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Abstract. Motivated by several new and natural applications, we initiate
the study of multi-input predicate encryption (miPE) and further develop
multi-input attribute based encryption (miABE). Our contributions are:
1. Formalizing Security: We provide definitions for miABE and miPE

in the symmetric key setting and formalize security in the standard
indistinguishability (IND) paradigm, against unbounded collusions.

2. Two-input ABE for NC1 from LWE and Pairings: We provide the
first constructions for two-input key-policy ABE for NC1 from LWE
and pairings. Our construction leverages a surprising connection
between techniques recently developed by Agrawal and Yamada
(Eurocrypt, 2020) in the context of succinct single-input ciphertext-
policy ABE, to the seemingly unrelated problem of two-input key-
policy ABE. Similarly to Agrawal-Yamada, our construction is proven
secure in the bilinear generic group model. By leveraging inner
product functional encryption and using (a variant of) the KOALA
knowledge assumption, we obtain a construction in the standard
model analogously to Agrawal, Wichs and Yamada (TCC, 2020).

3. Heuristic two-input ABE for P from Lattices: We show that tech-
niques developed for succinct single-input ciphertext-policy ABE by
Brakerski and Vaikuntanathan (ITCS 2022) can also be seen from
the lens of miABE and obtain the first two-input key-policy ABE from
lattices for P.

4. Heuristic three-input ABE and PE for NC1 from Pairings and Lattices:
We obtain the first three-input ABE for NC1 by harnessing the powers
of both the Agrawal-Yamada and the Brakerski-Vaikuntanathan
constructions.

5. Multi-input ABE to multi-input PE via Lockable Obfuscation: We
provide a generic compiler that lifts multi-input ABE to multi-input
PE by relying on the hiding properties of Lockable Obfuscation (LO)
by Wichs-Zirdelis and Goyal-Koppula-Waters (FOCS 2018), which
can be based on LWE. Our compiler generalises such a compiler for
single-input setting to the much more challenging setting of multiple
inputs. By instantiating our compiler with our new two and three-
input ABE schemes, we obtain the first constructions of two and
three-input PE schemes.
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Our constructions of multi-input ABE provide the first improvement to
the compression factor of non-trivially exponentially efficient Witness
Encryption defined by Brakerski et al. (SCN 2018) without relying on
compact functional encryption or indistinguishability obfuscation. We
believe that the unexpected connection between succinct single-input
ciphertext-policy ABE and multi-input key-policy ABE may lead to a
new pathway for witness encryption. We remark that our constructions
provide the first candidates for a nontrivial class of miFE without needing
LPN or low depth PRG.

Keywords: Multi-input · Attribute Based Encryption · Predicate
Encryption.

1 Introduction

Attribute based encryption (ABE) is a generalization of public key encryption
which enables fine grained access control on encrypted data. In an ABE scheme,
the ciphertext is associated with a secret message m and a public attribute vector
x while a secret key is associated with a function f . Decryption succeeds to reveal
m if and only if f(x) = 1. Security seeks ciphertext indistinguishability in the
presence of collusion attacks, namely an adversary possessing a collection of keys
{skfi}i∈[poly] should not be able to distinguish between ciphertexts corresponding
to (x,m0) and (x,m1) unless one of the keys skfi∗ is individually authorised to
decrypt, i.e. fi∗(x) = 1. ABE comes in two flavours – “key-policy” and “ciphertext-
policy”, depending on whether the function f is embedded in the key or the
ciphertext.

The stronger notion of predicate encryption (PE) [18, 49, 36, 29] further
requires the attribute vector x to be hidden so that ciphertexts corresponding
to (x0,m0) and (x1,m1) remain indistinguishable so long as fi(x0) = fi(x1) = 0
for all secret keys {skfi}i∈[poly] seen by the adversary.

Both ABE and PE have been widely studied, and possess elegant instantiations
from a variety of assumptions [48, 32, 18, 36, 37, 46, 47, 22, 6, 38, 39, 51, 28, 52, 13,
16, 29, 30, 20, 18, 49, 36, 29]. Despite all this amazing progress, however, all known
constructions support the single input setting – namely, the function f embedded
in the secret key skf has arity one, so that the secret key can be used to decrypt
only a single ciphertext at a time. While the more realistic multi-input setting
has been studied for other closely related notions such as fully homomorphic
encryption [44, 24, 45] and functional encryption [27, 11, 4, 25, 3, 23, 50, 2, 1, 40, 7],
this has not been investigated at all in the context of predicate encryption, and
only sparingly [19] in the context of attribute based encryption.

Supporting Multiple Sources. We argue that the multi-input setting is important
even in the context of ABE and PE and generalizing these primitives to support
multiple sources enables a host of new and natural applications. At the heart
of the multi-input setting, for any primitive, is the fact that data generated
independently in multiple locations may be correlated in meaningful ways, and it
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is often pertinent to consider the input as a concatenation of these correlated
partial inputs. For instance, a patient is likely to visit different medical centres for
treatment of different diseases and her overall medical record is a concatenation
of the medical data generated at different centers. Similarly, a company is likely
to conduct research and development related to a given technology in different
locations but the complete data pertaining to that technology is a concatenation
of these. Moreover, to organize data logically and to benefit from cloud storage
and computing, it is useful for each source to upload this encrypted data to a
central server. Now, it may be desirable to provide restricted access to relevant
consumers of the data, exactly as in ABE for encrypted access control (say) or
PE for encrypted search (say), but with the caveat that the input was generated
in a distributed manner and is encoded in multiple ciphertexts.

For concreteness, consider a doctor who is treating Covid patients and wants
to understand the relation between Covid and other medical conditions such as
asthma or cancer, each of which are treated at different locations. The records of a
given patient are encrypted independently and stored in a central repository, and
the doctor can be given a key that filters stored (encrypted) records according
to criteria such as condition = ‘Covid’ and condition = ‘asthma’ and age group
=‘60-80’ and enables decryption of these. Similarly, a company (e.g. IBM) which
conducts research in quantum technologies is likely to have different teams for
theoretical and experimental research, and these teams are likely to work in
different locations – indeed, even members of the same team may not be co-located.
Data pertaining to the research could be stored encrypted in a central location
where individual ciphertexts are generated independently, and the company may
desire to give restricted access to a patent office. As a third example, a company
may have been sued for some malpractice, and the data pertinent to the case
could span multiple locations. Now the company may wish to provide restricted
access to a law firm which enables decryption only of the data pertaining to the
lawsuit, encrypted independently by multiple sources. A possible solution may
be to gather all the information at a central entity and then use single input
ABE or PE as before, but there are two problems with this approach: (i)if data is
transmitted unencrypted to the central server it creates vulnerability – this can
be avoided by each source encrypting to the server’s public key, and the server
decrypting and re-encrypting using single input schemes, but this is wasteful and
cumbersome, (ii) one may desire to use an untrusted commercial cloud server to
store the encrypted data, in which case the step of creating the ciphertext at a
central server in step (i) is completely redundant and doubly inefficient.

Multi-input attribute based encryption (miABE) or predicate encryption
(miPE) arise as natural fits to the above applications. Similarly to the single input
case, the secret key corresponds to a function f but the arity of this function can
now be k > 1 – we may have k ciphertexts generated independently encoding
(xi,mi)i∈[k], and decryption reveals (m1, . . . ,mk) if and only if f(x1, . . . ,xk) = 1.
Indeed, any application of single input ABE and PE where the underlying data is
generated in multiple locations and is correlated in meaningful ways can benefit
from the abstraction of multi-input ABE and PE.
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Prior Work. Brakerski et al. [19] studied the notion of miABE and showed that
miABE for polynomial arity implies witness encryption (WE). However, though
they provided the first definition of miABE, they only used it as a new pathway
for achieving witness encryption, not as a notion with its own applications – in
their definition, only the first encryptor has any input, since this suffices for WE.
They do not consider strong notions of security or provide any constructions
of miABE. They also defined the notion of non-trivially exponentially efficient
witness encryption (XWE), where the encryption run-time is only required to be
much smaller than the trivial 2m bound for NP relations with witness size m.
They show how to construct such XWE schemes for all of NP with encryption
run-time 2m/2 using the single input ABE by [28]. For encryption run-time 2γ·m,
the term γ is denoted as compression factor, and they explicitly left open the
problem of constructing XWE schemes with an improved compression factor.

Both ABE and PE can be captured as special cases of functional encryption
[48, 17], which has been studied extensively, in both the single-input [48, 17, 28, 16]
and multi-input setting [27, 11, 4, 25, 3, 23, 50, 2, 1, 40, 7]. Recall that in functional
encryption (FE), a secret key is associated with a function f , a ciphertext is
associated with an input x and decryption allows to recover f(x) and nothing else.
It is easy to see that PE and ABE are both special cases of FE – in particular, both
PE and ABE achieve the same functionality but restrict the security requirements
of FE. In PE, we ask that the attribute x be hidden but only when the adversary
does not see any decrypting keys, namely fi(x) = 0 for all function keys fi received
by the adversary. On the other hand, in FE, the attacker may request a key
skf , so long as f does not distinguish the challenge messages (x0,m0), (x1,m1),
namely, we may have f(x0) = f(x1) = 1 so long as m0 = m1

3. In the even weaker
ABE, we do not ask any notion of hiding for x, and this may be provided in the
clear with the ciphertext.

Why not Functional Encryption? The informed reader may wonder what is the
advantage of studying primitives like miPE or miABE when these are special cases
of multi-input functional encryption (miFE), which has recently been constructed
from standard assumptions [34, 11]. It was shown by [11, 15] that FE satisfying a
certain efficiency property (known as compactness) implies multi-input functional
encryption, which in turn implies the powerful primitive of indistinguishability
obfuscation (iO) [14]. A long line of exciting works endeavoured to construct
compact FE (and hence iO) from standard assumptions [41, 42, 43, 5, 12, 33, 26],
coming ever-closer, until the very recent work of Jain, Lin and Sahai closed the
last remaining gap and achieved this much sought after goal [34, 35]. In [34, 35],
the authors provide a construction for compact FE, which in turn implies miFE
for polynomial arity (albeit with exponential loss in the reduction).

