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Abstract. We present the first truly explicit constructions of non-malleable
codes against tampering by bounded polynomial size circuits. These ob-
jects imply unproven circuit lower bounds and our construction is se-
cure provided E requires exponential size nondeterministic circuits, an
assumption from the derandomization literature.
Prior works on NMC for polysize circuits, either required an untam-
perable CRS [Cheraghchi, Guruswami ITCS’14; Faust, Mukherjee, Ven-
turi, Wichs EUROCRYPT’14] or very strong cryptographic assump-
tions [Ball, Dachman-Soled, Kulkarni, Lin, Malkin EUROCRYPT’18;
Dachman-Soled, Komargodski, Pass CRYPTO’21]. Both of works in the
latter category only achieve non-malleability with respect to efficient
distinguishers and, more importantly, utilize cryptographic objects for
which no provably secure instantiations are known outside the random
oracle model. In this sense, none of the prior yields fully explicit codes
from non-heuristic assumptions. Our assumption is not known to imply
the existence of one-way functions, which suggests that cryptography is
unnecessary for non-malleability against this class.
Technically, security is shown by non-deterministically reducing poly-
nomial size tampering to split-state tampering. The technique is gen-
eral enough that it allows us to to construct the first seedless non-
malleable extractors [Cheraghchi, Guruswami TCC’14] for sources sam-
pled by polynomial size circuits [Trevisan, Vadhan FOCS’00] (resp. rec-
ognized by polynomial size circuits [Shaltiel CC’11]) and tampered by
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polynomial size circuits. Our construction is secure assuming E requires
exponential size Σ4-circuits (resp. Σ3-circuits), this assumption is the
state-of-the-art for extracting randomness from such sources (without
non-malleability).
Several additional results are included in the full version of this paper
[Eprint 2022/070]. First, we observe that non-malleable codes and non-
malleable secret sharing [Goyal, Kumar STOC’18] are essentially equiva-
lent with respect to polynomial size tampering. In more detail, assuming
E is hard for exponential size nondeterministic circuits, any efficient se-
cret sharing scheme can be made non-malleable against polynomial size
circuit tampering.
Second, we observe that the fact that our constructions only achieve
inverse polynomial (statistical) security is inherent. Extending a result
from [Applebaum, Artemenko, Shaltiel, Yang CC’16] we show it is impos-
sible to do better using black-box reductions. However, we extend the no-
tion of relative error from [Applebaum, Artemenko, Shaltiel, Yang CC’16]
to non-malleable extractors and show that they can be constructed from
similar assumptions.
Third, we observe that relative-error non-malleable extractors can be
utilized to render a broad class of cryptographic primitives tamper and
leakage resilient, while preserving negligible security guarantees.

1 Introduction

This work focuses on mitigating polynomial size circuit tampering attacks via
constructing two kinds of fundamental objects: non-malleable codes (NMC) and
seedless non-malleable extractors (NME). In the coding setting, non-malleability
(roughly) guarantees that the output of the decoding algorithm on a codeword
is independent of the output of the decoding algorithm on a tampered version
of the codeword. Similarly in the seedless extractor setting, non-malleability
guarantees that the output of the extractor on a sample drawn from a high min-
entropy source remains uniform random, even conditioned on the output of the
extractor on a tampered version of the sample.

A recent thrust of research has focused on constructing explicit (efficient)
NMC and NME for broad and natural classes of tampering. Perhaps the most
natural class of tampering functions, is tampering by polynomial size circuits.
Unfortunately, a simple argument shows that any (seedless) non-malleable code
(resp. extractor) resilient to arbitrary polynomial size circuit tampering cannot
be decoded (resp. evaluated) in polynomial time. The next best thing would
be a non-malleable code (resp. seedless extractor) that can be encoded/decoded
(resp. evaluated) in polynomial time that is resilient to bounded polynomial
size circuit tampering—tampering by circuits of size at most nc where c is a
constant fixed a priori. In this work, we are interested in constructing explicit
(i.e. computable by polynomial time Turing machines) objects that are resilient
to such tampering attacks.

This tampering class has been studied extensively in the non-malleable code
literature and prior work constructing NMC for bounded polynomial size circuit
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tampering can be collected into two categories, both of which fail to provide
explicit constructions:

Unconditionally secure constructions via the probabilistic method. [26, 38] show
that efficiently computable non-malleable codes for bounded polynomial size
circuit tampering exist. These constructions can alternately be cast as explicit
codes in an (untamperable) common reference string (CRS) model, or as codes
with efficient Monte Carlo style constructions.

Computational assumptions are needed for any explicit construction (without
a CRS) since security of the non-malleable code implies circuit lower bounds—
existence of an explicit hard-on-average problem for circuits of size nc4—a ques-
tion that is still wide open in the complexity literature.

Unfortunately even under strong assumptions, it is unclear how to deran-
domize these constructions completely. (See beginning of Section 1.4 for further
discussion.)

Computationally secure constructions via strong cryptographic assumptions. [12,
28, 29] leverage a variety of non-standard cryptographic assumptions to construct
non-malleable codes for bounded polynomial size circuit tampering (no CRS)
with computational security guarantees.

While some assumptions are necessary (as mentioned above), these works
utilize very powerful computational assumptions. Most importantly, these works
(among other assumptions5) require the existence of objects that we currently
only know how to provably instantiate with random oracles (e.g. [12] uses P -
certificates and [28, 29] uses keyless multi-collision resistant hash functions).

Consequently, these works only yield explicit constructions of non-malleable
codes under heuristic assumptions.6 Additionally, these works fall short of
providing statistical security guarantees.

In summary, none of the prior constructions are fully explicit.

4 If (E,D) is ϵ-non-malleable code for nc-size tampering, then D is hard-on-average
for nc −O(n) size circuits with respect to the distribution E(U{0,1}), encodings of a
random bit. In particular if there exists a small circuit C such that Pr[C(E(U)) =
D(E(U)) = U ] ≥ 1/2 + ϵ then consider the C′ that on input c outputs a fixed
encoding of 0,c0, if C(c) = 1 and a fixed encoding of 1, c1 otherwise. Then we have
Pr[D(C′(E(U))) = 1− U ] ≥ 1/2 + ϵ, breaking ϵ-non-malleability.

5 In addition to a variety of subexponentially secure variants of standard cryptographic
assumptions, the work of [28, 29] also crucially requires a specific number-theoretic
assumption (the non-uniform subexponential hardness of the repeated squaring as-
sumption), while the work of [12] needs the same derandomization assumption in
this work.

6 E.g. [21] suggests possibly instantiating keyless multi-collision resistant hash with
an unstructured hash, such as SHA-2 (extended to arbitrarily large keys), with keys
chosen according to digits of π. Establishing the security of any such candidate is well
beyond our current techniques, as we cannot even base the security of (extended)
SHA-2 with randomly chosen keys to a natural computational problem.
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In this work, we employ an assumption from the derandomization litera-
ture to construct explicit non-malleable codes and seedless non-malleable ex-
tractors resilient to bounded polynomial tampering. Our non-malleable codes in
particular are secure under a hardness conjecture introduced in the context of
derandomizing AM: there is a language that can be computed in exponential
deterministic time that requires exponential size nondeterministic circuits.

In Section 1.1, we describe the hardness assumptions we use to construct our
codes and extractors. In Section 1.2, we discuss the main results of this work,
and additional results included in the full version of our paper [16]. Finally in
Section 1.4, we illustrate our primary technique through a simple yet illuminating
example and describe how the ideas can be extended to prove our main results.

1.1 Hardness assumptions for nondeterministic and Σi-circuits

Definition 1.1 (Nondeterministic circuit). A nondeterministic circuit C is a
circuit with “non-deterministic” inputs, in addition to the usual inputs. We say
C evaluates to 1 on x iff there exists an assignment, w, to the non-deterministic
input wires such that the circuit, evaluated deterministically on input (x,w) out-
puts 1.

Assumption 1 (E requires exponential size nondeterministic circuits). There
is a language L ∈ E = DTIME(2O(n)) and a constant γ s.t. for sufficiently large
n nondeterministic circuits of size 2γn fail to decide L on inputs of length n.

Informally, the above assumption says that non-uniformity and nondeter-
minism do not always imply significant speed-ups of uniform deterministic com-
putations. For some of the results in this work, we require assumptions that
hold even for (non-deterministic) NP circuits or Σi circuits. Before we state the
assumption, we provide a formal definition of these objects.

