Features of our constructions, together with comparison with previous water-
markable PRFs are presented in Table 1. Also, we illustrate how to instantiate
our public-key watermarkable PRFs from concrete assumptions in Figure 1.

We stress that all public-key watermarkable PRFs constructed in this work
have pseudorandomness for marked keys, i.e., no one could distinguish outputs
of a watermarked PRF key and outputs of a random function. This property
is not achieved in previous watermarkable PRFs with public extraction. This is
because in these constructions, an adversary with an extraction key can extract
meaningful information via oracle access to the marked key. In our construction,
we circumvent this barrier by using a white-box extraction algorithm, where the
algorithm must view the code of the marked key. We refer the reader to [Zha21]
for a more detailed discussion on the notion of white-box tracing/extraction.

Open Problems. We initiate the study of public-key watermarkable PRFs in
this work. We give mark-embedding constructions from lattice and message-
embedding constructions from iO. We also construct a lattice based message-
embedding scheme, but it restricts the parameter ε = 1/2poly(λ). This is smaller
than the parameter ε in previous works, which is either a constant number or
restricted by any (rather than a concrete) negligible function. The main open
problem is therefore to construct a message-embedding public-key watermark-
able PRF with larger ε from standard lattice assumptions. Besides, in our mark-
embedding constructions and iO based constructions, we need additionally as-
sume circular security of the GSW scheme to achieve a constant ε. It will be
interesting to obtain constant ε without such additional assumptions.



6 Rupeng Yang1,2, Zuoxia Yu1,2, Man Ho Au1, and Willy Susilo2

Another important security property that is not discussed in this paper is un-
forgeability, which requires that no one could watermark a new program without
a mark key. This property is useful for certifying the watermarked objects in the
ownership protection scenario. It was believed that watermarking schemes with
public marking contradicts with unforgeability, since there is no secret mark key
in the scheme. However, as shown in [YAYX20], the conflict can be overcome
via defining security in a hybrid model, where the unremovability and pseudo-
randomness are defined against an adversary with the mark key (i.e., the mark
key can be made public when considering these two security properties), and the
unforgeability is defined against an adversary without the mark key. They also
construct watermarkable PRFs secure in this hybrid model, but their techniques
cannot be applied to our constructions here. It is an interesting open problem
to construct a public-key watermarkable PRF with unforgeability in the hybrid
model.

2 Technical Overview

In this section, we provide a technical overview of our constructions of public-
key watermarkable PRFs. We first consider a relaxed notion of watermarking,
where each PRF key is associated with a “hint” that can be used to help extract
messages. We call it hinting watermarking and in Sec. 2.1, we explain our main
ideas for constructing public-key hinting watermarkable PRFs. Then in Sec. 2.2,
we show how to upgrade a public-key hinting watermarkable PRF to a standard
public-key watermarkable PRF by using an unobfuscatable PRF with “robust
learnability”. Existing constructions of unobfuscatable PRFs [BGI+01] do not
have robust learnability and in Sec. 2.3, we describe how to achieve it.

2.1 Constructing Public-Key Hinting Watermarkable PRFs

The syntax of a hinting watermarkable PRF is identical to a standard water-
markable PRF except that each of its PRF keys is associated with a hint and the
hint is used in the extraction algorithm to help extract messages. We assume
that the extraction algorithm always uses the correct hint when defining the
security of a hinting watermarking scheme, i.e., given a (modified) watermarked
PRF key, the hint associated with the PRF key will be employed in the extrac-
tion algorithm. Besides, we require its security to hold against an adversary that
has the hint associated with the challenge key, yet we only need its pseudoran-
domness to hold against an adversary without the hint. Next, we describe how
to construct public-key hinting watermarkable PRFs.

Construction from Indistinguishability Obfuscation. We first present a
general construction of public-key hinting watermarkable PRF from a water-
markable PRF F with secret marking and public extraction. Our main strategy
is to generate a fresh mark key/extraction key pair for each PRF key. In this
way, there are no global mark keys that should be kept secret. In addition, we
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set the hint for a PRF key as its extraction key and this allows the extraction
key to be used in the extraction algorithm.

In more detail, the PRF key of the public-key hinting watermarkable PRF
is K = (mk, k) and the associated hint is hint = ek, where (mk, ek) is a
mark key/extraction key pair of F and k is a PRF key of F. Given the PRF
key K = (mk, k) and an input x, the evaluation algorithm of the new scheme
runs the evaluation algorithm of F on input (k, x), and given K = (mk, k) and
a message msg, the marking algorithm of the new scheme runs the marking
algorithm of F on input (mk, k,msg). Besides, given a circuit C and a hint
hint = ek, the extraction algorithm runs the extraction algorithm of F on input
(ek, C). Security of the constructed public-key hinting watermarkable PRF comes
from the assumption that the correct hint is always used and the fact that F is
unremovable even if ek is public.

Now, if we instantiate this general construction from previous watermark-
able PRFs with public extraction [CHN+16], we obtain public-key hinting wa-
termarkable PRFs from iO. Next, we propose constructions from cryptographic
primitives that can be instantiated from standard lattice assumptions, including
puncturable PRF, functional encryption, etc.

Mark-Embedding Public-Key Hinting Watermarking from Lattices.
First, we consider mark-embedding public-key hinting watermarkable PRFs.

The Starting Point. The starting point of our construction is a watermarking
scheme with public marking and secret extraction presented in [QWZ18]. The
scheme is built on a puncturable PRF [SW14] and a public key encryption
(PKE). A puncturable PRF F is a family of PRF that allows one to derive
a punctured key kx∗ from a PRF key k, where Fkx∗ (·) and Fk(·) evaluate iden-
tically on almost all inputs except at the “punctured” point x∗. Its security
requires that given the punctured key kx∗ , Fk(x∗) is still pseudorandom.

Here, we slightly modify the scheme and describe it as a hinting watermarking
scheme. Its extraction key is a secret key of the PKE scheme. Also, the PRF
key K = k is a key of the puncturable PRF F, and the hint is hint = (x∗, ct∗),
where x∗ is a random input of F and ct∗ is an encryption of y∗ = Fk(x∗). Given
a PRF key K = k and an input x, the evaluation algorithm outputs Fk(x).
Also, on input a PRF key K = k, the marking algorithm punctures k on x∗ and
generates a circuit C s.t. C(x) = Fkx∗ (x). To test if a circuit C is watermarked, the
extraction algorithm first recovers y∗ by decrypting ct∗ in the hint and outputs
“marked” iff C is punctured (i.e., C(x∗) 6= y∗).

By security of the puncturable PRF and the PKE scheme, y∗ is hidden from
an adversary given a watermarked circuit and the hint. Thus, the adversary
cannot create a circuit that outputs y∗ on input x∗ and security of the scheme
follows. However, when the extraction key, which is the secret key of the under-
lying PKE scheme, is made public, the adversary will be able to recover y∗ from
ct∗ and thus compromise security of the scheme.

On Achieving Public Extraction. We solve the problem by designing an extrac-
tion algorithm that tests if output of a circuit equals to a given value without
knowing the target value. This is achieved by using an injective one way function
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f . More precisely, in our new scheme, there are no extraction keys and the ci-
phertext ct∗ in the hint is replaced with z∗ = f(y∗) (i.e., hint = (x∗, z∗)), where
y∗ = Fk(x∗). For a PRF key K = k, the evaluation algorithm still outputs Fk(x)
on input x and the marked version of K is still a circuit C s.t. C(x) = Fkx∗ (x).
Besides, to test if a circuit C is watermarked, the extraction algorithm outputs
“marked” iff z∗ 6= f(C(x∗)).

The new extraction algorithm actually tests if C(x∗) is not equal to y∗. Also,
security of the one way function plus security of the puncturable PRF guarantee
that the adversary cannot learn y∗ from a watermarked circuit and the hint.
Thus, it is not able to produce a circuit that outputs y∗ on input x∗. Therefore,
our new construction achieves security in the public extraction setting and thus
is a secure public-key hinting watermarkable PRF.