Going via the route of compact FE, we obtain an exciting feasibility result for
miFE and hence miABE as well as miPE. However, we argue that using something

3 We note that a message m separate from attribute x is not required in the definition
of FE, but we include it here for simpler comparison with PE and ABE.
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as strong as miFE or iO to construct miABE and miPE is undesirable, and indeed
an “overkill” for the following reasons:

– Assumptions: Compact FE of [34] is constructed via a careful combination
of 4 assumptions – Learning Parity with Noise (LPN), Learning With
Errors (LWE), SXDH assumption on Pairings, and pseudorandom generators
computable in constant depth. In the follow-up work of [35], this set of
assumptions was trimmed to exclude LWE. Therefore any construction
built using compact FE must make at least this set of assumptions, which
is restrictive. A major goal in the theory of cryptography is developing
constructions from diverse assumptions.

– Complexity: The construction of compact FE is extremely complex, comprising
a series of careful steps, and this must then be lifted to miFE using another
complex construction [11]. Unlike FE, both PE and ABE are much simpler,
“all or nothing” primitives and permit direct constructions in the single-input
setting [28, 16, 29]. Do we need the full complexity of an miFE construction
to get miPE or miABE? Indeed, even in the context of miFE, there is a large
body of work that studies direct constructions for smaller function classes
such as linear and quadratic functions [4, 25, 3, 23, 50, 2, 1, 40, 7].

– New Techniques: Finally and most importantly, we believe that it is extremely
useful to develop new techniques for simpler primitives that are not known to
be in obfustopia, and provide direct constructions. While direct constructions
are likely to be more efficient, and are interesting in their own right, they
may also lead to new pathways even for obfustopia primitives such as witness
encryption or compact FE. Note that the only known construction of FE from
standard assumptions is by [34, 35], which makes crucial (and surprising) use
of LPN in order to overcome a technical barrier – is LPN necessary for other
primitives implied by compact FE? We believe that exploring new methods
to construct weaker primitives is of central importance in developing better
understanding of cryptographic assumptions, their power and limits.

1.1 Our Results

In this work, we initiate the study of multi-input predicate and attribute based
encryption (miABE and miPE) and make the following contributions:

1. Formalizing Security: We provide definitions for miABE and miPE in the
symmetric key setting and formalize two security notions in the standard
indistinguishability (IND) paradigm, against unbounded collusions. The first
(regular) notion of security assumes that the attacker does not receive any
decrypting keys, as is standard in the case of PE/ABE. The second strong
notion, allows some decrypting queries in restricted settings.

2. Two-input ABE for NC1 from LWE and Pairings: We provide the first
constructions for two-input key-policy ABE for NC1 from LWE and pairings.
Our construction leverages a surprising connection between techniques
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recently developed by Agrawal and Yamada [10] in the context of succinct
single-input ciphertext-policy ABE, to the seemingly unrelated problem of
two-input key-policy ABE. Similarly to [10], our construction is proven secure
in the bilinear generic group model. By leveraging inner product functional
encryption and using (a variant of) the KOALA knowledge assumption, we
obtain a construction in the standard model analogously to Agrawal, Wichs
and Yamada [8].

3. Heuristic two-input ABE for P from Lattices: We show that techniques
developed for succinct single-input ciphertext-policy ABE by Brakerski and
Vaikuntanathan [21] can also be seen from the lens of miABE and obtain
the first two-input key-policy ABE from lattices for P. Similarly to [21], this
construction is heuristic.

4. Heuristic three-input ABE and PE for NC1 from Pairings and Lattices: We
obtain the first three-input ABE for NC1 by harnessing the powers of both the
Agrawal-Yamada [10] and the Brakerski-Vaikuntanathan [21] constructions.

5. Multi-input ABE to multi-input PE via Lockable Obfuscation: We provide
a generic compiler that lifts multi-input ABE to multi-input PE by relying
on the hiding properties of Lockable Obfuscation (LO) by Wichs-Zirdelis
and Goyal-Koppula-Waters (FOCS 2018), which can be based on LWE. Our
compiler generalises such a compiler for single-input setting to the much more
challenging setting of multiple inputs. By instantiating our compiler with our
new two and three-input ABE schemes, we obtain the first constructions of
two and three-input PE schemes.

Our constructions of multi-input ABE provide the first improvement to the
compression factor (from 1/2 to 1/3 or 1/4) of non-trivially exponentially efficient
Witness Encryption defined by Brakerski et al. [19] without relying on compact
functional encryption or indistinguishability obfuscation. We believe that the
unexpected connection between succinct single-input ciphertext-policy ABE and
multi-input key-policy ABE may lead to a new pathway for witness encryption.
We remark that our constructions provide the first candidates for a nontrivial
class of miFE without needing LPN or low depth PRG.

1.2 Our Techniques

Modeling Multi-Input Attribute Based and Predicate Encryption. Our
first contribution is to model multi-input attribute based encryption (miABE)
and predicate encryption (miPE) as relevant primitives in their own right. To
begin, we observe that similarly to multi-input functional encryption (miFE)
[27], these primitives are meaningful primarily in the symmetric key setting
where the encryptor requires a secret key to compute a ciphertext. This is
to prevent the primitive becoming trivial due to excessive leakage occurring
by virtue of functionality. In more detail, let us say k encryptors compute an
unbounded number ciphertexts in each slot, i.e. {(xj1,m

j
1), . . . (x

j
k,m

j
k)}j∈[poly]
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and the adversary obtains secret keys corresponding to functions {fi}i∈[poly]. In
the multi-input setting, ciphertexts across slots can be combined, allowing the
adversary to compute fi(x

j1
1 ,x

j2
2 , . . . ,x

jk
k ) for any indices i, j1, . . . , jk ∈ [poly].

In the public key setting, an adversary can easily encrypt messages for various
attributes of its choice and decrypt these with the challenge ciphertext in a given
slot to learn a potentially unbounded amount of information. Due to this, we
believe that the primitives of miABE and miPE are meaningful in the symmetric
key setting where encryption also requires a secret key.

For security, we require the standard notion of ciphertext indistinguishability
in the presence of collusion attacks, as in the single-input setting. Recall that
in the single-input setting, the adversary cannot request any decrypting keys
for challenge ciphertexts to prevent trivial attacks. However, since we are in the
symmetric key setting where the adversary cannot encrypt herself, we propose an
additional notion of strong security which also permits the adversary to request
decrypting ciphertexts in some cases. In more detail, for the case of miABE, our
strong security game allows the attacker to request function keys for {fi}i∈[poly]
and ciphertexts for tuples {(xj1,m

j
β,1), . . . , (x

j
k,m

j
β,k)}β∈{0,1},j∈[poly] so that it

may hold that fi(x
j1
1 , . . . ,x

jk
k ) = 1 for some i, j1, . . . , jk ∈ [poly] as long as the

challenge messages do not distinguish, i.e. (mj1
1,0 = mj1

1,1), . . . , (m
jk
k,0 = mjk

k,1). For
the case of miPE, we analogously define a strong version of security by asking
that if fi(x

j1
1,β , . . . ,x

jk
k,β) = 1 holds for some i, j1, . . . , jk ∈ [poly] and β ∈ {0, 1},

then it is also true that (xj11,0, . . . ,x
jk
k,0) = (xj11,1, . . . ,x

jk
k,1) and (mj1

1,0, . . . ,m
jk
k,0) =

(mj1
1,1, . . . ,m

jk
k,1). For more details, please see Section 2.

Constructing Two Input ABE from LWE and Bilinear GGM. In
constructing two input ABE (2ABE), the main difficulty is to satisfy two seemingly
contradicting requirements at the same time: (1) the two ciphertexts should be
created independently, (2) these ciphertexts should be combined in a way that
decryption is possible. If we look at specific ABE schemes (e.g., [32, 16]), it seems
that these requirements cannot be satisfied simultaneously. If we want to satisfy
the second requirement, the two ciphertexts should have common randomness.
However to satisfy the first requirement, the randomness in the two ciphertexts
needs to be sampled independently. An approach might be to fix the randomness
and put it into the master secret key which is then used by both ciphertexts – but
this will compromise security since fresh randomness is crucial in safeguarding
semantic security.

Generating Joint Randomness: For resolving this problem, we consider a scheme
that modifies two independently generated ciphertexts so that they have common
randomness and then “joins” them. This common randomness is jointly generated
using independently chosen randomness in each ciphertext by using a pairing
operation. Specifically, we compute a ciphertext for slot 1 with randomness t1
and encode it in G1 and similarly, for slot 2 with randomness t2 in G2, where
G : G1×G2 → GT is a pairing group with prime order q. Then, both ciphertexts
may be combined to form a new ciphertext with respect to the randomness t1t2
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on GT . This approach seems to be promising, because we can uniquely separate
every pair of ciphertexts, since each pair (i, j) will have unique randomness ti1t

j
2.

In the generic group model, this is sufficient to prohibit “mix and match” attacks
that try to combine components of different ciphertexts in the same slot.

Moving Beyond Degree 2: However, since we “used up" the pairing operation
here, it appears we cannot perform more than linear operations on the generated
ciphertext, which would severely restrict the function class supported by our
construction. In particular, pairing based ABE schemes seem not to be compatible
with the above approach, because these require additional multiplication in the
exponent during decryption, which cannot be supported using a bilinear map.
However, at this juncture, a trick suggested by Agrawal and Yamada [10] comes
to our rescue – to combine lattice based ABE with bilinear maps in a way that
lets us get the “best of both”.

At a high level, the Agrawal-Yamada trick rests on the observation that in
certain lattice based ABE schemes [16, 30], decryption is structured as follows: (i)
evaluate the circuit f on ciphertext encodings of x, (ii) compute a matrix-vector
product of the ciphertext matrix and secret key vector, (iii) perform a rounding
operation to recover the message. Crucially, step (i) in the above description
is in fact a linear operation over the encodings, even for circuits in P, and the
only nonlinear part of decryption is the rounding operation in step (iii). They
observe that steps (i) and (ii) may be done “upstairs” in the exponent and step
(iii) may be done “downstairs” by recovering the exponent brute force, when it is
small enough. Importantly, the exponent is small enough when the circuit class
is restricted to NC1 using asymmetry in noise growth [30, 28]. While this idea
was developed in the context of a single-input ciphertext-policy ABE, it appears
to be exactly what we need for two-input key-policy ABE!

