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Abstract. Blind signatures, proposed by Chaum (CRYPTO’82), are in-
teractive protocols between a signer and a user, where a user can obtain a
signature without revealing the message to be signed. Recently, Hauck et
al. (EUROCRYPT’20) observed that all efficient lattice-based blind sig-
natures following the blueprint of the original blind signature by Rükert
(ASIACRYPT’10) have a flawed security proof. This puts us in a situa-
tion where all known lattice-based blind signatures have at least two of
the following drawbacks: heuristic security; 1 MB or more signature size;
only supporting bounded polynomially many signatures, or being based
on non-standard assumptions.
In this work, we construct the first round-optimal (i.e., two-round)
lattice-based blind signature with a signature size roughly 100 KB that
supports unbounded polynomially many signatures and is provably se-
cure under standard assumptions. Even if we allow non-standard as-
sumptions and more rounds, ours provide the shortest signature size
while simultaneously supporting unbounded polynomially many signa-
tures. The main idea of our work is revisiting the generic blind signature
construction by Fischlin (CRYPTO’06) and optimizing the commit-then-
open proof using techniques tailored to lattices. Our blind signature is
also the first construction to have a formal security proof in the quan-
tum random oracle model. Finally, our blind signature extends naturally
to partially blind signatures, where the user and signer can include an
agreed-upon public string in the message.

1 Introduction

1.1 Background

Blind signatures, originally proposed by Chaum [22], are interactive protocols
between a signer and a user, where a user can obtain a signature without reveal-
ing the message to be signed to the signer. Blind signatures satisfy two security
notions: one-more unforgeability and blindness. One-more unforgeability states
that if a malicious user engages only in at most ` (possibly concurrent) signing
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sessions with the signer, then it cannot output more than ` signatures. Blindness
states that a malicious signer can neither learn the message during the sign-
ing session nor link a particular message-signature pair to a particular signing
session. The typical applications of blind signatures include e-cash [22, 24, 42],
anonymous credentials [18, 20], e-voting [23, 31], and so on, and more recently,
it has found exciting applications in the context of adding privacy features to
blockchains [49] and privacy-preserving authentication tokens [1].

In this paper, we focus on one class of blind signatures that has recently at-
tracted a lot of attention: lattice-based blind signatures; currently the only known
class of blind signatures believed to withstand quantum attacks for other related
works). The first lattice-based blind signature was proposed by Rükert [46], who
followed a design paradigm similar to the classical Schnorr or Okamoto-Schnorr
blind signatures [47, 44]. The blind signature consists of three rounds and sup-
ports poly-logarithmically many signatures (in the security parameter λ) before
having to regenerate the verification key. This general approach has been ex-
tended and optimized in subsequent works [43, 35, 8, 9, 7], where BLAZE+ by
Alkadri et al. [9] currently stands as the most efficient proposal. However, re-
cently, Hauck et al. [33] showed that all constructions following the blueprint
of Rükert’s blind signature contain the same bug in their security proof3, con-
sequently leaving them only heuristically secure at best. Building on Rükert’s
blind signature and optimizations employed by BLAZE+, Hauck et al. managed
to construct the first provably secure lattice-based blind signature. Unfortu-
nately, the security proof required very large parameter sets, and their proposal
resulted in a signature size of roughly 7.9 MB with a communication cost of
34 MB and supported only 7 signatures per verification key. Thus, the work of
Hauck et al. [33] reopened the question of building efficient and provably secure
lattice-based blind signatures.

Very recently, two works aimed at solving this. One by Agrawal et al. [5]. In-
stead of following the three-move structure seen in Schnorr’s blind signature [47],
Agrawal et al. builds on Fischlin [30] and Garg et al. [32] that provide a generic
construction of a two-move (i.e., round-optimal) blind signatures. Concretely,
they propose two constructions. One produces a short signature in the range of
a few KB with a communication cost of around 50 MB but comes with several
caveats: the scheme can support only bounded polynomially many signatures;
blindness only holds against very honest signers (i.e. the public key must be
generated honestly and the signer cannot deviate from the protocol), and the
scheme is only heuristically secure as it needs to homomorphically evaluate a
standard signature scheme that internally uses a hash function modeled as a
random oracle. The second can support unbounded polynomially many signa-
tures and blindness holds against honest signers (i.e. the public key must be
generated honestly but the signer can deviate from the protocol) but it requires
a new non-standard hardness assumption called the one-more-inhomogeneous

3 Alkadri et al. [7] claims to have fixed the bug of BLAZE+ (and thus by Rükert) but
we have found several errors in their security proof. This has been confirmed by the
authors through personal communication.
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SIS assumption. Moreover, the signature size becomes as large as 1 MB45, while
the communication cost is lowered to a few KB. The other work is by Lyuba-
shevsky et al. [38]. They propose a round-optimal blind signature based on a new
approach using one-time signatures and OR-proofs. Unlike [5], the security of
their blind signature is based on the standard hardness of the MSIS and MLWE
assumptions. However, the scheme only supports bounded polynomially many
signatures with a signature size of roughly 150 KB. The communication cost
is around 16 MB and the signer running time scales linearly in the maximum
number of signatures that can be signed.

In summary, all known lattice-based blind signatures have at least two of
the following drawbacks: heuristic security; 1 MB or more signature size; only
supporting bounded polynomially many signatures, or based on non-standard
assumptions. This leaves open the following natural question:

Can we construct an efficient and provably secure lattice-based blind
signature supporting unbounded polynomially many signatures based on
standard assumptions?

As an independent interest, we also note that all provably secure lattice-based
blind signatures mentioned above are only proven secure against classical adver-
saries in the classical random oracle model (ROM). Indeed, most strategies used
to prove security completely break down when handling quantum adversaries
in the quantum ROM (QROM). Although we do not imagine all previous con-
structions can be broken using quantum adversaries, considering that one of the
main appeals of lattice-based cryptography is their resilience against quantum
adversaries, we believe any formal post-quantum security guarantee is highly
desirable.

1.2 Our Contribution

In this work, we answer the above question in the affirmative. We construct the
first round-optimal lattice-based blind signature with a signature size roughly
100 KB that supports unbounded many signatures and is provably secure un-
der standard assumptions. Even if we allow non-standard assumptions and more
rounds, ours provide the shortest signature size while also supporting unbounded
many signatures. The communication cost currently sits at 850 KB, but as we ex-
plain later, we believe by using the right non-interactive zero-knowledge (NIZK)
4 Agrawal et al. provide an informal estimate of 30 KB to 100 KB and states to use
the NIZK by [28, 40]. However, considering that their security proof relies on an exact
proof for a relation Cs = u for a large matrix C (since the authors argue that C is
indistinguishable from uniform with the leftover hash lemma) and a witness s with
entries as large as Ω(√q), even an optimistic estimate gives a lower bound of 1 MB
with current lattice-based NIZKs.

5 After submission of this paper, Agrawal et al. updated their paper to use the NIZK
by Lyubashevsky et al. [39] appearing at CRYPTO 2022. See ?? work for more
detail.
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proofs, we could cut this down to roughly 100 KB while maintaining the same
signature size. The security of our blind signature is established both in the clas-
sical ROM and QROM. It is secure against malicious signers, where blindness
holds even when the signer can register malicious keys and deviate from the
protocol. Moreover, our scheme can be easily transformed into a partially blind
signature [2]. This allows the user and signer to include a common agreed-upon
message into the signature and has proven to be useful in applications such as
e-cash [22, 24, 42] and e-voting [23, 31].

We obtain our blind signature by a new generic construction tailored to lat-
tices. The starting point of our work is the generic round-optimal blind signature
construction by Fischlin [30]. The signature in Fischlin’s blind signature consists
of a complex NIZK proof that informally proves possession of two things: a sig-
nature from a standard signature scheme and an opening to a commitment.
At the heart of our generic construction is a technique inspired by del Pino et
al. [26] that allows us to transform such complex statement into a simple lattice
statement consisting only of proving possession of a short vector. Consequently,
we can rely on well-known efficient lattice-based NIZKs such as those by Lyuba-
shevsky [36, 37] to generate the signature.

One tool required by our generic construction is a multi-proof straight-line
extractable NIZK [15],6 which is used by the user to prove the well-formedness of
its first message sent to the signer. Informally, such an NIZK guarantees the ex-
istence of an extractor that, on input a simulation trapdoor and any adaptively
chosen proofs, outputs the corresponding witnesses. This is in sharp contrast
to standard NIZKs in the (Q)ROM where witness extraction is performed via
rewinding [44, 13]. If we were to rely on rewinding-based extractions, our se-
curity proof would incur an exponential security loss in the number of signing
sessions, and result in a scheme that can only support poly-logarithmically many
signatures. Similar issues crop up in the context of IND-CCA secure public key
encryptions [48, 14] and group signatures [15]. In this work, to construct such
strong NIZKs for relatively complex lattice-based statements, we rely on the
recent technique of extractable linear homomorphic commitments proposed by
Katsumata [34].

Finally, we highlight that due to the modularity of our generic construction,
any future improvements in lattice-based NIZKs may lead to more efficient blind
signatures. For instance, if we were able to combine the technique of Katsumata
with the recent efficient lattice-based NIZKs [10, 28], then we could potentially
reduce the communication cost from 850 KB to roughly 100 KB. We leave further
optimized instantiations of our generic construction as an interesting future work.

1.3 Technical Overview

We give an overview of our techniques in two parts. In Part 1, we explain the
high level idea of our generic construction and in Part 2, we explain how to
instantiate the building blocks.
6 This notion is also called online extractable in the literature.
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Part 1. We first explain our generic construction tailored to lattices.
Blind Signature by Fischlin. Our starting point is the generic construction
of blind signatures by Fischlin [30]. The blind signature is round optimal and
supports polynomially many signatures. His generic construction relies on gen-
eral NIZKs for a complex statement and the proof overhead (i.e. signature size)
becomes prohibitively large when instantiated using known lattice-based NIZKs.
Our goal is to replace this complex statement with a lattice-friendly statement.

We first recall Fischlin’s construction. In his construction, the signer pub-
lishes a verification key of a standard signature scheme as the verification key
vk of the blind signature and keeps the corresponding signing key sk secret. If
a user wants the signer to blindly sign on message M, it submits a commitment
com ← Com(M; rand) to the signer and obtains a signature σ $← Sig(sk, com).
The user then constructs a ciphertext ct ← Enc(ek, com‖rand‖σ; rand′) using a
PKE scheme and constructs an NIZK proof π that proves

com = Com(M; rand) ∧ Verify(vk, σ, com) = >
∧ ct = Enc(ek, com‖rand‖σ; rand′), (1)

where the statement is (vk, ek, ct,M) and the witness is (com, rand, σ, rand′). Fi-
nally, the user outputs Σ = (π, ct) as the blind signature. Here, we assume ek is
pseudorandom and is generated as an output of the random oracle. This ensures
that nobody, including a malicious signer, knows the corresponding decryption
key dk of the PKE scheme in the real-world. dk is only used during the secu-
rity proof of one-more unforgeability, where the reduction uses dk to decrypt
com‖rand‖σ from ct.