Message-Embedding Public-Key Hinting Watermarking from Lattices.
Next, we show how to construct public-key hinting watermarkable PRFs with
message embedding from lattices. The construction relies on a functional encryp-
tion (FE) scheme [BSW11,O’N10] and is inspired by the construction of water-
markable PKE scheme presented in [GKM+19]. In a nutshell, an FE scheme is
a PKE scheme that associates each secret key skf with a function f , where the
secret keys can be derived from a master secret key. Besides, by using the secret
key skf to decrypt a ciphertext that encrypts a plaintext m, one can obtain
f(m), but nothing else.

From FE to Publicly Verifiable Puncturing. We can use the FE scheme to realize
a puncturable “PRF” that supports public verifiability of punctured keys. More
precisely, we set the normal PRF key as a secret key skfε of FE, where fε(t‖µ) =
µ. Also, we puncture the key on (inputs that encrypts) plaintexts with prefix t∗

by generating a key skft∗ , where ft∗(t‖µ) = µ if t 6= t∗ and ft∗(t‖µ) = 0 if t = t∗.
To evaluate the PRF (with either a normal PRF key or a punctured key), the
evaluation algorithm just decrypts the input with the secret key. Note that the
normal PRF key and the punctured key function identically on an input if it
encrypts a plaintext with prefix t 6= t∗. In addition, given a punctured key, one
could not learn any information about µ from punctured inputs that encrypt
t∗‖µ, due to security of the FE scheme. Finally, given the master public key, one
can publicly check if a key is punctured on plaintexts with prefix t∗ by sampling
a random µ, encrypting t∗‖µ, and checking if its decryption is not equal to µ.

From Publicly Verifiable Puncturing to Public-Key Hinting Watermarking. The
FE-based puncturable “PRF” with public verifiability implies a public-key hint-
ing watermarkable “PRF” with mark embedding immediately. In particular, the
PRF key of the scheme is K = (msk, skfε), where msk is a master secret key
of FE and skfε is a secret key derived from msk. The hint for K is the master
public key mpk for msk. Given an input x, the evaluation algorithm decrypts x
with skfε and outputs the decryption result. The marking algorithm punctures
skfε on a public random string t∗ and outputs a circuit that decrypts inputs with
the punctured key. Given a circuit C, the extraction algorithm outputs “marked”
iff the circuit is punctured on plaintexts with prefix t∗. The extraction algorithm
can be run publicly with the hint mpk since the underlying puncturable PRF
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is publicly verifiable. Also, security of the hinting watermarking scheme follows
from security of the puncturable PRF directly.
On Supporting Message Embedding. Based on this, we construct hinting water-
marking scheme with message embedding by employing the message embed-
ding technique introduced in [GKM+19, YAL+19]. To support this, we define
gε(ind‖t‖µ) = µ and define

gmsg,t∗(ind‖t‖µ) =

{
0 If t = t∗ ∧ ind ≥ msg
µ Otherwise

In the message-embedding construction, the PRF key is K = (msk, skgε) and
the hint is still the corresponding master public key. The evaluation algorithm
decrypts the input with skgε , and to embed a message msg into a PRF key,
the marking algorithm generates a circuit that decrypts with the secret key
skgmsg,t∗ . Then, to extract the embedded message from a circuit C, the extraction
algorithm will test if the circuit is punctured on prefix ind‖t∗ for all possible3 ind
and output msg if it is not punctured on prefix (msg − 1)‖t∗, but is punctured
on prefix msg‖t∗.

Now, given a watermarked circuit embedded with a message msg∗, the adver-
sary cannot modify the embedded message since by security of the FE scheme:
1. The adversary cannot distinguish a ciphertext encrypting ind‖t∗‖µ from a

ciphertext that encrypts a random plaintext if ind < msg∗. As the adversary
is not allowed to change the functionality of the watermarked circuit too
much, it cannot puncture on these ciphertexts.

2. The adversary cannot learn µ from a ciphertext encrypting ind‖t∗‖µ if
ind ≥ msg∗, thus it cannot “unpuncture” the watermarked circuit on these
punctured points.

Similarly, we can show that the construction is collusion resistant if the under-
lying FE is collusion resistant.
On Achieving Pseudorandomness. The above construction actually does not have
pseudorandomness. We solve the problem by using a PKE scheme with pseudo-
random ciphertexts and a PRF F. In more detail, we add a secret key k of F in
both the normal PRF key and the marked keys. Then the evaluation algorithm
(resp. the marked circuit) will encrypt the output of the evaluation algorithm
(resp. the marked circuit) of previous construction with the PKE scheme, where
the encryption randomness is Fk(x). Note that we can put the secret key of the
PKE scheme into the hint and thus the extraction algorithm can still test if a
given circuit is punctured on plaintexts with a specific prefix. Thus, security of
the scheme still holds. In addition, its pseudorandomness is guaranteed by the
(ciphertext) pseudorandomness of the underlying PRF and PKE scheme.
On Instantiating the FE Scheme. In above discussion, we implicitly assume that
all ciphertexts in the ciphertext space of the FE scheme (i.e., the input space

3 Here, we assume that the message space of the hinting watermarking scheme is
of polynomial-size, and this restriction can be removed if we use the jump finding
technique introduced in [BCP14,NWZ16].
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of the hinting watermarkable PRF) can be output by the encryption algorithm.
However, to the best of our knowledge, existing FE schemes from standard as-
sumptions [GVW12, GKP+13, AR17, AV19] do not satisfy this property. Even
worse, in all of these schemes, the ratio between the number of honestly en-
crypted ciphertexts and the size of the ciphertext space is exponentially-small.
Thus, we have to carefully deal with those “invalid” ciphertexts, which are not
output by the encryption algorithm, in the ciphertext space.

First, to ensure that the functionality of a PRF key will not change signif-
icantly after watermarking, we need to guarantee that both the normal PRF
key and the watermarked PRF key, which use different secret keys of the FE
scheme, evaluate identically on input an invalid ciphertext. We achieve this by
requiring the FE scheme to have a special correctness, namely, given any se-
cret key and any invalid ciphertext, the decryption result is always a decryption
failure symbol ⊥. We construct FE scheme with this correctness property from
any FE scheme with perfect correctness and statistically sound non-interactive
zero-knowledge (NIZK) proofs.

Besides, since the ratio ρ between the number of valid ciphertexts and the
number of all possible ciphertexts is exponentially-small, the adversary can dam-
age the evaluation on all valid ciphertexts and thus remove the embedded mes-
sage even if it can only modify the watermarked circuit on a negligible fraction of
inputs. We circumvent this problem by requiring that the adversary has to sub-
mit a circuit that agrees with the watermarked circuit on a (1−ρ·(1−1/poly(λ)))
fraction of inputs. Note that even with this restriction, the adversary can still
modify the watermarked circuit on exponentially-many inputs.

Remark 2.1. Our FE based construction only allows the adversary to modify
the watermarked circuit on an exponentially-small fraction of inputs. Actually,
a simple construction from any PRF also satisfies this weak security requirement.
In particular, the marking algorithm replaces the PRF outputs with the embed-
ded message if the input has prefix 0λ, and the extraction algorithm runs the
watermarked circuit on random inputs with prefix 0λ and outputs the majority
of the evaluation results. In this construction, the marking algorithm changes
the PRF on 1/2λ fraction of inputs, and an adversary can remove the watermark
only if it changes the watermarked circuit on about 1/2λ+1 fraction of inputs.
However, the scheme is less preferable for the following two reasons:
• In this construction, the adversary can remove the watermark by merely

changing the circuit on half of the points modified by the marking algorithm.
In contrast, the marking algorithm in our construction only changes the
output on a negligible fraction of valid ciphertext, and the adversary has to
change the outputs on nearly all valid ciphertexts to remove the watermark.
• Our construction will have a good parameter if we use an FE scheme with

dense valid ciphertexts in its ciphertext space, but it seems impossible to
improve the parameter of the simple construction described above.