Definition 1.2. An oracle circuit C(·) is a circuit which in addition to the
standard gates uses an additional gate (which may have large fan in). When
instantiated with a specific boolean function A, CA is the circuit in which the
additional gate is A. Given a boolean function A(x), an A-circuit is a circuit that
is allowed to use A gates (in addition to the standard gates). An NP-circuit is a
SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit
where A is the canonical ΣP

i -complete language. We take the size of a circuit to
be the total number of wires and gates.7

We now state the corresponding set of assumptions:

Assumption 2 (E requires exponential size NP (resp. Σi) circuits). There is a
language L ∈ E = DTIME(2O(n)) and a constant γ such that for sufficiently large
n, NP (resp. Σi) circuits of size 2γn fail to compute the characteristic function
of L on inputs of length n.

7 Note that an NP-circuit is different than a nondeterministic circuit. The former is a
nonuniform analogue of PNP (which contains coNP) while the latter is an analogue
of NP.
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Hardness assumptions against nondeterministic/NP/Σi circuits appear in
the literature in various contexts of complexity theory and derandomiza-
tion [19, 32, 39, 41, 45, 51, 59, 61, 62, 63, 64]. As noted in [7], such assump-
tions can be seen as the nonuniform and scaled-up versions of assumptions of
the form EXP ̸= NP or EXP ̸= ΣP

2 . While very strong, falsification of one of
these assumptions would yield surprising implications on the relationship be-
tween standard complexity classes, thus creating a win-win situation: Either the
construction based on these assumptions is secure, or a breakthrough result has
been achieved that changes our current understanding of the power of nonuni-
formity and nondeterminism. Further, since assumptions of the above type on
the strength of E are worst-case assumptions, we can directly instantiate con-
structions based on these assumptions with any E-complete problem.

Finally, we highlight that, so far as we know, this assumption is orthogonal
to standard cryptographic assumptions such as one-way functions and, conse-
quently, may hold even if cryptography does not exist.

We summarize the main results of this paper in Section 1.2, and then discuss
additional results contained in the full version [16] in Section 1.3. Briefly, included
in this work are new constructions of non-malleable codes (Section 1.2) and
non-malleable extractors. Additional results contained in the full version include
barriers to achieving negligible security guarantees, circumventing these barriers
in a manner that has applications to tamper and leakage resilient cryptography
(with negligible security guarantees), and an equivalence between non-malleable
codes and non-malleable secret sharing in the context of polynomial size circuit
tampering.

1.2 Our Results–included in this work

Non-Malleable Codes Our results are as follows:

Theorem 1.3 (Informal). If E requires exponential size nondeterministic cir-
cuits, then for every constant c, and for sufficiently large k, there is an explicit,
efficient, n−c-secure non-malleable code for k-bit messages, with codeword length
n = poly(k), resilient to tampering by nc-size circuits.

The formal statement and proof of this theorem can be found in Section 3.
We construct our codes by “fooling” non-malleable codes for split-state tam-

pering (with special properties).
Split-state tampering functions may manipulate the left and right halves of

a codeword arbitrarily, but independently (i.e. functions such that (cL, cR) 7→
(fL(cL), fR(cR)) for some fL, fR). Leakage-resilient split-state tampering allows
each tampered codeword half to depend on bounded leakage from the opposite
codeword half. In addition to a split-state NMC, we also use a pseudorandom
generator (PRG) for nondeterministic circuits, where c′ > c is a constant. In
particular, we require that the PRG, G, is secure even when given the seed
(seed extending), i.e. no nondeterministic circuit of bounded polynomial size
can distinguish G(s) from uniform and s is a prefix of G(s). The existence of
such PRGs follows from Assumption 2 [50, 46, 51, 61, 62, 7].
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Given a (leakage-resilient) split-state non-malleable code, with necessary
properties and a seed-extending pseudorandom PRG for nondeterministic cir-
cuits, G, we encode a message x by sampling the following:

(s, cR) such that (G(s), cR)is a split-state encoding of x.

While we refer the reader to the technical overview (Section 1.4) for a more
detailed sketch, we provide here some intuition for security:

1. We assume towards contradiction that (s, cR) is malleable and fix the corre-
sponding poly-size tampering function g which is not split-state and violates
non-malleability.

2. We transform g into a split-state tampering function fL, fR on (cL, cR),
where (1) fL is unbounded, relies on |s| bits of leakage from cR and returns
some c′L, (2) fR is efficient, relies on |s| bits of leakage from cL and returns
c′R. Crucially, split-state tampering function (fL, fR) is guaranteed to break
non-malleability when cL = (s||y) = G(s).

3. Since (cL, cR) is a leakage-resilient split-state non-malleable code when cL
is uniform random, then when cL is random (as opposed to in the construc-
tion where codewords are sampled as (G(s), cR)), every tampering function
(f ′L, fR) fails to break non-malleability, even when f ′L is unbounded and
chooses its output c′L in the “optimal” way.

4. We construct an Arthur-Merlin protocol (with bounded poly-size Arthur),
that distinguishes between input cL being random or pseudorandom. Such
a protocol can then be transformed into a non-deterministic polynomial
bounded circuit (this follows from classical results: IP[O(1)] ⊆ AM ⊆
NP/poly [42, 8, 9, 7]).

5. Intuitively, Arthur can efficiently compute all the values needed to simulate
the tampering experiment except for c′L, which is obtained from Merlin.
Specifically, on input cL, Arthur samples cR, and computes c′R = fR(cR),
as well as the leakage on cR. Arthur sends cL and the leakage on cR to
Merlin who responds with c′L. If cL is pseudorandom, then an honest Merlin
will return c′L = fL(cL), and, with Merlin’s help, Arthur can check that
non-malleability is violated with this c′L. If cL is random, then despite any
response c′L = f ′L(cL) from Merlin, non-malleability will not be violated, and
a dishonest Merlin cannot convince Arthur otherwise.

Non-Malleable Extractors We next shift our focus to the case of seedless
non-malleable extractors for computational sources with sufficient min-entropy8

and for tampering with bounded polynomial size circuits. We consider two types
of computational sources:

8 Min-entropy measures the unpredictability of a random variable. In particular, X
has min-entropy k if ∀x in the support of X, Pr[X = x] ≤ 2−k.
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Samplable sources: These are distributions that can be generated by bounded
polynomial size circuits that are given uniform random coins as input. Specifi-
cally, the source distributionX is equivalent to C(Ur), the distribution generated
by some circuit C of size nc on input uniform randomness of length r bits.

Extracting from this class of sources was first considered by Trevisan and
Vadhan [64]. In 1986, Levin [52] argued that this class reasonably captures
sources arising in nature.9

A non-malleable extractor for this class yields non-malleable cryptography
resilient to tampering attacks on the very entropy sources used for key genera-
tion.

As an alternate motivation, one can consider a natural, albeit restricted, on-
line extraction setting: imagine a natural source over a time interval as (X1, X2)
where X1 is efficiently (and randomly) transformed to X2 with the promise that
X1 and X2 have entropy independent of the other. Then any non-malleable ex-
tractor for samplable sources with respect to polynomial size tampering, Ext,
can extract from such as source online, i.e. Ext(X1),Ext(X2) is approximately
uniform.10

Recognizable sources: These are uniform distributions over the set of inputs
accepted by some polynomial sized circuit. Specifically, the source distribution
X is uniform over {x : C(x) = 1}, where C is a circuit of size nc.

Extracting from this class of sources was first considered by Shaltiel [60] in
the context of derandomization. This class corresponds with sources about which
some efficiently computable leakage is known.

As we will see, non-malleable extractors for recognizable sources and polyno-
mial size tampering provide a natural, generic means constructing non-malleable,
leakage-resilient cryptography.

Theorem 1.4 (Informal). If E requires exponential size Σ4-circuits, then for
every constant c, there is an explicit n−c-secure seedless non-malleable extractor
for sources X ∈ {0, 1}n samplable by nc size circuits with linear min-entropy,

that outputs Ω(n log log(n)
log(n) ) bits and is resilient to tampering by nc-size circuits.

The formal statement and proof are left to the full version [16]. A detailed
construction and proof sketch for a weaker type of non-malleable extractor can
be found in the technical overview (see Section 1.4). The construction and proof
sketch in the technical overview contain the main ideas needed for the full result.