Perspective: Connection to Broadcast Encryption: In hindsight, the application
of optimal broadcast encryption requires succinctness of the ciphertext, which
recent constructions [21, 10, 8] obtain by relying on the decomposability of specific
ABE schemes [16, 30] – this decomposability is also what the multi-input setting
intrinsically requires, albeit for a different reason. In more detail, decomposability
means that the ciphertext for a vector x can be decomposed into |x| ciphertext
components each encoding a single bit xi, and these components can be tied
together using common randomness to yield a complete ciphertext. The bit by
bit encoding of the vector allows 2|x| ciphertext components, each component
encoding both bits for a given position, to together encode 2|x| possible values of
x, which leads to the succinctness of ciphertext in optimal broadcast encryption
schemes [21, 10, 8]. In the setting of multi-input ABE, decomposability allows
to morph independently generated full ciphertexts with distinct randomness to
components of a single ciphertext with common randomness. The randomness is
“merged” using pairings (or lattices, see below) and the resultant ciphertext can
now be treated like the ciphertext of a single input scheme.
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Adapting to the 2ABE Setting: Let us recall the structure of the ciphertext in
scheme of Boneh et al. [16], which is denoted as BGG+ hereafter. As discussed
above, a ciphertext for an attribute x ∈ [2`]4 in BGG+ is generated by first
generating LWE encodings (their exact structure is not important for this overview)
for all possible values of the attribute x, namely, {ψi,b}i∈[2`],b∈{0,1} (along with
other components which are not relevant here) and then selecting {ψi,xi}i∈[2`]
based on x, where xi is the i-th bit of the attribute string x.

Given the above structure, a candidate scheme works as follows. The setup
algorithm computes encodings for all possible x, namely {ψi,b}i,b and puts
them into the master secret key. The encryptor for slot 1 chooses t1 ← Zq and
encodes (t1, {t1ψi,x1,i}i∈[`]) in the exponent of G1. Similarly, the encryptor for
slot 2 chooses t2 ← Zq and encodes (t2, {t2ψi,x2,i−`

}i∈[`+1,2`]) in the exponent
of G2. In decryption, we compute a pairing of matching components of the two
ciphertexts to obtain (t1t2, {t1t2ψi,xi

}i∈[2`]) in the exponent of GT . Using the
BGG+ decryption procedure described above, we may perform linear operations
to evaluate the circuit, apply the BGG+ secret key and obtain the message plus
noise in the exponent, which is brought “downstairs” by brute force to perform
the rounding and recover the message.
Challenges in Proving Security. While the above sketch provides a construction
template, security is far from obvious. Indeed, some thought reveals that the
multi-input setting creates delicate attack scenarios that need care to handle. As
an example, consider the strong security definition which allows the adversary to
request ciphertexts that are decryptable by secret keys so long as they do not
lead to a distinguishing attack. For simplicity, let us restrict to the setting where
only the slot 1 ciphertext carries a message and slot 2 ciphertexts carry nothing
except attributes (this restriction can be removed). Now, a slot 1 ciphertext may
carry a message that depends on the challenger’s secret bit as long as it is not
decryptable by any key. However, slot 2 ciphertexts may participate in decryption
with other slot 1 ciphertexts that do not encode the challenge bit, and decryption
can (and does) lead to randomness leakage of participating ciphertexts. When
such a “leaky” slot 2 ciphertext is combined with the challenge slot 1 ciphertext
for decryption, security breaks down.

For concreteness, let us consider the setting where the adversary makes slot
1 ciphertext queries for (x1, (m0,m1)) and (x′1, (m

′
0,m

′
1)) and slot 2 ciphertext

query for (x2). Furthermore, the adversary makes a single key query for a circuit
F such that F (x1,x2) = 0 (unauthorized) and F (x′1,x2) = 1 (authorized). Note
that to prevent trivial attacks, we pose the restriction that m′0 = m′1, but we may
have m0 6= m1. In this setting, the 2ABE construction described above is not
secure since the noise associated with the slot 2 ciphertext for x2 leaks during
decryption of the jointly generated ciphertext for (x′1,x2) and this prevents using
BGG+ security for the pair (x1,x2).

To resolve the above problem, we need to somehow “disconnect” random-
ness used in the challenge ciphertexts of slot 1 from randomness used in

4 The length of the attribute is set to 2` to match our two-input setting.



10 S. Agrawal et al.

leaky/decrypting ciphertexts of other slots. This is tricky since the multi-input
setting insists that ciphertexts be combined across slots in an unrestricted way.
Fortunately, another technique developed [10] for a completely different reason
comes to our assistance – we discontinue encoding the BGG+ ciphertexts in
2ABE ciphertexts for slot 2, so that even if a slot 2 ciphertext is decrypted, this
does not affect the security of the BGG+ encoding. Instead, we encode a binary
“selection vector" in the exponent of G2, which enables the decryptor to recover
ψ2,x2,i

when matching positions of slot 1 and slot 2 ciphertext components are
paired. In the context of broadcast encryption (i.e. succinct ciphertext-policy
ABE) [10] this trick was developed because the key generator could not know the
randomness used by the encryptor, and moreover this randomness is unbounded
across unbounded ciphertexts. In our setting, this trick instead allows to break
the leakage of correlated randomness caused by combining ciphertexts across
different slots, some of which may be challenge ciphertexts and others of which
may be decrypting ciphertexts. However, though we made progress we are still
not done and the formal security argument still be required to address several
issues – please see Section 3 for more details.

Constructing 2ABE in the Standard Model. We next turn to adapting the
construction to the standard model – a natural starting point is the standard
model adaptation of [10] by Agrawal, Wichs and Yamada [8] which is based
on a non-standard knowledge type assumption KOALA on bilinear groups. Our
proof begins with these ideas but again departs significantly due to the nuanced
security game of the multi-input setting – indeed, we will run into subtle technical
issues related to the distribution of auxiliary information which will require us to
formulate a variant of KOALA.

We first outline our construction, which uses a version of inner product
functional encryption (IPFE), where one can directly encrypt group elements
(rather than Zq elements) and can generate a secret key for group elements.
Thus, a ciphertext may encrypt a vector [v]1 and a secret key is for [w]2 and the
decryption result of the ciphertext using the secret key is [〈v,w〉]T . Using IPFE
and ideas similar to our first construction discussed above, we encode vectors
into ciphertexts and secret keys so that the decryption result ends up with the
BGG+ ciphertext randomized by a secret key specific randomness t. In more
detail, a slot 1 ciphertext is an IPFE ciphertext encoding [v, 0]2 and a slot 2
ciphertext is an IPFE secret key encoding [tw, 0]2 so that [t〈v,w〉]T is recovered
upon decryption, which is a corresponding BGG+ ciphertext randomized by t
on the exponent. Here, the last 0 entries are used for the security proof. We
note that compared to the solution in bilinear generic group model we explained,
we dropped the randomness on the ciphertext encoding and only the secret key
encoding is randomized by t. The reason why the randomness on the ciphertext
encoding can be removed is that the encoding is already protected by the IPFE
and this change allows to simplify the construction and proof.

In the security game, we will have {ct(i) := IPFE.Enc([v(i), 0]1)}i and {sk(i) :=
IPFE.sk([t(i)w(i), 0]2)}i, where ct(i) is the i-th slot 1 ciphertext and sk(i) is the
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i-th slot 2 ciphertext. Let us say that the adversary requests Q ciphertexts in
each slot. The security proof is by hybrid argument, where slot 1 ciphertexts are
changed from ciphertexts for challenge bit 0 to 1 one by one. Now, to change the
message in a slot 1 ciphertext i∗, we must account for its combination with all slot
2 ciphertexts – note that such a constraint does not arise in single input ABE/BE
[8]. To handle this, we leverage the power of IPFE so that the Q second slot
ciphertexts hardcode the decryption value for the chosen slot 1 ciphertext i∗ and
behave as before with other slot 1 ciphertexts. A bit more explicitly, the j-th secret
key may be hardwired with ([t(j)]2, [t

(j)BGG+.ct(j)]2), where BGG+.ct(j) is a set of
BGG+ ciphertexts derived from v(i?) and w(j). We note that since {BGG+.ct(j)}j
are derived from the same vector v(i?), their distribution is mutually correlated.

At this stage, we have a vector of BGG+ ciphertexts encoded in the exponent,
randomized with a unique random term t(j) and would like to change the
ciphertexts BGG+.ct(j) into random strings using the security of BGG+. A similar
situation was dealt with by [8], who essentially showed that if BGG+.ct(j) is
individually pseudorandom given an auxiliary information aux, then by a variant
of the KOALA assumption, {[t(j)]2, [t(j)BGG+.ct(j)]2}j looks pseudorandom, even
if ciphertexts are mutually correlated for j ∈ [Q]. However, this idea is insufficient
for our setting due to the distribution of the auxiliary information. In more detail,
for the construction of [8], it sufficed to have a single BGG+ secret key in aux,
since their construction only needed a single key secure BGG+. By applying a
standard trick in lattice cryptography, they could sample the secret key first
(setting other parameters accordingly) and thus regard aux as a random string. In
contrast, our scheme crucially requires multiple BGG+ secret keys, which can no
longer be considered as random strings. This necessitates formulating a variant
of the KOALA assumption whose distribution of the auxiliary input is structured
rather than random. We do not know how to weaken this assumption using our
current techniques and leave this improvement as an interesting open problem.
For more details, please see full version of the paper [9, Sec. 5].

Compiling multi-input ABE to multi-input PE. Next, we discuss how to
lift k-input miABE to k-input miPE. For the purposes of the introduction, let us
focus on the case of k = 2. As a warm-up, we begin with the simpler setting of
standard security, i.e. where there are no decrypting ciphertexts.