We also would like to stress that our goal is to explore the possibility of building
full-fledged public-key watermarkable PRFs from standard assumptions rather
than constructing a watermarking scheme with weak security guarantee. We
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demonstrate that the goal is achievable, but our solution has some restrictions.
The restrictions can be removed via either using a better FE scheme or improving
the proposed construction. We believe our result would inspire future works that
completely solve the problem.

2.2 From Public-Key Hinting Watermarkable PRFs to Public-Key
Watermarkable PRFs

Next, we discuss how to transform a public-key hinting watermarkable PRF to
a public-key watermarkable PRF. Note that a hinting watermarking scheme is
already a standard watermarking scheme except that its extraction algorithm
needs the correct hint for the given watermarked key. Thus, the main problem
here is how to send the correct hint to the extraction algorithm.

To complete this task, we use an unobfuscatable PRF with robust learnabil-
ity. In a nutshell, in an unobfuscatable PRF UF, each secret key uks is embedded
with a secret information s. The function UFuks(·) is still pseudorandom if the
adversary is only given oracle accesses to it. In addition, one can learn the secret
information s given any circuit that implements the function. An unobfuscatable
PRF has robust learnability if the secret information s can be learned from any
circuit that approximately implements UFuks(·), i.e., the circuit may differ from
the function on a small fraction of inputs.

Given a public-key hinting watermarkable PRF HF and an unobfuscatable
PRF UF, we can construct a public-key watermarkable PRF as follows. The
PRF key of the new scheme includes the PRF key k of HF and the PRF key
ukhint of UF, where hint is the hint for k and is embedded into ukhint as the
secret information. Given an input x, the evaluation algorithm outputs (HFk(x),
UFukhint(x)). To embed a message msg into the PRF key, the marking algorithm
first generates kmsg by embedding msg to k and then outputs a circuit C s.t.
C(x) = (HFkmsg (x),UFukhint(x)). Finally, given a circuit C, the extraction algo-
rithm first recovers hint from the second part of the circuit and then extracts
the message from the first part of the circuit with hint.

Robust learnability of UF ensures that the extracted hint is correct, thus,
security of the new scheme comes from the security of the underlying hinting wa-
termarking scheme directly. The above construction also has pseudorandomness
for unmarked keys due to the pseudorandomness of the underlying schemes, but
it would not have pseudorandomness for marked keys if the underlying hinting
watermarkable PRF does not have this property (recall that we do not require
it when defining hinting watermarkable PRFs).
On Achieving Pseudorandomness for Marked Keys. We solve this issue by addi-
tionally using a PRF F to mask outputs of HF in both the evaluation algorithm
and the marked circuit. The key k′ of F is also embedded into the PRF key of
UF and this allows the extraction algorithm to obtain k′ and use it to unmask
outputs of HF. In this way, security of the scheme is preserved. Besides, pseu-
dorandomness of UF guarantees that k′ is hidden to an adversary that can only
access the marked key in a black-box manner. Then by the pseudorandomness
of F and UF, the outputs of the marked key are also pseudorandom.



12 Rupeng Yang1,2, Zuoxia Yu1,2, Man Ho Au1, and Willy Susilo2

2.3 Constructing Robust Unobfuscatable PRFs

It remains to show how to construct an unobfuscatable PRF with robust learn-
ability, which is a PRF family UF that allows one to learn the secret information
s embedded in a PRF key ks from any circuit that agrees with UFks(·) on a
large fraction of inputs. We first review existing constructions of unobfuscatable
functions and explain why they do not lead to a robust unobfuscatable PRF.

The first constructions of unobfuscatable (pseudorandom) functions are pre-
sented by Barak et al. in [BGI+01]. Their unobfuscatable PRF also supports
learnability from a circuit that approximates the PRF, but it does not allow the
circuit to modify the PRF evaluation on particular inputs with a high proba-
bility. In contrast, we require that the secret information can be learned from a
circuit that may modify the PRF evaluation on any input with probability 1 as
long as the fraction of modified inputs is small. Then, in [BP13], Bitansky and
Paneth construct an unobfuscatable function with robust learnability. However,
the extraction algorithm of the scheme needs a verification key and it should
be included in all outputs of the function. Therefore, the scheme cannot be
pseudorandom. Recently, Zhandry [Zha21] constructs a robust unobfuscatable
function for decryption functionality from an unobfuscatable function without
robust learnability and a public-key traitor tracing scheme. It seems that the
idea also works for the PRF setting, but this needs a public-key watermarkable
PRF, which does not have a candidate construction yet4.

Next, we describe our constructions of unobfuscatable PRFs with robust
learnability. The constructions are inspired by techniques provided in [BGI+01,
BP13]. In particular, both our construction and the construction of robust un-
obfuscatable function given in [BP13] can be viewed as random-self-reducible
versions of the non-robust unobfuscatable functions constructed in [BGI+01].
However, as discussed above, the main techniques in [BP13] contradict the re-
quirement of pseudorandomness, and we introduce some new ideas to overcome
the difficulties.

Construction from Fully Homomorphic Encryption. The construction
needs two PRFs F and F′. Besides, it relies on a special fully homomorphic
encryption (FHE) scheme with the following properties5:
1. One can homomorphically evaluate a circuit over a ciphertext and reran-

domize a ciphertext, without using the public key of the FHE scheme.
2. The ciphertext of the FHE scheme should be pseudorandom.
3. Even given the secret key of the FHE scheme, no one could distinguish a

rerandomized ciphertext that encrypts a random plaintext from a random
string in the ciphertext space.

The PRF key of the constructed robust unobfuscatable PRF UF is K = (α,
β, k, k′, pk, sk, s), where α, β are random strings, k and k′ are PRF keys of F
and F′ respectively, (pk, sk) is a key pair of the FHE scheme, and s is the secret

4 Recall that the main goal of this work is to construct the first public-key watermark-
able PRF.

5 We show how to construct the desired FHE scheme later in this section.
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information. Then, given an input X = (ind, x, ct), the PRF is defined as follows:

UFK(X) =


Enc(pk, α;F′k′(X)) If ind=0;

Fk(x‖ct) If ind=1;

Fk(x⊕ α‖ct)⊕ β If ind=2;

Fk(x⊕ Dec(sk, ct)⊕ β‖ct)⊕ s If ind=3.

where Enc and Dec are the encryption algorithm and the decryption algorithm
of the underlying FHE scheme respectively.
Robust Learnability of the Construction. We first explain why the above con-
struction has robust learnability. For simplicity, we assume that the extractor is
given a circuit C that agrees with UFK(·) on all but negligible fraction of inputs.

The extractor first gets an encryption of α via computing ct∗α = C(0‖x1‖ct1),
where x1 and ct1 are random strings. As C and UFK(·) agree on all but negligible
fraction of inputs, we have ct∗α = UFK(0‖x1‖ct1) = Enc(pk, α;F′k′(0‖x1‖ct1))
with all but negligible probability, i.e., ct∗α should be an encryption of α.

Then, the extractor obtains an encryption of β as follows. It first computes
y2 = C(1‖x2‖ct2), where x2 and ct2 are random strings. Similar, we have y2 =
Fk(x2‖ct2) with all but negligible probability. Next, it runs a circuit P(·) on ct∗α
to obtain ct∗β , where for any string a, P(a) = C(2‖x2 ⊕ a‖ct2)⊕ y2. Again, with
all but negligible probability, we have C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2) =
Fk(x2‖ct2)⊕ β , which implies P(α) = β, i.e., ct∗β is an encryption of β.

