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Abstract. Leakage resilient secret sharing (LRSS) allows a dealer
to share a secret amongst n parties such that any authorized subset
of the parties can recover the secret from their shares, while an
adversary that obtains shares of any unauthorized subset of parties
along with bounded leakage from the other shares learns no information
about the secret. Non-malleable secret sharing (NMSS) provides a
guarantee that even shares that are tampered by an adversary will
reconstruct to either the original message or something independent of it.

The most important parameter of LRSS and NMSS schemes is
the size of each share. For LRSS, in the local leakage model (i.e., when
the leakage functions on each share are independent of each other
and bounded), Srinivasan and Vasudevan (CRYPTO 2019), gave a
scheme for threshold access structures with share size of approximately
(3 · message length + µ), where µ is the number of bits of leakage
tolerated from every share. For the case of NMSS, the best known
result (again due to the above work) has share size of (11·message length).

In this work, we build LRSS and NMSS schemes with much im-
proved share size. Additionally, our LRSS scheme obtains optimal share
and leakage size. In particular, we get the following results:
– We build an information-theoretic LRSS scheme for threshold access

structures with a share size of (message length + µ).
– As an application of the above result, we obtain an NMSS with a

share size of (4 ·message length). Further, for the special case of shar-
ing random messages, we obtain a share size of (2 ·message length).

1 Introduction

Secret sharing schemes [Sha79,Bla79] are fundamental cryptographic primi-
tives that allow a dealer to distribute its secret m amongst n parties in
such a way that any authorized subset of parties can recover m from their
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shares (correctness), and no unauthorized subset of parties get any infor-
mation about m (privacy). For instance, in a t-out-of-n (t ≤ n) thresh-
old secret sharing scheme, any subset of t parties or more is an authorized
set and can reconstruct the secret, while any subset of fewer than t par-
ties is unauthorized. Secret sharing schemes have found several applications
in literature, such as in multi-party computation [GMW87,BGW88,CCD88],
leakage-resilient circuit compilers [ISW03,FRR+10,Rot12] and threshold cryp-
tographic systems [DF89,Fra89,SDFY94]. An assumption that secret shar-
ing schemes make is that the adversary, controlling an unauthorized set of
parties, gets no information about the shares of the honest parties. How-
ever, a rich study on side-channel attacks called leakage attacks points
to the fact that such an assumption is idealized and may not hold
in practice. This has led to much work on leakage resilient cryptogra-
phy [Koc96,BBR88,BBCM95,Riv97,DSS01,CDH+00,MR04,DP07,AGV09]. In
the context of secret sharing, leakage attacks allow the adversary to additionally
obtain some bounded leakage from the honest party shares, and such a leakage
may help an adversary break privacy of the secret sharing1. To secure against
such attacks, Dziembowski and Pietrzak [DP07] introduced the notion of leakage
resilient secret sharing.

Leakage Resilient/Non-malleable Secret Sharing (LRSS/NMSS).
Informally, an LRSS gives a guarantee that the adversary gets no infor-
mation about the secret, given its shares from an unauthorized set, as
well as leakage from the remaining honest shares. In particular, in the lo-
cal leakage model [BDIR18,GK18,SV19,ADN+19], the adversary is allowed
to make a non-adaptive query to obtain a complete unauthorized set of
shares, along with independent (bounded) leakage on the remaining shares.
Privacy is then required to hold against such an adversary. LRSS schemes
tolerating local leakage have been shown to have applications to leakage-
resilient MPC [BGK11,GIM+16,BDIR18,SV19], leakage-resilient non-malleable
secret sharing [GK18,SV19,BS19], and more recently to zero knowledge
PCPs [HVW21]. Non-malleable secret sharing (NMSS) was introduced by Goyal
and Kumar in [GK18] and provides a guarantee that under a tampering attack
by the adversary, the message recovered from the tampered shares will either be
the same as the original message or will be independent of it.

Share Size of LRSS/NMSS schemes. The most important aspect of secret
sharing schemes is their share size, which typically determines the efficiency of
the application that relies on it. For example, in an application to MPC, the
size of each share affects the overall communication complexity of the MPC
protocol. For standard threshold secret sharing schemes, we know construc-

1 In fact, Guruswami and Wooters [GW16] show that Shamir’s secret sharing scheme
over a field of characteristic 2 is completely insecure if the adversary gets t−1 shares
and just one-bit of leakage from other shares. Further, Nielsen and Simkin [NS20]
show that for larger characteristic fields and large n, Shamir’s secret sharing scheme
is not leakage resilient for threshold t ≤ cn/ logn, for constant 0 < c < 1.
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tions [Sha79,LCG+19] with optimal share size (i.e., same as the message length).
However, the picture is quite different in the presence of leakage and/or tamper-
ing. For a very special case2, Benhamouda, Degwekar, Ishai and Rabin [BDIR18]
show that the Shamir secret sharing [Sha79] is leakage resilient and can leak
upto 1/4 th fraction of bits from each share 3. The work of Aggarwal, Damgard,
Nielsen, Obremski, Purwanto, Ribeiro and Simkin [ADN+19] constructs – as
a stepping stone towards constructing an NMSS – an LRSS scheme; however,
this scheme suffers a polynomial (in n) blowup in its share size and additionally
obtains optimal leakage (≈ ((1 − o(1))message length)) only for the restricted
case of constant number of parties. For the general case of arbitrary n and t,
Srinivasan and Vasudevan [SV19] constructed an LRSS against the local leakage
model with a share size of approximately (3 ·message length + µ), to tolerate µ
bits of leakage from each share. Most constructions of NMSS schemes implicitly
require an LRSS and hence share size of LRSS schemes directly impact that of
NMSS. The best known share size for an NMSS is (11 ·message length), achieved
by the construction of [SV19] (through the [BS19] compiler).

We remark here that obtaining LRSS/NMSS with short share size while
simultaneously tolerating high leakage rate is an important problem noted in
several works (e.g.: In [ADN+19], the authors state: “It would be interesting to
give constructions of leakage-resilient schemes (even in the non-adaptive setting)
with an improved tradeoff between leakage rate and share length ”).

1.1 Our Results

In this work, we construct the first information-theoretic LRSS scheme for
threshold access structures against the local leakage model, with a share size
of (message length+ µ), tolerating µ bits of leakage from each share. This result
is obtained as a corollary of the following more general statement that we prove:

Result 1. Given any secret sharing scheme4 for general monotone access struc-
ture A with share size `/R, where ` is the message length and R ≤ 1, one can con-
struct an LRSS for the same access structure A, against the local leakage model
allowing µ bits of leakage per share, with a share size of `/R+ µ+ o(`/R+ µ).

2 where the underlying field is a large characteristic field, the number of parties n is
large, the threshold t is at least n − o(logn), and the adversary can only obtain a
constant number of full shares

3 In [BDIR18], under the same restrictions (on n, the field and the number of full
shares allowed), Shamir secret sharing is also shown to allow constant bits of leakage
per share, under threshold t ≤ αn, for α < 1. The lower bound of [NS20, Section 4]
mentioned in footnote 1 proves that this is the best possible trade-off from Shamir.
However, for the LRSS scheme of [SV19] or ours, their lower bound allows for leakage
almost as large as the size of a single share.

4 we require the secret sharing to satisfy an additional property of “local uniformity”,
which requires every share to individually have (an almost) uniform distribution. We
show later that such a property is already satisfied by many natural secret sharing
schemes (e.g.: Shamir secret sharing).
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Using our LRSS scheme from Result 1, along with the recent 1/3-rate non-
malleable code of [AKO+22] in the [GK18] NMSS compiler, we obtain an NMSS
with a share size of only (4 · message length). Additionally, we also formalize a
natural restriction of NMSS schemes to uniformly random secrets, called non-
malleable randomness sharing (NMRS), and show how to construct this with
a share size of (2 · message length). NMRS is useful in many practical applica-
tions of secret sharing that only require uniformly random secrets (e.g., when
the secret to be shared and protected against malleability is an encryption key
or a digital signature signing key, whose distribution is (typically) uniform). In
particular, we show:

Result 2. There exists a non-malleable secret sharing scheme against the inde-
pendent tampering model for the threshold access structure, that achieves a share
size of 4`, for messages of length `.
There exists a non-malleable randomness sharing scheme against the indepen-
dent tampering model for the threshold access structure that achieves a share size
of 2`, for messages of length `.