Although it is theoretically possible to instantiate Fischlin’s generic construc-
tion from lattices, the main bottleneck is constructing an efficient lattice-based
NIZK for Eq. (1). Agrawal et al. [5] attempts to heuristically7 instantiate Fis-
chlin’s generic construction based on Dilithium [27], one of the most efficient
lattice-based signatures, but they estimated the signature to require at least
100KB with prover complexity approaching 1 hour.
Lattice-Friendly Enc-then-Prove by del Pino et al. The main complexity
of Eq. (1) comes from the need to show possession of a valid signature on a
hidden message (i.e. com). Roughly, this is because we do not have a lattice-
based signature whose verification algorithm is compatible with known efficient
lattice-based NIZKs. Now, although not exactly what we require, we observe that
a technique used by del Pino et al. [26] for constructing efficient group signatures
comes close to what we need.

A group signature allows a user to anonymously sign on behalf of a group,
while a special entity called a group manager can deanonymize the signer should
the need arise. A typical recipe for constructing a group signature is the enc-
then-prove paradigm [19]. Each group user is assigned an identity I ∈ [N ], where
7 Their NIZK requires evaluating a hash function used by Dilithium which is modeled
as a random oracle. Considering that a random oracle does not have a function
description in the ROM, this approach fails to provide any form of provable security.



6 Rafael del Pino1 and Shuichi Katsumata2

N = poly(λ) is the size of the group, and the group manager provides a signature
σ

$← Sign(sk, I); this serves as a certificate for user I belonging to the group. To
sign on behalf of the group, user I constructs a ciphertext ct← Enc(ek, I; rand′)
using a PKE scheme and constructs an NIZK proof π that proves

Verify(vk, σ, I) = > ∧ ct = Enc(ek, I; rand′), (2)

where the statement XGS is (vk, ek, ct) and the witness WGS is (σ, I, rand′). Note
that NIZKs based on the Fiat-Shamir paradigm allows to bind any message M
to a proof π so π indeed serves as a signature for M. Although Eq. (2) seems
simpler than Eq. (1), it serves our purpose since it still includes the most complex
component, which is proving a valid signature on a hidden message (i.e. I).

We briefly go over the group signature by del Pino et al. [26]. They use
Boyen’s lattice-based signature [17, 4] as the underlying signature scheme. In
Boyen’s signature, the verification key consists of a random element u ∈ Rq and
vectors (a1,a2) ∈ Rkq × Rkq , where Rq is the polynomial ring Zq[X]/(Xd + 1).
The signing key sk is a short basis Ta1 ∈ Rk×k such that a1Ta1 = 0 mod q. To
give out a credential for user I ∈ [N ], the group manager views I as a message
and samples, using sk, a short vector e ∈ R2k satisfying

[a1|a2 + I · g]e> = u, (3)

where g is the so-called gadget matrix [41]. It outputs e as the certificate for
user I belonging to the group. If I can be made public, then a user can simply
use a standard lattice-based NIZK for proving MSIS/MLWE relations to prove
possession of the certificate e. That is, relations of the form a e> = u, where
(a, u) is the statement and e is the witness. On the other hand, if I needs to
be kept private, which is the case for group signatures, then Eq. (3) becomes
a quadratic relation over the witness and we no longer know how to prove it
efficiently using lattice-based NIZKs.

The technical novelty of del Pino et al. was to linearize Eq. (3) by using
the commitment scheme by Baum et al. [12], a.k.a., the BDLOP commitment.

The BDLOP commitment is of the form com =
[
t0
t1

]
=
[
b0
b1

]
R +

[
0
I · g

]
, where

b0,b1 ∈ Rkq is the commitment key, R ∈ Rk×k is the commitment randomness,
and I ·g is the message. This commitment satisfies binding and hiding based on
the MSIS and MLWE assumptions. Using the lower half of the commitment t1,
we can rewrite the left hand side of Eq. (3) as

[a1|a2 + I · g]e> = [a1|a2 + b1R + I · g] e> − b1Re>2

= [a1|a2 + t1|b1]
[

e>
−Re>2

]
, (4)

where e = [e1|e2] ∈ R2k. Notice that [a1|a2 + t1|b1] consists only of public ele-
ments included in the statement XGS. Specifically, Eq. (3) can now be expressed
as an MSIS relation where the statement is [a1|a2 + t1|b1] and the witness vector
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is [e| − e2R>] ∈ R3k. Thus, the user transforms Eq. (3) into Eq. (4), constructs
an efficient NIZK proof π for Eq. (4), and finally outputs the group signature
Σ = (π, com).8

Reversing the Order for Blind Signatures. The technique of del Pino et
al. [26] can be seen as transforming a Boyen signature on message M into a
signature on a commitment com of M. This is a good fit for the group signature
functionality; a group authority signs the message M = I in the clear and the
user can later prove possession of the signature while hiding its identity I by
planting a commitment com.

Our idea is to turn this technique around and use it for blind signatures. Blind
signature has an opposite functionality; the signer signs the message blindly
through a commitment and the user later unblinds the commitment to prove
possession of a signature. Concretely, a user first constructs a BDLOP commit-
ment com for a message I ∈ [N ] and sends it to the signer.9 The signer then pulls
out t1 ∈ Rkq included in com and signs t1 with the Boyen signature. Specifically,
the signer samples a short vector e ∈ R2k satisfying

[a1|a2 + t1]e> = u.

The user then reverses the transformation in Eq. (4) to obtain

[a1|a2 + t1] e> = [a1|a2 + b1R + I · g] e> = [a1|a2 + I · g|b1]
[

e>
Re>2

]
, (5)

where notice the right hand side has the desired form of a public vector being
multiplied by a short secret vector. Therefore, the signature output by the user
can be a standard NIZK proof π for the MSIS relation, where the statement is
[a1|a2 + I · g|b1] and the witness vector is [e|e2R>] ∈ R3k.

While the above construction satisfies correctness and blindness, it is not
clear how to prove one-more unforgeability. To explain why, let us first see how
del Pino et al. showed the unforgeability of their group signature. The reduction
simulates the group manager by sampling a1

$← Rkq and programming a2 as
a2 = a1R∗−I∗ ·g for a random short matrix R∗, where I∗ ∈ [N ] is a guess for the
user on which the adversary forges on. When the adversary queries the certificate
for some user I 6= I∗, the reduction can use standard techniques [3, 21] to sample
a short vector for [a1|a2 + I · g] = [a1|a1R∗ + (I − I∗) · g] using the simulation
trapdoor R∗ and the fact that (I− I∗) is invertible over Rq. Once the adversary
outputs a forgery, which consists of a proof π and commitment t1 satisfying
Eq. (4), the reduction (roughly) extracts a witness (I ′,R′, e′) via rewinding the
adversary. By soundness of the NIZK, the witness satisfies t1 = b1R′+ I ′ ·g (i.e.

8 To be precise, the user also needs to prove additional relations, e.g., com is a com-
mitment to some I ∈ [N ]. Since these details are not relevant to the core idea, we
omit them.

9 A keen reader may notice that the message space (i.e. group size) [N ] has to be
polynomial large for the security proof of [26] to work. We later show how to support
an exponentially large message space as required for blind signatures.
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a valid BDLOP commitment) and

[a1|a2+t1|b1] e
′>=
[
a1|a1R∗− I∗· g + b1R′ + I ′ · g|b1

]
e
′> = [a1|b1]

[
e
′>
1 + R∗e

′>
2

R′e
′>
2 + e

′>
3

]
,

where e′ = [e′1|e′2|e′3] ∈ R3k and we assume the guess made by the reduction
is correct, i.e. I∗ = I ′, which happens with non-negligible probability when
N = poly(λ). Thus, the reduction can break the MSIS problem with respect to
the public vector [a1|b1] if the adversary breaks unforgeability.

Unfortunately, this proof strategy fails in the blind signature setting. In
the group signature setting, the reduction only had to sample from the vector
[a1|a2 + I · g] = [a1|a1R∗ + (I − I∗) · g], where I ∈ [N ] was the only component
controlled by the adversary. However, in the blind signature setting, the reduc-
tion must be able to sample from the vector [a1|a2 + t1] = [a1|a1R∗− I∗ ·g + t1]
for an arbitrary t1. This change no longer allows the reduction to rely on prior
trapdoor sampling techniques [3, 21] and it is not obvious anymore how to sim-
ulate the real-world signer without the full trapdoor Ta1 .

Adding Proof of Wellformedness. To fix the above idea, we modify the
user to also include an NIZK proof πcom of the fact that com is well-formed,
which in particular implies that t1 = b1R′ + I ′ · g for some short R′ and
I ′ ∈ [N ]. However, this cannot be just any standard NIZK. When the reduction
is given the proof πcom and com from the adversary, it must extract (R′, I ′)
from it without interrupting the simulation. This is in contrast to rewinding-
type extractions [44, 13], where the reduction performs extraction only after the
adversary finished playing the security game. For example, recall above to see
how the reduction extracted an MSIS solution from the adversary’s forgery in
the unforgeability proof of the group signature. To this end, as we have already
pointed to in Sec. 1.2, we rely on a stronger type of multi-proof straight-line
extractable NIZK [15]. Such NIZK allows the reduction to directly extract (R′, I ′)
from the adversary without altering its behavior.

In summary, the high level description of our blind signature is as follows.
The user first constructs a BDLOP commitment com for the message M and adds
a multi-proof straight-line extractable NIZK proof πcom of its well-formedness.
The signer receives (πcom, com) from the user and then samples a short vector
e such that [a1|a2 + t1|b1]e> = u, where notice that we modify the public
vector to also include b1. Given e from the signer, the user transforms the
signature verification equation into an MSIS relation following almost the same
computation as in Eq. (5), and outputs a standard NIZK proof π for the MSIS
relation as its signature.

In the security proof, the reduction uses the multi-proof straight-line ex-
tractable NIZK to extract (R′, I ′) such that t1 = b1R′+I ′ ·g without rewinding
the adversary. Then, it can rewrite [a1|a2 +t1|b1] as [a1|a1R∗+b1R′+(I ′−I∗) ·
g|b1]. Since (R∗,R′) serves as a simulation trapdoor for [a1|b1], the reduction is
able to sample a short vector using prior techniques [3, 21] when I ′ 6= I∗. If the
adversary outputs a forgery on message I∗, the reduction can obtain an MSIS
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solution following an argument similar to that of del Pino et al. This completes
the high-level description of our blind signature.

Omitted Details. As we briefly mentioned in Footnote 9, the above proof only
works when the message space [N ] is polynomially large, which was the only
case required in the context of group signatures. Here, if N was larger than
polynomial, the probability that the reduction guesses the message I∗ output by
the adversary becomes negligible. To support an exponential message space, we
hash the message I onto a carefully chosen exponential-sized set and sign the
hashed message instead. If the hash function is modeled as a random oracle, then
the reduction will be able to guess the hash of the message used in the forgery
with non-negligible probability. Although this simple idea no longer works in the
QROM since the adversary can query the entire input space in superposition,
we rely on the programming technique of Zhandry [50] to prove security.