The natural first idea to construct miPE is to replace the single input ABE
BGG+ in our 2ABE scheme by single input PE, which has been constructed for all
polynomial circuits by Gorbunov, Vaikuntanathan and Wee [29]. However, this
idea quickly runs into an insurmountable hurdle – for our construction template,
we need to bound the decryption noise by polynomial so that it can be recovered
by brute force computation of discrete log in the final step. This is possible for
ABE supporting NC1 using asymmetric noise growth [30]. In the context of PE
however, we do not know how to restrict the noise growth to polynomial – this
is due to the usage of the fully homomorphic encryption in the scheme, which
extends the depth of the evaluated circuit beyond what can be handled.
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An alternative path to convert ABE to PE in the single input setting uses
the machinery of Lockable Obfuscation (LO) [31, 53]. Lockable obfuscation allows
to obfuscate a circuit C with respect to a lock value β and a message m. The
obfuscated circuit on input x outputs m if C(x) = β and ⊥ otherwise. For
security, LO requires that if β has high entropy in the view of the adversary, the
obfuscated circuit should be indistinguishable from a garbage program that does
not carry any information.

Single to Multiple Inputs. The conversion in the single input setting is as follows.
To encrypt a message m for an attribute x, we first encrypt a random value
β using the ABE to obtain an ABE cipheretxt ct. We then construct a circuit
C[ct] that hardwires ct in it, takes as input an ABE secret key and decrypts
the hardwired ciphertext using it. We obfuscate C[ct] with respect to the lock
value β and the message m. The final PE ciphertext is the obfuscated circuit.
It is easy to see that the PE scheme has correctness, since if the decryption is
possible, β is recovered inside the obfuscated circuit and the lock is unlocked.
By the correctness of LO, the message is revealed. In the security proof, we first
change β encrypted inside ct to a zero string. This is possible using the security
of ABE. Now the lock value β has high entropy from the view of the adversary.
We then erase the information inside the obfuscated circuit, which includes the
attribute information, using the security of LO.

Some thought reveals that the above conversion breaks down completely in
the multi-input setting. For instance, if we apply the above conversion to a slot
1 ciphertext, the resulting obfuscation expects to receive slot 2 ciphertext in
the clear. However, a slot 2 ciphertext of PE must also constitute an obfuscated
circuit since otherwise the attribute associated with it will be leaked. But then
there is no way to communicate between the two ciphertexts, both of which are
obfuscated circuits!

To overcome this barrier, we develop a delicate nested approach which takes
advantage of the fact that LO is powerful enough to handle general circuits.
To restore communication between two ciphertexts while maintaining attribute
privacy, we obfuscate a circuit for slot 1 that takes as input another obfuscated
circuit for slot 2 and runs this inside itself. In more detail, the outer LO takes as
input the “inner” LO circuit and the 2ABE secret key 2ABE.skf . The inner LO
instance encodes the circuit for 2ABE decryption with the LO message as an SKE
secret and the lock value as random tag β. It also has hardcoded in it the slot 2
2ABE ciphertext 2ABE.ct2 with message β. The other piece of 2ABE, namely the
slot 1 ciphertext 2ABE.ct1 is hardwired in the outer LO. The outer LO encodes a
circuit which runs the inner LO on inputs 2ABE.ct1 and 2ABE.skf . By correctness
of the inner LO, the 2ABE decryption with 2ABE.ct1, 2ABE.ct2 and 2ABE.skf is
executed and if the functionality is satisfied, the inner LO outputs the SKE secret
key. Thus, the SKE secret key signals whether the inner LO is unlocked, and if
so, uses the recovered key to decrypt an SKE ciphertext which is hardcoded in
the circuit. This ciphertext encrypts some random γ which is also set as the lock
value of outer LO. If the SKE decryption succeeds, the lock value matches the
decrypted value and outputs the message m which is the message in the outer
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LO. We note that the same SKE secret key must be used for both the inner and
outer LO for them to effectively communicate.

Supporting Strong Security. This construction lends itself to a proof of security
for the standard game where decrypting ciphertexts are not allowed, although via
an intricate sequence of hybrids especially for the case of general k. We refer the
reader to Section 4 for details and turn our attention to the far more challenging
case of strong security. In the setting of strong security, the proof fails – note
that once any slot 2 ciphertext is decrypted, we no longer have the guarantee
that the message value of the inner obfuscation is hidden. Since this message is
a secret key of an SKE scheme and is used to encrypt the lock values for slot 1
ciphertexts, security breaks down once more.

To overcome this hurdle, we must make the construction more complex so
that the message value of the inner obfuscation is no longer a global secret
and does not compromise security even if revealed. To implement this intuition,
we let the inner obfuscation output a slot 2 (strong) 2ABE ciphertext when
the lock is unlocked, which is then used to perform 2ABE decryption in the
circuit of the outer LO. Now, even if the security of a inner obfuscated circuit
is compromised, this does not necessarily mean that the security of the entire
system is compromised because of the guarantees of the strong security game of
2ABE. While oversimplified, this intuition may now be formalized into a proof.
For more details, please see Section 5.

Constructing 3ABE from Pairings and Lattices. Finally, we discuss our
candidate construction for three input ABE scheme based on techniques developed
by Brakerski and Vaikuntanathan [21] in conjunction with our 2ABE construction
in Section 3. The work of Brakerski and Vaikuntanathan [21] provided a
clever candidate for succinct ciphertext-policy ABE for P from lattices. Their
construction also uses decomposability in order to achieve succinctness which is
the starting point for the multi-input setting as discussed above. Additionally,
they provide novel ways to handle the lack of shared randomness between
the key generator and encryptor – while [10] use pairings to generate shared
randomness, [21] use lattice ideas and it is this part which makes their construction
heuristic. Here, we show that the algebraic structure of their construction not
only fits elegantly to the demands of the two-input setting, but can also be made
compatible with our current 2ABE construction to amplify arity to three! This
surprising synergy between two completely different candidates of broadcast
encryption, namely Agrawal-Yamada and Brakerski-Vaikuntanathan, created by
decomposability and novel techniques of handling randomness, already provides
an XWE of compression factor 1/4 as against the previous best known 1/2 [19],
and may lead to other applications as well.

Recap of the Brakerski-Vaikuntanathan construction. To dig deeper into our
construction, let us first recap the core ideas of [21]. First recall the well known
fact that security of BGG+ encodings is lost when we have two encodings for
the same position encoding a different bit, namely, ψi,0 = sBi + ei,0 and ψi,1 =
s(Bi +G) + ei,1, where s is a LWE secret, Bi is a matrix, and e1,b is an error
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vector for b ∈ {0, 1}. What [21] suggested is, if we augment BGG+ encodings and
mask them appropriately, then both encodings can be published and still hope to
be secure. Namely, they change BGG+ encodings to be ψi,b = S(Bi + bG) +Ei,b,
where we replace the vector s with a matrix S. They then mask the encodings
by public (tall) matrices {Ci,b}i,b as

ψ̂i,b := Ci,bŜi,b + S(Bi + bG) +Ei,b

where {Ŝi,b}i,b are random secret matrices. By releasing appropriate information,
one can recover BGG+ encodings with different LWE secrets. In more detail, we
can publish a short vector tx for any binary string x that satisfies txCi,xi

= 0
(and txCi,1−xi

is random) for all i. This allows us to compute

tx
(
Ci,xi Ŝi,xi + S(Bi + xiG) +Ei,xi

)
= txS(Bi+xiG)+txEi,xi = sx(Bi+xiG)+ex,i,xi

where we set sx = txS and ex,i,b = txEi,b. Namely, we can obtain BGG+ samples
specific to the string x. This is similar to the idea of using pairings to choose the
appropriate encoding based on the attribute string, which is used in our two-input
ABE with strong security. Similarly to that case, the obtained encodings are
randomized by the user specific randomness. One of the heuristic aspects of [21]
is that in order for their scheme to be secure, we have to assume that there is no
meaningful way to combine the BGG+ samples obtained from different vectors
tx and tx′ .

Let us now adapt these techniques to provide a construction of two-input ABE.
In our candidate, {Bi}i and {Ci,b}i,b matrices are made public.5 An encryptor
for the slot 1 computes for i ∈ [`], b ∈ {0, 1}:{
ψi,x1,i := S(Bi + x1,iG) +Ei,x1,i

}
i
,
{
ψ̂i,b := C`+i,bŜ`+i,b + S(B`+i + bG) +E`+i,b

}
i,b

where x1,i denotes the i-th bit of the attribute x1 for slot 1, ` denotes the length
of an attribute, and S and Ŝi,b are freshly chosen by the encryptor. Intuitively,
this is a partially stripped off version of the encodings in [21]. We believe this does
not harm security, because the encryptor provides one out of two encodings for
each position that is not masked by Ci,bŜi,b. The encryptor for slot 2 generates
a vector tx2

such that tx2
Ci,x2,`+i

= 0 for all i ∈ [`]. The secret key for function
F is simply BGG+ secret key for the same function. In the decryption, the
decryptor uses tx2

to choose BGG+ encodings for attribute x2 from {ψ̂i,b}i,b.
The obtained encodings are with respect to the LWE secret txS. The decryptor
can also choose BGG+ encodings for attribute x1 from {ψi}i. These obtained
encodings constitutes a BGG+ ciphertext for attribute (x1,x2), which can be
decrypted by the BGG+ secret key. The intuition about security in [21] is that
the BGG+ encodings obtained by using tx vectors cannot be combined in a
meaningful way due to the different randomness.