1.2 Technical Overview

One of the initial ideas [ADN+19] to build an LRSS scheme against the local
leakage model, was using linear invertible extractors in the following way: a)
First, threshold secret share the message m into n shares m1, · · · ,mn; b) then
invert each share mi under an invertible extractor to get (wi, si); c) Finally,
the i-th share contains wi and all sj ’s except for j = i. This scheme, even
when instantiated with the best known linear extractors, has a share size of
((n− 1) ·message length + |wi|), which will not be optimal (even for a constant
number of parties). This is because this construction mandates the size of the
seeds sj ’s to be as long as the message m in order to get a negligible leakage error.
Furthermore, this scheme allows a leakage of size ((1 − o(1)) · message length)
only for a constant number of parties.

In a subsequent work of [SV19], the authors once again rely on the use of
randomness extractors, but use a single seed s, across all the shares to get a
rate improvement. In particular, they do the following: a) First m is threshold
secret shared into m1, · · · ,mn (referred to as “simple shares”) using a threshold
secret sharing scheme b) Next, each mi is masked using an extractor output
Ext(wi, s) where s and wi’s are uniformly chosen. Now, let sh1, · · · , shn denote
these masked shares c) r is uniformly chosen to additionally mask each shi d)
Finally, r and s are together secret shared using a 2-out-of-n secret sharing
scheme into shares (a1, · · · , an) and the ith share of the scheme is then set to
be (wi, shi ⊕ r, ai). At a high level, mi was “doubly masked” in order to cast
the leakage on the ith share as leakage on the extractor source wi. In order to
add leakage resilience on top of the simple shares, they needed to be masked
twice, and thus, information of both these masks and the masked value (each
roughly of size |mi|) is given as part of the final share, resulting in its length
being approximately 3|mi|, and hence, giving a rate of 1/3.
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In our construction, we try to combine the best things from these two con-
structions, i.e., use of the invertibility of linear extractors with great parame-
ters, and the use of a single seed across all shares to optimize the share size.
Our techniques use linear extractors in such a way that we not only remove the
dependence of the share size on the number of parties (which in itself is impor-
tant), but also obtain an optimal rate of 1 while still allowing a leakage of size
((1− o(1)) ·message length). We now proceed to describe our approach.

A simpler problem. Our goal is to compile simple shares mi into leakage
resilient shares in a share size-preserving manner (i.e., the size of the leakage
resilient share needs to be about the same as |mi|). As a first step, we relax the
problem in two ways a) consider an LRSS only for the (n, n) access structure
(i.e., where the set of all n parties is the only authorized set); and b) require
that the sharing scheme only works for uniformly random messages.

We first construct an LRSS scheme with the desired share size of
message length + µ, under these two relaxations. For this, we choose extrac-
tor sources w1, · · · , wn and a seed s uniformly, secret share s as (s1, · · · , sn)
and define sharei to be (wi, si). Now, define reconstruction of sharei’s as
m = ⊕i∈[n]Ext(wi; s), where s is obtained by reconstructing si’s. Now, first
observe that, by extractor security, the reconstructed value m has (almost) uni-
form distribution. Also, each share supports local leakage resilience as si (a
share) is devoid of information about s and hence any bounded leakage of the
form f(wi, si) is only dependent on wi and is (almost) independent of the ex-
tractor output and hence m too. This scheme infact has a share size of |m|+ µ
(for µ bits of leakage per share) as there are explicit extractor constructions with
good parameters such that |s| � |wi| ≈ |Ext(wi, s)|.

Final construction overview. Unfortunately, the above construction does
not extend to either support threshold access structures or for secret sharing
a specific message m. In order to reconstruct to a message m, the extractor
outputs Ext(wi, s)’s (i ∈ [n]) would have to be correlated. However, the fact that
the extractor outputs Ext(wi, s) are uncorrelated is what gives leakage resilience
in the scheme above for sharing random messages. The main technical hurdle
which we overcome in this work is to ensure correlation in the shares while
retaining enough independence (via extractors) so that we can argue leakage
resilience.

In our construction, we first generate simple shares of m, denoted
(m1, · · · ,mn) using a standard secret sharing scheme. Next, we aim to cast
each of these simple shares mi as an extractor output. This, however, has two
challenges a) the distribution of mi could be arbitrary and need not have any
entropy; and b) it is not clear how to express mi’s as the output of an extrac-
tor. To address (a), we observe that many natural secret sharing schemes (for
example, the Shamir secret sharing scheme) satisfy the property that each share
individually has (an almost) uniform distribution. We formalize this property
as “local uniformity” of a secret sharing scheme and generate simple shares of
m using such a locally uniform secret sharing scheme. To solve the challenge
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(b), we make use of seeded extractors that are linear functions - i.e., where the
extractor function is guaranteed to be a linear map (over the source) for any
fixed value of the seed, called linear seeded extractors [Tre99,Tre01,RRV02]. We
show that such extractors provide an efficient way to find an (entropic sample of
an) extractor source such that the extractor output on this source takes a given
value under a given seed. With this useful property, each of our simple shares
can indeed be expressed as extractor outputs5.

To summarize our construction, we a) secret share m into simple shares
m1, · · · ,mn using any locally uniform secret sharing scheme for the given general
access structure; b) choose a seed s uniformly and generate its shares s1, · · · , sn
such that s can be reconstructed from any two shares si and sj ; c) for each mi,
sample wi such that Ext(wi, s) = mi; d) Finally, each share is set to be (wi, si)
for all i ∈ [n]. Leakage resilience of this scheme follows from a careful argument
using extractor security and local uniformity. In this scheme, the length of each
share (wi, si) is only negligibly larger than the length of mi as there are explicit
constructions of linear extractors that extract out almost all the entropy from
the source while only using very short seeds.

Non-malleable randomness sharing. We obtain a non-malleable secret
sharing (NMSS) scheme with a share size of 4(message length) by instanti-
ating the NMSS compiler from [GK18] with our rate-1 LRSS scheme, along
with the recent rate-1/3 NMC from [AKO+22]. Hence, our focus in the main
section will be in formalizing and building the NMRS scheme with a share
size of 2(message length). Our NMRS construction follows the same blueprint
as [GK18], but uses a non-malleable randomness encoder (NMRE) (instead of
using a non-malleable code) and our LRSS scheme with rate 1. NMREs [KOS18],
outputs a random message along with its encoding L,R, with the guarantee that
whenever an adversary tampers L,R (in a split-state manner, i.e., tamper L and
R independent of each other), the original message looks uniformly random, even
given this tampered message. Now, our NMRS construction outputs the random
message m output by the NMRE, and to generate its shares: first secret share
L using our LRSS scheme for the 2-out-of-n threshold setting and then share R
using a t-out-of-n threshold secret sharing scheme.

1.3 Related Work

The problems of leakage resilient and non-malleable secret sharing has seen much
research in recent times [DDV10,LL12,BDIR18,GK18,BS19,SV19,ADN+19],
[FV19,BFV19,KMS19,LCG+19,CGG+20,BFO+20,CKOS21,MPSW21,MNP+21].
In the information -theoretic setting, majority of these works focus on improving
the leakage model, such as allowing the adversary to obtain adaptive (leakage
queries dependent on prior leakage responses) and joint (combined leakage from

5 A similar technique of using linear and invertible extractors to get rate optimality
has been used in two prior settings before: information-theoretic privacy of com-
munication data in the wiretap channel setting in [BT12,CDS12] and binary secret
sharing schemes in [LCG+19]
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multiple shares) leakages, and such strong leakage models come at the expense
of poor and sub-optimal share size (typically ω(message length)). For the case
where the adversary is restricted to be computationally bounded, the works
of [BFO+20,FV19] show NMSS and LRSS schemes achieving optimal rate for
strong adaptive and joint leakage and tampering models.

1.4 Organization of the Paper

We give the preliminary definitions and lemmata in Section 2. Then, we build
our leakage resilient secret sharing scheme in Section 3. Finally, we define and
build our non-malleable randomness sharing scheme in Section 4.

2 Preliminaries

2.1 Notation

We begin by describing a few notations that we use. For any two sets S and S′,
S\S′ denotes the set of elements that are present in S, but not in S′. For any
natural number n, [n] denotes the set {1, 2, · · · , n}. x ← X denotes sampling
from a probability distribution X. x||y represents concatenation of two binary
strings x and y. |x| denotes length of binary string x. Ul denotes the uniform dis-
tribution on {0, 1}l. All logarithms are base 2. If S is a subset of [n] and x1, .., xn
are some variables or elements, then xS denotes the set {xi such that i ∈ S}.
χ(a = b) indicates equality of the strings a and b (i.e χ(a = b) = 1 is an only
if a is equal to b ). In this paper we assume natural one-to-one correspondence
between the set {0, 1}n and the field GF (2n).