Now, with ct∗α and ct∗β , the extractor is ready to learn the secret information.
It first samples a random γ and computes ct∗3 as a rerandomized encryption of
β⊕γ. Then it computes y3 = C(3‖x3‖ct∗3), where x3 is a random string. Note that
ct∗3 is also random due to Property 3 of the special FHE scheme and the fact that
γ is a random string. Thus we have y3 = UFK(3‖x3‖ct∗3) = Fk(x3⊕γ‖ct∗3)⊕s with
all but negligible probability. Next, the extractor computes y′3 = C(1‖x3⊕γ‖ct∗3)
and recovers s̄ = y3 ⊕ y′3. As x3 is a random string, γ is still hidden given
x3 ⊕ γ, thus x3 ⊕ γ‖ct∗3 is indistinguishable from a random string and with all
but negligible probability, we have y′3 = UFK(1‖x3 ⊕ γ‖ct∗3) = Fk(x3 ⊕ γ‖ct∗3),
which implies that s̄ = s. Therefore, the extractor can succeed in recovering s
from the circuit C with all but negligible probability.

Remark 2.2. The above construction also supports learnability from a circuit
that deviates from UFK(·) on a constant fraction of inputs. To achieve this,
the extractor needs to produce multiple test points in each step and choose the
majorities. In more detail, let N be a suitable polynomial. The extractor first
produces N ciphertexts ct∗α via running the circuit C on N independent inputs
(x1, ct1). Then for each ct∗α, it produces N ciphertexts ct∗β and for each pair
(ct∗α, ct

∗
β), it computes N results s̄. The extractor sets the extraction outputs as

the majority-of-majorities-of-majorities. More precisely, for each pair (ct∗α, ct
∗
β),

it chooses the extracted result for this pair as the majority of all N results
s̄ produced for this pair. It also chooses the extracted result for each ct∗α as
the majority of all N results for the N pairs (ct∗α, ct

∗
β). Finally, it outputs the

majority of all N results for the N ciphertexts ct∗α.
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In above extraction procedure, inputs (excluding the index ind) to the circuit
C are all random since they are composed of either random strings or rerandom-
ized ciphertexts encrypting random plaintexts, which are random due to Prop-
erty 3 of the special FHE scheme. Thus, if the fraction of inputs that C differs
with UFK(·) is a small constant δ, the majority result at each step should be the
correct secret information. In particular, the extraction result will be correct if

Pr[C(0‖x1‖ct1) = UFK(0‖x1‖ct1)] > 1/2

Pr[C(1‖x2‖ct2) = UFK(1‖x2‖ct2) ∧ C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2)] > 1/2

Pr[C(1‖x3 ⊕ γ‖ct∗3) = UFK(1‖x3 ⊕ γ‖ct∗3) ∧ C(3‖x3‖ct∗3) = UFK(3‖x3‖ct∗3)] > 1/2

for random x1‖ct1, x2‖ct2, and x3‖ct∗3, and all three inequalities can be satisfied
if δ < 1/8. Besides, the constant δ can be improved to be about 1

6 if we slightly
modify the above construction. Please see the full version for more details.

Pseudorandomness of the Construction. Next, we explain why UF is pseudoran-
dom. We assume w.l.o.g. that all queries submitted by the adversary are distinct.

First, suppose that there are no collisions in the inputs to Fk(·) when answer-
ing queries from the adversary, then outputs of Fk(·) would be indistinguishable
from strings sampled uniformly and independently from its output space, i.e.,
outputs of UFK(ind‖x‖ct) will be pseudorandom if ind ∈ {1, 2, 3}. This also
implies that the adversary cannot learn any information about sk. Then by ci-
phertext pseudorandomness of the FHE scheme, outputs of UFK(ind‖x‖ct) will
also be pseudorandom if ind = 0. To summarize, the adversary cannot distin-
guish UF from a random function if there are no collisions in the inputs to Fk(·).

Next, we show why the collisions do not occur. In a nutshell, this is because to
make a collision, the adversary must have the knowledge of α, β, or encryption
of β, and none of them can be obtained via black-box accesses to UFK(·). In
more detail, assume that there are no collisions in the first q queries to the
oracle, then responses of these q queries would be indistinguishable from random
strings, which contain no information. Thus, the adversary also cannot make a
collision in the (q+1)-th query. There is no collision if the adversary only makes
one oracle query, then by the above statement, the adversary cannot make any
collision when querying UFK(·). Therefore, the pseudorandomness follows.

Construction from One Way Function. Next, we show how to construct ro-
bust unobfuscatable PRFs without using FHE. More precisely, the new construc-
tion only relies on a standard secret-key encryption scheme with some specific
properties, which can be instantiated from any one way function.

Following [BGI+01, BP13], we remove the dependency on homomorphic en-
cryption via performing the homomorphic operations by UFK(·). In particular,
given an input X = (ind, x, ct), the new PRF proceeds identically as in the con-
struction from FHE if ind ∈ {0, 1, 2, 3}. In addition, if ind = 4, it decrypts the
ciphertext ct, performs the specified homomorphic operation over the decrypted
bits and outputs an encryption of the evaluation result, where the randomness
is derived from F′k′(X).

The extractor can use this additional functionality of UF to evaluate P gate
by gate. Thus, it can still succeed in extracting the secret information from a
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circuit C that approximates UFK(·) even if the underlying encryption scheme
does not support homomorphic evaluation over encrypted data.6

Constructing Special Fully Homomorphic Encryption. We finally show
how to construct the special FHE needed. Our starting point is the GSW homo-
morphic encryption scheme presented in [GSW13]. In a nutshell, the secret key
of the scheme is a random vector s ∈ Znq . Its public key contains a matrix

A =

(
B

sᵀB + eᵀ

)
mod q

and a ciphertext ct∗sk, where B is a random matrix in Zn×mq , e is a “short”
vector in Zm and ct∗sk is an encryption of the secret key s. The ciphertext that
encrypts a bit µ is defined as7

C = µ ·G+A ·R mod q

where R is a random binary matrix and G is the standard powers-of-two gadget
matrix [MP12]. Besides, to rerandomize a ciphertext C, the rerandomization
algorithm adds the ciphertext with an encryption of 0. Next, we describe how
to adapt the construction to achieve the three properties needed.
Achieving Property 1 and Property 2. In the evaluation algorithm of the GSW
scheme, the ciphertext ct∗sk should be used to perform the bootstrapping proce-
dure. Also, the rerandomization algorithm needs the matrix A to generate an
encryption of 0. Both variables are contained in the public key and thus the first
property, which requires that the evaluation algorithm and the rerandomization
algorithm can be performed without using the public key, is not satisfied.

We solve the problem by putting randomized versions of both variables into
the ciphertext of the scheme. In particular, the new ciphertext is (ctµ, ctsk, ct0),
where ctµ is an encryption of the message, ctsk is generated by reramdomizing
ct∗sk and ct0 is a fresh encryption of 0. Then we can use ctsk and ct0 instead
of ct∗sk and A when running the evaluation algorithm and the rerandomization
algorithm, and Property 1 follows. In addition, as the new ciphertext consists
of ciphertexts of the original scheme, the ciphertext pseudorandomness of the
modified scheme (i.e., Property 2) comes from that of the original scheme, which
can be guaranteed by the circular-secure learning with errors (LWE) assumption.

There is one subtle issue when employing this scheme in the construction of
unobfuscatable PRF. That is the extractor can obtain ct0 only from output of
the circuit, which may deviate the PRF evaluation on a 1/6 fraction of inputs,
and the obtained ct0 may not be pseudorandom (e.g., the circuit could rejects
to output ct0 if its first 3 bits are 000). As a result, the output distribution
of the rerandomization algorithm may also be changed. We fix the issue by

6 We notice that however, the trick presented in Remark 2.2 does not work in this
setting as it will require the extractor to produce NO(|C|) test points, which is expo-
nential in the size of the circuit C. Thus, the construction only supports learnability
from a circuit that deviates from UFK(·) on a negligible fraction of inputs.