5 The construction described here is simplified. For example, we omit the additional
message carrying part in the construction, which is not necessary for the overview.
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Amplifying Arity. We now amplify arity by leveraging the above techniques in
conjunction with our pairing based construction. Our idea is to develop the
scheme so that the decryptor can recover the above partially stripped off version
of the encoding in the exponent from slot 1 and slot 2 ciphertexts by using
the pairing operations, where the encodings may be randomized. Then, slot
3 ciphertext corresponds to a vector tx3 , which annihilates Ci,b matrices for
corresponding positions to the attribute x3. To do so, an encryptor for the first
slot encodes

{t1ψi,xi
}i∈[`], {t1ψi,b}i∈[`+1,2`],b∈{0,1}, {t1ψ̂i,b}i∈[2`+1,3`],b∈{0,1}

of the exponent of G1, where t1 is freshly chosen randomness by the encryptor.
An encryptor for the second slot encodes t2, t2dx2

in the exponent of G2, where
t2 is freshly chosen randomness by the encryptor and dx2

is a selector vector
that chooses ψi,x2,i

out of (ψi,0, ψi,1) by the pairing operation. Concretely, dx2
=

{di,b}i,b, where di,b = 1 if b = x2,i and 0 otherwise. These vectors are randomized
by position-wise randomness as is the case for our other schemes. Finally, an
encryptor for slot 3 with attribute x3 chooses tx3 such that tx3C2`+i,x3,i = 0.

A somewhat worrying aspect of the candidate above may be that both t1ψi,0
and t1ψi,1 are encoded on G1. However, this is also the case for [10] and as in that
work, these two encodings are randomized by the position-wise randomness and
cannot be combined in a meaningful way (at least in the GGM). The only way
to combine them is to take a pairing product with G2 elements. However, after
the operation, we end up with partially stripped encoding that is randomized
with t1t2. Therefore, a successful attack against the scheme may end up with
attacking a partially stripped version of [21], which we expect to be as secure as
the original scheme. Please see Section 6 for more details.

2 Multi-Input Attribute Based and Predicate Encryption

We define multi-input Attribute Based Encryption (ABE) and Predicate
Encryption (PE) below. Since the only difference between the two notions is in
the security game, we unify the syntax for the algorithms in what follows.

A k-input ABE/PE scheme is parametrized over an attribute space {(Aλ)k}λ∈N
and function space {Fλ}λ∈N, where each function maps {(Aλ)k}λ∈N to {0, 1}.
Such a scheme is described by procedures (Setup,KeyGen,Enc1, . . . , Enck,Dec)
with the following syntax:

Setup(1λ)→ (pp,msk): The Setup algorithm takes as input a security parameter
and outputs some public parameters pp and a master secret key msk.

KeyGen(pp,msk, f)→ skf : The KeyGen algorithm takes as input the public
parameters pp, a master secret key msk and a function f ∈ Fλ and outputs
a key skf .

Enc1(pp,msk, α, b)→ ctα,b,1: The encryption algorithm for slot 1 takes as input
the public parameters pp, a master secret key msk, an attribute α ∈ Aλ, and
message b ∈ {0, 1}, and outputs a ciphertext ctα,b,1. For the case of ABE, the
attribute string α is included as part of the ciphertext.
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Enci(pp,msk, α)→ ctα,i for i ≥ 2: The encryption algorithm for the ith slot
where i ∈ [2, k], takes as input the public parameters pp, a master secret key
msk, and an attribute α ∈ Aλ and outputs a ciphertext ctα,i. For the case of
ABE, the attribute string α is included as part of the ciphertext.

Dec(pp, skf , ctα1,b,1, ctα2,2, . . . , ctαk,k)→ b′: The decryption algorithm takes as
input the public parameters pp, a key for the function f and a sequence of
ciphertext of (α1, b), α2, . . . , αk and outputs a string b′.

Next, we define correctness and security. For ease of notation, we drop the
subscript λ in what follows.

Correctness: For every λ ∈ N, b ∈ {0, 1}, α1, . . . , αk ∈ A, f ∈ F , it holds that
if f(α1, . . . , αk) = 1, then

Pr

[
Dec

(
pp,KeyGen(pp,msk, f),

Enc1(pp,msk, α1, b), . . . ,Enck(pp,msk, αk)

)
= b

]
= 1− negl(λ)

where the probability is over the choice of (pp,msk)← Setup(1λ) and over the
internal randomness of KeyGen and Enc1, . . . ,Enck.

Definition 1 (Ada-IND security for k-ABE). For a k-ABE scheme k-ABE =
{Setup,KeyGen,Enc1, . . . ,Enck,Dec} for an attribute space {(Aλ)k}λ∈N, function
space {Fλ}λ∈N and an adversary A, we define the Ada-IND security game as
follows.

1. Setup phase: On input 1λ, the challenger samples (pp,msk) ← Setup(1λ)
and gives pp to A.

2. Query phase: The challenger samples a bit β ← {0, 1}. During the game,
A adaptively makes the following queries, in an arbitrary order.
(a) Key Queries: A makes polynomial number of key queries, say p = p(λ).

As an i-th key query, A chooses a function fi ∈ Fλ. The challenger
replies with skfi ← KeyGen(pp,msk, fi).

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries
for each slot, say p = p(λ). As an i-th query for a slot j ∈ [k], A declares{

(αij , (b
i
0, b

i
1)) if j = 1

αij if j 6= 1

to the challenger, where αij ∈ Aλ is an attribute and (bi0, b
i
1) ∈ {0, 1} ×

{0, 1} is the pair of messages. Then, the challenger computes

ctij,β =

{
Encj(pp,msk, αij , b

i
β) if j = 1

Encj(pp,msk, αij) if j 6= 1

and returns it to A.
3. Output phase: A outputs a guess bit β′ as the output of the experiment.
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For the adversary to be admissible, we require that for every f1, . . . , fp ∈ F , it
holds that fi(αi11 , . . . , α

ik
k ) = 0 for every i, i1, . . . , ik ∈ [p].

We define the advantage AdvAda-INDk-ABE,A(1λ) of A in the above game as

AdvAda-INDk-ABE,A(1
λ) :=

∣∣Pr[Expk-ABE,A(1λ) = 1|β = 0]− Pr[Expk-ABE,A(1
λ) = 1|β = 1]

∣∣ .
The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply

adaptive security) if for any stateful PPT adversary A, there exists a negligible
function negl(·) such that AdvAda-INDk-ABE,A(1λ) = negl(λ).

Definition 2 (Ada-IND security for k-PE.). For an k-PE scheme k-PE =
{Setup,KeyGen,Enc1, . . . ,Enck,Dec} for an attribute space {(Aλ)k}λ∈N, function
space {Fλ}λ∈N and an adversary A, we define the Ada-IND security game as
follows.

1. Setup phase: On input 1λ, the challenger samples (pp,msk) ← Setup(1λ)
and gives pp to A.

2. Query phase: The challenger samples a bit β ← {0, 1}. During the game,
A adaptively makes the following queries, in an arbitrary order.
(a) Key Queries: A makes polynomial number of key queries, say p = p(λ).

For each key query i ∈ [p], A chooses a function fi ∈ Fλ. The challenger
replies with skfi ← KeyGen(pp,msk, fi).

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries
for each slot, say p = p(λ). As an i-th query for a slot j ∈ [k], A declares{

((αij,0, α
i
j,1), (b

i
0, b

i
1)) if j = 1

(αij,0, α
i
j,1) if j 6= 1

to the challenger, where (αij,0, α
i
j,1) is a pair of attributes and (bi0, b

i
1) is

the pair of messages. Then, the challenger computes and returns to A

ctij,β =

{
Encj(pp,msk, αij,β , b

i
β) if j = 1

Encj(pp,msk, αij,β) if j 6= 1

3. Output phase: A outputs a guess bit β′ as the output of the experiment.

For the adversary to be admissible, we require that for every f1, . . . , fp ∈ F , it
holds that fi(αi11,β , . . . , α

ik
k,β) = 0 for every i, i1, . . . , ik ∈ [p] and β ∈ {0, 1}.

We define the advantage AdvAda-INDk-PE,A (1λ) of A in the above game as

AdvAda-INDk-PE,A (1λ) :=
∣∣Pr[Expk-PE,A(1λ) = 1|β = 0]− Pr[Expk-PE,A(1

λ) = 1|β = 1]
∣∣ .

The k-PE scheme k-PE is said to satisfy Ada-IND security (or simply adaptive
security) if for any stateful PPT adversary A, there exists a negligible function
negl(·) such that AdvAda-INDk-PE,A (1λ) = negl(λ).
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2.1 Strong Security for k-ABE and k-PE

We also consider a stronger security notion for both k-ABE as well as k-PE where
the adversary is allowed to make decrypting key requests for ciphertexts so long
as they do not distinguish the challenge bit.

Definition 3 (Strong Ada-IND security for k-ABE.). The definition for
strong Ada-IND security for k-ABE is the same as standard Ada-IND security
(Definition 1) except for the following modification. For the k-ABE adversary to
be admissible in the strong Ada-IND game, we require that

– If fi(αi11 , . . . , α
ik
k ) = 1 holds for some i, i1, . . . , ik ∈ [p], then bi10 = bi11 .

Let (αi, (bi0, bi1)) be the ith ciphertext query in slot 1. Then, if bi0 6= bi1, we call
the ciphertext returned by the challenger as a challenge ciphertext as it encodes
the challenge bit β. Otherwise, we refer to it as decrypting ciphertext, as the
adversary may potentially request a key to decrypt it.

Definition 4 (Strong Ada-IND security for k-PE.). The definition for strong
Ada-IND security for k-PE is the same as standard Ada-IND security (Definition
2) except for the following modification. For the k-PE adversary to be admissible
in the strong Ada-IND game, we require that

– If fi(αi11,β , . . . , α
ik
k,β) = 1 holds for some i, i1, . . . , ik ∈ [p] and β ∈ {0, 1}, then

(αi11,0, . . . , α
ik
k,0) = (αi11,1, . . . , α

ik
k,1) and b

i1
0 = bi11 .

Let
(
(αi0, α

i
1), (b

i
0, b

i
1)
)
be the ith ciphertext query in slot 1. Then, if αi0 6= αi1 or

bi0 6= bi1, we call the ciphertext returned by the challenger as a challenge ciphertext
as it encodes the challenge bit β. Otherwise, we refer to it as decrypting ciphertext,
as the adversary may potentially request a key to decrypt it.