We now give the standard definitions of statistical distance and entropy along
with some preliminary lemmata of the same.

2.2 Statistical Distance and Entropy - Definitions and Lemmata

Statistical distance. Let X1, X2 be two probability distributions over some
set S. Their statistical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2).
For an event E, SDE(A;B) denotes SD (A|E;B|E).

Entropy. The min-entropy of a random variable W is H∞(W ) =
− log(maxw Pr[W = w]).
For a joint distribution (W,Z), following [DORS08], we define the (average)
conditional min-entropy of W given Z as

H̃∞(W | Z) = − log( E
z←Z

(2− log(maxw Pr[W=w|Z=z])))
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(here the expectation is taken over z for which Pr[Z = z] is nonzero).
For any two random variable W,Z, (W |Z) is said to be an (n, t′)-average source

if W is over {0, 1}n and H̃∞(W |Z) ≥ t′.
We require some basic properties of entropy and statistical distance, which are
given by the following lemmata and propositions.

Lemma 1. [DORS08] Let A,B,C be random variables. If B has at most 2λ

possible values, then

H̃∞(A | B) ≥ H∞(A,B)− λ ≥ H∞(A)− λ

and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ.

Proposition 1. For any three random variables A,B and C, H̃∞(A|B) ≥
H̃∞(A|B,C).

Proof. Let A,B,C be random variables over A,B, C. Then,

H̃∞(A|B) = − log( E
b←B

(2−H∞(A|B=b)))

= − log
∑
b∈B

max
a∈A

Pr[A = a,B = b]

= − log
∑
b∈B

max
a∈A

∑
c∈C

Pr[A = a,B = b, C = c]

Similarly,

H̃∞(A|B,C) = − log
∑
b∈B

∑
c∈C

max
a∈A

Pr[A = a,B = b, C = c]

The proposition follows from the observation that for any b ∈ B,∑
c∈C

max
a∈A

Pr[A = a,B = b, C = c] ≥ max
a∈A

∑
c∈C

Pr[A = a,B = b, C = c]

Lemma 2. [Vad12] For any random variables A,B, if A ≈ε B, then for any
function f, f(A) ≈ε f(B).

2.3 Randomness Extractors

Extractors (introduced by Nissan and Zuckerman [NZ96]) output an almost
uniform string from a (η, τ)-entropic source, using a short uniform string, called
seed, as a catalyst. Average-case extractors are extractors whose output remains
close to uniform, even given the seed and some auxiliary information about the
source (but independent of the seed), whenever the source has enough average
entropy given the auxiliary information. We formally define them as below.
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Definition 1. [DORS08] Let Ext : {0, 1}η × {0, 1}d → {0, 1}l be a polyno-
mial time computable function. We say that Ext is an efficient average-case
(η, τ, d, l, ε)-strong extractor if for all pairs of random variables (W,Z) such

that W is a random variable over η-bit strings satisfying H̃∞(W |Z) ≥ τ , we
have

Ext(W ;Ud), Ud, Z ≈ε Ul, Ud, Z

Linear Extractors. Further, the average-case strong extractor Ext is said to
be linear if for every s ∈ {0, 1}d, Ext(·, s) is a linear function.

In this paper, we instantiate linear extractors with extractors due to Raz et.al
[RRV02], which extracts almost all the randomness and is an improvement of
Trevisan’s extractor [Tre99]. Particularly, we use the following instantiation of
the same given in [LCG+19].

Lemma 3. [LCG+19, Lemma 6] There is an explicit (η, τ, d, l, ε)-strong linear
extractor with d = O(log3(ηε )) and l = τ −O(d).

In our application of linear extractors we will often require to uniformly sample
an extractor source such that the extractor output on this source and a given
seed s takes a given value y. Basically, given a seed s and some y ∈ {0, 1}l, the in-
verting function needs to sample an element uniformly from the set Ext(·, s)−1(y)
(which is {w : Ext(w; s) = y}). We formalize this procedure6 as InvExt and show
that linear extractors allow such sampling in the following lemma.

Lemma 4. For every efficient linear extractor Ext, there exists an efficient ran-
domized function InvExt : {0, 1}l × {0, 1}d → {0, 1}η ∪ {⊥} (termed inverter)
such that

1. Uη, Ud,Ext(Uη;Ud) ≡ InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)
2. For each (s, y) ∈ {0, 1}d × {0, 1}l,
(a) Pr[InvExt(y, s) = ⊥] = 1, if and only if there exists no w ∈ {0, 1}η such

that Ext(w; s) = y.
(b) Pr[Ext(InvExt(y, s); s) = y] = 1, if there exists some w ∈ {0, 1}η such that

Ext(w; s) = y.

Proof. Recall that for a linear extractor, for any seed s ∈ {0, 1}d, Ext(·, s) is a
linear map from the vector space {0, 1}η to the vector space {0, 1}l. Let Is and
Ks denote the image and kernel of this linear map Ext(·, s). We now define InvExt
as follows. Fix any arbitrary input y, s to InvExt.
InvExt(y, s):

– If y ∈ Is
6 In literature, invertible (seeded) extractors (see [CDS12] for an exposition on the

same) are well-studied which allow efficient sampling of a source w and a seed s
such that the extractor output on w and s equals a given value y. Note that our
requirement to sample a source w given a seed s and a value y is stronger than the
guarantee provided by invertible extractors. Hence we explicitly show that certain
extractors allow such sampling.
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• Let w be such that Ext(w; s) = y
• Sample z uniformly from Ks
• Output w + z

Else output ⊥

InvExt is efficient because the bases for the linear sub-spaces Ks, Is and the
preimage space on the value y (corresponding to the linear map Ext(·, s)) can
be determined efficiently. By the definition, it is easy to see that InvExt satisfies
property (2) of the Lemma statement. We now proceed to prove property (1)
about statistical distance. Consider the set S = {(w, s, y) : Ext(w; s) = y}.
For any (w, s, y) ∈ S,

Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)]

=
∑

w′∈{0,1}η
Pr[Uη = w′, Ud = s] · Pr[InvExt(y, s) = w] · χ(Ext(w′; s) = y)

Since Ext(w; s) = y by definition of S, we know that w lies in the set of
|Ks| elements from which InvExt(y, s) chooses its output uniformly. Therefore
Pr[InvExt(y, s) = w] = 1

|Ks| . Further, since Ext(·; s) is a linear map and y ∈ Is,
we know that there are exactly |Ks| number of values w′ ∈ {0, 1}η such that
Ext(w′; s) = y. With these observations, we conclude that

Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)] =
1

2η+d

Also for any (w, s, y) ∈ S, Pr[(Uη, Ud,Ext(Uη;Ud)) = (w, s, y)] = 1
2η+d

.

For any (w, s, y) /∈ S, it holds that Ext(w; s) 6= y. With this we have

Pr[(Uη, Ud,Ext(Uη;Ud)) = (w, s, y)] = 0

and
Pr[(InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) = (w, s, y)] = 0

The last equation is true because a) if y ∈ Is, then Pr[InvExt(y, s) = w] = 0
b) if y /∈ Is, then Pr[(Ud,Ext(Uη;Ud)) = (s, y)] = 0. Further note that
Pr[InvExt(Ext(Uη;Ud), Ud) = ⊥] = 0 as Ext(Uη;Ud) ∈ IUd with probability 1.
Combining these observations, it follows that the statistical distance between the
distributions (InvExt(Ext(Uη;Ud), Ud), Ud,Ext(Uη;Ud)) and (Uη, Ud,Ext(Uη;Ud))
is zero, which concludes the proof.

2.4 Secret Sharing Schemes

Secret sharing schemes provide a mechanism to distribute a secret into shares
such that only an authorized subset of shares can reconstruct the secret and any
unauthorized subset of shares has “almost” no information about the secret. We
now define secret sharing schemes formally.
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Definition 2. Let [n] be a set of identities (indices) of n parties. A sharing
function Share : {0, 1}l → ({0, 1}l′)n is an (n,A)- secret sharing scheme that
is εs-private with respect to a monotone access structure7 A if the following two
properties hold:

1. Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
deterministic reconstruction function Rec : ({0, 1}l′)|T | → {0, 1}l such that
for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1

where the probability is over the randomness of the Share function and if
(sh1, .., shn)← Share(m), then Share(m)T denotes {shi}i∈T . We will slightly
abuse the notation and denote Rec as the reconstruction procedure that takes
in T ∈ A and Share(m)T as input and outputs the secret.

2. Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U /∈ A, and for every pair of secrets
m,m′ ∈ {0, 1}l,

∆((Share(m))U ; (Share(m′))U ) ≤ εs

(Share,Rec) is said to be perfectly private if εs = 0. An access structure A is
said to be (n, t)-threshold if and only if A contains all subsets of [n] of size
atleast t.

Rate of a secret sharing scheme is defined as message size
share size (which would be equal to

l/l′).

Leakage Resilience. A secret sharing scheme (Share,Rec) is said to be εlr-
leakage resilient against a leakage function family F if for all messages m,m′ ∈
{0, 1}l and every function f ∈ F ,

f((Share(m))[n]) ≈εlr f((Share(m′))[n])

We use secret sharing schemes augmented with the following property as a build-
ing block to our leakage resilient secret sharing scheme.

Local Uniformity. We say a secret sharing scheme (Share,Rec) satisfies local

uniformity if the distribution of each individual share given out by the Share
function is εu-statistically close to the uniform distribution in its share space.
Formally, any sharing function Share : {0, 1}l → {{0, 1}l′}n is εu-locally uniform
if for each message m ∈ {0, 1}l it holds that

Share(m){i} ≈εu Ul′ , ∀ i ∈ [n]

7 A is a monotone access structure if for all A,B such that A ⊂ B ⊆ [n] and A ∈ A,
it holds that B ∈ A. Throughout this paper whenever we consider a general access
structure, we mean a monotone access structure.
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Note that Shamir secret sharing scheme [Sha79,Bla79] and Benaloh-Leichter
secret sharing scheme [BL88] are instantiations of a locally uniform secret sharing
schemes for threshold access structures and general monotone access structures
respectively8 .

Consistent Resampling. For any (n,A)-secret sharing scheme (Share,Rec)

which is εs-private, and for any message m and a subset L ⊆ [n], when we say
“(sh1, .., shn)← Share(m|sh∗L)” we mean the following procedure:

– Sample and output (sh1, .., shn) uniformly from the distribution Share(m)
conditioned on the event that shL = sh∗L

– If the above event is a zero probability event then output a string of all
zeroes (of appropriate length).

Note that for any L ⊆ [n], the distributions Share(m) and Share(m|sh∗L) are
identical when (sh∗1, · · · , sh∗n)← Share(m).

3 Leakage Resilient Secret Sharing Schemes

3.1 Local Leakage Family

The local leakage family allows bounded leakage queries {fi : {0, 1}l′ →
{0, 1}µ}i∈K, on each share corresponding to an arbitrary set of indices K(⊆ [n]),
and further allows full share queries corresponding to an unauthorised subset U .
Formally, for any access structure A and leakage amount µ > 0, we define this
family as

FA,µ = {(U ,K, {fi}i∈K) : U /∈ A,K ⊆ [n] and ∀ i ∈ K, fi : {0, 1}l
′
→ {0, 1}µ}

where for any secret sharing scheme (Share,Rec), the leakage response cor-
responding to a leakage query (U ,K, {fi}i∈K) ∈ FA,µ on any secret m is
(shU , {fi(shi)}i∈K) when (sh1, · · · , shn)← Share(m).

Remark 1. Consider a leakage family which is the set of all functions
(U ,K, {fi}i∈K) ∈ FA,µ such that U ∩ K = φ. Intuitively, this is the leakage
query which doesn’t ask to reveal a full share and also query bounded leak-
age on the same share. Though this may seem like a restriction on FA,µ, we
would like to emphasize that leakage resilience against this weaker family guar-
antees leakage resilience against FA,µ itself. This is because leakage response to
any function (U ,K, {fi}i∈K) ∈ FA,µ can be simulated from leakage response to
(U ,K\U , {fi}i∈K\U ) ∈ FA,µ, as {fi(shi)}i∈K∩U can be trivially computed given
shU (which is part of the leakage response to (U ,K\U , {fi}i∈K\U )).

8 This is formally proven in [CKOS21, Claim 2].
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3.2 Construction

3.2.1 Building Blocks

– (MShare,MRec) be any εp-private and εu-locally uniform secret sharing
scheme for the message space {0, 1}l and a monotone access structure (n,A).
Let l′ denote the share size of MShare (that is MShare : {0, 1}l → ({0, 1}l′)n).

– (SdShare,SdRec) be any ε′p-private secret sharing scheme for the message

space {0, 1}d and against the (n, 2)-threshold access structure with share
length d′.

– Ext be an (η, τ, d, l′, εext)-strong linear extractor. InvExt be the inverter func-
tion corresponding to Ext given by Lemma 4.

3.2.2 Construction Overview We now build our LRSS scheme. Informally,
to share a message m, we first share it using MShare to get m1, · · · ,mn, pick a
random extractor seed s and then use InvExt to get the source wi corresponding
to the extractor output mi and seed s, for each i ∈ [n]. If any of the wi is
⊥, then we output each of the i-th share to be (⊥,mi). Else, we share s using
SdShare to get s1, · · · , sn, and set the i-th share to be (wi, si). The reconstruction
procedure either directly reconstructs using mi’s (in case of ⊥), else reconstructs
s, evaluates the extractor Ext on wi and s to get the mi’s and recovers m.

LRShare(m)

– (m1, · · · ,mn)← MShare(m).

– Sample s ∈R {0, 1}d.
– (s1, · · · , sn)← SdShare(s).

– For i ∈ [n], wi ← InvExt(mi, s).

– If wj = ⊥ for some j ∈ [n], set
sharei = (⊥,mi) for each i ∈ [n].

– Else, for each i ∈ [n], set sharei =
(wi, si).

– Output (share1, · · · , sharen).

LRRec(shareT ) (where T ∈ A)

– If for any i ∈ T , sharei is of
the form (⊥,mi), then parse each
sharej as (⊥,mj) for each j ∈ T

– Else, for i ∈ T , parse sharei as
(wi, si) and do:
• s ← SdRec(si1 , si2), where
i1, i2 are two indices from T .
• For i ∈ T , setmi = Ext(wi; s).

– Output m← MRec(mT ).

Theorem 1. Let (MShare,MRec), (SdShare,SdRec) and (Ext, InvExt) be the se-
cret sharing schemes and a strong linear extractor as given in Section 3.2.1.
Then (LRShare, LRRec) is a leakage resilient secret sharing scheme for mes-
sages in {0, 1}l against the access structure (n,A) which is εp-private and
(6n(εext + ε′p + εu) + εp) -leakage resilient against the local leakage family FA,µ.

Also,for any l, µ > 0 and every instantiation of (MShare,MRec) with rate
R(l) 9 on secrets of size l, there exists an instantiation of (LRShare, LRRec) with
a share size of approximately (l/R(l) + µ), for µ bits of leakage per share. In
particular, for µ = o(l/R(l)), we get the same rate R(l) for our LRSS scheme.

9 Here, we let R denote the function that computes the rate to secret share l-size
secrets.
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Further, there exists an efficient instantiation of (LRShare, LRRec) for thresh-
old access structures on secrets of size l, which has a share size of approximately
(l+µ), for µ bits of leakage (and in particular gives rate 1, when µ = o(l)), that

is perfectly private and 6n · 2−Ω( 3
√

(l/ log l))-leakage resilient against FA,µ.

3.3 Security Proof

Correctness and Privacy

Correctness of the scheme follows from the correctness of (MShare,MRec) in case
any InvExt outputs ⊥, else it follows from correctness of both (MShare,MRec),
(SdShare,SdRec) and properties of InvExt (property 2(b) of Lemma 4). It is easy
to see that (LRShare, LRRec) is εp-private by εp-privacy of (MShare,MRec).

Leakage resilience against the local leakage family

Choose an arbitrary leakage function (U ,K, {fi}i∈K) ∈ FA,µ. Note that by Re-
mark 1, it suffices to show leakage resilience against leakage functions such that
U ∩ K = φ. For the sake of simplicity assume K = {1, 2, · · · , |K|}.