Similarly to our non-malleable codes, we construct our non-malleable extrac-
tors by “fooling” (seedless) two-source non-malleable extractors.

Roughly, a two-source non-malleable extractor, 2NMExt, can extract ran-
domness from two-independent sources (with sufficient min-entropy) even after

9 Sources sampled by polynomial size quantum circuits seem a more appropriate model
for physical sources of randomness. Nonetheless, (classical) samplable sources are an
interesting and important subclass.

10 Note that with a random seed it is easy to extract from say X1 conditioned on X2.
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seeing the output of the extractor invoked on input generated by independently
(and arbitrarily) tampering each source.

Our construction of a non-malleable extractor for samplable sources and
polynomial size tampering follows. Let Extsamp be an extractor for samplable
sources, 2NMExt an (efficient) two-source non-malleable extractor, andG a PRG
for nondeterministic NP-circuits, then given a samplable source X. The idea is
to extract a seed with the samplable extractor and then use the seed to “fool”
the two-source non-malleable extractor in a similar manner to the non-malleable
code construction above.

– Extract a seed s = Extsamp(X).
– Output 2NMExt(G(s), X).

The high-level idea of the proof is similar to the outline for the non-malleable
code proof. An added difficulty here over our non-malleable code analysis (re-
sponsible for the stronger assumption on the PRG) is that Arthur again receives
either pseudorandom (s||y) = G(s) or random (s||y) as input, but now must
sample a source, X, that is consistent with its input, i.e. sample X such that
Extsamp(X) = s. Arthur can do this with a bounded poly-size circuit, given an
added level of non-determinism.

The above result is obtained by first constructing “relaxed” seedless non-
malleable extractors for nc′ samplable sources and nc tampering (by “relaxed”
we mean restricting the tampering function to have no fixed points), and then
presenting a generic transformation from relaxed seedless non-malleable extrac-
tors for nc′ samplable sources and nc tampering to seedless non-malleable ex-
tractors for nc samplable sources and nc tampering.

We obtain a similar result for recognizable sources:

Theorem 1.5 (Informal). If E requires exponential size Σ3-circuits, then for
every constant c, there is an explicit n−c-secure seedless non-malleable extractor
for sources X ∈ {0, 1}n recognizable by nc size circuits with linear min-entropy,

that outputs Ω(n log log(n)
log(n) ) bits and is resilient to tampering by nc-size circuits.

The formal statement and proof are left to the full version [16]. We note
that the assumption that E requires exponential size Σ4-circuits (resp. E re-
quires exponential size Σ3-circuits) is inherited from the seedless extractor for
samplable (resp. recognizable) sources of [7] that is used as a building block in
our construction. Assuming the existence of a seedless extractor for samplable
(resp. recognizable) sources, our construction requires only the weaker assump-
tion that E requires exponential size nondeterministic NP circuits.

Before presenting a technical overview of the main ideas of our constructions,
we discuss the relationship between our positive results and known negative
results from the literature.

On the feasibility of explicit codes from minimal assumptions. It is known that
explicit non-malleable codes for circuits of size O(nc) imply explicit languages
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that are hard on average for circuits of size O(nc).11 Due to the limitations in
current techniques for proving unconditional circuit lower bounds, it is therefore
unlikely to construct explicit codes for such a tampering class, unconditionally.
Yet, one might still hope to construct codes by assuming minimal circuit lower
bounds (i.e. assuming there exists a language computable in time nd, for some
d > c, that is hard on average for O(nc)-size circuits). Unfortunately, Ball et
al. [15] showed a barrier to proving such a theorem. In particular, they ruled
out constructions of non-malleable codes where the security proof –which is a
reduction from breaking the above assumption to breaking the non-malleable
code— makes black box usage of the tampering adversary. This implies that
either radically different proof approaches are necessary (that make use of non-
black box methods) or stronger assumptions (beyond the minimal one discussed
above) are needed.

Our present result skirts this lower bound by taking the second approach of
stronger assumptions. Specifically, the techniques of [15] rule out non-black box
reductions when the constructed non-malleable code is resilient against some
class C and the underlying assumption is hard for the same class C of circuits. In
this work, our tampering class consists of small deterministic circuits, but our
assumption is stronger and requires hardness for small nondeterministic circuits.

1.3 Our Results–included in the full version [16]

On the necessity of 1/poly-indistinguishability. One could hope to construct non-
malleable extractors and non-malleable codes with negligible error from the types
of assumptions we consider in this work–i.e. that E requires exponential size Σi-
circuits. Unfortunately, for the case of non-malleable extractors for samplable
or recognizable distributions, barriers to achieving such a result were already
shown in the work of Applebaum et al. [7]. Specifically, they rule out certain
types of black-box reductions from functions that are (1/2+ δ)-hard (where δ is
a small constant) for nd-size Σi-circuits to extractors for distributions that are
samplable or recognizable by size nc circuits (where c ≤ d are constants), and
that achieve negligible error. As a consequence, their results rule out reductions
from the assumption that E requires exponential size Σi-circuits. In the full
version [16], we extend the results of Applebaum et al. [7] to rule out black-box
reductions from any function f that is (1/2 + δ)-hard for nd-size Σi-circuits to
efficient, 1-bit non-malleable codes resilient to tampering by by size nc circuits
(where c ≤ d are constants), and that achieve negligible error.12 Since f as above
can be constructed from the scaled down and padded characteristic function of
some (average case hard) language in E, it means that if one can compute the
characteristic function of an E-complete language on all inputs (i.e. break the

11 In particular, the Decode function is hard with respect to the distribution formed
by encoding a random bit. If this wasn’t the case, one could attack by computing
the encoded value and outputting a fixed encoding of the opposite bit.

12 Note that ruling out reductions to 1-bit non-malleable codes also rules out reductions
to k-bit non-malleable codes.
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worst-case hardness of an E-complete language), then one can compute f on
average (with probability 1/2 + δ). Thus, our results also rule out reductions
from the assumption that E is (worst-case) hard for exponential size Σi-circuits.

We note that there are differences in the class of reductions ruled out by
our result and the corresponding results of Applebaum et al. [7]: Our result
allows function-specific and non-security parameter-preserving reductions. On
the other hand, our results require the assumption that there is a function that
is hard for nd-size Σi-circuits and rule out only efficient constructions of non-
malleable codes (where encode/decode are polynomial time), while the results of
Applebaum et al. [7] are unconditional and rule out even inefficient constructions.
Please see the full version for further discussion.

Taken together, the results of Applebaum et al. [7] together with our new
results for non-malleable codes in the full version [16], indicate that significantly
new proof techniques are necessary to construct non-malleable extractors and
non-malleable codes with negligible error from the assumption that E requires
exponential size Σi-circuits.

Partially bypassing the impossibility via “relative error.” The above results in-
dicate that it is inherently difficult to construct non-malleable extractors with
negligible error under non-deterministic reductions, where error is measured in
terms of statistical distance. Another measure of closeness between distributions
is known as relative error. Specifically, relative error α between a pair of distri-
butions D1, D2 requires that for every element x in the support of D1,

(1− α)PrD2
[x] ≤ PrD1

[x] ≤ (1 + α)PrD2
[x].

In this case, even if α is non-negligible, the above guarantee is still useful for
achieving negligible security.

Applebaum et al. [7] introduced a notion of relative-error extractors, observ-
ing that if the output of the extractor is 1/poly-close to uniform with relative
error, then every event occurs w.r.t. the output distribution with probability at
most (1+1/poly) times the probability it occurs w.r.t. the uniform distribution.
In particular, events that are negligible under the uniform distributions can-
not become noticeable under the distribution outputted by the extractor. This
was then sufficient for obtaining leakage resilient cryptosystems with negligible
security guarantees.

In this work, we consider applying the relative error notion to the setting of
seedless, non-malleable extractors. Our notion differs in two ways: First, we need
to extend the notion to the case where neither the real nor simulated distribution
is uniform. This is because the guarantee of the non-malleable extractor holds
with respect to a pair of output values (a, b), where a should be uniform random,
but b can come from an arbitrary distribution. Second, due to the above, we
slightly relax the notion and incorporate a small additive term, β ≪ 2−2m,
where m is the output length of the extractor.

We now parametrize the relative extractor notion by α and β and require that
the probability of any untampered/tampered output pair (a, b) under the real
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distribution is at most (1+α)pI(a, b)+β, where pI(a, b) denotes the probability
of output pair (a, b) under the ideal distribution.