Definition 5 (Strong VerSel-IND security for k-ABE and k-PE). The
definitions for strong VerSel-IND security for k-ABE and k-PE are the same
as strong Ada-IND security above except that the adversary A is required to
submit the challenge queries and secret key queries to the challenger before it
samples the public key.

2.2 Generalization to Multi-Slot Message Scheme

In the above, we focus our attention on k-ABE and k-PE schemes that only
contain a message in a single slot, the remaining slots being free of messages.
We can also consider a generalized version of the notions where each slot carries
a message and all the messages are recovered in successful decryption. For k
polynomial, it is easy to extend a construction with single slot message to the
generalized version where each slot contains a message, simply by running k
instances of the scheme in parallel and rotating the slot which contains the
message in each instance to cover all k slots. Moreover we claim that since the
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k message scheme is a concatenation of k one message schemes, security of the
latter implies security of the former. In more detail, suppose there exists an
adversary against the k message scheme with non-negligible advantage ε. This
can be used to construct an adversary against one of the underlying one message
schemes with non-negligible advantage ε/k.

3 Two-Input ABE for NC1 from Pairings and LWE

In this section, we construct two input ABE for NC1 circuits. More formally,
our construction can support attribute space Aλ = {0, 1}`(λ), and any circuit
class F = {Fλ}λ that is subclass of {C2`(λ),d(λ)}λ with arbitrary `(λ) ≤ poly(λ)
and d(λ) = O(log λ), where C2`(λ),d(λ) is a set of circuits with input length 2`(λ)
and depth at most d(λ). We can prove that the scheme satisfies strong security
as per Definition 3 assuming LWE in bilinear generic group model. Since the
intuition was described in Section 1, we proceed directly with the construction.
We refer to the full version of the paper [9] for backgrounds on lattices and
pairings respectively and for description of the kpABE scheme by Boneh et al. [16]
on which our construction is based.

Construction. We proceed to describe our construction.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ),
m = m(λ), noise distribution χ over Z, τ0 = τ0(λ), τ = τ(λ), and B = B(λ)
as specified for the kpABE scheme of Boneh et al. (pl. see [9, Section 2.5]).
It samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2). Sets L :=
(3`+ 1)m+ 2 and proceeds as follows.
1. Sample BGG+ scheme:

(a) Sample (A,A−1τ0 )← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
(b) Sample random matrix B = (B1, . . . ,B2`) ← (Zn×mq )2` and a

random vector u← Znq .
2. Sample w← (Z∗q)L.
3. Output pp = (A,B,u), msk =

(
A−1τ0 ,w, [1]1, [1]2

)
.

KeyGen(pp,msk, F ): Given input the public parameters pp, master secret key
msk and a circuit F , compute BGG+ function key for circuit F as follows:
1. Compute HF = EvalF(B, F ) and BF = BHF .
2. Compute [A‖BF ]

−1
τ from A−1τ0 and sample r ∈ Z2m as r> ←

[A‖BF ]
−1
τ (u>).

3. Output the secret key skF := r.

Enc1(pp,msk,x1, b): Given input the public parameters pp, master secret key
msk, attribute vector x1, message bit b, encryption for slot 1 is defined as
follows:
1. Sample LWE secret s← Znq and noise terms e0 ← χ, e← χm, ei, e`+i,b ←
χ̃m for i ∈ [`], b ∈ {0, 1}, where χ̃m is defined as in [9, Sec. 2.4].

2. For i ∈ [`], compute ψi := s(Bi − x1,iG) + ei.
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3. For i ∈ [`+ 1, 2`], b ∈ {0, 1}, compute ψi,b := s(Bi − bG) + ei,b.
4. Compute ψ2`+1 := sA+ e and ψ2`+2 := su> + e0.
5. Set µ = d q2eb; c = (1, {ψi}i∈[`], {ψi,b}i∈[`+1,2`],b∈{0,1}, ψ2`+1, ψ2`+2 + µ).
6. Sample t1 ← Z∗q and output ct1 = [t1c�w]1.

Enc2(pp,msk,x2): Given input the public parameters pp, master secret key msk,
attribute vector x2, encryption for slot 2 is defined as follows:
1. Let 1a := (1, . . . , 1) ∈ Zaq and 0a := (0, . . . , 0) ∈ Zaq . Set

ψ̂i,b :=

{
1m ∈ Zmq if b = x2,i

0m ∈ Zmq if b 6= x2,i
for i ∈ [`+ 1, 2`] and b ∈ {0, 1}.

2. Set d = (1,1`m, {ψ̂i,b}i∈[`+1,2`],b∈{0,1},1m, 1).
3. Sample t2 ← Z∗q and output ct2 = [t2d�w]2.

Dec(pp, skF , ct1, ct2): The decryption algorithm takes as input the public
parameters pp, the secret key skF for circuit F and ciphertexts ct1 and
ct2 corresponding to the two attributes x1 and x2 and proceeds as follows:
1. Take the coordinate-wise pairing between ciphertexts:

Compute [v]T = [t1t2c� d]T as ct1 � ct2.
2. De-vectorize obtained vector:

Expand [v]T for i ∈ [`], j ∈ [`+ 1, 2`], b ∈ {0, 1}, to obtain:

[v0]T = [t1t2]T , [vi]T = [t1t2ψi]T ,

[vj,b]T = [t1t2ψ
′
j,b]T , where ψ

′
j,b =

{
(s(Bj − x2,jG) + ej,b) , if b = x2,j

0, if b = 1− x2,j
,

[v2`+1]T = [t1t2ψ2`+1]T , [v2`+2]T = [t1t2(ψ2`+2 + µ)]T .

3. Compute Evaluation function for BGG+ ciphertexts in exponent:

Let x = (x1,x2). Compute ĤF,x = EvalFX(F,x,B).

4. Perform BGG+ decryption in the exponent:
Form [vx]T = [v1, . . . ,v`,v`+1,x2,1

, . . .v2`,x2,`
]T and parse skF = r as

r = (r1 ∈ Zmq , r2 ∈ Zmq ). Then compute

[v′]T := [(v2`+2 −
(
v2`+1r

>
1 + vxĤF,xr

>
2 )
)
]T

5. Recover exponent via brute force if F (x) = 0:
Find η ∈ [−B,B] ∪ [−B + dq/2e, B + dq/2e] such that [v0]

η
T = [v′]T by

brute-force search. If there is no such η, output ⊥. To speed up the
operation, one can employ the baby-step giant-step algorithm.

6. Output 0 if η ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

Correctness: Due to space constraints, we argue correctness in the full version [9,
Sec. 4].
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Proof of Security: We prove the security via the following theorem.

Theorem 1. Our 2ABE scheme for function class NC1 satisfies strong Ada-IND
security in the generic group model assuming that the kpABE scheme BGG+ for
function class NC1 satisfies Ada-INDr security (please see full version [9] for
definition of Ada-INDr security).

The proof is provided in the full version of the paper [9, Sec. 4].

4 Compiling k-ABE to k-PE via Lockable Obfuscation

In this section we describe our compiler to lift k-input ABE to k-input PE.
Namely, we construct k-input predicate encryption using k-input ABE and
lockable obfuscation. The conversion preserves Ada-IND security. The extension
of the conversion that preserves strong security is provided in Sec. 5.

Construction Our construction uses the following building blocks:

1. A secret key encryption scheme SKE = (SKE.Setup,SKE.Enc,SKE.Dec).
2. A Lockable Obfuscator LO = (LO.Obf, LO.Eval) with lock space L = {0, 1}m

and input space X = {0, 1}n.
3. A k-input ABE scheme kABE = (kABE.Setup, kABE.KeyGen, kABE.Enc1, . . . ,

kABE.Enck, kABE.Dec) in which the message bit is associated with the last
slot, kABE.Enck. We require k = O(1).
In the construction below, we require the message space of the SKE scheme
to be the same as the lock space L of the lockable obfuscator scheme LO and
the message space of kABE to be the same as the key space of SKE.

We now describe the construction of k-input predicate encryption scheme. Our
k-input PE construction has the same attribute space and the function class as
the underlying k-input ABE, when we consider the function class of NC1 circuits
or polynomial-size circuits.

Setup(1λ) : On input the security parameter 1λ, the Setup algorithm does the
following:
1. Run (kABE.msk, kABE.pp)← kABE.Setup(1λ).
2. Run SKE.Setup(1λ) k times and obtain secret keys K1,K2, . . . ,Kk.
3. Output msk = (kABE.msk,K1, . . . ,Kk) and pp = kABE.pp.

KeyGen(pp,msk, F ) : On input the public parameters pp, the master secret key
msk = (kABE.msk,K1, . . . ,Kk) and a circuit F , the KeyGen algorithm does
the following:
1. Run kABE.skF ← kABE.KeyGen(pp, kABE.msk, F ).
2. Output skF = kABE.skF .

Enc1(pp,msk,x1,m): On input the public parameters pp, master secret key
msk = (kABE.msk,K1, . . . ,Kk), attribute x1 for position 1 and message m,
the encryption algorithm does the following:
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1. Sample γ1 ← L and let ct∗1 = SKE.Enc(K1, γ1)

2. Compute ct1 = kABE.Enc1(pp, kABE.msk,x1).
3. Define a function f1[ct1, ct∗1] as in Figure 1.
4. Output ct′1 = LO.Obf(1λ, f1[ct1, ct

∗
1],m, γ1).

Enci(pp,msk,xi) for 2 ≤ i ≤ k: On input the public parameters pp, master
secret key msk = (kABE.msk,K1, . . . ,Kk), attribute xi for position i, the
encryption algorithm does the following:

1. Sample a random value γi ← L and let ct∗i = SKE.Enc(Ki, γi).

2. Compute cti =

{
kABE.Enci(pp, kABE.msk,xi) for 2 ≤ i < k

kABE.Enck(pp, kABE.msk,xk,Kk) for i = k
.

3. Define a function fi[cti, ct∗i ] as in Figure 1.
4. Output ct′i = LO.Obf(1λ, fi[cti, ct

∗
i ],Ki−1, γi).