7 Here, we change the format of the ciphertext of the original GSW scheme slightly.
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including multiple ct0 in each ciphertext and use a random subset sum of them
in the rerandomization algorithm. The selection of the subset provides additional
entropy and we can show that the result is pseudorandom by using the leftover
hash lemma and the fact that A is pseudorandom.
Achieving Property 3. The third property of the special FHE scheme requires
that a rerandomized ciphertext of a random plaintext should look uniform even
given the secret key of the FHE scheme. Here we relax this property and only
require that one can transform a rerandomized ciphertext of the FHE scheme
into a ciphertext with this strong uniformity. The transformed ciphertext is still
decryptable, but does not have to support homomorphic evaluation over it. Note
that this relaxed property is sufficient in our construction of unobfuscatable PRF.

Given a ciphertext CT = (C, ctsk, ct0), where C encrypts a bit µ, we first
transform it as:

c =

(
0

µ · q+1
2

)
+Ar mod q

where r is a short vector in Zmq . We can obtain c via summing some columns of
C. In addition, to decrypt the ciphertext, one can first compute

(−sᵀ, 1) · c = µ · q + 1

2
+ eᵀ · r mod q (1)

where e is the short error term in A. Then the decryption result will be 1 if
Equation (1) is close to q+1

2 and it will be 0 if Equation (1) is close to 0.
However, the above transformed ciphertext can be distinguished from a ran-

dom vector given s due to the following decryption attack. Given a ciphertext c,
which is either a transformed ciphertext or a random vector, the distinguisher
with the secret key s first computes Equation (1). It will get a number that is
close to q+1

2 or 0 if c is a transformed ciphertext and it will get a random number
in Zq if c is a random vector. Thus, it could distinguish these two cases.

We prevent the attack via adding a number z
$← [0, q−12 ] to the last element

of the transformed ciphertext and require that q is much larger than the error
term eᵀ · r. One will get µ · q+1

2 + eᵀ · r + z via computing Equation (1) on a
transformed ciphertext that encrypts µ, and this will be a random number in
[µ · q+1

2 , µ · q+1
2 + q−1

2 ] due to the smudging lemma [AJLA+12], which states
that a small error (i.e., eᵀ · r) can be smudged out by a large error (i.e., z). The
encrypted message can still be recovered from c via computing Equation (1) and
checking if the result exceeds q−1

2 . Besides, if c is a transformed ciphertext that
encrypts a random bit, then Equation (1) would also be a random number in Zq
and thus the distinguisher cannot distinguish it from a random vector.

3 Notations

We write negl(·) to denote a negligible function and write poly(·) to denote a
polynomial. For integers a ≤ b, we write [a, b] to denote all integers from a to
b. Let s be a string, we use |s| to denote the length of s. For integers a ≤ |s|,
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s[a] denotes the a-th character of s and for integers a ≤ b ≤ |s|, s[a : b] denotes
the substring (s[a], s[a+ 1], . . . , s[b]). Let S be a finite set, we use |S| to denote

the size of S, and use s
$← S to denote sampling an element s uniformly from

set S. Let D be a distribution, we use d ← D to denote sampling d according
to D. Following the syntax in [BLW17], for a circuit family C indexed by a few,
say m, constants, we write C[c1, . . . , cm] to denote a circuit with constants c1,
. . . , cm. We use Z to denote the NAND gate and suppose that all circuits are
composed exclusively by NAND gates unless otherwise specified. We provide
more background knowledge and recall definitions of cryptographic primitives
employed in this work in the full version.

4 Definition of Public-Key Watermarkable PRFs

In this section, we provide the definition of public-key watermarkable PRFs,
which is adapted from definitions of watermarkable PRFs in previous works
[CHN+16,BLW17,KW17,QWZ18,KW19,YAL+19,YAYX20]. More precisely, a
public-key watermarkable PRF with key space K, input space X , output space
Y, and message space M consists of the following algorithms:
• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm

outputs the public parameter PP .
• KeyGen(PP ) → k : On input the public parameter PP , the key generation

algorithm outputs a PRF key k ∈ K.
• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,

and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.
• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the circuit is unmarked.

Correctness. The correctness of a watermarking scheme includes three prop-
erties. The functionality preserving property requires that the watermarked key
can roughly preserve the functionality of the original key.

Definition 4.1 (Functionality Preserving). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP ), C ← Mark(PP, k,msg), x

$← X , then we have
Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).

The extraction correctness requires that the extraction algorithm can ex-
tract the correct message from an honestly-watermarked key and will obtain the
“unmarked” symbol when extracting an unmarked key.

Definition 4.2 (Extraction Correctness). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP ), and C← Mark(PP, k,msg), then we have

Pr[Extract(PP, C) 6= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·)) 6=⊥] ≤ negl(λ)
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The meaningfulness property requires that most circuits are unmarked, which
rules out the trivial construction that regards all circuits as marked.

Definition 4.3 (Watermarking Meaningfulness). For any circuit C : X →
Y, let PP ← Setup(1λ), then we have Pr[Extract(PP, C) 6=⊥] ≤ negl(λ).

Pseudorandomness. Our definition of pseudorandomness is twofold, including
pseudorandomness for unmarked keys and that for marked keys. The properties
require that given oracle access to an unmarked PRF key (or a marked key), the
adversary cannot distinguish it from a random function.

Definition 4.4 (Pseudorandomness for Unmarked Keys). Let PP ←
Setup(1λ), k ← KeyGen(PP ), and f be a random function from X to Y. Also,
let O0(·) be an oracle that takes as input a string x ∈ X and returns Eval(PP,
k, x), and let O1(·) be an oracle that takes as input a string x ∈ X and returns
f(x). Then for all probabilistic polynomial-time (PPT) adversary A, we have:

| Pr[AO0(·)(PP ) = 1]− Pr[AO1(·)(PP ) = 1] |≤ negl(λ)

Definition 4.5 (Pseudorandomness for Marked Keys). For any PPT ad-
versary A = (A1,A2), let PP ← Setup(1λ) and k ← KeyGen(PP ). Also, let
(msg, state) ← A1(PP ), C ← Mark(PP, k,msg), and f be a random function
from X to Y. Let O0(·) be an oracle that takes as input a string x ∈ X and
returns C(x), and let O1(·) be an oracle that takes as input a string x ∈ X and
returns f(x). Then we have:

| Pr[AO0(·)
2 (state) = 1]− Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)

Unremovability. This is the main security requirement for a watermarking
scheme, which requires that the adversary cannot remove or modify the messages
embedded in a random PRF key without significantly changing its functionality.

Definition 4.6 (Q-Bounded ε-Unremovability). A watermarkable PRF is
Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible adver-
saries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the experi-
ment ExptUR as follows:
1. The challenger samples PP ← Setup(1λ) and k∗ ← KeyGen(PP ).
2. Then, it returns PP to A and answers A’s challenge oracle queries. Here,
A is only allowed to query the challenge oracle for at most Q times.
• Challenge Oracle. On input a message msg ∈M, the challenge oracle

returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.
3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,

C̃) 6∈ Q∗. Here, we use Q∗ to denote all messages submitted to the challenge
oracle and use R∗ to denote all circuits returned by the challenge oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ ε · |X |.
Remark 4.1. We can also define negl(λ)-unremovability for a watermarkable
PRF, which is identical to the definition of ε-unremovability for concrete ε, ex-
cept that A should be negl(λ)-unremoving-admissible, i.e., there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ negl(λ) · |X |.
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5 Public-Key Hinting Watermarkable PRFs

We define and construct public-key hinting watermarkable PRFs in this section.
We provide its formal definition in Sec. 5.1. Then in Sec. 5.2, we construct it from
functional encryption schemes. We provide more constructions with different
properties in the full version.

5.1 The Definition

The definition of public-key hinting watermarkable PRF is similar to the defi-
nition of standard public-key watermarkable PRFs given in Sec. 4 except that
its key generation algorithm will generate a “hint” together with the PRF key,
which can be used later in the extraction algorithm. More precisely, a public-key
hinting watermarkable PRF with key space K, input space X , output space Y,
and message space M consists of the following algorithms:

• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP ) → (k, hint) : On input the public parameter PP , the key
generation algorithm outputs a PRF key k ∈ K and a hint hint.