Applications to leakage and tamper resilience with negligible security. A non-
malleable extractor E : {0, 1}n → {0, 1}m with relative error (α, β) for a class
of recognizable sources X and tampering family T , can be used to obtain leak-
age and tamper resilient cryptosystems with negligible security guarantees. To
achieve this, one can store a uniformly random R on a device and use a = E(R)
as the secret key for a symmetric key cryptosystem Π. The attacker is allowed
(1) leakage on R with leakage function ℓ from the class of bounded polynomial-
size circuits with bounded output length;13 (2) tampering on R with tampering
function t from the class of bounded polynomial-size circuits; (3) oracle access to
both Πa, and Πb, where b = E(t(R)) is the tampered version of the key (Πa, Πb

denote fixing the secret key of Π to a or b respectively). We show that in several
cases, we can still guarantee the negligible security of the cryptosystem with
respect to the original key a, despite this stronger adversarial model.

We consider two types of applications. First, for cryptosystems Π that have
an associated unpredictability game (such as MAC’s), negligible security in the
leakage and tampering game described above can be proved from the properties
of the relative error non-malleable extractor, assuming the original cryptosystem
Π satisfies the standard security notion. Second, for cryptosystems Π that have
an associated indistinguishability game (such as CPA secure symmetric key en-
cryption), negligible security in the leakage and tampering game described above
can be proved in the case that the original cryptosystem Π satisfies a type of
“square-security” notion (see for example [18, 31], for a discussion of the square-
security notion). We note that there are natural examples of cryptosystems that
achieve this required notion. For example CPA-secure symmetric key encryption
satisfies the “square-security” notion needed for our result.

We emphasize that, for both the unpredictability and indistinguishability
applications discussed above, by using relative error non-malleable extractors,
we are able to prove that the attacker’s advantage is negligible in the leakage
and tampering game.

Non-malleable secret sharing and non-malleable codes are equivalent under poly-
size circuit tampering. Secret sharing schemes allow a user with a secret to
send “shares” to a set of parties such that any “authorized” subset of parties
can recover the secret from their collective shares, but “unauthorized” subsets of
parties learn nothing about the secret from their collective shares. This relatively
simple object, about which many foundational questions remain unanswered, is
a critical tool in modern cryptography.

In 2018, Goyal and Kumar [43] introduced the notion of non-malleable se-
cret sharing. To understand what it means for a secret sharing scheme to be
non-malleable, consider the following experiment: share a secret, jointly tamper
all the shares, reconstruct the tampered shares of some authorized subset of

13 In fact, the precise leakage class we can handle is slightly more broad.
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parties. Loosely, a secret sharing scheme is non-malleable if the outcome of this
experiment returns the original secret or some value independent of the original
secret (and which case occurs should also be independent of the original secret).

In the full version [16], we construct non-malleable secret sharing schemes
that are resilient to joint tampering of the shares by polynomial size circuits for
a wide variety of access structures, any access structure for which an explicit
(efficiently computable) secret sharing scheme exists. In fact, we observe that
non-malleable secret sharing and non-malleable codes for polynomial size cir-
cuit tampering are effectively equivalent. This is a testament to the richness of
this tampering class. More precisely, to construct such a non-malleable secret
sharing scheme from a non-malleable code, one simply encodes the secret with
the non-malleable code and shares the codeword according to a polysize com-
putable secret sharing scheme (to reconstruct the secret, simply reconstruct the
codeword and decode). This is safe because composing sharing, tampering, and
reconstructing can in turn be performed by a polynomial size circuit, because the
secret sharing scheme is efficient. (The reverse direction is immediate.) We go on
to construct adaptive non-malleable secret sharing schemes resilient to polyno-
mial size circuit tampering for a wide variety of access structures, including any
access structure admitting an efficient linear secret sharing scheme. In adaptive
non-malleable secret sharing, the tampering function can be chosen arbitrarily
as a function of any unauthorized set of shares.

1.4 Technical Overview

We demonstrate our techniques by presenting a construction and proofsketch
for a simplified case: constructing “relaxed” non-malleable extractors (where
the tampering function is guaranteed to have no fixed points) for uniformly
random sources and bounded polynomial tampering (i.e. size nc circuits for some
constant c). This simplified case will already provides most of the key ideas of our
main results. We conclude the section by discussing how to extend this example
and its analysis to achieve our main results.

A Simple Example: (Relaxed) Seedless Non-Malleable “Extractor” for
Uniform Sources First, recall that a relaxed seedless non-malleable extractor
for sources of the form (S,X) is a deterministic function NMExt such that for
any nc size circuit, C without fixed points we have

(NMExt(S,X),NMExt(C(S,X))) ≈ (U ,NMExt(C(S,X))).

We reiterate that here we simplify by assuming that the source (S,X) is uniform
random. While this trivializes the task of randomness extraction, the question
of non-malleable extraction remains interesting for such sources, e.g. it already
implies the existence of non-malleable codes for 1-bit messages. 14

Before describing our construction, we give a brief overview of the necessary
building blocks:

14 To see this, recall the characterization of non-malleability for a single bit (see pre-
vious footnote ). Note that for any tampering function f of size nc, one can define
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Strong relaxed two-source non-malleable extractor. Loosely speaking, a function
NMExt : {0, 1}n × {0, 1}n → {0, 1}m is a relaxed two-source non-malleable
extractor for sources (X,Y ) if for every split-state tampering function (τL, τR)
for which either τL or τR has no fixed points, we have

(NMExt(X,Y ),NMExt(τL(X), τR(Y )))
s
≈ (Um,NMExt(τL(X), τR(Y ))).

We say NMExt is a strong two-source non-malleable extractor for no-fixed points
tampering if we further have that

(X,NMExt(X,Y ),NMExt(τL(X), τR(Y )))
s
≈ (X,Um,NMExt(τL(X), τR(Y ))).

Two source non-malleable extractors are well-studied in the literature
with the current state-of-the-art being extractors for sources (X,Y ) ∈
{0, 1}n × {0, 1}n with min-entropy (1 − γ)n for some constant γ and error
2−Ω(n log log(n)/ log(n)) [56]. Further, [54] showed that every two source non-
malleable extractor is also a strong two source non-malleable extractor for
sources with some loss in parameters.

Recalling the notion of a nondeterministic circuit from the introduction, we
now introduce a type of pseudorandom generator (PRG) with security against
non-deterministic circuits of bounded polynomial size.

Seed-extending pseudorandom generators. A pseudorandom generator (PRG) for
nondeterministic circuits of size nd, G : {0, 1}ℓ → {0, 1}n, allows one to extend
a short random seed into a long string that is indistinguishable from random to
nondeterministic circuits of size nd (for constant d). More precisely, for every
nondeterministic circuit, C, of size at most nd,

|Pr[C(G(Uℓ)) = 1]− Pr[C(Un) = 1]| ≤ 1

nd
,

where Um denotes a random variable uniformly distributed over {0, 1}m.
The above type of PRG are different from cryptographic PRG’s since the

computation time of the PRG is larger than the size of the adversary. These
PRG’s are secure against nondeterministic circuits of size nd, but take larger
polynomial time to compute. Cryptographic PRG’s are computable in some
fixed polynomial time but secure against adversaries of arbitrary polynomial
size. In the case of seed-extending pseudorandom generators, this gap between
honest and adversarial computational resources allows for unintuitive behavior,
where the seed of the PRG itself is included as part of the output and the output
remains pseudorandom, which is impossible in the cryptographic case.

a function f ′ of size nc + O(n) that has no fixed points and behaves identically
to f on every x that is not a fixed point of f . Because, Pr[D(f(E(b) = 1 − b] ≤
Pr[D(f ′(E(b)) = 1 − b] we can deduce that E,D is non-malleable with respect to
circuits of size nc −O(n), where D is NMExt and E simply performs rejection sam-
pling to find a random (s, x) such that NMExt(s, x) = b. Note that the resulting
non-malleable code will not have perfect correctness because the rejection sampling
procedure might fail.