Circuit fi[cti, ct∗i ] for 1 ≤ i ≤ k

1. Parse input as (ct1, . . . , cti−1, G̃i+1, . . . , G̃k, skF ) where ctj is regarded as a slot
j ciphertext of kABE, G̃j is regarded as an obfuscated circuit of LO and skF is
regarded as a kABE secret key.

2. Compute K′i =

{
LO.Eval(G̃i+1, (ct1, . . . , cti, G̃i+2, . . . , G̃k, skF )) for 1 ≤ i < k

kABE.Dec(pp, skF , ct1, . . . , ctk) for i = k

3. Outputs γ′i ← SKE.Dec(K′i, ct
∗
i ).

Fig. 1. Circuit Obfuscated by Slot i Encryption for 1 ≤ i ≤ k

Dec(skF , ct
′
1, . . . , ct

′
k) : On input the secret key skF for function F , and kPE

ciphertexts ct′1, . . . , ct′k, do the following:
1. Parse ct′1 as an LO obfuscation.
2. Compute and output LO.Eval(ct′1, (ct′2, . . . , ct′k, skF )).

Correctness. Here, we briefly discuss the correctness of the scheme. For
the full proof, we refer to the full version of the paper [9, Sec. 6]. If we
run LO.Eval(ct′1, (ct

′
2, . . . , ct

′
k, skF )), we end up with running the inner most

obfuscation that obfuscates fk[ctk, ct∗k] on input (ct1, . . . , ctk−1, skF ). Within the
circuit, Kk is retrieved by the kABE decryption and thus it recovers the lock value
γk, which unlocks the obfuscation. The circuit outputs Kk−1 and this is then
input to the second-innermost obfuscated circuit, which outputs Kk−2 because of
the similar reason. This process continues until the outermost circuit is unlocked
and outputs the hardwired message m.
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Security. We can prove that the above PE construction satisfies Ada-IND security
if so does the underlying kABE. We refer to the full version of the paper [9, Sec.
6] for the full proof. Here, we provide an intuition. First, we replace Kk encrypted
in kABE.Enck with 0. This is possible by using the security of the underlying
kABE. Then, we can use the security of SKE to change all ct∗k hardwired in the
slot k ciphertexts, since Kk is not used except for the encrypting the lock value
γk due to the change introduced in the previous step. This allows us to change
the circuit ct′k into a simulated one rather than honestly obfuscated one, since
the lock value γk is erased in the previous step. This in particular erases Kk−1,
which allows to invoke the security of SKE to erase the lock value γk−1. This
process continues until we can convert ct′1 into a simulated circuit. At this point,
every ciphertext is a simulated circuit and does not convey any information of
attribute or message, as desired.
Applications. The conversion above can be applied to all the multi-input ABE
schemes in this paper. Here, we focus on the applications to the candidate two
input ABE scheme from lattices provided in the full version of the paper [9, Sec.
9] and the candidate three input ABE scheme in Sec. 6. The other schemes will
be discussed in Sec. 5 because they satisfy strong (very selective) security and
thus we can apply the conversion in Sec. 5. A nice property of the PE scheme
obtained from the two input ABE scheme in [9, Sec. 9] is that it can handle any
polynomial-size circuits. Besides, we can expect that it is post-quantum secure,
because it does not use pairings and only uses lattice tools. By applying the
conversion to the three input ABE scheme in Sec. 6, we can obtain a three-input
PE scheme that can handle NC1 circuits.

5 Two-Input PE with Stronger Security

In this section we describe our compiler to lift 2-input ABE to 2-input PE that
preserves strong security. The conversion uses lockable obfuscation similarly to
Sec. 4. Unlike the conversion in Sec. 4, we do not know how to extend it to
general arity k and it is set to be k = 2 here. It uses the following building blocks:

1. Two instances of 2-input ABE scheme. In one instance the message is associ-
ated with encryption for position 2, while in the other instance, the message is
associated with the encryption for position 1. We represent the two instances
as 2ABE = (2ABE.Setup, 2ABE.KeyGen, 2ABE.Enc1, 2ABE.Enc2, 2ABE.Dec)
and 2ABE′ = (2ABE′.Setup, 2ABE′.KeyGen, 2ABE′.Enc1, 2ABE

′.Enc2, 2ABE
′.Dec).

2. A Lockable Obfuscator Obf = (LO.Obf, LO.Eval).

Construction. Our two-input PE construction has the same attribute space
and the function class as the underlying two-input ABE, when we consider the
function class of NC1 circuits or polynomial-size circuits.

Setup(1λ) : On input 1λ, the Setup algorithm does the following:
1. Run (2ABE.msk, 2ABE.pp)← 2ABE.Setup(1λ) and (2ABE′.msk, 2ABE′.pp)←

2ABE′.Setup(1λ).
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2. Output msk = (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).
KeyGen(pp,msk, F ) : On input the public parameters pp, the master secret key

msk and a circuit F , the keygen algorithm does the following:
1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp = (2ABE.pp, 2ABE′.pp).
2. Run 2ABE.skF ← 2ABE.KeyGen(2ABE.pp, 2ABE.msk, F ) and 2ABE′.skF ←

2ABE′.KeyGen(2ABE′.pp, 2ABE′.msk, F ).
3. Output skF = (2ABE.skF , 2ABE

′.skF ).
Enc1(pp,msk,x1,m): On input the public parameters, pp, master secret key

msk, attribute x1 for position 1 and message m, the encryption algorithm
does the following:
1. Parses msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).
2. Computes ct1 = 2ABE.Enc1(2ABE.pp, 2ABE.msk,x1).
3. Sample α←M and compute ct′1 = 2ABE′.Enc1(2ABE

′.pp, 2ABE′.msk,x1, α).
4. Define a function f1[ct1, ct′1], with ct1, ct

′
1 being hardwired (Figure 2).

5. Output ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],m, α).

Circuit f1[ct1, ct′1]

1. Parse input as (G̃, sk, sk′) where G̃ is regarded as an obfuscated circuit of LO, and
sk and sk′ are regarded as secret keys of 2ABE and 2ABE′ respectively.

2. Compute r ← LO.Eval(G̃, (ct1, sk)).
3. Output α′ = 2ABE′.Dec(2ABE′.pp, sk′, ct′1, r).

Fig. 2. Circuit Obfuscated by Slot 1 Encryption

Enc2(pp,msk,x2):
1. Parse msk as (2ABE.msk, 2ABE′.msk) and pp as (2ABE.pp, 2ABE′.pp).
2. Compute ct2 = 2ABE.Enc2(2ABE.pp, 2ABE.msk,x2, β), where β ←M.
3. Compute ct′2 = 2ABE.Enc′2(2ABE

′.pp, 2ABE′.msk,x2).
4. Define a function f2[ct2], with ct2 being hardwired, as in Figure 3.
5. Output ct′′2 = LO.Obf(1λ, f2[ct2], ct

′
2, β).

Circuit f2[ct2]

1. Parse input as (ct1, sk) where ct1 is regarded as a ciphertext of 2ABE for the first
slot and sk is regarded a secret key of 2ABE.

2. Output β′ ← 2ABE.Dec(2ABE.pp, sk, ct1, ct2).

Fig. 3. Circuit Obfuscated by Slot 2 Encryption
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Dec(skF , ct
′′
1 , ct

′′
2) : On input the secret key skF for function F , and 2PE

ciphertexts ct′′1 and ct′′2 , do the following:
1. Parse skF as (2ABE.skF , 2ABE′.skF ) .
2. Output LO.Eval(ct′′1 , (ct′′2 , 2ABE.skF , 2ABE

′.skF ).

Correctness. Recall that ct′′1 = LO.Obf(1λ, f1[ct1, ct
′
1],m, α). We claim that

f1[ct1, ct
′
1](ct

′′
2 , 2ABE.skF , 2ABE

′.skF ) = α.

This may be argued via the following steps:

1. Recall that ct′′2 = LO.Obf(1λ, f2[ct2], ct
′
2, β) and f2[ct2](ct1, 2ABE.skF ) =

2ABE.Dec(2ABE.pp, 2ABE.skF , ct1, ct2) = β. The second equality follows by
correctness of 2ABE and the fact that ct1 and ct2 encrypt β under attributes
x1,x2. Since ct′′2 has lock value β and message value ct′2, we have by correctness
of LO that LO.Eval(ct′′2 , (ct1, 2ABE.skF )) = ct′2.

2. Next, following the description of f1[ct1, ct′1] (Fig. 2), we evaluate 2ABE′.Dec
(2ABE′.skF , ct

′
1, ct

′
2) and recover α by correctness of 2ABE′ decryption and

the construction of ct′1 and ct′2 as encryptions of α under attributes x1,x2.

Thus, we get that f1[ct1, ct
′
1](ct

′′
2 , 2ABE.skF , 2ABE

′.skF ) = α. Now, by
correctness of LO, we have that LO.Eval(ct′′1 , (ct′′2 , 2ABE.skF , 2ABE

′.skF )) = m as
desired. This concludes the proof.

Security. We prove security via the following theorem.

Theorem 2. Assume LO is a secure lockable obfuscation scheme as per
Definition 2.9 in [9] and that 2ABE and 2ABE′ are secure two input ABE schemes
satisfying strong security as in Definition 3 (resp., strong very selective security
as in Definition 5). Then, the 2PE construction presented above satisfies strong
security as per Definition 4 (resp., strong very selective security as in Definition 5).