• Eval(PP, k, x)→ y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C, hint)→ msg : On input the public parameter PP , a circuit
C, and a hint hint, the extraction algorithm outputs a message msg ∈
M∪ {⊥}, where ⊥ denotes that the circuit is unmarked.

Correctness. The correctness of a public-key hinting watermarkable PRF also
requires the following three properties. Here for the extraction correctness, we
require that the correct hint is used.

• Functionality Preserving. For any msg ∈ M, let PP ← Setup(1λ),

(k, hint) ← KeyGen(PP ), C ← Mark(PP, k,msg), x
$← X , then we have

Pr[C(x) 6= Eval(PP, k, x)] ≤ negl(λ).
• Extraction Correctness. For any msg ∈ M, let PP ← Setup(1λ), (k,
hint)← KeyGen(PP ), and C← Mark(PP, k,msg), then we have

Pr[Extract(PP, C, hint) 6= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·), hint) 6=⊥] ≤ negl(λ)

• Watermarking Meaningfulness. For any circuit C : X → Y and any hint,
let PP ← Setup(1λ), then we have Pr[Extract(PP, C, hint) 6=⊥] ≤ negl(λ).

Pseudorandomness. The pseudorandomness property requires that the eval-
uation of the PRF with an unmarked key should be pseudorandom. Here, the
adversary is not allowed to access the hint associated with the PRF key.
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Definition 5.1 (Pseudorandomness). Let PP ← Setup(1λ), (k, hint) ←
KeyGen(PP ), and f be a random function from X to Y. Also, let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP, k, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). Then for
all PPT adversary A, we have:

| Pr[AO0(·)(PP ) = 1]− Pr[AO1(·)(PP ) = 1] |≤ negl(λ)

Unremovability. The unremovability property also requires that an adversary
cannot remove or modify the message embedded in a watermarked PRF key
while keeping its functionality. Here, we allow the adversary to learn the hint
associated with the PRF key. Also, we require that the correct hint should be
used when extracting the circuit submitted by the adversary.

Definition 5.2 (Q-Bounded ε-Unremovability). A hinting watermarkable
PRF is Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible
adversaries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the
experiment ExptUR as follows:

1. The challenger samples PP ← Setup(1λ) and (k∗, hint∗)← KeyGen(PP ).
2. Then, it returns (PP, hint∗) to A and answers A’s challenge oracle queries.

Here, A is only allowed to query the challenge oracle for at most Q times.
• Challenge Oracle. On input a message msg ∈M, the challenge oracle

returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.
3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff Extract(PP,

C̃, hint∗) 6∈ Q∗. Here, we use Q∗ to denote all messages submitted to the
challenge oracle and use R∗ to denote all circuits returned by the challenge
oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ ε · |X |.8

5.2 The Construction

Let λ be the security parameter. Let n,m, κ,Q be positive integers that are
polynomial in λ. Let ρ, θ be real values in (0, 1) s.t. 1/θ is polynomial in λ. Let
ϕ = θ/(5 + (κ− 1)Q). Let T = λ/ϕ2. Let ε = ρ · (1− θ).

Also, for any (msg, t∗) ∈ [0, 2κ−1]×{0, 1}λ, we define the following functions
from [0, 2κ − 1]× {0, 1}λ × {0, 1}λ to {0, 1}λ:

f⊥(ind‖t‖µ) = µ

fmsg,t∗(ind‖t‖µ) =

{
0λ If t = t∗ ∧ ind ≥ msg
µ Otherwise

Our construction is built on the following building blocks:

8 Similar to a standard watermarkable PRF, we can define negl(λ)-unremovability,
which requires that ∃ C∗ ∈ R∗ s.t. |{x ∈ X : C∗(x) 6= C̃(x)}| ≤ negl(λ) · |X |.



Public-Key Watermarking Schemes for Pseudorandom Functions 21

• An FE scheme FE = (FE. Setup,FE. KeyGen,FE. Enc,FE. Dec) with message
space {0, 1}κ+2λ, ciphertext space {0, 1}n and density ρ.9 In addition, we
assume w.l.o.g. that FE. Dec is a deterministic algorithm.
• A PKE scheme PKE = (PKE. KeyGen,PKE. Enc,PKE. Dec) with message

space {0, 1}λ and ciphertext space {0, 1}m. Also, we use RPKE. Enc to denote
the randomness space for the algorithm PKE. Enc.
• A PRF F = (F. KeyGen,F. Eval) with input space {0, 1}n and output space
RPKE. Enc.

We construct the public-key hinting watermarkable PRF HWF = (Setup,
KeyGen, Eval, Mark, Extract), which has input space {0, 1}n, output space {0,
1}m and message space {0, 1}κ\{0κ} = [1, 2κ − 1] as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples

w
$← {0, 1}λ, t∗

$← {0, 1}λ, and outputs the public parameter PP = (w, t∗).
• KeyGen. On input the public parameter PP = (w, t∗), the key generation

algorithm computes
1. (mpk,msk)← FE. Setup(1λ).
2. (pk, sk)← PKE. KeyGen(1λ).
3. k ← F. KeyGen(1λ).
4. fsk ← FE. KeyGen(mpk,msk, f⊥).

and outputs the PRF key K = (mpk,msk, pk, k, fsk) and the hint hint =
(mpk, sk, w).

• Eval. On input the public parameter PP = (w, t∗), the PRF key K = (mpk,
msk, pk, k, fsk), and an input x ∈ {0, 1}n, the evaluation algorithm outputs
M[mpk, fsk , pk, k](x), where M is defined in Figure 2.

• Mark. On input the public parameter PP = (w, t∗), the PRF key K = (mpk,
msk, pk, k, fsk), and a message msg ∈ [1, 2κ − 1], the marking algorithm
computes fskmsg ← FE. KeyGen(mpk,msk, fmsg,t∗) and outputs the circuit
M[mpk, fskmsg , pk, k], where M is defined in Figure 2.

• Extract. On input the public parameter PP = (w, t∗), a circuit C, and a
hint hint = (mpk, sk, w̄), the extraction algorithm output ⊥ if w̄ 6= w.
Otherwise, it runs the jump finding algorithm Trace (described in Figure
3) to extract messages from C, where the Test algorithm is also defined in
Figure 3. More precisely, it proceeds as follow:
1. Set the constant for the algorithm Test as (C,mpk, sk, t∗).
2. p0 = Test(0).
3. p2κ−1 = Test(2κ − 1).
4. M ← Trace(0, 2κ − 1, p0, p2κ−1). Here, the extraction algorithm will

abort and output ⊥ if the Test algorithm has been invoked for more
than Q · (κ+ 1) times in the Trace algorithm.

5. If M = ∅, output ⊥.

6. msg
$←M.

7. Output msg.

9 We use density to denote the fraction of honestly generated ciphertexts in the ci-
phertext space. Its formal definition is given in the full version.
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M

Constant: mpk, fsk , pk, k

Input: x

1. µ = FE. Dec(mpk, fsk , x).

2. If µ =⊥, set µ = 0λ.

3. Output y = PKE. Enc(pk, µ;F. Eval(k, x)).

Fig. 2 The circuit M.

Trace

Input: ind1, ind2, p1, p2
1. ∆ = |p1 − p2|.
2. If ∆ ≤ ϕ:

Return ∅.
3. If ind2 − ind1 = 1:

Return {ind2}.
4. ind3 = b ind1+ind2

2
c.

5. p3 = Test(ind3).
6. Return Trace(ind1, ind3, p1, p3)∪

Trace(ind3, ind2, p3, p2).

Test

Constant: E,mpk, sk, t∗

Input: ind
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample µ
$← {0, 1}λ.

(b) x← FE. Enc(mpk, ind‖t∗‖µ).
(c) y = E(x).
(d) µ̄ = PKE. Dec(sk, y).
(e) If µ = µ̄: Acc = Acc+ 1.