14 Marshall Ball , Dana Dachman-Soled , and Julian Loss

Indeed, we are interested in exactly such PRGs that remain secure even when
given the seed, referred to as “seed-extending” PRGs.15 A PRG, G : {0, 1}ℓ →
{0, 1}n, is said to be seed-extending if G(s) = (s,G′(s)) (where G′ is the func-
tion corresponding to the n− ℓ bit suffix). This particular name was introduced
by Kinne et al. in the context of derandomizing randomized algorithms on ran-
dom inputs. [50, 53] They observed that PRG constructions based on Nisan
and Wigderson’s seminal construction [50] can be made seed-extending. Conse-
quently, many constructions of PRGs for nondeterministic circuits can be made
seed extending.

Theorem 1.6 ([50, 46, 51, 61, 62, 7]). If E requires exponential size nonde-
terministic circuits, then for every constant c > 1 there exists a constant α > 1
such that for every sufficiently large n, and every ℓ such that α log n ≤ ℓ ≤ n
there is a seed-extending PRG, G : {0, 1}ℓ → {0, 1}n, for nondeterministic cir-
cuits of size nc.

Construction of a Seedless Relaxed Non-Malleable Extractor. Our construction
of a (relaxed) seedless non-malleable extractor for uniform sources and nc-size
circuit tampering is exceedingly simple. Let 2NMExt be a relaxed, two-source
non-malleable extractor (NME). Our seedless relaxed non-malleable extractor,
NMExt, is defined as

NMExt : (s, x) 7→ 2NMExt(G(s), x)

where G is a seed-extending PRG for nondeterministic circuits of size nd for
some constant d > c.

Sketch of the Security Proof. To prove security of the construction, we need to
show that the existence of a size nc tampering function with no fixed points
that breaks the security of the NME, implies the existence of a nondeterministic
circuit of size nd that distinguishes outputs of G from random.

Suppose for the sake of contradiction that there exists a successful tampering
function, τ : (s, x) 7→ (s̃, x̃) of circuit size nc with no fixed points. We will define
f to denote the function that computes (s, x) 7→ x̃ according to τ , and g to
denote the function that computes (s, x) 7→ s̃ according to τ . In other words,
τ(s, x) = (g(s, x), f(s, x)) and moreover, for each (s, x) either g(s, x) ̸= s or
f(s, x) ̸= x. Note that there is no split-state assumption on the tampering
function τ(s, x) = (g(s, x), f(s, x)), as both f and g can depend on the entire
input (s, x). Now, our assumption on τ (and hence f, g) breaking the NME can
be restated as

∆

(
(2NMExt(G(S), X), 2NMExt(G(g(S,X)), f(S,X)));

(Um, 2NMExt(G(g(S,X)), f(S,X)))

)
≥ ϵ. (1)

15 We refer the reader to [51] for further discussion.
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We will use this assumption to “distinguish” the seed-extending PRG, G,
from the uniform distribution via a private constant round interactive proof
(i.e. Arthur Merlin protocol). In particular, (private-coin) Arthur will accept
pseudorandom inputs (completeness) with polynomially higher probability than
he accepts random inputs, regardless of how Merlin behaves (soundness). Then,
we can deduce from standard transformations (IP[k] ⊆ AM ⊆ NP/poly [9, 42])
that a small non-deterministic distinguisher exists.16

Looking ahead, (1) which asserts the malleability of the constructed extractor
when provided pseudorandom inputs will enable us to prove the protocol is com-
plete, i.e. Arthur accepts pseudorandom inputs with high probability. Soundness,
i.e. Arthur rejects random inputs with high probability, will ultimately follow
from security of the 2-source non-malleable extractor. Furthermore, what ulti-
mately will enable our soundness argument to go through is the fact that to
achieve completeness Arthur communicates very little about random variable X
and thus X remains entropic, even after conditioning on this communication.
We use a standard private coin technique, where Arthur forces Merlin to guess
between two samplable distributions [40] to handle the fact that our extractor
has relatively long outputs (even though our hardness assumption only holds for
boolean distinguishers in a relatively high error regime).

Arthur Merlin Protocol. We next describe the interactive proof for distinguish-
ing G from uniformly random bits. Both Arthur and Merlin receive (s, y)
as input. Our protocol aims to accept strings from G(Uℓ) when Merlin plays
according to below (completeness) and reject strings from Un regardless of the
strategy Merlin utilizes (soundness). Because we can amplify by repetition, it
suffices for there to be small gap between the two.

Arthur Sample x← Un. Send Merlin s̃ = g(s, x).
Merlin If (s, y) = G(s), respond ỹ such that (s̃, ỹ) = G(s̃). Otherwise, respond

arbitrary ỹ.
Arthur Sample a random coin b ← U and set z̃ = 2NMExt((s̃, ỹ), x̃) where

x̃ = f(s, x).
– If b = 0: Sample z ← Um and send z, z̃.
– Else if b = 1: Sample z ← 2NMExt((s, y), x) and send z, z̃.

Merlin Guess Arthur’s bit by guessing whether (z, z̃) was drawn from the first
or second distribution.

Arthur Accept if b = b′, and reject otherwise.

Completeness: accepting pseudorandom inputs. We first argue that Arthur, when
playing with Merlin as specified above, accepts pseudorandom inputs, drawn
from G(S), with probability significantly greater than 1/2. Indeed, if the protocol

16 In actuality, this is too naive because these transformations only hold for worst-case
notions of soundness and completeness. Thus in the body, we will instead show that
there exists a constant round interactive proof for a promise problem (ΠY , ΠN ) such
that ΠY is dense in the pseudorandom distribution and ΠN is dense in the uniform
distribution, and not vice-versa.
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above is given inputs from G(S) (i.e. legitimate outputs of G), then if Arthur
chooses b = 1, his final message is sampled as:

(z, z̃) ∼ (2NMExt(G(S), X), 2NMExt(G(g(S,X)), f(S,X))).

On the other hand, if b = 0, Arthur’s final message is sampled according to:

(z, z̃) ∼ (Um, 2NMExt(G(g(S,X)), f(S,X))).

By our malleability assumption towards contradiction (1), these two distribu-
tions are ϵ-far from each other.

Soundness: rejecting random inputs. We must now show that when given uni-
formly random inputs, Arthur accepts with significantly lower probability than
the case above. This case is harder than the previous case, since here Merlin can
behave arbitrarily, and we must show that Arthur still rejects w.h.p.

At a high-level, we get around this by observing that although Merlin is com-
putationally unbounded, the fact that the information sent to him by Arthur is
limited, essentially constrains Merlin to split-state strategies. Specifically, let
G∗ : (s, y, s̃) 7→ ỹ be the function that given Merlin’s input (s, y) and the tran-
script thus far, outputs Merlin’s first message. Conditioned on s, s̃, we have that
G∗(s, y, s̃) = ỹ is independent of x (as is s̃). And similarly, x̃ = f(s, x) is inde-
pendent of (s, y). So conditioned on s, s̃ we can define a split-state tampering
function as follows:

– τ s̃L : (s, y) 7→ (s̃, ỹ) where ỹ = G∗(s, y, s̃)
– τsR : x 7→ x̃ where x̃ = f(s, x)

Note that because τ has no fixed points, either f(s, x) ̸= x or g(s, x) ̸= s. So,
either τ s̃L or τsR contains no fixed points. Thus, conditioned on s, s̃ and Arthur’s
coin b = 0, Merlin’s view is simply

T s,s̃
0 ≡

(
(s, y),U , 2NMExt(τ s̃L(s, y), τ

s
R(x))

)
.

On the other hand, if Arthur’s coin is b = 1, Merlin’s view is

T s,s̃
1 ≡

(
(s, y), 2NMExt((s, y), x), 2NMExt(τ s̃L(s, y), τ

s
R(x))

)
.

Recall that the input (s, y) (left source) and x (right source) are both uniform.
Thus, after conditioning on the transcript (or equivalently s, s̃) nearly all the
entropy remains in each source (in fact, we can take s, s̃ short enough that the
entropy deficiency is just O(log(n))). Then because 2NMExt is a strong two-
source non-malleable extractor for sources with linear min-entropy, it follows

from the security property that T s,s̃
0

s
≈ T s,s̃

1 .

Obtaining our Main Results We extend the above technique in several ways:
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Non-malleable extractors for samplable/recognizable sources. First, we combine
the above construction with a seedless extractor for polynomially samplable
(resp. recognizable) sources [64, 7] to obtain a relaxed seedless non-malleable ex-
tractor for polynomially samplable (resp. recognizable) sources and polynomially
bounded tampering.

