
Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes

Abhiram Kothapalli† Srinath Setty? Ioanna Tzialla‡

†Carnegie Mellon University ?Microsoft Research ‡New York University

Abstract. We introduce a new approach to realize incrementally ver-
ifiable computation (IVC), in which the prover recursively proves the
correct execution of incremental computations of the form y = F (`)(x),
where F is a (potentially non-deterministic) computation, x is the input,
y is the output, and ` > 0. Unlike prior approaches to realize IVC, our ap-
proach avoids succinct non-interactive arguments of knowledge (SNARKs)
entirely and arguments of knowledge in general. Instead, we introduce
and employ folding schemes, a weaker, simpler, and more efficiently-
realizable primitive, which reduces the task of checking two instances in
some relation to the task of checking a single instance. We construct a
folding scheme for a characterization of NP and show that it implies an
IVC scheme with improved efficiency characteristics: (1) the “recursion
overhead” (i.e., the number of steps that the prover proves in addition
to proving the execution of F) is a constant and it is dominated by two
group scalar multiplications expressed as a circuit (this is the smallest
recursion overhead in the literature), and (2) the prover’s work at each
step is dominated by two multiexponentiations of size O(|F |), providing
the fastest prover in the literature. The size of a proof is O(|F |) group
elements, but we show that using a variant of an existing zkSNARK,
the prover can prove the knowledge of a valid proof succinctly and in
zero-knowledge with O(log |F |) group elements. Finally, our approach
neither requires a trusted setup nor FFTs, so it can be instantiated
efficiently with any cycles of elliptic curves where DLOG is hard.

1 Introduction

We revisit the problem of realizing incrementally-verifiable computation (IVC) [43]:
a cryptographic primitive that enables producing proofs of correct execution of
“long running” computations such that a verifier can efficiently verify the correct
execution of any prefix of the computation. IVC enables a wide variety of appli-
cations including verifiable delay functions [9, 45], succinct blockchains [13,31],
and incrementally-verifiable versions of verifiable state machines [33,39].

A well-known approach to construct IVC is to use succinct non-interactive
arguments of knowledge (SNARKs) for NP [23, 24,29,36]: at each incremental
step i, the prover produces a SNARK proving that it has applied F correctly to
the output of step i − 1 and that the SNARK verifier represented as a circuit
has accepted the SNARK from step i− 1 [6, 8]. However, it is well-known that

this approach is impractical [6, 19]. Alternatively, one can use SNARKs without
trusted setup [17, 21, 38, 41] but their verifiers are more expensive than those
of SNARKs with trusted setup, both asymptotically and concretely. Recent
works [10,12, 15,16] aim to address the inefficiency of SNARK-based IVC, with
an innovative approach: at each step, the verifier circuit “defers” expensive steps
in verifying a SNARK for NP instances (e.g., verifying polynomial evaluation
proofs) by accumulating those steps into a single instance that is later checked
efficiently. However, these works still require the prover to produce a SNARK at
each step and the verifier circuit to partially verify that SNARK.

We introduce a new approach that avoids SNARKs (and more generally
arguments of knowledge) entirely and relies purely on deferral to realize IVC. In
a nutshell, instead of accumulating expensive steps of verifying a SNARK for
NP instances, the verifier circuit in our approach accumulates the NP instances
themselves. We formalize this technique as a new and minimal primitive, which we
refer to as a folding scheme. A folding scheme is weaker, simpler, and far more ef-
ficient compared to arguments of knowledge including SNARKs. Indeed, realizing
IVC via folding schemes results in improved efficiency over prior work (Figure 3):
(1) the verifier circuit is constant-sized and its size is dominated by two group
scalar multiplications; this is the smallest verifier circuit in the literature (in the
context of recursive proof composition); and (2) the prover’s work at each step
is dominated by two multiexponentiations of size O(|F |), providing the fastest
prover in the literature, both asymptotically and concretely. Section 1.4 provides
a detailed comparison between our approach and prior work.

1.1 Folding Schemes

A folding scheme is defined with respect to an NP relation, and it is a protocol
between an untrusted prover and a verifier. Both entities hold two N -sized NP
instances, and the prover in addition holds purported witnesses for both instances.
The protocol enables the prover and the verifier to output a single N -sized NP
instance, which we refer to as a folded instance. Furthermore, the prover privately
outputs a purported witness to the folded instance using purported witnesses for
the original instances. Informally, a folding scheme guarantees that the folded
instance is satisfiable only if the original instances are satisfiable. A folding
scheme is said to be non-trivial if the verifier’s costs and the communication are
lower in the case where the verifier participates in the folding scheme and then
verifies a purported NP witness for the folded instance than the case where the
verifier verifies purported NP witnesses for each of the original instances.

Several existing techniques exhibit the two-to-one reduction pattern of folding
schemes. Examples include the sumcheck protocol [35] and the split-and-fold
techniques in inner product arguments [11]. [30, App. A] provides further details.