Our goal is to show that the distributions of leakage response to the query
(U ,K, {fi}i∈K) on shares of two distinct messages m and m′ are statistically
close. We denote the distribution of these leakage responses on m and m′ by
Leakm0 and Leakm

′

0 respectively.
In case either of the shares corresponding to m or m′ contain ⊥, then we do

not get leakage resilience, however in Claim 1, we show that the shares corre-
sponding to any message m contain ⊥, only with probability (n(εext + εu)).

Claim 1 For any message m, LRShare(m) = ((⊥,m1), · · · , (⊥,mn)) with prob-
ability ≤ (n(εext + εu)).

Proof. Let Mi,Wi, Si (for i ∈ [n]) and S denote the distributions of the samples
mi, wi, si(for i ∈ [n]) and s respectively in the sharing procedure LRShare(m).
By definition of LRShare, for any m, the probability that LRShare(m) =
((⊥,m1), · · · , (⊥,mn)) is = Pr[∃i ∈ [n] : Wi = ⊥]. We now analyze this prob-
ability. Let Is denote the image of the linear map Ext(·, s) for s ∈ {0, 1}d. By
Lemma 4, note that InvExt(mi, s) outputs ⊥ if and only if mi /∈ Is. Therefore,

Pr[∃i ∈ [n] : Wi = ⊥] ≤
∑
i∈[n]

Pr[Mi /∈ IS ]

Since Ext is a strong linear extractor, we know

Ext(Uη, S), S ≈εext Ul′ , S.

By local uniformity of MShare, for each i ∈ [n] we have Mi ≈εu Ul′ . Since S is
independent of Mi and Ul′ it follows that,

∀i ∈ [n], Ext(Uη, S), S ≈εext+εu Mi, S.
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By the definition of statistical distance, for each i ∈ [n]

Pr[Mi /∈ IS ] ≤ εext + εu + Pr[Ext(Uη, S) /∈ IS ] = εext + εu.

The last implication follows because Ext(Uη, S) ∈ IS with probability 1. There-
fore,

Pr[∃i ∈ [n] : Wi = ⊥] ≤ n(εext + εu).

�

Thus, assuming this error of (2n(εext + εu)), we can consider all shares
of m and m′ to not contain ⊥, and through a sequence of hybrids
Leakm0 , Leak

m
1 , · · · , Leakm|K| we show that the responses to the leakage functions

fi’s are (almost) independent of the choice of m in Claim 2. A similar sequence
of hybrids is followed for the message m′. Then, we show that the distributions
of the shares of the messages m and m′ corresponding to the set U are
statistically close in Claim 3. Together, these claims prove leakage resilience.
We formally describe these hybrids below (recall we assume the non-⊥ case here).

Leakm0

– (m1, · · · ,mn)← MShare(m).
– Sample s ∈R {0, 1}d.
– (s1, · · · , sn)← SdShare(s).
– For i ∈ [n], wi ← InvExt(mi, s).
– For i ∈ [n], set sharei = (wi, si).
– Output(
{fi(sharei)}i∈[|K|], shareU

)

Leakmj (j ∈ [|K|])

– (m1, · · · ,mn)← MShare(m).
– Sample s ∈R {0, 1}d.
– (s1, · · · , sn)← SdShare(s).
– For 1 ≤ i ≤ j, wi ∈R {0, 1}η.
– For j < i ≤ n, wi ← InvExt(mi, s).
– For i ∈ [n], set sharei = (wi, si).
– Output

(
{fi(sharei)}i∈[|K|], shareU

)
Leakm0 captures the response to the leakage query (U ,K, {fi}i∈K) on message
m corresponding to the sharing function LRShare. Particularly, in Leakm0 all
responses fj(sharej) have dependence on m via wj (as wj is correlated to mj , a
share ofm). Informally, hybrids Leakmj and Leakmj−1 differ only in the computation
of wj , where wj is chosen uniformly in Leakmj while it is sampled using InvExt in
Leakmj−1 (as in the actual leakage distribution Leakm0 ). We now use the security
guarantees provided by (Ext, InvExt) and local uniformity of MShare to prove
that the successive hybrids Leakmj−1 and Leakmj are statistically close, for each
j ∈ [|K|].

Claim 2 By εu-local uniformity of MShare, ε′p-privacy of (SdShare,SdRec)
and security of the strong linear extractor Ext, for each j ∈ [|K|],
Leakmj−1 ≈2(εext+ε′p+εu)

Leakmj .

Proof. For any j ∈ [|K|], the distributions Leakmj−1 and Leakmj only differ in com-
putation of wj (which in turn influences computation of sharej and fj(sharej)).
Let W and S denote uniform distributions on {0, 1}η and {0, 1}d respectively.
From Lemma 4 we have,

W,S,Ext(W ;S) ≡ InvExt(Ext(W ;S), S), S,Ext(W ;S)
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Let S̃j ≡ SdShare(0d){j}. By Lemma 2 we have,

fj(W, S̃j), S̃j , S,Ext(W ;S) ≡ fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S)

Since H̃∞(W |(fj(W, S̃j), S̃j)) ≥ η − µ ≥ τ (by our setting of parameters), we
invoke extractor security of Ext to get,

fj(W, S̃j), S̃j , S, Ul′ ≈εext fj(W, S̃j), S̃j , S,Ext(W ;S)

By triangle inequality on the above two inequalities,

fj(W, S̃j), S̃j , S, Ul′ ≈εext fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S) (1)

Observe that RHS of the inequality 1 is a randomised function (with randomness
being independent of the input) of (S̃j , S,Ext(W ;S)). Let g1 denote this function.
From Inequality 1 and Lemma 2 we have

g1(S̃j , S, Ul′) ≈εext g1(S̃j , S,Ext(W ;S))

Then, by definition of g1 we have

fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′ ≈εext fj(InvExt(Ext(W ;S), S), S̃j), S̃j , S,Ext(W ;S)
(2)

Applying triangle inequality on inequalities 1 and 2 we have,

fj(W, S̃j), S̃j , S, Ul′ ≈2εext fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′ (3)

By privacy of SdShare, it holds that Sj , S ≈ε′p S̃j , S. Further, by local uniformity
of MShare, it holds that Ul′ ≈εu Mj . Since (S, Sj), Ul′ and Mj are mutually
independent we get

Sj , S,Mj ≈ε′p+εu S̃j , S, Ul′ (4)

Note that the LHS and RHS of Inequality 3 can each be expressed
as randomised functions of (S̃j , S, Ul′). Formally, a) g1(S̃j , S, Ul′) ≡
(fj(InvExt(Ul′ , S), S̃j), S̃j , S, Ul′); b) there exists a randomised function (whose

randomness is independent of the input) g2 such that g2(S̃j , S, Ul′) ≡
(fj(W, S̃j), S̃j , S, Ul′). Now, by Lemma 2

g2(S̃j , S,Mj) ≈ε′p+εu g2(S̃j , S, Ul′) (5)

g1(S̃j , S,Mj) ≈ε′p+εu g1(S̃j , S, Ul′) (6)

From Inequality 3 we know,

g2(S̃j , S, Ul′) ≈2εext g1(S̃j , S, Ul′) (7)

Now, with applications of triangle inequality to inequalities 5, 7 and 6 and by
definition of g1 and g2 we have

fj(W,Sj), Sj , S,Mj ≈2(εext+ε′p+εu)
fj(InvExt(Mj , S), Sj), Sj , S,Mj (8)
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Note that the distributions (Sj , S,Mj) are identical in both the distributions
Leakmj−1 and Leakmj . The distribution W on the LHS of inequality 8 is identical
to the distribution of wj in Leakmj . The distribution InvExt(Mj , S) on the RHS
of inequality 8 is identical to the distribution of wj in Leakmj−1. To compute the
output of the distributions Leakmj and Leakmj−1 we invoke the following function
on the above LHS and RHS respectively.
func(a, sj , s,mj)

– (m1, · · · ,mn)← MShare(m|m{j})
– Sample s ∈R {0, 1}d
– (s1, · · · , sn)← SdShare(s|s{j})
– For 1 ≤ i < j, wi ∈r {0, 1}η
– For j < i ≤ n, wi ← InvExt(mi, s)

– For i ∈ [n]\{j}, define (wi, si) as sharei and ai = fi(sharei).

– Set aj = a.

– Output ({ai}i∈[|K|], shareU )

By application of Lemma 2 and by the definition of consistent resampling, we
have

Leakmj ≡ func(fj(W,Sj), Sj , S,Mj)

≈2(εext+ε′p+εu)
func(fj(InvExt(Mj , S), Sj), Sj , S,Mj) ≡ Leakmj−1

�

Claim 3 By εp-privacy of (MShare,MRec), for any two messages m 6= m′,

Leakm|K| ≈εp Leakm
′

|K|.