In brief, we use a seedless extractor to sample the uniform seed, s, for the
PRG in the simple construction above. The main difference relative to the proof
above, is that now Arthur must sample the samplable/recognizable source to
be consistent with the pseudorandom challenge, i.e. conditioned on the seedless
extractor outputting s. This is resolved in both cases by equipping Arthur with
an NP-oracle, so he can efficiently sample random satisfying assignments to small
circuits [20, 47].

The full details of our constructions and their analysis can be found in the full
version. Similar to above, we first construct an extractor secure against tamper-
ing functions without fixed points (this one by Cheraghchi and Guruswami [27]
and first construct an extractor secure against tampering functions without fixed
points. Then we show how to remove the requirement of no fixed-points in the
tampering functions to obtain seedless non-malleable extractor for polynomially
samplable sources and polynomially bounded tampering.17

Non-malleable code. The above non-malleable extractors suggest an natural path
to non-malleable codes. Cheraghchi and Guruswami [27] show that invertible
non-malleable extractors for a tampering class C imply non-malleable codes for
that C. However, there are two obstacles to applying their approach here. First,
it is unclear how to efficiently invert our extractors. Secondly, this transformation
has 2k security loss, where k is the bit length of the messages to be encoded.
Given the polynomial security, this means the resulting construction would have
exponential length codewords and would not actually be explicit.

We therefore take the route of directly constructing non-malleable codes, with
the added benefit that we reduce our hardness assumptions from “E requires
exponential size Σ3-circuits” (required for our non-malleable extractors) to “E
requires exponential size nondeterministic circuits.”

Our result is obtained by replacing the two-source non-malleable extractor
in the simple example above with a split-state non-malleable code: to encode a
message m, sample a split-state encoding of the form (G(S), y) and output s, y.
To make a similar Arthur Merlin distinguisher work for this construction, we
need the split-state code to have some special properties:

Special Encoding: We need to be able to sample pseudorandom split-state code
words efficiently in order to encode efficiently at all. To do this we introduce a
notion of special encoding :

There is an alternate encoding algorithm that receives the value of the first
split state along with a message m and samples the second split-state so that the

17 Cheraghchi and Guruswami [27] showed a similar lemma for the case of split-state
tampering.
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resulting encoding decodes to m. Critically, if the value of the first split-state
is sampled uniformly at random, then the outputted encoding is distributed
identically to a random encoding of m.

Leakage Resilience: The soundness argument above relied on the fact that
two-source extractors remain secure even if there is small amount of leakage on
the states (corresponding to the transcript). Note that this leakage is both to the
independent components of the split-state tampering function and the (possibly
inefficient) distinguisher of the non-malleability game. If this is the case, we say
a such split-state code is leakage-resilient.18

“Augmented” NMC: Finally, our soundness argument above additionally
required that Merlin could not distinguish the real and ideal experiments even
when given the left source in its entirety. For this we relied on the fact that
2NMExt was a strong two-source non-malleable extractor. The corresponding
notion for split-state non-malleable codes is the augmented property: security
of the NMC holds even when one half of the codeword is revealed at the end of
the experiment to a (possibly inefficient) distinguisher.

The split-state NMC constructions of [2, 3] satisfy the necessary properties.
In the full version [16] we show how the leakage-resilience transformation of Ball
et al. [17] yields comparable codes with better leakage parameters. Details of
our NMC construction and its analysis are in Section 3. The rate of our code
inherits the rate of the NMC of Aggarwal et al. [2], which means that to encode
a message of length k one needs a codeword length of n = O(k7). A better
split-state NMC with the above properties will yield a better NMC for polysize
tampering, but rate is not our focus here.

1.5 Related Work

Non-malleable extractors and codes. There is by now a large body of work
on non-malleable extractors (NME) and non-malleable codes (NMC) resilient
against various classes of tampering [34, 33, 55, 56, 2, 1, 24, 11, 13, 17, 10, 5, 4,
48]. In the NMC case, some constructions not included in the list above rely on
cryptographic assumptions [14, 6], while others require an untamperable com-
mon reference string (CRS) [57, 14]. There has also been much work on variants
of NME/NMC [23, 37, 30, 49], as well as a relatively new line of work on a
related primitive called non-malleable secret sharing [43, 44]. We restrict our
attention to constructions most relevant to the current work, namely, the prior
constructions of NMC (in the CRS and standard models) resilient to bounded
polynomial tampering, where “bounded polynomial” can refer to a restriction
on (1) circuit size, (2) uniform computation time, or (3) circuit depth. Existence

18 In the literature, leakage-resilient has been alternately used to refer to codes that
handle leakage only to the distinguisher as well as code that handle leakage only
between the tampering of each state.
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of non-malleable codes under all of the above types of tampering was initially
shown via the probabilistic method in [35] and they can also be constructed
efficiently in the random oracle model [35]. In the following, we additionally re-
strict our attention to explicit, efficient constructions without random oracles.
We also mention a somewhat related line of work on variants of non-malleable
codes resilient to polynomially space-bounded tampering in the random oracle
model [36, 25].

NMC against bounded polynomial sized circuits in the CRS model. Faust et
al. [38] presented efficient information theoretically secure NMC with negligible
error in the CRS model, resilient against tampering function classes F which
can be represented as circuits of size poly(n). The CRS in their construction is
a seed s for a p(n)-wise independent hash function, where p(n) is a polynomial
that is larger than the bound on the tampering circuit size.

NMC against uniform, bounded polynomial time in the standard model. Ball et
al. [12] presented efficient NMC resilient against tampering by functions com-
putable in uniform bounded polynomial time. Their construction is in the stan-
dard, no-CRS model and achieves error of 1/poly. They require a similar assump-
tion as those used in the current work, as well as cryptographic assumptions of
the existence of sub-exponentially hard trapdoor permutations and the existence
of P-certificates with sub-exponential soundness. The only known instantiation
of P-certificates requires assuming soundness of a non-trivial argument system
(Micali’s CS proofs [58]), which is true in the Random Oracle model. Due to
the use of cryptographic techniques in the construction and proof, the final non-
malleable code achieves computational indistinguishability.

NMC against bounded polynomial depth circuits (unbounded polynomial size) in
the standard model. Dachman-Soled et al. [28, 29] constructed NMC resilient to
all polynomial size tampering functions that have bounded polynomial depth.
This tampering class contains all bounded polynomial size functions and con-
tains non-uniform NC. Their construction is in the standard, no-CRS model
and achieves negligible error. They require the cryptographic assumptions of
the existence of keyless multi-collision resistant hash function, injective one-way
function, and non-interactive witness-indistinguishable proofs, as well as the re-
peated squaring assumption. Keyless multi-collision resistant hash function are
known to exist in the auxiliary input random oracle model. Due to the use of
cryptographic techniques in the construction and proof, the final non-malleable
code achieves computational indistinguishability.

Seedless extractors for samplable and recognizable sources. Trevisan and Vad-
han [64] considered seedless extractors for the class of distributions samplable
by bounded polynomial sized circuits. Under the assumption that E requires
exponential size Σ4 circuits, they presented constructions of seedless extractors
for linear min-entropy, samplable sources over n bits, that output Ω(n) bits that
are 1/poly-close to uniform. Applebaum et al. [7] showed that the 1/poly error
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is somewhat inherent by ruling out black-box reductions in this setting. They
introduced a notion of relative-error extractors and showed that if the output
of the extractor is 1/poly-close to uniform with relative error, then every event
occurs w.r.t. the output distribution with probability at most (1+1/poly) times
the probability it occurs w.r.t. the uniform distribution. In particular, events
that are negligible under the uniform distributions cannot become noticeable
under the distribution outputted by the extractor. Under the assumption that E
requires exponential size Σ4 circuits, they constructed relative-error seedless ex-
tractors whose outputs are 1/poly-close to uniform with relative error for linear
min-entropy, samplable sources. Under the assumption that E requires exponen-
tial size Σ3 circuits, they constructed relative-error seedless extractors whose
outputs are 1/poly-close to uniform with relative error for linear min-entropy,
recognizable sources.

2 Preliminaries

For S ⊆ N , where S = {i1, . . . , iℓ : i1 < · · · < iℓ} and any n-ary string of values
x1, . . . , xn, let xS denote the string (xi1 , . . . , xiℓ). For random variables X,Y ,
we write ∆(X;Y ) ≤ ϵ or X ≈ϵ Y if the total variation distance between their
distributions is at most ϵ.