Due to space constraints, the proof is provided in the full version [9, Sec. 7].
Applications. By applying the above conversion to two input ABE scheme with
strong security in Sec. 3, we obtain a candidate construction of two input PE
scheme with strong security. A caveat here is that the resulting scheme cannot
necessarily be proven secure under LWE in the bilinear generic group model as
one might expect. The problem here is that our conversion uses the decryption
algorithm of the underlying two input ABE scheme in a non-black box way, which
especially uses the code of the group operations. To claim the security of the
resulting scheme, we heuristically assume that the two-input ABE scheme in
Sec. 3 is strongly secure even in the standard model if we implement the bilinear
generic group model with concrete well-chosen bilinear group and then apply
the above conversion. We note that this kind of heuristic instantiation is widely
used in the context of cryptographic hash functions and bilinear maps. We also
mention that we can apply the above conversion to the two input ABE scheme
in standard model provided in the full version [9, Sec. 5]. Since the scheme is
proven secure in the standard model, the construction does not suffer from the
above problem.
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6 Three-Input ABE from Pairings and Lattices

In this section, we provide a candidate construction for 3ABE using the structure
of [21] and [10] as discussed in Section 1. Leveraging ideas from the Brakerski-
Vaikuntanathan construction [21], we also obtain a candidate for 2ABE for P –
due to space constraints, we provide this construction in the full version [9].Our
3ABE scheme supports NC1 circuits. More formally, it supports attribute space
Aλ = {0, 1}`(λ) and any circuit class F = {Fλ}λ that is subclass of {C3`(λ),d(λ)}λ
with arbitrary `(λ) ≤ poly(λ) and d(λ) = O(log λ), where C3`(λ),d(λ) is a set of
circuits with input length 3`(λ) and depth at most d(λ).

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ),
m = m(λ), k = k(λ), noise distribution χ, χ̂ over Z, τ0 = τ0(λ), τ = τ(λ),
τ ′0 = τ ′0(λ), τt = τt(λ) and B = B(λ) as specified later. It samples a group
description G = (q,G1,G2,GT , e, [1]1, [1]2). It then sets L := (5`+ 1)m+ 1
and proceeds as follows.
1. Samples BGG+ scheme:

(a) Samples (A,A−1τ0 )← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
(b) Samples random matrix B = (B1, . . . ,B3`) ← (Zn×mq )3` and a

random vector u← Znq .
2. Samples w0 ← Z∗q , W← (Z∗q)k×L.
3. Samples BV scheme:

(a) Samples C along with its trapdoor C−1τ ′0 as
(C,C−1τ ′0

)← TrapGen(12(`+1)n, 1k, q), where
C> = (C2`+1,0‖C2`+1,1‖ . . . ‖C3`,0‖C3`,1‖C3`+1‖C3`+2) ∈ (Zk×nq )2(`+1).

4. Outputs pp = (A,B,C,u), msk =
(
A−1τ0 ,C

−1
τ ′0
, w0,W

)
.

KeyGen(pp,msk, F ): On input the public parameters pp, master secret key msk
and a circuit F , compute BGG+ function key for circuit F as follows:
1. Compute HF = EvalF(B, F ) and BF = BHF .
2. Compute [A‖BF ]

−1
τ from A−1τ0 and sample r ∈ Z2m as r> ←

[A‖BF ]
−1
τ (u>).

3. Output the secret key skF := r.

Enc1(pp,msk,x1, µ): On input the public parameters pp, master secret key msk,
attribute vector x1, message bit µ, encryption for slot 1 is defined as follows:
1. Set m = d qK eµ(1, . . . , 1) ∈ Zkq . We define K = 2τt

√
nk. .

2. Samples LWE secret S ← Zk×nq and error terms e0 ← χk, E ← χk×m,
Ei,x1,i ← χ̂k×m, for i ∈ [`], Ei,b ← χ̂k×m, for i ∈ [`+ 1, 3`], b ∈ {0, 1}.

3. For i ∈ [`], computes ψi,x1,i
:= S(Bi − x1,iG) +Ei,x1,i

∈ Zk×mq .

4. For i ∈ [`+1, 3`], b ∈ {0, 1}, computes ψi,b := S(Bi−bG)+Ei,b ∈ Zk×mq .

5. Computes ψ3`+1 := SA+E ∈ Zk×mq and ψ>3`+2 := Su> + e>0 ∈ Zk×1q .
6. Sample Ŝ3`+1 ← Zn×mq , ŝ3`+2 ← Znq , {Ŝ2`+i,b}i∈[`],b∈{0,1} ← (Zn×mq )2`,

Ê← χk×m, ê0 ← χk, Ê2`+i,b ← χ̂k×m for i ∈ [`], b ∈ {0, 1}.
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7. Compute all possible “BV encodings" for slot 3 attribute x3 and construct
Ĉ1 as follows:
Ĉ1 = ({ψi,x1i

}i∈[`], {ψi,b}i∈[`+1,2`],
b∈{0,1}

, {Ci,bŜi,b + Êi,b+ ψi,b}i∈[2`+1,3`],
b∈{0,1}

,

C3`+1Ŝ3`+1+Ê+ψ3`+1,C3`+2ŝ
>
3`+2+ê>0 +ψ

>
3`+2+m>) ∈ Zk×Lq .

Here, we assume that the entries of Ĉ1 are vectorized in some fixed order.
8. Sample tx1

← Z∗q and output ct1 = ([tx1
w0]1, [tx1

Ĉ1 �W]1.
Enc2(pp,msk,x2): On input the public parameters pp, master secret key msk,

attribute vector x2, encryption for slot 2 is defined as follows:
1. Set Ĉ2 = (1k×`m, {ψ̂`+i,x2,i

}i∈[`],1k×2`m,1k×m,1k×1), where

ψ̂`+i,b :=

{
1m ∈ Zmq if b = x2,i

0m ∈ Zmq if b 6= x2,i
for i ∈ [`] and b ∈ {0, 1}.

2. Sample tx2
← Z∗q and output ct2 = ([tx2

/w0]2, [tx2
Ĉ2 �W]2.

Enc3(pp,msk,x3): Given input the public parameters pp, master secret key msk,
attribute vector x3, encryption for slot 3 is defined as follows:
1. Compute [(C2`+1,x3,1

‖ . . . ‖C3`,x3,`
‖C3`+1‖C3`+2)

>]−1τt from C−1τ ′0
and

sample short vector tx3
such that

tx3
C2`+i,x3,i

= 0 for all i ∈ [`], tx3
C3`+1 = tx3

C3`+2 = 0, as
t>x3
← [(C2`+1,x3,1

‖ . . . ‖C3`,x3,`
‖C3`+1‖C3`+2)

>]−1τt (0>).
2. Output ct3 = tx3

.
Dec(pp, skF , ct1, ct2, ct3): On input the public parameters pp, the secret key

skF for circuit F and ciphertexts ct1, ct2 and ct3 corresponding to the three
attributes x1, x2 and x3, the decryption algorithm proceeds as follows:
1. Takes the coordinate-wise pairing between ciphertexts for slot 1 and slot 2:

Computes [v0]T = [tx1tx2 ]T and [V]T = [tx1tx2Ĉ1 � Ĉ2]T as e(ct1, ct2).
2. Expands obtained matrix:

Let x = (x1,x2,x3). Expands [V]T to obtain:
[Vi]T = [tx1

tx2
ψi,xi

]T for i ∈ [`], [Vi,b]T = [tx1
tx2
ψ′i,b]T , where

ψ′i,b =

{
ψi,xi

if b = xi

0 if b = 1− xi
, for i ∈ [`+ 1, 2`], b ∈ {0, 1}.

[Vi,b]T = [tx1
tx2

(ψi,b +Ci,bŜi,b + Êi,b)]T for i ∈ [2`+ 1, 3`], b ∈ {0, 1},

[V3`+1]T = [tx1
tx2

(C3`+1Ŝ3`+1 + Ê+ ψ3`+1)]T ,

[v>3`+2]T = [tx1
tx2

(C3`+2ŝ
>
3`+2 + ê>0 + ψ>3`+2 +m>)]T .

3. Recovers BGG+ ciphertext components for third slot:
Let us denote Vi,xi

as Vi for i ∈ [2`+ 1, 3`].

Computes [tx3
Vi]T = [tx1

tx2
tx3

(ψi,xi
+ Êi,xi

)]T for i ∈ [2`+ 1, 3`],

[tx3
V3`+1]T = [tx1

tx2
tx3

(ψ3`+1+Ê)]T and [tx3
v>3`+2]T = [tx1

tx2
tx3

(ψ>3`+2+

m> + ê>0 )]T .

(because tx3
Ci,xi

= 0 for i ∈ [2`+ 1, 3`], tx3
C3`+1 = tx3

C3`+2 = 0)
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4. Computes function to be applied on BGG+ ciphertexts:

Computes ĤF,x = EvalFX(F,x,B).

5. Performs BGG+ decryption in the exponent:

(a) Let us denote Vi,xi
as Vi for i ∈ [`+ 1, 2`].

(b) Computes [tx3Vi]T for i ∈ [2`].
(c) Forms [tx3Vx]T = [tx3V1‖ . . . ‖tx3V3`]T , r = (r1 ∈ Zmq , r2 ∈ Zmq ).
(d) Then computes

[v′]T :=
[(

tx3
v>3`+2 −

(
tx3

V3`+1r
>
1 + tx3

VxĤF,xr
>
2

))]
T

6. Recover exponent via brute force if F (x) = 0:
After simplification, for F (x) = 0, we get v′ = tx1tx2(tx3m

> + e′), where
e′ is the combined error. Find η ∈ [−B,B] ∪ [−B − dq/2e, B − dq/Ke] ∪
[−B + dq/Ke, B + dq/2e] such that [v0]

η
T = [v′]T by brute-force search. If

there is no such η, output ⊥. In the correctness, we show that η can be
found in polynomial steps. To speed up the operation, one can employ
the baby-step giant-step algorithm.

7. Output 0 if η ∈ [−B,B] and 1, otherwise.

Parameters and Correctness: We choose the parameters for the 3-ABE
scheme as follows (pl. refer to the full version [9] for definition of SampZ):

m = n1.1 log q, k = θ(n` log q), q = 2Θ(λ)

τ0 = n log q logm, τ = m3.1` · 2O(d) τ ′0 = ω(
√

2n(`+ 1) log q log k),

χ = SampZ(3
√
n), χ̂ = SampZ(6

√
nm2), B = `m5n3kττt · 2O(d).

We can set τt to be arbitrary polynomial such that τt > τ ′0. The parameter n
may be chosen as n = λc for some constant c > 1.

We argue correctness in the full version of the paper [9, Sec. 8].
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