3. Return Acc
T

.

Fig. 3 The algorithms Trace and Test.

Theorem 5.1. If FE is a secure functional encryption scheme with Q-adaptive
indistinguishability and strong correctness10, PKE is a secure PKE scheme with
ciphertext pseudorandomness, and F is a secure PRF, then HWF is a secure
public-key hinting watermarkable PRF with Q-bounded ε-unremovability.

We present proof of Theorem 5.1 in the full version.

6 Robust Unobfuscatable PRFs

In this section, we define and construct robust unobfuscatable PRFs. We first
give its formal definition in Sec. 6.1. Then in Sec. 6.2, we construct it from one
way function. We provide the construction from FHE in the full version.

6.1 The Definition

We give definition of robust unobfuscatable PRFs in this section, which follows
definitions in previous works [BGI+01, BP13, Zha21] with slight modifications.
More precisely, an unobfuscatable PRF with input space X , output space Y,
and message space M consists of the following algorithms:

10 The strong correctness requires that the decryption will always output ⊥ given an
invalid ciphertext and will always output the correct result given a valid ciphertext.
Please see the full version for a formal definition.
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• Setup(1λ)→ PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP,msg)→ K : On input the public parameter PP and a message
msg ∈M, the key generation algorithm outputs a PRF key K.

• Eval(PP,K, x) → y : On input the public parameter PP , a PRF key K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the extraction fails.

Correctness. Its correctness requires that the extraction algorithms can always
output the correct message given an honestly generated secret key.

Definition 6.1 (Correctness). For any msg ∈ M, let PP ← Setup(1λ)
and K ← KeyGen(PP,msg), then we have Pr[Extract(PP, Eval(PP,K, ·)) 6=
msg] = 0.

Pseudorandomness. Its black-box pseudorandomness requires that outputs of
the evaluation algorithm are indistinguishable from outputs of a random function
if the adversary is only given oracle access to the evaluation algorithm.

Definition 6.2 (Black-Box Pseudorandomness). For any PPT adversary
A = (A1,A2), let PP ← Setup(1λ). Also, let (msg, state) ← A1(PP ), K ←
KeyGen(PP,msg), and f be a random function from X to Y. Let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP,K, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). We have

| Pr[AO0(·)
2 (state) = 1]− Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)

Learnability. Its robust non-black-box learnability requires that one can learn
the message from a circuit that approximately evaluates the PRF. In particular,
for any function ε ∈ [0, 1], we define ε-robust learnability as follows.

Definition 6.3 (ε-Robust Learnability). For all PPT and ε-admissible ad-
versaries A = (A1,A2), we have

Pr


PP ← Setup(1λ);

(msg, state)← A1(PP );

K ← KeyGen(PP,msg);

C← A2(K, state);

msg ← Extract(PP, C);

: msg 6= msg

 ≤ negl(λ)

Here, we say that an adversary A is ε-admissible if |{x ∈ X : C(x) 6= Eval(PP,
K, x)}| ≤ ε · |X |.11
11 Similar to a (hinting) watermarkable PRF, we can define negl(λ)-robust learnability,

which requires that |{x ∈ X : C(x) 6= Eval(PP,K, x)}| ≤ negl(λ) · |X |.
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6.2 The Construction

Let λ be the security parameter. Let n0 = 3, n1 = (λ + 2) · λ, n2 = 2(λ + 1),
n3 = λ+ 1, n4 = λ, n5 = λ · (λ+ 1). Let n = n0 + n1 + n2 + n3 + n4 + n5. Let
m be a positive integer that is polynomial in λ s.t. m ≥ λ · (λ+ 1).

Our construction is built on the following building blocks, all of which can
be constructed from one way functions:

• A PRF Fenc = (Fenc . KeyGen,Fenc . Eval) with input space {0, 1}λ and out-
put space {0, 1}.
• An invoker randomizable PRF FIR = (FIR. KeyGen,FIR. Eval) with input

space {0, 1}n−n1 × {0, 1}n1 and output space {0, 1}n1 .
• A PRF Fmask = (Fmask . KeyGen,Fmask . Eval) with input space {0, 1}n−n0

and output space {0, 1}m.
• A PRF Fpad = (Fpad . KeyGen,Fpad . Eval) with input space {0, 1}n and out-

put space {0, 1}m.

We construct the robust unobfuscatable PRF UOF = (Setup, KeyGen, Eval,
Extract), which has input space {0, 1}n, output space {0, 1}m, and message
space {0, 1}m as follows:

• Setup. There is no need to set the public parameter in this construction and
the setup algorithm outputs PP = 1λ on input the security parameter 1λ.

• KeyGen. On input the security parameter 1λ and the message msg, the

key generation algorithm samples α
$← {0, 1}λ and β

$← {0, 1}λ. Then
it generates PRF keys kenc ← Fenc . KeyGen(1λ), kIR ← FIR. KeyGen(1λ),
kmask ← Fmask . KeyGen(1λ), and kpad ← Fpad . KeyGen(1λ). Finally, it out-
puts the PRF key

K = (α, β, kenc , kIR, kmask , kpad ,msg)

• Eval. On input the secret key K = (α, β, kenc , kIR, kmask , kpad ,msg) and an
input x ∈ {0, 1}n, the evaluation algorithm first parses x = (u0, u1, u2, u3,
u4, u5) ∈ {0, 1}n0×{0, 1}n1×{0, 1}n2×{0, 1}n3×{0, 1}n4×{0, 1}n5 . Then it
sets w = (u0, u2, u3, u4, u5) and computes (r1, r2, . . . , rλ+2) = FIR. Eval(kIR,
w, u1), where ri ∈ {0, 1}λ for i ∈ [1, λ+ 2]. Next, it deals with the following
cases:

– If u0 = 0:
1. For i ∈ [1, λ]:

(a) cti = ri‖Fenc . Eval(kenc , ri)⊕ α[i].
2. ypad = Fpad . Eval(kpad , x)[1 : m− λ · (λ+ 1)].
3. Output ct1‖ . . . ‖ctλ‖ypad .

– If u0 = 1:
1. Parse u2 = (r̄1, c̄1, r̄2, c̄2) ∈ {0, 1}λ × {0, 1} × {0, 1}λ × {0, 1}.
2. µ1 = Fenc . Eval(kenc , r̄1)⊕ c̄1.
3. µ2 = Fenc . Eval(kenc , r̄2)⊕ c̄2.
4. µ = µ1 Z µ2.



Public-Key Watermarking Schemes for Pseudorandom Functions 25

5. ct = rλ+1‖Fenc . Eval(kenc , rλ+1)⊕ µ.
6. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
7. Output ct‖ypad .

– If u0 = 2:
1. Parse u3 = (r̄, c̄) ∈ {0, 1}λ × {0, 1}.
2. µ = Fenc . Eval(kenc , r̄)⊕ c̄.
3. ct = rλ+2‖Fenc . Eval(kenc , rλ+2)⊕ µ.
4. ypad = Fpad . Eval(kpad , x)[1 : m− (λ+ 1)].
5. Output ct‖ypad .

– If u0 = 3:
1. z = (u1, u2, u3, u4, u5).
2. ymask = Fmask . Eval(kmask , z).
3. Output ymask .

– If u0 = 4:
1. u′4 = u4 ⊕ α.
2. z = (u1, u2, u3, u

′
4, u5).

3. ymask = Fmask . Eval(kmask , z).
4. Output (β‖0m−λ)⊕ ymask .

– If u0 = 5:
1. Parse u5 = (r̄i, c̄i)i∈[1,λ] ∈ ({0, 1}λ × {0, 1})λ.
2. For i ∈ [1, λ]:

(a) µi = Fenc . Eval(kenc , r̄i)⊕ c̄i.
3. ν = µ1‖ . . . ‖µλ.
4. u′4 = u4 ⊕ ν ⊕ β.
5. z = (u1, u2, u3, u

′
4, u5).

6. ymask = Fmask . Eval(kmask , z).
7. Output msg ⊕ ymask .