2.1 Complexity classes and assumptions

We take E to denote DTIME[2O(n)] the class of languages decidable by deter-
ministic Turing machines in 2cn-time for some constant c. We take circuits to
denote circuits over the standard basis {∨,∧,¬}. For any language O, an O-
oracle aided circuit is a circuit that has special gates that decide O, in addition
to the standard-basis. For any circuit, we say it has size s if it contains at most
s gates. We say it has depth d if the longest path from any input to any output
gate is of size d. A circuit family, {Cn}n∈N, is a collection of circuits such that Cn

takes inputs of length n. We take the SIZE[s(n)] to denote the function families
computable by a circuit family {Cn}n∈N such that Cn has size at most s(n), for
large enough n. Similarly, we take SIZEO[s(n)] to denote the function families
computable by an O-oracle aided circuit family {Cn}n∈N such that Cn has size
at most s(n), for sufficiently large n.

2.2 Non-malleable codes

Definition 2.1 (Coding schemes). A pair of functions (Enc,Dec), where Enc :
{0, 1}k → {0, 1}n is a randomized function and Dec : {0, 1}n → {0, 1}k ∪ {⊥}
is a deterministic function, is defined to be a coding scheme with block length n
and message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1.

Definition 2.2 (Tampering functions). For any n > 0, let Hn denote the set of
all functions h : {0, 1}n → {0, 1}n. Any subset G ⊆ Hn is a family of tampering
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functions. For any class of boolean functions F = {f : {0, 1}n → {0, 1}}, we take
Fn to denote the class of n-output functions where each output is computed by
some function in F , i.e. Fn = {fi1,...,in : x 7→ fi1(x), . . . , fin(x) | fi1 , . . . , fin ∈
F}.

The particular classes of tampering functions we consider in this work:

– Tampering where each output is computable by an s(n)-size circuit,
SIZEn[s(n)].

– Split-state tampering where two halves of an input are tam-
pered independently and arbitrarily: {(τL, τR) : x1, . . . , x2n 7→
τL(x1, . . . , xn), τR(xn+1, . . . , x2n)|τL, τR ∈ Hn}.

We define a function that will be useful in defining non-malleable codes:

Copy(x, y) =

{
x if x ̸= same

y if x = same.

Definition 2.3 (Non-malleable codes). A coding scheme (Enc,Dec) on alphabet
{0, 1} with block length n and message length k is a ϵ-non-malleable code with
respect to a tampering family F ⊂ Hn if for every f ∈ F there is a random
variable Df supported on {0, 1}k∪{same} that is independent of the randomness
in Enc, and for any message z ∈ {0, 1}k, we have

∆ (Dec(f(Enc(z))); Copy(Df , z)) ≤ ϵ.

We refer to the parameter ϵ as the “error” of the non-malleable code.

We define the rate of a non-malleable code C to be the quantity k
n . We require

split-state codes with special properties.

Leakage-resilience: Alice and Bob perform the split-state tampering, but can
communicate a bounded amount before tampering.

Augmented split-state non-malleability: There exists a simulator which
can simulate the joint distribution of the left (or right) codeword states in addi-
tion to the outcome of non-malleability experiment.

Special encoding: There exists a special encoding procedure that given a
desired left (or right) codeword state and message, outputs a valid encoding of
the message. Importantly, if the special encoder is given uniform left codeword
states, its output is identically distributed to real encodings of the message.

Theorem 2.4 ([2, 3, 22, 3]). There is a constant γ ∈ (0, 1] such that,
there exist efficient nγ-leakage-resilient exp(−nΩ(1))-augmented-split-state non-
malleable codes with special encoding. Moreover, the codewords are length (3 +
o(1))k where k is the message length.
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2.3 Seed-extending pseudorandom generators

Definition 2.5 ([50]). A function G : {0, 1}ℓ → {0, 1}n is said to be an ϵ-
pseudorandom generator (PRG) for a class C, if for all C ∈ C,

∆(C(G(Uℓ));C(Un)) ≤ ϵ

A PRG, G, is said to be seed-extending if the prefix of its output is its input,
i.e. G(s) = s,G′(s) for some function G′ : {0, 1}ℓ → {0, 1}n−ℓ.

We are principally concerned with seed-extending PRGs against various types
of circuits of a given size: non-deterministic circuits, non-deterministic NP-
circuits, etc. Throughout this paper, we take a PRG for a class of circuits of
size s to mean a 1/s-PRG for that class of circuits. Note that because we are
interested in both seed-extending PRGs, as well as PRGs for non-deterministic
circuits, so-called “cryptographic” PRGs which can be easily evaluated by the
classes they are constructed to fool do not suffice: a distinguisher given the
seed, or nondeterminism, can easily determine if a string is in the PRG’s image.
Thankfully, as observed by Kinne et al. [50], Nisan and Wigderson’s seminal con-
struction yields a seed extending PRG, provided one starts with an appropriately
hard function. We conclude with the formal theorem statement.

Theorem 2.6 ([50, 46, 51, 61, 62, 7]). If E requires exponential size cir-
cuits of type X ∈ {deterministic,nondeterministic,NP, Σi}, then for every
constant c > 1 there exists a constant α > 1 such that for every suffi-
ciently large n, and every r such that α log n ≤ ℓ ≤ n there is a seed-
extending PRG, G : {0, 1}ℓ → {0, 1}n, for size nc circuits of type X ∈
{deterministic,nondeterministic,NP, Σi}.

Proposition 1. Let X be a random variable and f a function. Define Y =
f(X). For any ϵ and any random variable Y ′,

∆(X; (X|f(X) = Y ′)) = ∆(Y ;Y ′).

The proof of Proposition 1 can be found in the full version [16].

3 A Non-Malleable Code for Small Circuit Tampering

Lemma 3.1. For any polynomial s(n), there exists a polynomial s′(n) >
s(n) such that the following is true. Let ℓ(n) = O(log n) be the function
from Theorem 1.6 for G : {0, 1}ℓ(n) → {0, 1}n. If alrssEnc : {0, 1}k′ →
{0, 1}2n, alrssDec : {0, 1}2n → {0, 1}k′

is an augmented α-leakage-resilient split-
state δ-non-malleable code with special encoding, computable in time o(s(n)), and
G : {0, 1}ℓ(n) → {0, 1}n is a seed-extending PRG for nondeterministic circuits of
size O(s(n)c) such that ℓ(n) ≤ α(n) and δ < (s′(n))2/32, then the construction,
(E,D) in Figure 3.1 is a 4/s′(n)-alternate-non-malleable code for k′-bit messages
with codeword length O(n), resilient to SIZE[s(n)]-tampering with error 4/s′(n).
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Instantiating the above lemma with the alrssEnc presented in Theorem 2.4,
and with G given in Theorem 2.6, and using the fact that a 4/s′(n)-alternate-
non-malleable code for k′-bit messages is a 4/s′(n) + 2−k

′
-non-malleable code

for k′-bit messages we obtain the following corollary:

Theorem 3.2. If E requires exponential size nondeterministic circuits then for
any polynomial s(n), and for sufficiently large k, there exists a 1/s(n)-non-
malleable code for k-bit messages with codeword length (1.5 + o(1))k that is
resilient to SIZE[s(n)]-tampering.

We note that rate 1 seems quite plausible in this setting.

Figure 3.1: Non-Malleable Code

Let (alrssEnc, alrssDec) be an augmented α(n)-leakage-resilient δ-split-
state non-malleable code with special encoding. Recall that special en-
coding means that there exists an efficient algorithm alrssEnc∗ that takes
a pattern p := y||∗n as input, in addition to the message m, and outputs
alrssEnc∗(m, p) = (y,X) with the property that (alrssEnc∗(·,U), alrssDec)
is an augmented leakage-resilient split-state non-malleable code.
Let G be a PRG for nondeterministic circuits of size O(s(n)).

Encoding (E) : On input m, do the following
Sample s← Uℓ. Sample (G(s), x)← alrssEnc∗(m; p = G(s)||∗n).
Output E(m) = (s, x).

Decoding (D) : On input (s̃, x̃), do the following
Compute m̃ = alrssDec(G(s̃), x̃).
Output D(s̃, x̃) = m̃.

Proof of Lemma 3.1. Let ϵ(n) = 4/s′(n) (the target error of our non-malleable
code). Recall that 1/s′(n) is the advantage bound of the PRG, G. And
(alrssEnc, alrssDec) is δ-non-malleable (with additional properties).