Proof. Note that for any message m, the distribution Leakm|K| only depends on

shares of the unauthorised set U . By privacy of MShare, for m,m′

MShare(m)U ≈εp MShare(m′)U

Note that given MShare(m)U , the output of Leakm|K| can be computed by choosing

{wi}i∈K and s uniformly, generating shares of s and performing the remaining
computation using fi’s. Similar is the case for Leakm

′

|K| given MShare(m′)U . There-
fore, we have

Leakm|K| ≈εp Leakm
′

|K|

. �

Using Claims 1,2 and 3, with applications of triangle equality, we get

Leakm0 ≈2n(εext+εu)+4|K|(εext+ε′p+εu)+εp Leakm
′

0

This gives the leakage error of at most 6n(εext + ε′p + εu) + εp.
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3.4 Parameters

Recall that {0, 1}l is the message space.

– For an (n, t)-threshold access structure
• We instantiate (MShare,MRec) with the (n, t)-Shamir secret sharing

scheme for messages. {0, 1}l, which is perfectly private and perfectly lo-
cally uniform (that is εp = εu = 0). With this instantiation |mi| = l′ = l.

• We set εext = 2
−Ω( 3

√
l′

log l′ ) and instantiate the (η, τ, d, l′, εext)-strong lin-

ear extractor Ext (as in Lemma 3) with η = l′ + µ + O(log3( l′

εext
)),

τ = l′ +O(log3( η
εext

)) and d = O(log3( η
εext

)).

• We instantiate (SdShare,SdRec) with the (n, 2)-Shamir secret sharing
scheme for messages {0, 1}d, which is perfectly private (that is ε′p = 0).
With this instantiation we have |si| = d (for all i ∈ [n]).

• With the above instantiations, the size of each share output by LRShare
to support µ bits leakage (for the leakage family FA,µ) is η + d = l′ +

µ + O( l′

log l′ + log3 µ) = l + µ + o(l, µ). The scheme is perfectly private

and 6n ·2−Ω( 3
√
l/log l)-leakage resilient against FA,µ. Therefore rate of the

scheme is asymptotically 1 when µ = o(l).
– For general access structures
• Suppose R is the function specifying the rate of the scheme

(MShare,SdShare) on a given message length l. Then l′ = l
R(l) . In-

stantiate Ext and (SdShare,SdRec) as done in the above for threshold
access structures with l′ = l

R(l) . With this, we get the share size of

LRShare = l′ + µ + o(l′, µ) and hence results in rate R(l) whenever
µ = o( l

R(l) ).

4 Non-malleable Secret Sharing Schemes

As we mentioned in the introduction, we can get the NMSS scheme with the
improved rate of 1/4, by directly instantiating the NMSS scheme of [GK18]
with our LRSS scheme10 and the rate-1/3 non-malleable code [AKO+22]. Hence,
our focus in this section will be on formalizing and building non-malleable ran-
domnesss sharing schemes with the further improved rate. We begin by defin-
ing non-malleable randomness sharing, which specially gives secret sharing and
non-malleability guarantees for uniform random messages. The sharing proce-
dure outputs a (uniform random) message m along with its shares. The privacy

10 Particularly, instantiating the NMSS sharing scheme of [GK18, Theorem 1] with the
NMC of [AKO+22, Theorem 3] and our LRSS would give: First encode the secret m
using the NMC to get states L and R. For [AKO+22]’s NMC, one of the states, L
is larger than R. Secret share L using our LRSS from Theorem 1 for (n, 2)-threshold
access structure to get L1, · · · , Ln, and R using an (n, t)-threshold secret sharing
scheme to get R1, · · · , Rn. Set the i-th share as (Li, Ri).
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guarantee is that, given any unautorized set of shares, the message m still looks
random. The non-malleability guarantee is that, when the shares are tampered
with respect to some tampering family F , the original message m looks random,
even given the recovered tampered message (using any authorized (adversarially
mentioned) set for reconstruction).

Definition 3 (Non-malleable Randomness Sharing). Let RNMShare be a
function such that RNMShare : {0, 1}α → {0, 1}` × ({0, 1}`′)n is defined as
RNMShare(r) := (RNMShare1(r),RNMShare2(r)) = (m, (Share1, · · · ,Sharen))
We say that RNMShare is a (n, t)-non-malleable randomness sharing with εs-
privacy and εnm-non-malleability, message space {0, 1}`, shares from {0, 1}`′ ,
for the distribution R on {0, 1}α, and with respect to a tampering family F if it
satisfies the following properties.

1. Correctness. For any T ⊆ [n] with |T | ≥ t, there exists a deterministic
reconstruction function RNMRec : ({0, 1}`′)|T | → {0, 1}` such that

Pr
r←R

[RNMRec(RNMShare2(r)T ) = RNMShare1(r)] = 1

2. Statistical Privacy. For any unauthorized set U ⊆ [n] such that |U | < t,

(RNMShare1(R),RNMShare2(R)U ) ≈εs (U`,RNMShare2(R)U ))

3. Non-malleability. For each f ∈ F and every authorized set T ⊆ [n] con-
taining t indices, there exists a simulator Simf,T over {0, 1}` ∪ {same∗,⊥},
such that

Tamperf,T ≈εnm Copy(U`,Simf,T )

where Tamperf,T denotes the distribution (RNMShare1(R),
RNMRec(f(RNMShare2(R))T )) and Copy(U`,Simf,T ) is defined as:

Copy(U`,Simf,T ) :=


u← U`; m̃← Simf,T

Output: (u, u), if m̃ = same∗

Output: (u, m̃), otherwise


where Simf,T should be efficiently samplable given oracle access to f(.).

The rate of this random secret sharing scheme is defined as `/`′.

We specifically consider the independent tampering family, first defined
in [GK18], as given below.

Independent Tampering Family Find. Specifically, we build non-malleable

randomness sharing schemes for the independent tampering family, where each
share is allowed to be tampered arbitrarily, but independent of each other.
Let RNMShare2(r) = (Share1, · · · ,Sharen). Formally, Find consists of functions
(f1, · · · , fn), such that, for each i ∈ [n], fi : {0, 1}`′ → {0, 1}`′ is an arbitrary
tampering function that takes as input Sharei and outputs a tampered share.
Now we proceed to build such non-malleable randomness sharing schemes with
respect to Find, achieving rate 1/2.
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4.1 Building Blocks

We begin by looking at the building blocks needed for the construction. Besides
our leakage resilient secret sharing scheme, and any threshold secret sharing
scheme, we require non-malleable randomness encoders, defined below.

4.1.1 Non-malleable Randomness Encoders Non-malleable randomness
encoders (NMRE) were introduced in [KOS18] and give non-malleability guar-
antees for random messages, which we formally define below.

Definition 4 (Non-malleable Randomness Encoders [KOS18]). Let
(NMREnc,NMRDec) be s.t. NMREnc : {0, 1}α → {0, 1}` × ({0, 1}β1 × {0, 1}β2)
is defined as NMREnc(r) = (NMREnc1(r),NMREnc2(r)) = (m, (L,R)) and
NMRDec : {0, 1}β1 × {0, 1}β2 → {0, 1}`. We say that (NMREnc,NMRDec) is
an ε-non-malleable randomness encoder with message space {0, 1}`, codeword
space {0, 1}β1 ×{0, 1}β2 , for the distribution R over {0, 1}α, and with respect to
the 2-split-state tampering family Fsplit (consisting of functions (f, g) such that
f : {0, 1}β1 → {0, 1}β1 and g : {0, 1}β2 → {0, 1}β2 are arbitrary functions acting
on L and R respectively), if it satisfies the following properties.

1. Correctness. Prr←R[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1.
2. Non-malleability. For each (f, g) ∈ Fsplit, ∃ a distribution NMRSimf,g

over {0, 1}` ∪ {same∗,⊥} such that

NMRTamperf,g ≈ε Copy(U`,NMRSimf,g)

where NMRTamperf,g denotes the distribution
(NMREnc1(R),NMRDec((f, g)(NMREnc2(R))) and Copy(U`,NMRSimf,g)
is defined as:

Copy(U`,NMRSimf,g) :=


u← U`; m̃← NMRSimf,g

Output: (u, u), if m̃ = same∗

Output: (u, m̃), otherwise


where NMRSimf,g should be efficiently samplable given oracle access to
(f, g)(.).