– If u0 = 6 or u0 = 7:
1. ypad = Fpad . Eval(kpad , x).
2. Output ypad .

• Extract. On input a circuit C, the extraction algorithm first obtains ct1, . . . ,
ctλ as follows:

x′0
$← {0, 1}n−n0 , x0 = 000‖x′0, y0 = C(x0)

(ct1, . . . , ctλ) = y0[1 : λ · (λ+ 1)]

Then it computes:

x′1
$← {0, 1}n−n0 , x1 = 011‖x′1, y1 = C(x1)

and samples γ
$← {0, 1}λ. Let P = P̄[x′1, C, y1, γ], where P̄ is defined in Figure

4. Let |P| be the number of wires for the circuit P and label each wire of P
with a number in [1, |P|], where each wire has a larger label than its children.
We can label the input wires as 1, . . . , λ. Also, we can label the output wires
as |P| − λ+ 1, . . . , |P|, where the i-th output wire is labeled with |P| − λ+ i.
Next, the extraction algorithm proceeds as follows for j ∈ [λ+ 1, |P|], where
jL and jR are the labels of the children of the wire labelled with j:
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1. u
(j)
1

$← {0, 1}n1 .

2. (u
(j)
3 , u

(j)
4 , u

(j)
5 )

$← {0, 1}n3 × {0, 1}n4 × {0, 1}n5 .
3. If jL 6= jR:

(a) u
(j)
2 = (ctjL , ctjR).

4. If jL = jR:

(a) (ū
(j)
1 , ū

(j)
2 )

$← {0, 1}n1 × {0, 1}n2 .

(b) (ū
(j)
4 , ū

(j)
5 )

$← {0, 1}n4 × {0, 1}n5 .

(c) ū
(j)
3 = ctjL .

(d) ū
(j)
0 = 010.

(e) x̄2,j = ū
(j)
0 ‖ū

(j)
1 ‖ū

(j)
2 ‖ū

(j)
3 ‖ū

(j)
4 ‖ū

(j)
5 .

(f) ȳ2,j = C(x̄2,j).
(g) c̄tjL = ȳ2,j [1 : λ+ 1].

(h) u
(j)
2 = (ctjL , c̄tjL).

5. u
(j)
0 = 001.

6. x2,j = u
(j)
0 ‖u

(j)
1 ‖u

(j)
2 ‖u

(j)
3 ‖u

(j)
4 ‖u

(j)
5 .

7. y2,j = C(x2,j).
8. ctj = y2,j [1 : λ+ 1].

After obtaining ct|P|−λ+1, . . . , ct|P|, the extraction algorithm finally extracts
the message as follows:

1. (u1, u2, u3, u4)
$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 .

2. u5 = (ct|P|−λ+1, . . . , ct|P|).
3. u0 = 101.
4. x3 = u0‖u1‖u2‖u3‖u4‖u5.
5. y3 = C(x3).
6. ũ0 = 011.
7. ũ4 = u4 ⊕ γ.
8. x̃3 = ũ0‖u1‖u2‖u3‖ũ4‖u5.
9. ỹ3 = C(x̃3).

10. msg = ỹ3 ⊕ y3.

Finally, it outputs msg.

Theorem 6.1. If Fenc ,Fmask ,Fpad are secure PRFs and FIR is a secure invoker
randomizable PRF, then UOF is a secure robust unobfuscatable PRF family with
negl(λ)-robust learnability.

We present proof of Theorem 6.1 in the full version.

7 Construction of Public-Key Watermarkable PRFs

Now, we present the general construction of public-key watermarkable PRFs
from public-key hinting watermarkable PRFs and robust unobfuscatable PRFs.
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P̄

Constant: x′1, C, y1, γ

Input: a

1. Parse x′1 = (u1, u2, u3, u4, u5) ∈ {0, 1}n1 ×{0, 1}n2 ×{0, 1}n3 ×{0, 1}n4 ×{0, 1}n5 .

2. ũ0 = 100.

3. ũ4 = u4 ⊕ a.

4. x̃1 = ũ0‖u1‖u2‖u3‖ũ4‖u5.

5. ỹ1 = C(x̃1).

6. b = (ỹ1 ⊕ y1)[1 : λ].

7. Output b⊕ γ.

Fig. 4 The circuit P̄.

Let λ be the security parameter. Let n,m,m1,m2, κ, l, l1, l2, Q be positive
integers that are polynomial in λ and satisfy m = m1 +m2 and l = l1 + l2. Let
ε1, ε2, ε be real values in (0, 1) s.t. ε = min(ε1, ε2).12

Our construction is built on the following building blocks:

• A public-key hinting watermarkable PRF HWF = (HWF. Setup,
HWF. KeyGen,HWF. Eval,HWF. Mark,HWF. Extract) with input space {0,
1}n, output space {0, 1}m1 , and message space {0, 1}κ. Also, we use l1 to
denote the length of the hint of HWF (i.e., each hint can be represented by
a string in {0, 1}l1).
• A robust unobfuscatable PRF UOF = (UOF. Setup,UOF. KeyGen,
UOF. Eval,UOF. Extract) with input space {0, 1}n, output space {0, 1}m2 ,
and message space {0, 1}l.
• A PRF F = (F. KeyGen,F. Eval) with key space {0, 1}l2 , input space {0, 1}n

and output space {0, 1}m1 .

We construct the public-key watermarkable PRF WPRF = (Setup, KeyGen,
Eval, Mark, Extract), which has input space {0, 1}n, output space {0, 1}m and
message space {0, 1}κ as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples
pphw ← HWF. Setup(1λ) and ppuo ← UOF. Setup(1λ). Then it outputs the
public parameter PP = (pphw , ppuo).

• KeyGen. On input the public parameter PP = (pphw , ppuo), the key gen-
eration algorithm first generates (khw , hint) ← HWF. KeyGen(pphw ), kf ←
F. KeyGen(1λ), and kuo ← UOF. KeyGen(ppuo , hint‖kf ). Then, it outputs the
PRF key K = (khw , kf , kuo).

• Eval. On input the public parameter PP = (pphw , ppuo), the PRF key K =
(khw , kf , kuo), and an input x ∈ {0, 1}n, the evaluation algorithm proceeds
as follows:
1. yhw = HWF. Eval(pphw , khw , x).
2. yf = F. Eval(kf , x).

12 Here, ε1, ε2, ε can be the negligible function negl(λ) instead of a concrete value.
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3. yuo = UOF. Eval(ppuo , kuo , x).
4. Outputs y = (yhw ⊕ yf , yuo).

• Mark. On input the public parameter PP = (pphw , ppuo), the PRF key
K = (khw , kf , kuo), and a message msg ∈ {0, 1}κ, the marking algorithm
computes Chw ← HWF. Mark(pphw , khw ,msg). Then it outputs a circuit
C : {0, 1}n → {0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw (x)⊕ F. Eval(kf , x),UOF. Eval(ppuo , kuo , x))

• Extract. On input the public parameter PP = (pphw , ppuo), and a circuit
C, the extraction algorithm proceeds as follow:
1. Set Cuo as a circuit that for any x ∈ {0, 1}n, Cuo(x) = C(x)[m1 + 1 : m].
2. (hint, kf )← UOF. Extract(ppuo , Cuo).
3. If (hint, kf ) =⊥: output ⊥.
4. Set Chw as a circuit that for any x ∈ {0, 1}n, Chw (x) = C(x)[1 : m1] ⊕

F. Eval(kf , x).
5. Output msg ← HWF. Extract(pphw , Chw , hint).

Theorem 7.1. If HWF is a secure public-key hinting watermarkable PRF with
Q-bounded ε1-unremovability, UOF is a secure robust unobfuscatable PRF with
ε2-robust learnability, and F is a secure PRF, then WPRF is a secure public-key
watermarkable PRF with Q-bounded ε-unremovability.

We present proof of Theorem 7.1 in the full version.
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