Another subtle yet important detail we glossed over is the fact that typical
lattice-based NIZKs do not allow for exact extraction/soundness. Namely, the re-
duction may only be able to extract a witness (R′, I ′) such that ĉ·t1 = b1R′+I ′·g
from the malicious user, where ĉ is some small invertible element in Rq. In this
case, [a1|a2 + t1|b1] can only be rewritten as [a1|a1R∗+ b1(R′/ĉ) + (I ′/ĉ− I∗) ·
g|b1], where ĉ−1 is in general not small. Then, since the trapdoor (R∗,R′/ĉ)
is not necessarily small, it no longer fits the description required by prior trap-
door sampling techniques [3, 21]. We show that prior sampling techniques can
be naturally extended to work for this setting.

Part 2. Our generic construction relies on two NIZKs for different statements.
One is a multi-proof straight-line extractable NIZK used by the user to prove
the well-formedness of the first message, i.e. BDLOP commitment. The other
is a standard NIZK for the MSIS relation that only needs to be single-proof
extractable via rewinding, which is used by the user to construct the final blind
signature. We only explain the former as it is the more technically challenging
NIZK to construct.

To construct a multi-proof straight-line extractable NIZK, we rely on the
recent Katsumata transform [34]. At a high level, it provides a generic method
to upgrade many of the known lattice-based NIZKs proven to be secure in the
classical ROM to NIZKs secure in the QROM. More precisely, this transform can
be seen as a technique to upgrade a single-proof rewinding-extractable lattice-
based NIZK in the classical ROM into a single-proof straight-line extractable
NIZK in the QROM. We show that using a more fine-grained analysis, we can
further upgrade this transform to provide the desired multi-proof straight-line
extractable NIZK in the QROM. Thus, the question boils down to constructing a
lattice-based NIZK in the classical ROM that is compatible with the Katsumata
transform.

Recall the statement we need to prove was roughly t1 = b1R + M · g with
witness (R,M), where (R,M) are short/small elements over Rq. A standard way
to prove such relation is to first decompose the statement into (t1,i = b1r>i +M ·
gi)i∈[k], where t1,i, gi and ri are the i-th elements and column of t1,g, and R,
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respectively. By rewriting each b1r>i +M·gi into an MSIS relation as
[
b1|0
0|gi

] [
r>i
M

]
,

we can prove that t1,i has the correct form for some small (r′i,M′i) using standard
NIZKs for MSIS relations. We can then further prove that M′i = M′i+1 for all
i ∈ [k − 1] by proving linear relations between t1,i and t1,i+1.

It turns out that for concrete efficiency, the extraction/soundness slack on
R has a very large impact on the final signature size. For instance, if we use
Lyubashevsky’s NIZK [36, 37] to prove the MSIS relation, we are only able to
extract a witness (R′, I ′) such that ĉ · t1 = b1R′ + I ′ · g for some small and
invertible ĉ. Although ĉ is relatively small, this negatively impacts the size of the
short vector sampled by the signer, which then negatively impacts the witness
size used by the user to construct the final blind signature. Due to the way the
slackness propagates in each step, the blow-up in the parameter accumulates
and the final blind signature can become quite large.

To this end, we use the exact proof by Bootle et al. [16] to prove the MSIS
relation and glue the proof of linear relation together. This allows the reduction
to extract an exact witness with regards to R′ but a relaxed witness with regards
to the message I ′. This idea is somewhat similar to the very recent “hybrid
exact/relaxed” lattice proofs introduced in an independent and concurrent work
by Esgin et al. [29]. We finish by showing that we can apply the Katsumata
transform to this new protocol to obtain the desired multi-proof straight-line
extractable NIZK. Here, we highlight that while using a more complex NIZK has
a positive impact on the final blind signature size, it harms the communication
cost from the user to the signer. This is because the exact proof of Bootle et
al. [16] has a larger proof size compared to the standard NIZK for MSIS/MLWE
relations. If we wanted to minimize the sum of the communication cost and
signature size, then other NIZKs could be a better fit. We believe one of the
benefits of our generic construction is that one can choose different instantiations
of the NIZKs to optimize the scheme concerning their specific metric. We also
note that we were not able to use the more recent efficient exact-proof NIZKs [10,
28] since it was non-trivial to apply the Katsumata transform. We leave it as an
interesting open question to extend the Katsumata transform to these efficient
NIZKs.

Finally, the above NIZK gives us full straight-line extraction capability but
we show that we can relax this when considering the concrete proof of one-more
unforgeability of our blind signature (in the classical ROM). This allows us to
reduce the proof size of our NIZK by roughly 40 folds (i.e. from 34 MB to 851 KB).
At a very high level, the Katsumata transform applied to the proof of the linear
relation already allows us to straight-line extract a relaxed relation with regards
to R′ as well. If R′ is not the same as the R′′ extracted from the exact relation of
the proof of Bootle et al., then it turns out that we can solve the MSIS problem.
In other words, unless the adversary against the one-more unforgeability breaks
the MSIS assumption, the R′ that the reduction straight-line extracts from the
linear relation are exact, rather than being relaxed. Hence, the reduction tries
to straight-line extract from the linear proof, and if it fails to extract an exact
witness R′, then it can quit the simulation of the one-more unforgeability game.
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It then simply resorts to rewinding the adversary to extract R′′ from the exact
proof of Bootle et al. aiming to break the MSIS problem. Thus, we can reduce
the proof size by removing the Katsumata transform applied the exact proof of
Bootle et al.

2 Preliminaries

2.1 Blind Signature

We provide the definition of blind signatures. For simplicity, we give a definition
focusing on round-optimal (i.e. two-round) blind signatures.

Definition 2.1 (Blind Signature). A round-optimal blind signature
scheme ΠBS with a message space M consists of PPT algorithms
(BSGen,U1,S2,Uder,BSVerify) defined as follows:

BSGen(1λ)→ (vk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a verification key vk and a signing key sk.

U1(vk,M)→ (ρ1, stU ): This is the user’s first message generation algorithm that
takes as input a verification key vk and a message M ∈ M and outputs a
first message ρ1 and a state stU .

S2(sk, ρ1)→ ρ2: This is the signer’s second message generation algorithm that
takes as input a signing key sk and a first message ρ1 as input and outputs
a second message ρ2.

Uder(stU , ρ2)→ Σ: This is the user’s signature derivation algorithm that takes as
input a state stU and a second message ρ2 as input and outputs a signature
Σ.

BSVerify(vk,M, Σ)→ > or ⊥: This is a deterministic verification algorithm
that takes as input a verification key vk, a message M ∈M, and a signature
Σ, and outputs > to indicate acceptance or ⊥ to indicate rejection.

Definition 2.2 (Correctness). A blind signature is correct if for any λ ∈ N
and M ∈ M, we have BSVerify(vk,M, Σ) = > with overwhelming probability
when (vk, sk) $← BSGen(1λ), (ρ1, stU ) $← U1(vk,M), ρ2

$← S2(sk, ρ1), and Σ $←
Uder(stU , ρ2).

Definition 2.3 (One-More Unforgeability). A blind signature is classically
(resp. quantumly) one-more unforgeable if for any Q = poly(λ) and PPT (resp.
QPT) adversary A that makes at most Q classical queries, AdvOMU

ΠBS
(A) defined as

Pr
[

(vk, sk) $← BSGen(1λ)
{(Mi, Σi)}i∈[Q+1]

$← AS2(sk,·)(vk)
: BSVerify(vk,Mi, Σi) = > for all i ∈ [Q + 1]
∧ {Mi}i∈[Q+1] is pairwise distinct

]
,

is negl(λ), where we say that {Mi}i∈[Q+1] is pairwise distinct if we have Mi 6= Mj

for all i 6= j.

Definition 2.4 (Blindness Under Malicious Keys). To define blindness,
we consider the following game between an adversary A and a challenger.
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Setup. A is given as input the security parameter 1λ, and sends a verification
key vk and a pair of messages (M0,M1) to the challenger.

First Message. The challenger generates (ρ1,b, stU,b) $← U1(vk,Mb) for each
b ∈ {0, 1}, picks coin $← {0, 1}, and gives (ρ1,coin, ρ1,1−coin) to A.

Second Message. The adversary sends (ρ2,coin, ρ2,1−coin) to the challenger.
Signature Derivation. The challenger generates Σb

$← Uder(stU,b, ρ2,b) for
each b ∈ {0, 1}. If BSVerify(vk,Mb, Σb) = ⊥ for either b = 0 or 1, then
the challenger gives (⊥,⊥) to A. Otherwise, it gives (Σ0, Σ1) to A.

Guess. A outputs its guess coin′.

We say that A wins if coin = coin′. We say that a blind signature is classically
(resp. quantumly) blind against malicious senders if for any PPT (resp. QPT)
adversary A, we have Advblind

ΠBS
(A) := |Pr[A wins]− 1/2| = negl(λ).

2.2 Non-Interactive Zero-Knowledge Proofs in the (Q)ROM

We consider a non-interactive zero-knowledge proof of knowledge (or simply
NIZK) in the (Q)ROM. We assume that the prover and verifier are provided
with a common random string crs. Looking ahead, our blind signature generates
this crs as the output of another random oracle so it does not rely on any trusted
setup, thus making the blind signature also blind against malicious senders.

Definition 2.5 (NIZK Proof System). A non-interactive zero-knowledge
(NIZK) proof system ΠNIZK for the relations R and Rgap (which are implicitly
parameterized by the security parameter λ)10 and a common random string crs
with length `(λ) consists of oracle-calling PPT algorithms (Prove,Verify) defined
as follows:

ProveO(crs,X,W)→ π/⊥ : The prover algorithm takes as inputs a common ran-
dom string crs ∈ {0, 1}`, statement and witness pair (X,W) ∈ R, and outputs
a proof π or a special symbol ⊥ denoting abort.

VerifyO(crs,X, π)→ >/⊥ : The verifier algorithm takes as inputs a crs, a state-
ment X and a proof π, and outputs either > (accept) or ⊥ (reject).

We denote by LR := {X | ∃W, (X,W) ∈ R} the language induced by R. Moreover,
we may omit crs when they are not required.

We rely on the standard notions of correctness, zero-knowledge, and single-
proof extractable NIZKs, which is typically defined as a specific type of proof of
knowledge in the literature. Below, we define a strong type of proof of knowledge
where we can directly extract from multiple statement and proof pairs output
by the adversary.

10 Unlike conventional definition of “gap” soundness, we do not require R ⊆ Rgap to
hold. The NIZK is useful as long as Rgap defines a hard language.
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Definition 2.6 (Multi-Proof Extractability). An NIZK proof system
ΠNIZK is classically (resp. quantumly) multi-proof extractable if there exists
a PPT (resp. QPT) oracle simulator Scrs and a PPT (resp. QPT) extractor
Multi-Extract with the following properties:

CRS Indistinguishability. For any PPT (resp. QPT) adversary A, the fol-
lowing advantage Advcrs

ΠNIZK
(A) is negl(λ):∣∣∣Pr[crs $← {0, 1}` : A|O〉(crs) = 1]− Pr[(c̃rs, τ) $← Scrs(1λ) : A|O〉(c̃rs) = 1]

∣∣∣ .
Straight-Line Extractability. There exists constants c, e1, e2 and polynomial
p(λ) such that for any QH = poly(λ) and PPT (resp. QPT) adversary A that
makes at most QH random oracle queries with

Pr
[

(c̃rs, τ) $← Scrs(1λ),
{(Xi, πi)}i∈[QS]

$← A|O〉(c̃rs)
: ∀i ∈ [QS],VerifyO(c̃rs,Xi, πi) = >

]
≥ µ(λ),

we have,

Pr
[

(c̃rs, τ) $← Scrs(1λ), {(Xi, πi)}i∈[QS]
$← A|O〉(c̃rs),

{Wi
$← Multi-Extract(1λ,QH,QS, 1/µ, τ,Xi, πi)}i∈[QS]

: ∀i ∈ [QS], (Xi,Wi) ∈ Rgap
∧ VerifyO(c̃rs,Xi, πi) = >

]
is larger than µ(λ)/2−negl(λ). Moreover, the runtime of Multi-Extract is upper
bounded by Qe1

H · Q
e2
S ·

1
µc · p(λ).