For the sake contradiction, assume (E,D) does not satisfy ϵ-alternate-non-
malleability: namely, there exists m0,m1 ∈ {0, 1}k and tampering function τ of
size s(n) such that

AltNMτ,E,D
m0,m1

(0) ̸≈4/ϵ AltNMτ,E,D
m0,m1

(1)

As before, we will use this fact (as well as the security of the underlying
leakage-resilient augmented-split-state non-malleable code) to break the pseu-
dorandomness guarantee of G by designing a constant-round private coin inter-
active proof that distinguishes with some non-trivial soundness/completeness
gap.

Fix any τ : (s, x) 7→ (s̃, x̃) in SIZEΣk [s(n)]. Define f to denote the function
that computes (s, x) 7→ x̃ according to τ , and g to denote the function that
computes (s, x) 7→ s̃ according to τ . In other words, τ(s, x) = (g(s, x), f(s, x)).

Claim 3.1. There exists a set ΠY such that
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1. ΠY is noticeably dense in G: Pr
s

u←{0,1}ℓ [G(s) ∈ ΠY ] ≥ ϵ/2

2. When Merlin is honest, Arthur accepts (s, y) ∈ ΠY with prob. > 1+ϵ/2
2 .

Figure 3.2: Interactive Proof for distinguishing G from uniform random

Recall that (alrssEnc, alrssDec) is an augmented leakage-resilient split-
state non-malleable code with special encoding, alrssEnc∗. Define
alrssEnc∗R to be the alrssEnc∗ that just outputs the right state, i.e. if
alrssEnc∗(m, p = y||∗n; r) 7→ (y, x) then alrssEnc∗R : (m, p = y||∗n; r) 7→ x.
Recall that G is a PRG for nondeterministic circuits of size O(s(n)).
Finally, recall that f, g correspond to the tampering attack.
Our protocol aims to accept strings from Uℓ, G(Uℓ) when Merlin plays
according to below (completeness) and reject strings from Uℓ+n regardless
of the strategy Merlin utilizes (soundness). Because we can amplify by
repetition, it suffices for there to be small gap between the two.
Hardcoded into Arthur as non-uniform advice are f, g and m0,m1.

On input s, y:

Arthur Sample coin b← U . Sample encoding (y, x)← alrssEnc∗(mb, p =
y||∗n). Send Merlin s̃ = g(s, x).

Merlin If (s, y) = G(s), respond ỹ such that (s̃, ỹ) = G(s̃). Otherwise,
respond arbitrary ỹ.

Arthur Set z′ = alrssDec(ỹ, x̃) where x̃ = f(s, x). If z′ ∈ {m0,m1}, set
z = same. Otherwise, set z = z′. Send z to Merlin.

Merlin (Guess Arthur’s bit.) If

Pr[alrssDec(ỹ, f(s, alrssEnc∗R(m0, y))) = z|g(s, alrssEnc∗R(m0, y)) = s̃]

is upper bounded by

Pr[alrssDec(ỹ, f(s, alrssEnc∗R(m1, y))) = z|g(s, alrssEnc∗R(m1, y)) = s̃]

set b′ = 1. Otherwise, set b′ = 0. Respond b′.
Arthur Accept if b = b′, and reject otherwise.

Proof. If the protocol in Figure 3.2 is given inputs from G(S) = (S,G′(S)) (where
S ≡ Uℓ), then upon choice of b = 1, Arthur’s final message is that of the alternate-
non-malleability game, z ∼ AltNMτ

m0,m1
(1). If b = 0, Arthur’s final message is

sampled according to (z, z̃) ∼ AltNMτ
m0,m1

(0). By our assumption, these two
distributions are ϵ-far from each other. From this and a simple combinatorial
argument (Proposition 4 in the full version [16]), there exists a setΠY s.t. for any
(s, y) ∈ ΠY these distributions are ϵ/2-far, and moreover Pr[G(S) ∈ ΠY ] ≥ ϵ/2.
By a standard argument (Proposition 2 in the full version [16]), this means
that for any (s, y) ∈ ΠY Merlin guesses b correctly and Arthur accepts with

probability ≥ 1+ϵ/2
2 .
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Claim 3.2. There exists a set ΠN such that

1. ΠN is large: Pr
(s,y)

u←{0,1}ℓ+n [(s, y) ∈ ΠN ] ≥ 1− 8δ/ϵ

2. Arthur accepts inputs in ΠN with probability ≤ 1+ϵ/4
2 when playing with

any (cheating) Merlin (as prescribed in Figure 3.2).

Proof. Soundness follows from first observing that any Merlin strategy corre-
sponds to some α-leaky split-state tampering on the augmented-leakage resilient
split state-code. We conclude soundness because Merlin’s view is that of the
alternate leakage-resilient augmented-split-state game. We use the existence an
optimal strategy M∗ (who, for any input (s, y), chooses messages to maximize
the distance of his view when Arthur chooses b = 0 versus his view when Arthur
chooses b = 1) to apply the Markov argument to a single distribution.

Fix an optimal Merlin strategyM∗ as described and assume s, y are uniformly
distributed. We make some observations about the protocol in this case:

Well-formed augmented leakage-resilient split-state encodings. Uni-
form y ∼ U means our leakage-resilient augmented-split-state codewords are
properly distributed, namely for b = 0, 1 it is the case that alrssEnc∗(mb, p =
U||∗n) ≡ alrssEnc(mb). Moreover, s is independent of the split-state codeword
(x, y) sampled by Arthur at the beginning.

ℓ-leaky split-state tampering. Arthur’s first message to Merlin, correspond-
ing to the random variable s̃ = g(s, x), can be viewed as ℓ-bits of leakage from
the right codeword state (to the left tampering function).

Thus, we have x̃ = f(s, x) and ỹ = M∗(s, y, g(s, x)) which for any fixed
choice of s is an ℓ-leaky split-state tampering, Πs. Thus when s is random, Πs

is a distribution over ℓ-leaky split-state tampering functions.

Merlin’s view is identical to augmented alternate-non-malleable game.
Recall that Merlin’s view corresponds to the variables (s, y, s̃, z) = ViewM∗

(b),
where b is Arthur’s initial coin. Observe that (y, s̃, z) is sampled identically

to AltANMΠs,alrssEnc,alrssDec(b), where b is Arthur’s initial coin toss. And s is
independent of the initial encoding in the AltANM game, which has worst case
guarantees that apply to Πs for any choice of s.

Putting these observations together, we have by that, because
(alrssEnc, alrssDec) is an ℓ-leakage-resilient δ-augmented-split-state non-
malleable code, and since (see Lemma A.9 in the full version [16]) this
implies that it is also a 2δ-augmented-split-state alternate non-malleable code,
ViewM∗

(0) ≈2δ ViewM∗
(1).

Observe that if there existed a strategy M ′ and input (s, y) such that the
distance between the view of M ′ on b = 0 vs b = 1 was greater than that of
M∗, this would contradict the optimality of M∗. Thus, by a simple Markov
argument (Proposition 3 in the full version [16]) there exists a set, ΠN such that
Pr

(s,y)
u←{0,1}ℓ+n [(s, y) ∈ ΠN ] ≥ 1−8δ/ϵ and for each (s, y) ∈ ΠN and any Merlin
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strategy M ′, the view when b = 0 is ϵ/4-far from the view when b = 1. Thus by
a standard argument (Proposition 2 in the full version [16]), this means for any
(s, y) ∈ ΠN , any Merlin strategy outputs b′ such that b′ = b with probability at

most 1+ϵ/4
2 .

We conclude from Claim 3.1 and Claim 3.2, that there is a constant round
IP protocol where Arthur can be represented by circuit of size O(s(n)) that
recognizes Π = (ΠY , ΠN ) with completeness/soundness gap ϵ/2. By classical
results (Lemma 2.21 in the full version [16]), this implies the existence of an s′(n)-
size nondeterministic circuit, C, that decides the promise problem, Π. Because
ΠY is ϵ/2-dense under G (i.e. Prs[G(s) ∈ ΠY ]) and ΠN is 1− 8δ/ϵ dense under
the uniform distribution (i.e. Prz[z ∈ ΠY ] ≤ 4δ/ϵ). The nondeterministic circuit
C can distinguish with advantage |ϵ/2 − 8δ/ϵ| ≥ ϵ/4 = 1/s′(n). So, our initial
assumption must be false.
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