We also require the following secret sharing property of the NMRE, which states
that the message of an NMRE looks random, even given one of the states.

Lemma 5. Let (NMREnc,NMRDec) and an ε-non-malleable randomness en-
coder over the message space {0, 1}`, using the distribution R, and against
the 2-split-state Fsplit. Then, (NMREnc1(R), L) ≈3ε (U`, L), where (L,R) ←
NMREnc2(R).

The proof of this lemma is very similar to an analogous property satisfied of
non-malleable codes, shown in [ADKO15, Lemma 6.1]. For a detailed proof, we
refer the readers to our full version.
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4.1.2 Instatiations of our Building Blocks Specifically, we can now list
the building blocks required for our construction.

– (NMREnc,NMRDec) be an εnmre-non-malleable randomness encoder, out-
putting messages from {0, 1}` and codewords from {0, 1}β1 ×{0, 1}β2 , using
randomness from some distribution R, and against the split-state family
Fsplit. Further, the NMRE satifies ε′p-secret sharing property (Lemma 5)
that (NMREnc1(R), L) ≈ε′p (U`, L), where (L,R)← NMREnc2(R).

– (LRShare2n, LRRec
2
n) be a (n, 2)-leakage resilient secret sharing scheme with

εlr-leakage resilience against F2,µ taking messages from {0, 1}β1 , specifically
for 2-threshold setting, i.e., the adversary can query independent leakage on
n− 1 shares, non-adaptively (upto µ bits from each share) and get one full
share.

– (Sharetn,Rec
t
n) be any (n, t)-secret sharing scheme with εp-privacy against

the (n, t)-threshold access structure, taking messages from {0, 1}β2 .

4.2 Our Construction

We now build a non-malleable randomness sharing scheme. Informally, we first
use the non-malleable randomness encoder to generate a message m along with
its encoding (L,R). Then, we secret share L and R using the leakage resilient
and threshold secret sharing schemes respectively, to get the shares (L1, · · · , Ln)
and (R1, · · · , Rn). Finally, we set the i-th share Sharei to be (Li, Ri). The re-
construction procedure first reconstructs L and R, and subsequently decodes it
to recover m.

RNMShare(r) :

1. (m, (L,R))← NMREnc(r).
2. We further secret share L and R as follows:

(L1, · · · , Ln)← LRShare2n(L)

(R1, · · · , Rn)← Sharetn(R)

3. For each i ∈ [n], set Sharei = (Li, Ri).
4. Output (m, (Share1, · · · ,Sharen)).

RNMRec(ShareT ) : Parse T = {i1, · · · , it} and do the following:

1. For each j ∈ T , parse Sharej as (Lj , Rj).
2. Recover L and R as:

L← LRRec2n(Li1 , Li2)

R← Rectn(Ri1 , · · · , Rit)

3. Output m = NMRDec(L,R).
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Theorem 2. Let (NMREnc,NMRDec), (LRShare2n, LRRec
2
n) and (Sharetn,Rec

t
n)

be building blocks as in Section 4.1.2. Then, the construction above gives
an (n, t)-non-malleable randomness sharing scheme with 2εp + ε′p-privacy and
εnmre + εlr + εp-non-malleability against Find.
Further, we give an instantiation of the above construction in Section 4.3, which
achieves an asymptotic rate of 1/2, has a privacy error of 2−Ω(`/ logρ+1(`)), and

a non-malleablity error of 6n · 2−Ω(`/ logρ+1(`)), for any ρ > 0, for messages of
length `.

Proof. Correctness. The correctness of the scheme is straightforward from the
correctness of the underlying non-malleable randomness encoder, the threshold
secret sharing scheme and the leakage resilient secret sharing.

Privacy. We prove the statistical privacy using a hybrid argument. We

wish to show that, for any unauthorized set U ⊆ [n] with |U | < t,
(RNMShare1(R),RNMShare2(R)U ) ≈2εp+ε′p

(U`,RNMShare2(R)U )). Let U be
any arbitrary unauthorized set. Consider the following sequence of hybrids.

– Hyb0: This hybrid corresponds to the case where the NMRE encoder is used
to generate the message m.
Generate (m, (L,R)) ← NMREnc(r), for r ← R. Further generate
(L1, · · · , Ln) ← LRShare2n(L) and (R1, · · · , Rn) ← Sharetn(R). Set Sharei =
(Li, Ri), for each i ∈ U and output (m, {Sharei}i∈U ).

– Hyb1: Replace the shares of R in the set U with shares of an R′ correspond-
ing to a message m′ output by the NMRE encoder.
Generate (m, (L,R)) ← NMREnc(r) and (L′, R′) ← NMREnc2(r′),
for r, r′ ← R. Further generate (L1, · · · , Ln) ← LRShare2n(L) and
(R′1, · · · , R′n)← Sharetn(R′). Set Sharei = (Li, R

′
i), for each i ∈ U and output

(m, {Sharei}i∈U ).
– Hyb2: Replace the m with a random message u, and use the L corresponding

to m, as in Hyb1.
Generate u ← U`, (L,R) ← NMREnc2(r) and (L′, R′) ← NMREnc2(r′),
for r, r′ ← R. Further generate (L1, · · · , Ln) ← LRShare2n(L) and
(R′1, · · · , R′n)← Sharetn(R′). Set Sharei = (Li, R

′
i), for each i ∈ U and output

(u, {Sharei}i∈U ).
– Hyb3: This final hybrid corresponds to the case where L and R are generated

corresponding to some message m, but an independent uniform message u
is output.
Generate u ← U`, (L,R) ← NMREnc2(r), for r ← R. Further generate
(L1, · · · , Ln) ← LRShare2n(L) and (R1, · · · , Rn) ← Sharetn(R). Set Sharei =
(Li, Ri), for each i ∈ U and output (u, {Sharei}i∈U ).

Clearly, Hyb0 ≡ (RNMShare1(R),RNMShare2(R)U ) and Hyb3 ≡
(U`,RNMShare2(R)U )). By statistical privacy of (Sharetn,Rec

t
n), it follows

that Hyb0 ≈εp Hyb1 and Hyb2 ≈εp Hyb3. By the privacy property of NMRE,
it follows that Hyb1 ≈ε′p Hyb2. Hence, (RNMShare1(R),RNMShare2(R)U ) ≡
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Hyb0 ≈2εp+ε′p
Hyb3 ≡ (U`,RNMShare2(R)U )).

Non-malleability. We prove this using a hybrid argument. We begin

by describing the simulator Simf1,··· ,fn,T , for arbitrary tampering functions
f1, · · · , fn ∈ Find and reconstruction set T = {i1, · · · , it}.

Simf1,··· ,fn,T :

1. Let (L∗, R∗)← NMREnc2(r), for r ← R.
2. (L∗1, · · · , L∗n)← LRShare2n(L∗)

(R∗1, · · · , R∗n)← Sharetn(R∗)

3. Set h = (R∗i1 , · · · , R
∗
it−1

, R̃∗i1 , · · · , R̃
∗
it−1

, L∗it), where (L̃∗j , R̃
∗
j ) =

fj(L
∗
j , R

∗
j ), for j = i1, · · · , it−1. Define the tampering functions Fh and

Gh, acting on inputs L and R respectively as:
Fh(L) :
– Pick Li1 , · · · , Lit−1

such that the reconstruction using any two
shares among L∗it and Li1 , · · · , Lit−1 gives L.

– For each j ∈ {i1, · · · , it−1}, evaluate (L̃j , R̃j) = fj(Lj , R
∗
j ). Then

the sampling should be such that R̃j = R̃∗j for each j = i1, · · · , it−1.
– If such a sampling is not possible then output ⊥.

Else output L̃← LRRec2n(L̃i1 , L̃i2).
Gh(R) :
– Pick Rit such that it is consistent with R∗i1 , · · · , R

∗
it−1

and R.
– If such a sampling is not possible, then output ⊥.
– Else evaluate (., R̃it) = fit(L

∗
it
, Rit).

– Output R̃← Rectn(R̃∗i1 , · · · , R̃
∗
tt−1

, R̃it).
4. Output m̃← NMRSimFh,Gh .

Now, we describe a sequence of hybrids to show that
Copy(U`,Simf1,··· ,fn,T ) ≈εnmre+εlr+εp Tamperf1,··· ,fn,T .