We show that for our NIZK, we have (c, e1, e2) = (1, 1, 0) in the classical
setting where p(λ) is roughly the time it takes to perform a standard PKE de-
cryption. In the quantum setting, we instead have (c, e1, e2) = (1, 2, 1).

3 Lattice-based Blind Signature from Compatible
Commitments

In this section, we provide our generic construction of a blind signature tailored
to lattices. A high level overview of our construction is provided in Sec. 1.3.

3.1 Trapdoor-Sampling-Compatible Commitments

We first explain the type of lattice-based commitments applicable to our generic
construction, which we call trapdoor-sampling-compatible commitments. For in-
stance, the BDLOP commitment by Baum et al. [12] is one specific instantiation.
We keep this layer of abstraction as we believe this captures the essential prop-
erties required by our generic construction and allows drop-in of different types
of commitments.

Definition 3.1 (Trapdoor-Sampling-Compatibility). Let L and `com be
positive integers. Let ΠCom be a commitment scheme with message space
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M := RLq and an `com-bit common random string crs. ΠCom is (k, δ)-trapdoor-
sampling-compatible if there exists accompanying deterministic PT algorithms
(ParseCom,ParseRand) such that for any crs ∈ {0, 1}`com , rand ∈ R, M ∈M, and
com = Com(crs,M; rand), we have the following:

– (bi)i∈[L] ⊆ crs11, t = ParseCom(com), and (ri)i∈[L] = ParseRand(rand),
where bi ∈ Rkq , t ∈ RLq , and ri ∈ Rk;

– for each i ∈ [L], ti = bir>i + Mi ∈ Rq, where ti is the i-th entry of t, Mi is
the i-th entry of M, and ri satisfies s1

(
[r>1 | . . . |r>L ]

)
≤ δ;

– finally, the concatenated vector [b1 | · · · | bL] ∈ RLkq consists of elements in
{0, 1} ⊂ Rq or uniform random elements in Rq, where the probability is taken
over the randomness of crs $← {0, 1}`com . Note that when bi and bj contain
duplicate entries, say the first entry of bi and bj are defined identically, then
we only consider randomness over one of them.

Roughly, δ dictates the “quality” of the randomness used to hide the message.
The choice of the spectral norm s1(·) is arbitrary, and for instance, we can use
the two-norm.

3.2 Construction of Blind Signature

Parameters. For reference, we provide in Table 1 the parameters used in the
scheme and in the security proof. The main parameters to keep in mind are
(q, d, k1, k2, k3): q and d define the polynomial ring Rq; k1 is the lattice dimension
used to perform trapdoor sampling; k2 is the dimension of the message spaceM
of the commitment scheme ΠCom; and k3 is the length of (bi)i∈[L=k2] of ΠCom.
For those only interested in the asymptotic, one can safely assume k1, k2, k3 are
the same value.
Building Blocks. Our blind signature ΠBS relies on the following building
blocks. The norm bounds on vectors and matrices are chosen with the later
concrete parameter selection in mind. For the asymptotic result, we could have
simply used the two-norm.

– A commitment scheme ΠCom with message space M = Rk2
q (i.e., L := k2

in Def. 3.1), randomness space R, and an `com-bit common random string
crscom that satisfies hiding and (k3, δ)-trapdoor-sampling-compatiblity.

– A NIZK proof system Πs
NIZK (without a common random string) for the

relations Rs and Rs
gap that satisfies correctness, zero-knowledge and single-

proof extractability, where Rs and Rs
gap are defined as follows:12

• Rs :=

X = (a1,a2,
(bi)i∈[k2], u, h),

W = ẽ

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BUΣ,i
∧ [a1 | a2 + h · g | b1 | · · · | bk2 ] ẽ> = u

;

11 That is, we assume the bit-representation of each bi is included in crs. Without loss
of generality, we can think instead that crs lives in (Rkq )L × {0, 1}`.

12 With an abuse of notation, when we write (ẽ1, ẽ2, ẽ3) = ẽ ∈ Rk1+k2+k2·k3 , we assume
(ẽ1, ẽ2, ẽ3) ∈ Rk1 ×Rk2 ×Rk2·k3 .
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Parameter Explanation
Rq Polynomial ring Rq = Z[X]/(q,Xd + 1)
Binv Any a ∈ Rq s.t. ‖a‖2 ≤ Binv is invertible
k1 Size of lattice trapdoor T ∈ Rk1×k1

k2 Size of the message spaceM = Rk2
q for ΠCom

(k3, δ) Parameters for the trapdoor-sampling-compatible ΠCom

σ Gaussian parameter for trapdoor sampling
(`m

NIZK, `com) Length of crs for Πm
NIZK and ΠCom

δgap Spectral norm bound on the extracted com. rand.
BSΣ,i, i ∈ [3] Two-norm bound on (e1, e2, e3) := e sampled by the signer
BUΣ,i, i ∈ [3] Two-norm bound on real secret (ẽ1, ẽ2, ẽ3) := ẽ
BU,gap
Σ,i , i ∈ [3] Two-norm bound on extracted (ẽ1, ẽ2, ẽ3) := ẽ
Schal ⊂ Rq Challenge set of the interactive proof sys. implicit in Πm

NIZK
Bc One-norm bound on c ∈ Schal

Shash ⊂ Rq
Hashed message set with size > 2λ

s.t. ∀(c, h) ∈ Schal × Shash, ‖c · h‖2 ≤ Binv/2
∆MLWE Bound s.t. search MLWE has non-unique solution

(χMLWE, BMLWE)
Noise distribution for decision MLWE,

where R $← χk1×k2
MLWE ⇒ s1(R) ≤ BMLWE w.o.p

(χDSMR, BDSMR) Noise distribution χDSMR := DZ,BDSMR for DSMR
BMSIS Two-norm bound on the solution for MSIS

Table 1: Overview of parameters and notations. The rows following the second
double horizontal line are parameters mainly used in the security proof.

• Rs
gap :=

X = (a1,a2,
(bi)i∈[k2], u, h),

W = (ẽ, c)

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BU,gap
Σ,i ∧ ‖c‖1 ≤ Bc

∧ [a1 | a2 + h · g | b1 | · · · | bk2 ] ẽ> = c · u

.

– A NIZK proof system Πm
NIZK (with a common random string comm

NIZK) for
the relations Rm and Rm

gap that satisfies correctness, zero-knowledge and
multi-proof extractability, where Rm and Rm

gap are defined as follows:

• Rm :=
{

X = (crscom, com),
W = (h, rand)

∣∣∣∣ (h, rand) ∈ Shash ×R,
∧ com = Com(crscom, h · g; rand)

}
;

• Rm
gap :=

 X = (crscom, com),
W = (h′, c′, c, (ri)i∈[k2])

∣∣∣∣∣∣
‖h′‖2 ≤ Binv/2 ∧ ‖c′‖1, ‖c‖1 ≤ Bc

∧ s1
(
[r>1 | · · · |r>k2 ]

)
≤ δgap

∧ ti = bi(ri/c)> + (h′/c′) · gi

,

where t = ParseCom(com), (bi)i∈[k2] ⊆ crscom, g = [1 | b | · · · | bk2−1] ∈ Rk2
q

is the gadget matrix with k2 = dlogb(q)e, and gi is the i-th element of g.
– Four hash functions Hcrs, HM, Hm, and Hs modeled as a random oracle in

the security proof. The latter two Hm and Hs are hash functions used by
the NIZK proof systems Πm

NIZK and Πs
NIZK, respectively. HM : {0, 1}∗ → Rq

is a hash function used to map messages to ring elements. Hcrs is a special
hash function, for which we only use the input 0. Specifically, Hcrs(0) =
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(crsm
NIZK, crscom,a2) contains the common random strings crsm

NIZK and crscom
used by Πm

NIZK and ΠCom, respectively, and a random vector a2 ∈ Rk2
q .

Construction. The construction of our blind signature ΠBS is provided below.
We assume Hcrs(0) = (crsm

NIZK, crscom,a2) and (bi)i∈[k2] ⊆ crscom are derived
correctly by all the algorithms and omit the process of generating them.

BSGen(1λ) : It runs (a1,Ta1) $← TrapGen(1k1d, q), samples s $←
[−∆MLWE, ∆MLWE](k1+k2k3)

coeff
13 and sets u = [a1 | b1 | · · · | bk2 ] · s> ∈ Rq,

where recall a1 ∈ Rk1
q , bi ∈ Rk3

q for i ∈ [k2]. It then outputs (vk, sk) =
((a1, u),Ta1).

U1(vk,M) : It hashes h = HM(M), samples rand $← R, and com-
putes com = Com(crscom, h · g; rand). It then creates a proof πm $←
ProveHm(crsm

NIZK, (crscom, com), (h, rand)) that proves the wellformedness of
the commitment com, and outputs the first message ρ1 = (com, πm). Fi-
nally, it sets its state as stU = rand.

S2(sk, ρ1) : It parses (com, πm) ← ρ1 and outputs ⊥ if VerifyHm(crsm
NIZK,

(crscom, com), πm) = ⊥. Otherwise, it computes t ← ParseCom(com) and
samples a short vector e ∈ Rk1+k2+k2k3 such that

[a1 | a2 + t | b1 | · · · | bk2 ] · e> = u, (6)

using e $← SampleLeft(a1, [a2 + t | b1 | · · · | bk2 ] , u,Ta1 , σ). It outputs the
second message ρ2 = e.

Uder(stU , ρ2) : It parses (e1, e2, e3) := e ← ρ2, rand ← stU , and outputs ⊥ if
either ∃i ∈ [3], ‖ei‖2 > BSΣ,i or Eq. (6) does not hold. Otherwise, it computes
t← ParseCom(comcrs) and (ri)i∈[k2] ← ParseRand(rand), where h = HM(M),
ti = bir>i + h · gi ∈ Rq, and ti and gi are the i-th entries of t and g,
respectively. It then rewrites the left hand side of Eq. (6) as follows:

[a1 | a2 + t | b1 | · · · | bk2 ] · e>

=
[
a1 | a2 + [b1r>1 + h · g1 | · · · | bk2r>k2

+ h · gk2 ] | b1 | · · · | bk2

]
· e>

= [a1 | a2 + h · g | b1 | · · · | bk2 ]


e>1
e>2

e2,1 · r>1 + e>3,1
. . .

e2,k2 · r>k2
+ e>3,k2


︸ ︷︷ ︸

=:ẽ∈Rk1+k2+k2k3

,

where e3 = [e3,1 | · · · | e3,k2 ] ∈ Rk2k3 and e2 = [e2,1 | · · · | e2,k2 ] ∈
Rk2 are parsed into appropriate sizes. It then creates a proof πs $←
ProveHs ((a1,a2, (bi)i∈[k2], u, h), ẽ) that proves knowledge of a short vector
ẽ. If ⊥ ← VerifyHs ((a1,a2, (bi)i∈[k2], u, h), πs), then it outputs Σ = ⊥. Oth-
erwise, it outputs Σ = πs as the signature.

13 For integers a and b such that a < b, [a, b]coeff ⊂ Rq denotes the set of all polynomials
in Rq with coefficients in [a, b].
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BSVerify(vk,M, Σ) : It parses πs ← Σ, sets h = HM(M), and returns the output
of VerifyHs ((a1,a2, (bi)i∈[k2], u, h), πs).

Remark 3.1 (Variations of the Construction). We can consider slight variations
of the above construction. For instance, in case the commitment vectors satisfy
b1 = · · · = bk2 , which is the case for our concrete instantiation in Sec. 4.1, the
signer can alternatively sample e such that [a1 | a2 + t | b1] · e> = u instead
of Eq. (6). Which variation offers the “best” blind signature highly depends on
many factors: the criteria that we wish to optimize (e.g., minimize the signature
size, minimize the total communication cost); the concrete choice of NIZKs and
commitments we use; and other implicit parameter selections.

The proof of correctness consists of a routine check. Blindness under malicious
keys follows from a standard proof using the zero-knowledge and hiding of the
underlying NIZKs and commitment.

3.3 Proof of One-More Unforgeability

The following establishes that our blind signature is one-more unforgeable even
against quantum adversaries in the QROM.

Theorem 3.1. The blind signature ΠBS is quantumly one-more unforge-
able if the two NIZKs Πs

NIZK for (Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap)

are quantumly single-proof and multi-proof extractable, respectively, and
the MSISd,1,k1+k2k3,BMSIS,q, MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1 and
DSMRd,k2k3−1,χDSMR,q,1 problems are hard.

Proof Sketch. Assume there exists a QPT adversary A with non-negligible ad-
vantage ε against the one-more unforgeability game that makes at most QS
(classical) signature queries. Further assume A makes at most QHM (resp. QHcrs ,
QHm ,QHs) (quantum) random oracle queries to HM (resp. Hcrs, Hm, Hs). We con-
sider a sequence of games, where we denote Ei as the event A wins in Gamei.
Game1 is the real one-more unforgeability game.

Game2 : The challenger simulates all the QRO’s by using
2QHcrs/2QHM/2QHs/2QHm-wise independent hash functions. This allows the
challenger to efficiently simulate the QROs.

Game3 : The challenger programs Hcrs(0) to use the simulated CRS c̃rsm
NIZK output

by the CRS simulator Scrs of Πm
NIZK.

Game4 : When A submits ρj,1 = (comj , π
m
j ) to the challenger as its j-th (j ∈

[QS]) first message, the challenger runs Wj ← Multi-Extract(1λ,QHm ,QS, 1/µ, τ,
Xj , πm

j ), where µ = Pr[E3] and Xj = (crscom, comj). Due to the definition of
the multi-proof extractor Multi-Extract (see Def. 2.6), the challenger succeeds in
extracting a witness in Rm

gap with non-negligible probability and runs in time
proportional to Qe1

Hm
· Qe2+1

S · 1
µc · p(λ), which is a polynomial.



18 Rafael del Pino1 and Shuichi Katsumata2

Game5 : The challenger replaces the function HM :M→ Shash ⊂ Rq by a small-
range distribution. Specifically, it sets r = 2 ·C0 ·Q3

HM
/µ′, where µ′ = Pr[E4] and

C0 is some universal constant. It then samples h = (h1, · · · , hr) $← (Shash)r and
P

$← Func(M, [r]), and defines HM as HM(x) = hP (x).

Game6 : The challenger samples a uniformly random index j∗ $← [r] at the be-
ginning of the game and performs two types of checks. First, when the challenger
extracts Wj = (h′j , c′j , cj , (rj,i)i∈[k2]) ∈ Rm

gap from the first message ρj,1 submit-
ted to by A, the challenger checks if h′j/c′j 6= hj∗ . Moreover, at the end of the
game, when A outputs the forgery {(Mi, Σi)}i∈[QS+1], the challenger checks if
M′j∗ ∈ {Mi}i∈[QS+1] and if {HM(Mi)}i∈[QS+1] are pairwise distinct.

Game7 : After it samples j∗ $← [r] at the beginning of the game, the challenger
sets a2 = ã2 − hj∗ · g where ã2

$← Rkq , and programs Hcrs(0) to use this a2.

Game8 : The challenger gets rid of the trapdoor Ta1 included in the secret
key sk. In particular, the challenger samples a1

$← Rk1
q , R $← χk1×k2

MLWE , and sets
ã2 = a1R. On input the first message ρ1 = (com, πm) from A, it extracts W =
(h′, c′, c, (ri)i∈[k2]) ∈ Rm

gap and computes

[a1 | a2 + t | b1 | · · · | bk2 ]

=
[

a1 | a1R − hj∗ · g +
[

b1r>1
c

+ h′

c′
· g1 | · · · |

bk2r>k2

c
+ h′

c′
· gk2

]
| b1 | · · · | bk2

]
=
[

a1 | b̂ |
[
a1 | b̂

]
R′ +

(
h′

c′
− hj∗

)
· g
]
·Pperm,

where b̂ = [b1 | · · · | bk2 ] ∈ Rk2k3
q , R̂ = Ik2 ⊗ [r>1 | · · · | r>k2

] ∈ Rk2k3×k2 , R′ =[
R

1
c R̂

]
∈ Rk2(k3+1)×k2 , and Pperm is a permutation matrix that appropriately

reorders the columns. It then samples a short vector e′ ∈ Rk1+k2+k2k3 such that[
a1 | b̂ |

[
a1 | b̂

]
R′ +

(
h′

c′ − hj∗
)
· g
]
·e′> = u, using the algorithm SampleRight.

By setting the parameters correctly, we have invertibility of h′/c′−hj∗ as required
by the sampling algorithm. The signer algorithm S2 finally outputs the second
message ρ2 = e′(P−1

perm)>.
At this point, the challenger in Game8 no longer relies on a trapdoor for

a1. Using the single-proof extractability of Πs
NIZK, the challenger will be able to

extract an MSIS solution with respect to [a1|b̂].

3.4 Extension: Partially Blind Signatures

We are able to obtain a partially blind signature [2] with a simple modification to
our blind signature without increasing the signature size. To bind the signature
to a specific common message γ, the signer shifts the public syndrome u ∈ Rq
to u− HMc(γ), where HMc is a newly introduced hash function that is modeled
as a random oracle in the security proof.
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4 Instantiating Our Generic Construction

In this section, we instantiate our generic construction of blind signature, which
in particular involves concretizing the building blocks laid out in Sec. 3.2: the
trapdoor-sampling-compatible commitment scheme ΠCom, the single-proof ex-
tractable NIZK proof system Πs

NIZK, and the multi-proof extractable NIZK proof
system Πm

NIZK. In Sec. 4.3 we provide a concrete set of parameters for our result-
ing blind signature scheme.

4.1 Concrete Choices for Trapdoor-Sampling-Compatible
Commitments and Single-Proof Extractable NIZK

For the trapdoor-sampling-compatible commitment, we rely on (a slight variant
of) the BDLOP commitment by Baum et al. [12]. The common random string
is of the form crscom := (b0,b1) :=

(
[1|b′0], [0|1|b′1]

)
∈ Rk3

q′ ×Rk3
q , where we use

two different moduli q′ and q, and q is the modulus that explicitly showed up in
the blind signature construction in the previous section. The commitment to a
message M = (M1, · · · ,ML) ∈ RLq is

com :=
[
t1//t2

]
=
([

b0
b1

]
R +

[
0

M1 | · · · | ML

]
mod q′

mod q

)
∈ RLq′ ×RLq .

The single-proof extractable NIZK is based on the basic Lyubashevsky’s sigma
protocol [36, 37], where soundness is argued through rewinding (or the forking
lemma [44, 13] to be precise). One minor difference is that we take advantage
of the fact that the witness vector ẽ ∈ Rk1+k2+k3 has unbalanced size; the first
(k1 + k2)-entries are smaller than the last k3 entries.

4.2 Concrete Choice for Multi-Proof Extractable NIZK

Preparation. Let us prepare some notations. Let Rq′ = Zq′ [X]/(Xd + 1) be
a ring that fully splits and consider the NTT over the ring Rq′ with NTT :
Rq′ → (Zdq′)>, and NTT−1 : (Zdq′)> → Rq′ . Here, we make it explicit that NTT
and NTT−1 operates over column vectors. These notions extend naturally to
matrices over Rq′ , where NTT−1 is only well-defined when the column length
of the matrix is divisible by d. We define Φ : Rq′ 7→ (Zdq′)> to be the map that
sends a polynomial to its (column) coefficient vector. We define Rot : Rq′ 7→
Zd×dq′ to be the map that sends a polynomial a ∈ Rq′ to a matrix whose i-th
column is Φ

(
a ·Xi mod (Xd + 1)

)
. It can be checked that for a, b ∈ Rq′ , we

have Rot(a)Φ (b) = Φ (a · b). We extend the definition of Rot to vectors in Rq′ ,
where we have Rot(b)Φ (a) = Φ (a · b) for (a,b) ∈ Rq′ × Rnq′ . Here, note that
Rot(b) ∈ Zdn×dq′ and Φ (a) ∈ Zdq′

>. We use ◦ for the component-wise product of
matrices over Rq′ . Finally, we define the matrix ∆ ∈ RL×Lq such that the first
column of ∆ is g and all the diagonal entries except for the (1, 1)-th entry is −1.
Specifically, ∆ is invertible over Rq and we have g∆ = [1|0| · · · |0].
Construction. We consider the relations (Rm,Rm

gap) defined as follows:
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–Rm :=

X = (crscom := (b0,b1), com),
W = (h, rand := R)

∣∣∣∣∣∣
h ∈ Shash ∧R ∈ [−1, 1]k3×L

coeff ,

∧ com =
([

b0
b1

]
R +

[
0

h · g

]
mod q′

mod q

);

–Rm
gap :=

X = (crscom := (b0,b1), com),
W = (h′, c, (ri)i∈[L])

∣∣∣∣∣∣∣∣
‖h′‖2 ≤ Binv/2 ∧ ‖c‖1 ≤ Bc
∧ t = ParseCom(com)
∧R ∈ [−1, 1]k3×L

coeff

∧ ∀i ∈ [L], ti = b1r>i + (h′/c) · q
i−1
L

,

Notice the gap relation Rm
gap has no slack for the commitment randomness.

We recover Rm
gap in Sec. 3.2 by setting δgap =

√
k3L · d.