Hybf1,··· ,fn,T1 : This hybrid is the same as Copy(U`,Simf1,··· ,fn,T ), except that
we change step 4, using NMRSimFh,Gh , and use NMRTamperFh,Gh to output
m, m̃ instead of using Copy(U`,NMRSimFh,Gh).

Claim 4 If (NMREnc,NMRDec) is an εnmre-NMRE against Fsplit, using the

distribution R, then Copy(U`,Simf1,··· ,fn,T ) ≈εnmre Hyb
f1,··· ,fn,T
1

Proof. The proof of this claim is straightforward. Clearly, (Fh, Gh) ∈
Fsplit and hence, by the non-malleability of the NMRE, we know that
NMRTamperFh,Gh ≈εnmre Copy(U`,NMRSimFh,Gh). Thus, the reduction can
generate h and forward the functions Fh, Gh to the NMRE challenger, and
the response directly gives either the distribution Copy(U`,Simf1,··· ,fn,T ) or

Hybf1,··· ,fn,T1 . Hence, the proof of the claim follows.

Hybf1,··· ,fn,T2 : In this hybrid, we generate (L,R)← NMREnc2(r) for r ← R and
use the same R to generate the shares R1, · · · , Rn, used in h and as an input to
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the function Gh in NMRTamperFh,Gh . The remaining steps are exactly same as

in Hybf1,··· ,fn,T1 .

Claim 5 If (Sharetn,Rec
t
n) is an εp-secure (n, t)-threshold secret sharing scheme,

then Hybf1,··· ,fn,T1 ≈εp Hybf1,··· ,fn,T2 .

Proof. Suppose for contradiction that the statistical distance between
Hybf1,··· ,fn,T1 and Hybf1,··· ,fn,T2 is greater than εp. Then we describe a reduc-
tion below, to break the privacy of (Sharetn,Rec

t
n):

1. The reduction generates (L∗, R∗) ← NMREnc2(r) and (L,R) ←
NMREnc2(r′), for r, r′ ← R.

2. Further, generate (L∗1, · · · , L∗n)← LRShare2n(L∗).
3. Now, the reduction sends R∗, R and receives t−1 shares Rbi1 , · · · , R

b
it−1

, from
the secret sharing challenger, which correspond to either R or R∗.

4. Now, set h = (Rbi1 , · · · , R
b
it−1

, R̃bi1 , · · · , R̃
b
it−1

, L∗it), where (L̃∗j , R̃
b
j) =

fj(L
∗
j , R

b
j), for j = i1, · · · , it−1.

5. Now, the reduction evaluates Fh(L) = L̃ and Gh(R) = R̃ and outputs

(NMREnc1(r′),NMRDec(L̃, R̃)).

Clearly, if R∗ was used by the secret sharing challenger, then the reduction
output is identical to Hybf1,··· ,fn,T1 and if R was used, then it is identical to

Hybf1,··· ,fn,T2 . Hence, this breaks the privacy of (Sharetn,Rec
t
n).

Hybf1,··· ,fn,T3 : In this hybrid, all steps are exactly same as in Hybf1,··· ,fn,T2 , except
that, instead of Gh reverse sampling Rit , satisfying the consistency condition,
we use the same share Rit generated while setting h.

Claim 6 Hybf1,··· ,fn,T2 ≡ Hybf1,··· ,fn,T3 .

Proof. The reverse sampling of Rit in Hybf1,··· ,fn,T2 uses the same R as used in
generating h. Hence, Gh doesn’t output ⊥ and successfully samples Rit . This
directly proves the claim.

Hybf1,··· ,fn,T4 : In this hybrid, we generate (L,R)← NMREnc2(r) for r ← R and
use the same L to generate the shares L1, · · · , Ln, used in h and as an input to
the function Fh in NMRTamperFh,Gh . The remaining steps are exactly same as

in Hybf1,··· ,fn,T3 .

Claim 7 If (LRShare2n, LRRec
2
n) is an εlr-LRSS against F2,µ, then

Hybf1,··· ,fn,T3 ≈εlr Hyb
f1,··· ,fn,T
4 .

Proof. Suppose for contradiction that the statistical distance between
Hybf1,··· ,fn,T3 and Hybf1,··· ,fn,T4 is greater than εlr. Then we descirbe a reduc-
tion below, to break the leakage resilience of (LRShare2n, LRRec

2
n):

1. The reduction generates (L∗, R∗) ← NMREnc2(r) and (L,R) ←
NMREnc2(r′), for r, r′ ← R.
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2. Generate R1, · · · , Rn ← Sharetn(R).
3. Now, send L,L∗ as the two challenge messages to the leakage resilience

challenger. Query the it-th full share and the leakages gi1 , · · · , git−1
, each

hardcoded with Ri1 , · · · , Rit−1 respectively, defined as below. For each j =
i1, · · · , it−1:

gj(L
b
j) : Evaluate (., R̃j) = fj(L

b
j , Rj) and output R̃j .

4. On receiving Lbit and R̃i1 , · · · , R̃it−1
from the leakage resilience chal-

lenger, the reduction evaluates (., R̃it) = fit(L
b
it
, Rit) and sets h =

(Ri1 , · · · , Rit−1 , R̃i1 , · · · , R̃it−1 , L
b
it

).

5. Now, evaluate Fh(L) = L̃ and R̃ ← Rectn(R̃i1 , · · · , R̃it−1
, R̃it), and output

(NMREnc1(r′),NMRDec(L̃, R̃)).

Clearly, if the challenger picks L∗, the reduction output is identical to
Hybf1,··· ,fn,T3 and if it picks L, then it is identical to Hybf1,··· ,fn,T4 and further,
the reduction makes queries from F2,µ, with µ = |Rj |. Hence, this breaks the
leakage resilience of (LRShare2n, LRRec

2
n).

Hybf1,··· ,fn,T5 : In this hybrid, all steps are exactly same as in Hybf1,··· ,fn,T4 , except
that, instead of Fh reverse sampling Li1 , · · · , Lit−1 , satisfying the consistency
condition, we use the same share Lj ’s generated while setting h.

Claim 8 Hybf1,··· ,fn,T4 ≡ Hybf1,··· ,fn,T5 .

Proof. The reverse sampling of Li1 , · · · , Lit−1 in Hybf1,··· ,fn,T4 uses the same L
as used in generating h. Hence, Fh doesn’t output ⊥, which directly proves the
claim.

Note that Hybf1,··· ,fn,T5 ≡ Tamperf1,··· ,fn,T . Hence, by Claims 4, 5, 6, 7
and 8, using triangle inequality we get Copy(U`,Simf1,··· ,fn,T ) ≈εnmre+εp+εlr
Tamperf1,··· ,fn,T , which proves the non-malleability.

4.3 Instantiation of our Scheme

We instantiate our scheme with the following primitives, where the NMRE mes-
sage space is {0, 1}`.

– We use the following rate-1/2 NMRE from [KOS18].

Lemma 6 (Theorem 1, [KOS18]). There exists an NMRE for uniform
messages in the two-split-state model Fsplit, achieving a constant rate 1/(2+

ζ), for any ζ > 0 and an error of 2−Ω(`/ logρ+1(`)), for any ρ > 0.

Specifically, the above construction has codeword with each block of lengths:
|L| = β1 = `(2 + ζ) and |R| = β2 = o(`).

– We instantiate the threshold secret sharing scheme with a perfectly private
t-out-of-n Shamir secret sharing scheme for messages from {0, 1}β , which
gives the shares of size |Ri| = |R| = β2 = o(`), for each i ∈ [n].
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– Further, we instantiate the LRSS (LRShare2n, LRRec
2
n) against the leakage

family F2,µ with the scheme from Section 3, with µ = |Ri| = β2 = o(`).
This gives |Li| = |L|+ µ+ o(|L|, µ) = `(2 + ζ ′), for a small ζ ′ > 0 (ignoring
the small order terms). This instantiation has a leakage error εlr of 6n ·
2−Ω( 3

√
(β1/ log β1)) = 6n · 2−Ω( 3

√
(`/ log `)).

Combining these instantiations, we get a rate of 1/(2 + ζ ′), for any ζ ′ > 0, a

privacy error of 2εp + ε′p = 2−Ω(`/ logρ+1(`)), for any ρ > 0 and non-malleability

error of εnmre + εlr + εp = 6n · 2−Ω(`/ logρ+1(`)), for any ρ > 0.
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