The prove and verify algorithms ofΠm
NIZK for the relations (Rm,Rm

gap) are pro-
vided in Figs. 1 and 2, respectively. The texts in gray are used by the exact proof
of [16], the texts in black without highlight are used to prove linear relations,
and finally the texts highlighted in gray are used for multi-proof straight-line
extractability as in [34]. The crs for Πm

NIZK consists of a random element H (used
for extraction) and random matrices (a0, (Ak)k∈[4]) (used for committing), and
the crs for ΠCom is a random tuple (b0,b1). Following prior conventions [16, 34],
we prove that R ∈ [0, 2]k3×L

coeff instead, i.e., R consists of {0, 1, 2}-coefficient poly-
nomials. This is without loss of generality since we can add the all one matrix 1
to any R ∈ [−1, 1]k3×L

coeff to obtain a matrix in [0, 2]k3×L
coeff .

The protocol uses three polynomial rings: Rq′ = Zq′ [X]/(Xd + 1) is a fully
splitting ring used by Bootle et al’s [16] exact proof; Rq = Zq[X]/(Xd + 1) is
a ring where any small element is invertible and is used by the linear proof;
RQ = ZQ[X]/(Xd + 1) is used by the the multi-proof straight-line extractabil-
ity as in [34], and in particular, we require the NTRU assumption to hold over
this ring. The interactive protocol implicit in our NIZK is defined with respect
to two challenge spaces. The challenge space used in the second (resp. fourth)
flow is Zτq′ (resp. Cττ

′

X × Cham, where CX := {Xi | i ∈ [2d]} and Cham is the
set of {0, 1}-coefficient polynomials in Rq with Hamming weight smaller than
Bc). Specifically, we require any element with two-norm smaller than 2Bc to be
invertible over Rq. Here, τ and τ ′ are set so that qτ ≈ (2d)ττ ′ ≈ 2128 or asymp-
totically 1/qτ ≈ 1/(2d)ττ ′ = negl(λ). Our protocol also relies on several different
Gaussian distributions. They are used either to perform rejection sampling or to
invoke the MLWE and DSMR assumptions. The concrete parameter selection is
provided in Sec. 4.3.
Security. Below, we provide the proof sketch of the classical multi-proof ex-
tractability.

Theorem 4.1. The NIZK Πm
NIZK in Figs. 1 and 2 is classically multi-proof ex-

tractable with (c1, e1, e2) = (1, 1, 0) and p(λ) = poly(λ) if the DSMRd,1,χDSMR,Q,p,
MSISd,1,k4,16BZ,q′ , and MSISd,1,k3,2(BZ′+Bcδgap),q′ problems are hard.

Proof. CRS indistinguishability is a simple consequence of the DSMRd,1,χDSMR,Q,p

assumption. The proof of straight-line extractability, which is the most technical
proof of this work, consists of three parts. We first show in Lemma 4.1 that
(roughly) if the adversary A outputs a valid proof, then A must have been able
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Πm
NIZK : ProveHm (crsm

NIZK,X,W)

crsm
NIZK = (H,a0, (Ak)k∈[4]) ∈ RQ ×Rk4

q′ ×
(
Rk3×k4
q′

)4

X := (crscom := (b0,b1), com := T) ∈ Rk3
q′ ×R

k3
q × (RLq′ ×RLq ),

W := (h, rand := R) ∈ Shash × [0, 2]k3×L
coeff s.t T =

[
b0
b1

]
R +

[
0

h · g

]
mod q′

mod q

For i ∈ [τ]:

(Yi,Ei)
$← R

k3×L
q′

×Dk4×L
γE

u0,i := a0Ei
U1,i := A1Ei + Yi
U2,i := A2Ei + NTT−1 (Φ (R))
U3,i := A3Ei + Yi ◦ (2NTT−1 (Φ (R)) − 3)
U4,i := A4Ei + Yi ◦Yi ◦ (NTT−1 (Φ (R)) − 3)

Wi := Rot(b0)NTT
(

Yi
)
∈ Zd×L

q′

(D1,i,D2,i)
$←
(
D
k4×L
γD

)2

Vi := HD1,i + pD2,i + Ei ∈ R
k4×L
Q

For j ∈ [τ′] :
Si,j ← D

k4×L
γS

(D̄1,i,j , D̄2,i,j) ←
(
D
k4×L
γD̄

)2

V̄i,j := HD̄1,i,j + pD̄2,i,j + Si,j ∈ R
k4×L
Q

(h′,Y′) $← Dγ
h′
×Dk3×L

γY′
(w′1,w′2) := (b0Y′,b1Y′∆ + [h′|0| . . . |0]) ∈ RLq × R

L
q

(d′1, d
′
2, d
′
1, d
′
2) $←

(
Dγ
d′

)2
×
(
Dγ
d̄′

)2

(D′1,D′2, D̄′1, D̄′2) $←
(
D
k3×L
γD′

)2
×
(
D
k3×L
γD̄′

)2

v′ := Hd′1 + pd′2 + h ∈ RQ
v′ := Hd

′
1 + pd

′
2 + h′ ∈ RQ

V′ := HD′1 + pD′2 + R ∈ Rk3×L
Q

V̄′ := HD̄′1 + pD̄′2 + Y′ ∈ Rk3×L
Q

a1:=


u0,i,U1,i,U2,i,
U3,i,U4,i,Wi,

Vi, V̄i,j ,

w′1,w′2,

v′, v′,V′, V̄′ ,


i,j

−−−−−−−−−−−−−−−−−−−−−−−−−−→

c1 := (ci)i∈[τ]:= Hm(X, 1, a1) ∈ Zτ
q′

←−−−−−−−−−−−−−−−−−−−−−−−−−−
For i ∈ [τ]:

Z0,i := ci · NTT−1 (Φ (R)) + Yi
For j ∈ [τ′]:

x0,i,j := a0Si,j
X1,i,j := (A1 + ci ·A2)Si,j
X2,i,j := (Z0,i − ci) ◦ (Z0,i − 2ci) ◦ (A2Si,j)

−Z0,i ◦ (A3Si,j) + A4Si,j

a2:=

(
Z0,i, x0,i,j ,
X1,i,j ,X2,i,j

)
i,j

−−−−−−−−−−−−−−−−−−−−−−−−−−→

c2 := (β := (βi,j)(i,j)∈[τ]×[τ′], β
′)

:= Hm(X, 2, a1, c1, a2) ∈ Cτ·τ
′

X
× Cham

←−−−−−−−−−−−−−−−−−−−−−−−−−−
For i ∈ [τ]:

For j ∈ [τ′]:
Zi,j := βi,j · Ei + Si,j
F1,i,j := βi,j ·D1,i + D̄1,i,j
F2,i,j := βi,j ·D2,i + D̄2,i,j

(ζ,Z′) := (β′ · h + h′, β′ ·R + Y′)
(f′1, f

′
2) := (β′ · d′1 + d

′
1, β
′ · d′2 + d

′
2)

(F′1,F′2) := (β′ ·D′1 + D̄′1, β
′ ·D′2 + D̄′2)

If Rej((Zi,j)i,j , (βi,j · Ei)i,j , φ, Br,Z, err) = ⊥
∨ Rej(Z′, β′ ·R, φ, B

r,Z′ , err) = ⊥
∨ Rej(ζ, β′ · h, φ, Br,ζ, err) = ⊥
∨ Rej((F1,i,j ,F2,i,j)i,j ,

(βi,j ·D1,i, βi,j ·D2,i)i,j , φ, Br,F, err) = ⊥
∨ Rej((f′

b
,F′
b
)b∈[2], (β

′ · d′
b
, β′ ·D′

b
)b∈[2], φ, Br,F′ , err) = ⊥

then restart

πm := ((u0,i, (Uk,i)k∈[4], Vi )i∈[τ], v
′,V′ , c1, (Z0,i)i∈[τ],

c2, (Zi,j , F1,i,j ,F2,i,j )(i,j)∈[τ]×[τ′], ζ,Z′, (f′
b
,F′
b
)b∈[2] )

πm
−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 1: Prove algorithm for the multi-proof NIZK Πm
NIZK for the relations (Rm,Rm

gap).
We illustrate the 5-round interactive protocol that implicitly underlies the NIZK.
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Πm
NIZK : VerifyHm (crsm

NIZK,X, πm)

crsm
NIZK = (H,a0, (Ak)k∈[4]) ∈ RQ ×Rk4

q′ ×
(
Rk3×k4
q′

)4

X := (crscom := (b0,b1), com := T) ∈ Rk3
q′ ×R

k3
q × (RLq′ ×RLq ),

πm := ((u0,i, (Uk,i)k∈[4], Vi )i∈[τ ], v
′,V′ , c1,

(Z0,i)i∈[τ ], c2, (Zi,j , F1,i,j ,F2,i,j )(i,j)∈[τ ]×[τ ′],Z′, ζ, (f ′b,F′b)b∈[2] )[
t1
t2

]
:= T ∈ RLq′ ×RLq

For i ∈ [τ ]:
Wi := Rot(b0)NTT (Z0,i)− ci · Φ (t1) ∈ Zd×L

q′

For j ∈ [τ ′]:
V̄i,j := HF1,i,j + pF2,i.j + Zi,j − βi,j ·Vi ∈ Rk4×L

Q

x0,i,j := a0Zi,j − βi,j · u0,i ∈ RLq′
X1,i,j := (A1 + ci ·A2)Zi,j + βi,j ·

(
Z0,i − (U1,i + ci ·U2,i)

)
∈ Rk4×L

q′

X2,i,j := (Z0,i − ci) ◦ (Z0,i − 2ci) ◦ (A2Zi,j)− Z0,i ◦ (A3Zi,j) + A4Zi,j
−βi,j ·

(
(Z0,i − ci) ◦ (Z0,i − 2ci) ◦U2,i − Z0,i ◦U3,i + U4,i

)
∈ Rk4×L

q′

w′1 := b0Z′ − β′ · t1 ∈ ZLq′
w′2 := b1Z′∆+ [ζ|0| . . . |0]− β′ · t2∆ ∈ ZLq′
v′ := Hf ′1 + pf ′2 + ζ − β′ · v′ ∈ RQ

V̄′ := HF′1 + pF′2 + Z′ − β′ ·V′ ∈ Rk3×L
Q

a1 :=
(

(u0,i,U1,i,U2,i,U3,i,U4,i,Wi,Vi, (V̄i,j)j∈[τ ′])i∈[τ ],w′1,w2, v
′, v′,V′, V̄′

)
a2 :=

(
Z0,i, (x0,i,j ,X1,i,j ,X2,i,j)j∈×[τ ′]

)
i∈[τ ]

If



‖ζ‖2 ≥ B
∨ ‖Z′‖2 ≥ BZ′

∨ ∃(i, j) ∈ [τ ]× [τ ′], ‖Zi,j‖2 ≥ BZ

∨ ‖F′1‖∞ ≥ B1,F′

∨ ‖F′2‖∞ ≥ B2,F′

∨ ∃(i, j) ∈ [τ ]× [τ ′], ‖F1,i,j‖∞ ≥ B1,F

∨ ∃(i, j) ∈ [τ ]× [τ ′], ‖F2,i,j‖∞ ≥ B2,F

∨ c1 6= Hm(X, 1, a1)
∨ c2 6= Hm(X, 2, a1, c1, a2)

then return ⊥

return >

Fig. 2: Verify algorithm for the multi-proof NIZK for the relations (Rm,Rm
gap).
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to succeed on many challenges. That is, the probability thatA succeeds in forging
a proof without a witness by guessing the output of the random oracle is at most
µ
2−negl(λ), where µ is the advantage ofA outputting a valid proof. We then show
in Lemma 4.2 a specific form of special soundness where an extractor Extractss
given the purported proof output by A along with several specific challenges,
extracts a witness in Rm

gap. We finally provide the description of our straight-
line extractor Multi-Extract that internally runs Extractss and bound its success
probability.

We present our first lemma which shows that if A outputs a valid proof,
then there must have been multiple challenges for which it could have succeeded
on. Formally, we define the sets {Γ1,i}i∈[τ ] and Γ2 that count for how many
challenges there exists a valid response, and argue that they cannot be too
small. More specifically, Γ1,i counts the number of second flow challenges ci for
which there exists at least two distinct βi,j ’s included in the fourth flow challenge
with a corresponding valid response. Γ2 on the other hand counts the number
of β′ included in the fourth flow challenge with a corresponding valid response.
Roughly, the former (resp. latter) set is the set of challenges for which A was
able to complete the exact proof of Bootle et al. (resp. proof of linear relation).

Lemma 4.1. Consider an interactive protocol as defined implicitly in Fig. 1.
That is, the transcript is (a1, c1, a2, c2, resp), where c1, c2 are the challenges
the (honest) verifier samples uniformly at random and resp is the response(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ ]×[τ ′],Z′, ζ, f ′1, f ′2,F′1,F′2

)
sent by the prover. For any

statement X, first, second, third, and fourth flows a1, c1, a2, and c2, respectively,
we define the following sets for all i ∈ [τ ]:

Γ1,i(a1, c1, a2, c2)

:=


ci ∈ Zq′

∣∣∣∣∣∣∣∣∣∣∣∣

(ci′)i′∈[τ ] ← c1, c1 := (ci) ∪ (ci′)i′∈[τ ]\{i},
(β = (βi′,j′)(i′,j′)∈[τ ]×[τ ′], β

′)← c2

∃j ∈ [τ ′], distinct
(
βi,j , β

′
i,j

)
∈ (CX)2,

β := (βi,j) ∪
(
βi′,j′

)
(i′,j′)6=(i,j)

,β
′ := (β′i,j) ∪

(
βi′,j′

)
(i′,j′) 6=(i,j)

,

∃(a2, a
′
2), (resp, resp′) s.t. (a1, c1, a2, c2 :=

(
β, β′

)
, resp) and

(a1, c1, a
′
2, c2 :=

(
β
′
, β′
)
, resp′) are valid


Γ2(X, a1, c1, a2, c2)

:=
{
β
′ ∈ Cham | (β, β′)← c2, ∃resp s.t. (a1, c1, a2, c2 := (β, β′), resp) is valid

}
,

where we say a transcript (a1, c1, a2, c2, resp) is valid if the proof πm implicitly
defined by (a1, c1, a2, c2, resp) is valid for statement X.

Then, for any QH = poly(λ) and PPT adversary A that makes at most QH
random oracle queries with

Pr
[

(c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k )}k∈[QS]

$← AHm (1λ, c̃rsm
NIZK),

: ∀k ∈ [QS],VerifyHm (c̃rs,Xk, πm
k ) =>

]
≥µ(λ),
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we have,

Pr

 (c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k )}k∈[QS]

$← AHm (1λ, c̃rsm
NIZK),

:
∀k ∈ [QS],VerifyHm (c̃rsm

NIZK,Xk, πm
k ) = >

∧∃i∈[τ ], |Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)|≥3
∧ |Γ2(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ µ

2QH
|Cham|


is at least µ(λ)/2− negl(λ)

Proof Sketch. For simplicity, denote Γ
(k)
1,i := Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k) and

Γ
(k)
2 := Γ2(Xk, a1,k, c1,k, a2,k, c2,k) for each (k, i) ∈ [QS] × [τ ]. We denote

by ValidProofs the event that VerifyHm(c̃rsm
NIZK,Xk, πm

k ) = > for all k ∈ [QS].
Then, to lower bound the desired probability, it suffices to upper bound∑
k∈[QS] Pr[ValidProofs∧∀i ∈ [τ ], |Γ (k)

1,i < 3|] and
∑
k∈[QS] Pr[ValidProofs∧|Γ (k)

2 | <
µ

2QH
· |Cham|]. To obtain the bound on the later, observe that if Γ (k)

2 has size at
most T , then even a computationally unbounded (classical) adversary can find
an input that hashes to Γ

(k)
2 with probability at most T/Cham for every RO

query. We can tune the size of T to get the desired bound. The bound on the
former requires more work since at a high level the adversary can cheat twice;
once for the second flow challenge and once for the fourth flow challenge. We
show that if it cheats with respect to the second (resp. fourth) flow challenge
then even a computationally unbounded (classical) adversary cannot cheat in
the fourth (resp. second) flow challenge.

We note that the main differences of the proof in the classical ROM and
QROM is the bound in the statement of Lemma 4.1 and how it is proven. Infor-
mally, the reason why the above proof fails is because a quantum adversary can
query the random oracle on all the input space in super position. To this end,
we rely on (roughly) the optimality of the Grover’s search to bound the success
probability of the adversary.
We next show a restricted notion of the standard special soundness for interactive
protocols. Typically, an extractor for special soundness is provided multiple valid
transcripts containing the same commitments and is asked to extract a witness
from them. Below, we show that for our particular interactive protocol, the ex-
tractor only requires one valid transcript along with several challenges for which
existence of a valid response is guaranteed. Put differently, rather than taking
multiple valid transcripts as input, our extractor only requires one transcript
and the challenges included in the remaining valid transcripts. As explained in
the overview of ??, the crux of the proof is that given a valid challenge, the
extractor can extract parts of the response by using the trapdoor τ (i.e., NTRU
decryption key).

Lemma 4.2. Consider the following 7 valid transcripts for a statement X:

– For (η, b) ∈ [3] × [2], trans(η,b) :=
(
a1, c(η)

1 := (c(η)
i )i∈[τ ], a

(η)
2 , c(η,b)

2 :=
(β(η,b) := (β(η,b)

i,j )(i,j)∈[τ ]×[τ ′], β
′), resp(η,b)),

– t̂rans(1,0) := (a1, c(1)
1 , a

(1)
2 , ĉ(1,b)

2 := (β(1,0), β̂′), r̂esp(1,0)),
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such that there exists (i∗, j∗1 , j∗2 , j∗3 ) ∈ [τ ] × [τ ′]3 that (c(1)
i∗ , c

(2)
i∗ , c

(3)
i∗ ) are pair-

wise distinct, (β(1,0)
i∗,j∗1

, β
(1,1)
i∗,j∗1

), (β(2,0)
i∗,j∗2

, β
(2,1)
i∗,j∗2

), and (β(3,0)
i∗,j∗3

, β
(3,1)
i∗,j∗3

) are each pairwise
distinct, and β′ 6= β̂′.

Then, there exists a deterministic PT special sound extractor
Extractss such that given a trapdoor τ to c̃rsm

NIZK, any statement X and(
trans(1,0),

(
β

(η,0)
i∗,j∗η

, β
(η,1)
i∗,j∗η

)
η∈[3],

(
β′, β̂′

))
included in any of the 7 valid tran-

scripts of the above form, Extractss outputs a witness W such that (X,W) ∈ Rm
gap

or a solution to the MSISd,1,k4,16BZ,q′ problem with respect to a0 ∈ Rk4
q′ included

in c̃rsm
NIZK or a solution to the MSISd,1,k3,2(BZ′+Bcδgap),q′ problem with respect to

b0 ∈ Rk3
q′ included in crscom.

Proof Sketch. The proof consists of three parts: in Part (A), we extract a witness

that proves the linear relation (i.e.,
[
t1
t2

]
=
[
b0
b1

]
R′ +

[
0
hg

]
); in Part (B), if the

extracted witness from Part (A) is not inRm
gap, then we further extract a different

witness that proves the exact relation for t1 (i.e., t1 = b0R′′); in Part (C), we
show that given two different openings to t1, we can extract a solution to an
MSIS problem. Looking ahead, if Extractss does not succeed in outputting a
valid witness for Rm

gap in Part (A), then it will only output a solution to the
MSIS solution in the following Parts (B) and (C). This subtle observation will
be used to optimize the proof size of our multi-proof extractable NIZK in the
classical ROM.
Part (A). First observe that from trans(1,0), we have

V̄′ + β′ ·V′ = HF(1,0)′
1 + pF(1,0)′

2 + Z(1,0)′ (over RQ).

Notice the right hand side is a valid NTRU ciphertext. Namely, by using the
trapdoor τ = (f, v) such that H = p · v · f−1 (i.e., secret key for the NTRU
encryption scheme), Extractss can decrypt V̄′ + β′ ·V′ to recover the “message”
Z(1,0)′ . Formally, Z(1,0)′ = f−1 · (f · (V̄′ + β′ ·V′) mod Q) mod p. Moreover,
by setting the parameters appropriately, the NTRU encyption scheme will have
no decryption error. Thus, if V̄′ + β′ ·V′ is guaranteed to be in the above form,
then the possible Z(1,0)′ that can be included in resp(1,0) is unique. In other
words, there can not exist a distinct Ẑ(1,0)′ in resp(1,0) such that verification
still holds. The same argument holds for the ζ(1,0) component since we have
v′ + β′ · v′ = Hf

(1,0)′
1 + pf

(1,0)′
2 + ζ(1,0).

With this observation in mind, given trans(1,0) and β̂′, Extractss first performs
NTRU decryption as follows, which is guaranteed to succeed by assumption:

Ẑ(1,0)′ := f−1 · (f · (V̄′ + β̂′ ·V′) mod Q) mod p,

ζ̂(1,0) := f−1 · (f · (v′ + β̂′ · v′) mod Q) mod p.

As argued above, this Ẑ(1,0)′ and ζ̂(1,0) are guaranteed to be included in t̂rans(1,0),
where note that t̂rans(1,0) is not provided to Extractss as input. Since trans(1,0)
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and t̂rans(1,0) are valid and share the same first flow a1, they also satisfy the same
verification equations regarding w′1 and w′2 (see Fig. 2). Extractss subtracts these
equations to remove w′1 and w′2, and obtains the following:

(β′ − β̂′) · t1 = b0
(
Z(1,0)′ − Ẑ(1,0)′) (over Rq′),

(β′ − β̂′) · t2∆ = b1
(
Z(1,0)′ − Ẑ(1,0)′)∆+ [ζ(1,0) − ζ̂(1,0) | 0 | · · · | 0] (over Rq).

By multiplying ∆−1 from both sides in the later equation, Extractss obtains

(β′ − β̂′) · t2 = b1
(
Z(1,0)′ − Ẑ(1,0)′)+ (ζ(1,0) − ζ̂(1,0)) · g.

Due to our parameter selection, (β′− β̂′) is small and is guaranteed to be invert-
ible over Rq. Extractss then checks if R′ :=

(
Z(1,0)′− Ẑ(1,0)′)/(β′− β̂′)−1 consists

of polynomials with {0, 1, 2}-coefficients. If so, W := ((ζ(1,0)−ζ̂(1,0)), (β′−β̂′),R′)
is a valid witness for Rm

gap and thus Extractss outputs W.
We highlight again that if Extractss does not succeed in outputting a valid

witness for Rm
gap in Part (A), then it can only output a solution to the MSIS

problem in Parts (B) and (C).

We are now ready to finish the proof of Theorem 4.1. The goal of Multi-Extract
is to collect the necessary inputs to invoke Extractss defined in Lemma 4.2. Let
us informally explain in a bit more detail.

Given a valid proof πm, Multi-Extract first goes over the challenges in Cham
to find another β′t for which there exists a valid response. Concretely, it decrypts
(v′+β′t ·v′) and (V′+β′t+V′) and searches for a pair (ζt,Z′t) that satisfies ‖ζt‖2 <
B ∧ ‖Z′t‖2 < BZ′ ∧ w′1 = b0Z′t−β′t ·t1 ∧ w′2 = b1Z′t∆+[ζt|0| · · · |0]−β′t ·t2∆.
If this is satisfied, respt =

(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ ]×[τ ′],Z′t, ζt, f ′1, f ′2,F′1,F′2

)
is guaranteed to be another valid response where the fourth flow challenge is
c2,t = (β, β′t). Note that this corresponds to r̂esp(1,0) and β̂′ in Lemma 4.2.

Multi-Extract then goes over all the challenges in CX , which it can do since
|CX | = 2d = poly(λ). Concretely, for all β ∈ CX , it decrypts (V̄i′,j′ +β ·Vi′) for
all (i′, j′) ∈ [τ ]×[τ ′], and checks if it correctly decrypts to some “message” Zβ,i′,j′
such that ‖Zβ,i′,j′‖2 < BZ. Note that unlike for the above set of challenges in
Cham, this check itself does not guarantee that there exists a valid transcript
for challenge β ∈ CX . This is because the fact that a valid Zβ,i′,j′ exists does
not imply that there exists an associated valid third flow a2. However, the main
observation is that if a valid transcript for challenge β ∈ CX exists, then (V̄i′,j′+
β ·Vi′) must decrypt to Zβ,i′,j′ such that ‖Zβ,i′,j′‖2 < BZ.

Finally, Multi-Extract is ready to run Extractss. It runs through all three pairs
of distinct challenges

(
β

(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3] it collected while going over CX and

executes Extractss
(
τ,X,

(
β

(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3], (β, β̂′)

)
. We show via Lemmata 4.1

and 4.2 that with non-negligible probability, one of the set of inputs to Extractss
must be in the specified form detailed in Lemma 4.2. Moreover, Extractss is only
invoked a polynomially number of times. Thus, assuming the MSIS problem is
difficult, Multi-Extract extracts a witness in Rm

gap in polynomial time.
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4.3 Putting Everything Together

par. q q′ p Q τ τ ′ κ d k1 k2 k3 k4 Bc σ γDSMR, γD, γD′ , γE

value ∼ 260 ∼ 224 ∼ 232 ∼ 266 6 2 2 2048 3 5 4 19 36 226 1
Table 2: Concrete parameters for our scheme.

Roughly, we consider all the constraints that need to be satisfied by the cor-
rectness and security of our blind signature and use the LWE-Estimator from [6]
so that every MLWE, MSIS, and DSMR assumptions give at least 128 bits of
security. We employ the technique of Bai-Galbraith [11] to reduce the dimen-
sion of the signature by 2. We also consider that Gaussians can be encoded in
log(2σ) bits by using the encoding of e.g. [45]. The size of the resulting signature
is 102.6 KB and we get a first flow message of size 34 MB. However, as explained
in the technical overview, we can reduce the first flow message in the classical
ROM by removing the Katsumata transform [34] applied to the exact proof
of Bootle et al. [16]. With this optimization, the first flow message is greatly
reduced to 851 KB.

Possible optimizations. We also mention several possible optimizations. We can
first consider using matrices A1,A2,B1 instead of a1,a2,b1 and lowering the
degree d to e.g. 512. This can lower both the signature and first flow message
size. This way we would have better granularity when modifying parameters,
however we would need a module-NTRU trapdoor on the matrix A1 which is
not constructed in [25] and seems nontrivial to obtain. Another solution would
be to additionally prove the sparseness of R in the multi-proof extractable NIZK,
which allows to lower the signature size since we will be able to extract R with
better quality. This is possible by proving statements about the hamming weight
of R but it would make the protocol much more complicated and the size of the
first flow message may increase. Using either of these improvements we could
lower the signature size to around 50 KB.

Another possible avenue for improvement would be reducing the size of the
first flow by considering a better exact zero-knowledge proof. In all likelihood
using the same proof as [28] would give the same improvement and bring the
size of the first flow down to around 110 KB. However using this zero-knowledge
proof is not completely straightforward as extraction is more complicated and
the arguments used in Lemma 4.2 might not apply any more, especially when
considering extraction in the QROM.

We leave further optimized instantiation of our generic construction as an
interesting future work.

Acknowledgements. Shuichi Katsumata was partially supported by JSPS
KAKENHI Grant Number 22K17892, Japan and JST AIP Acceleration Research
JPMJCR22U5, Japan.



28 Rafael del Pino1 and Shuichi Katsumata2

References

1. Vpn by google one, explained. https://one.google.com/about/vpn/howitworks.
2. M. Abe and T. Okamoto. Provably secure partially blind signatures.

CRYPTO 2000, pp. 271–286.
3. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard

model. EUROCRYPT 2010, pp. 553–572.
4. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension

and shorter-ciphertext hierarchical IBE. CRYPTO 2010, pp. 98–115.
5. S. Agrawal, E. Kirshanova, D. Stehle, and A. Yadav. Can round-optimal lattice-

based blind signatures be practical? Cryptology ePrint Archive.
6. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with

errors. Journal of Mathematical Cryptology, 9(3):169–203.
7. N. A. Alkadri, P. Harasser, and C. Janson. Blindor: An efficient lattice-based blind

signature scheme from or-proofs. In CANS, pp. 95–115. Springer.
8. N. Alkeilani Alkadri, R. El Bansarkhani, and J. Buchmann. BLAZE: Practical

lattice-based blind signatures for privacy-preserving applications. FC 2020, pp.
484–502.

9. N. Alkeilani Alkadri, R. El Bansarkhani, and J. Buchmann. On lattice-based
interactive protocols: An approach with less or no aborts. ACISP 20, pp. 41–61.

10. T. Attema, V. Lyubashevsky, and G. Seiler. Practical product proofs for lattice
commitments. CRYPTO 2020, Part II, pp. 470–499.

11. S. Bai and S. D. Galbraith. An improved compression technique for signatures
based on learning with errors. CT-RSA 2014, pp. 28–47.

12. C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient
commitments from structured lattice assumptions. SCN 18, pp. 368–385.

13. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. ACM CCS 2006, pp. 390–399.

14. D. Bernhard, M. Fischlin, and B. Warinschi. Adaptive proofs of knowledge in the
random oracle model. PKC 2015, pp. 629–649.

15. W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore. Group signatures
and more from isogenies and lattices: Generic, simple, and efficient. To Appear at
EUROCRYPT.

16. J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. CRYPTO 2019, Part I, pp. 176–202.

17. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. PKC 2010, pp. 499–517.

18. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract).
CRYPTO’93, pp. 302–318.

19. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT’97, pp.
465–479.

20. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. EUROCRYPT 2001, pp.
93–118.

21. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. EUROCRYPT 2010, pp. 523–552.

22. D. Chaum. Blind signatures for untraceable payments. CRYPTO’82, pp. 199–203.
23. D. Chaum. Elections with unconditionally-secret ballots and disruption equivalent

to breaking RSA. EUROCRYPT’88, pp. 177–182.

https://one.google.com/about/vpn/howitworks


A New Framework For More Efficient Lattice-Based Blind Signature 29

24. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. CRYPTO’88, pp.
319–327.

25. C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa. ModFalcon:
Compact signatures based on module-NTRU lattices. ASIACCS 20, pp. 853–866.

26. R. del Pino, V. Lyubashevsky, and G. Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. ACM CCS 2018, pp. 574–591.

27. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES, 2018(1):238–268.

28. M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from lattices:
New techniques to exploit fully-splitting rings. ASIACRYPT 2020, Part II, pp.
259–288.

29. M. F. Esgin, R. Steinfeld, D. Liu, and S. Ruj. Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and vrfs. Cryptology ePrint Archive.

30. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. CRYPTO 2006, pp. 60–77.

31. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In AUSCRYPT, pp. 244–251. Springer.

32. S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind
signatures. CRYPTO 2011, pp. 630–648.

33. E. Hauck, E. Kiltz, J. Loss, and N. K. Nguyen. Lattice-based blind signatures,
revisited. CRYPTO 2020, Part II, pp. 500–529.

34. S. Katsumata. A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. CRYPTO 2021, Part II, pp. 580–610, Virtual
Event, 2021.

35. H. Q. Le, W. Susilo, T. X. Khuc, M. K. Bui, and D. H. Duong. A blind signature
from module latices. In Dependable and Secure Computing (DSC), pp. 1–8. IEEE.

36. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. ASIACRYPT 2009, pp. 598–616.

37. V. Lyubashevsky. Lattice signatures without trapdoors. EUROCRYPT 2012, pp.
738–755.

38. V. Lyubashevsky, N. K. Nguyen, and M. Plancon. Efficient lattice-based blind
signatures via gaussian one-time signatures. To Appear at PKC.

39. V. Lyubashevsky, N. K. Nguyen, and M. Plancon. Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. To Appear at Crypto.

40. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Shorter lattice-based zero-
knowledge proofs via one-time commitments. PKC 2021, Part I, pp. 215–241.

41. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. EUROCRYPT 2012, pp. 700–718.

42. T. Okamoto and K. Ohta. Universal electronic cash. CRYPTO’91, pp. 324–337.
43. D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides.

Leakage-resilient lattice-based partially blind signatures. Cryptology ePrint
Archive, Report 2019/1452.

44. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396.

45. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-
based compact signatures over ntru. Technical report, 2018. Available at https:
//falcon-sign.info/.

46. M. Rückert. Lattice-based blind signatures. ASIACRYPT 2010, pp. 413–430.

https://falcon-sign.info/
https://falcon-sign.info/


30 Rafael del Pino1 and Shuichi Katsumata2

47. C.-P. Schnorr. Security of blind discrete log signatures against interactive attacks.
ICICS 01, pp. 1–12.

48. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. EUROCRYPT’98, pp. 1–16.

49. X. Yi and K.-Y. Lam. A new blind ECDSA scheme for bitcoin transaction
anonymity. ASIACCS 19, pp. 613–620.

50. M. Zhandry. How to construct quantum random functions. In 53rd FOCS, pp.
679–687.


	  A New Framework For More Efficient  Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor Sampling  
	Introduction
	Background
	Our Contribution
	Technical Overview

	Preliminaries
	Blind Signature
	Non-Interactive Zero-Knowledge Proofs in the (Q)ROM

	Lattice-based Blind Signature from Compatible Commitments
	Trapdoor-Sampling-Compatible Commitments
	Construction of Blind Signature
	Proof of One-More Unforgeability
	Extension: Partially Blind Signatures

	Instantiating Our Generic Construction
	Concrete Choices for Trapdoor-Sampling-Compatible Commitments and Single-Proof Extractable NIZK
	Concrete Choice for Multi-Proof Extractable NIZK
	Putting Everything Together