Remark 1 (Folding Schemes vs. SNARKs). SNARKs for NP [7, 23, 24, 29, 36]
trivially imply a folding scheme for NP: given two NP instances u1 and u2 and
the corresponding witnesses, the prover proves u1 by producing a SNARK. The
verifier checks that SNARK and then sets u2 to be the folded instance. However,

2

we construct a folding scheme for NP without relying on SNARKs (or more
generally arguments of knowledge). Specifically, our folding scheme is weaker
than any argument of knowledge (succinct or otherwise) because it merely reduces
the satisfiability of two NP instances to the satisfiability of a single NP instance.1

To design a folding scheme for NP, we start with a popular NP-complete
language that generalizes arithmetic circuit satisfiability: R1CS (Definition 10).
As we illustrate later, it is difficult to devise a folding scheme for R1CS. To
address this, we introduce a variant of R1CS, called relaxed R1CS, which, like
R1CS, not only characterizes NP, but, unlike R1CS, can support a folding scheme.
The following theorem captures the cryptographic and efficiency characteristics
of our folding scheme for relaxed R1CS.

Theorem 1. There exists a constant-round, public-coin, zero-knowledge folding
scheme for relaxed R1CS where for N -sized relaxed R1CS instances over a finite
field F with the same “structure” (i.e., R1CS coefficient matrices), the prover’s
work is Oλ(N), and the verifier’s work and the communication are both Oλ(1),
assuming the existence of any additively-homomorphic commitment scheme that
provides Oλ(1)-sized commitments to N-sized vectors over F (e.g., Pedersen’s
commitments), where λ is the security parameter.

Because our folding scheme is public coin, it can be made non-interactive in the
random oracle model using the Fiat-Shamir transform [22], and be instantiated
(heuristically) in the standard model using a concrete hash function. We rely on
such a non-interactive folding scheme to construct IVC.

1.2 IVC from Non-Interactive Folding Schemes

We show how to realize IVC using a non-interactive version of our folding scheme
for relaxed R1CS. We refer to our construction as Nova.

Recall that an IVC is an argument of knowledge [29, 36]2 for incremental
computations of the form y = F (`)(x), where F is a (possibly non-deterministic)
computation, ` > 0, x is a public input, and y is the public output. At each
incremental step, the IVC prover produces a proof that the step was computed
correctly and it has verified a proof for the prior step. In other words, at
each incremental step, the IVC prover produces a proof of satisfiability for
an augmented circuit that augments the circuit for F with a “verifier circuit”
that verifies the proof of the prior step. Recursively, the final proof proves the
correctness of the entire incremental computation. A key aspect of IVC is that
neither the IVC verifier’s work nor the IVC proof size depends on the number of

1 This work realizes IVC using our folding scheme. As IVC implies SNARKs (e.g.,
see [6]), one might wonder whether folding schemes are in general weaker than
SNARKs. However, existing constructions of IVC (including our own) rely on addi-
tional assumptions (§4.2), which the resulting IVC-based SNARK inherits.

2 An argument of knowledge for circuit satisfiability enables an untrusted polynomial-
time prover to prove to a verifier the knowledge of a witness w such that C(w, x) = y,
where C is a circuit, x is some public input, and y is some public output.

3

steps in the incremental computation. In particular, the IVC verifier only verifies
the proof produced at the last step of the incremental computation.

In Nova, we consider incremental computations, where each step of the in-
cremental computation is expressed with R1CS (all the steps in the incremental
computation share the same R1CS coefficient matrices). At step i of the incre-
mental computation, as in other approaches to IVC, Nova’s prover proves that
the step i was computed correctly. Furthermore, at step i, instead of verifying a
proof for step i− 1 (as in traditional approaches to IVC), Nova’s approach treats
the computation at step i− 1 as an R1CS instance and folds that into a running
relaxed R1CS instance. Specifically, at each step, Nova’s prover proves that it has
performed the step’s computation and has folded its prior step represented as an
R1CS instance into a running relaxed R1CS instance. In other words, the circuit
satisfiability instance that the prover proves at each incremental step computes a
step of the incremental computation and includes a circuit for the computation
of the verifier in the non-interactive folding scheme for relaxed R1CS.

A distinctive aspect of Nova’s approach to IVC is that it achieves the smallest
“verifier circuit” in the literature. Since the verifier’s costs in the non-interactive
version of the folding scheme for relaxed R1CS is Oλ(1), the size of the com-
putation that Nova’s prover proves at each incremental step is ≈|F |, assuming
N -sized vectors are committed with an Oλ(1)-sized commitments (e.g., Pedersen’s
commitments). In particular, the verifier circuit in Nova is constant-sized and
its size is dominated by two group scalar multiplications. Furthermore, Nova’s
prover’s work at each step is dominated by two multiexponentiations of size ≈|F |.
Note that Nova’s prover does not perform any FFTs, so it can be instantiated
efficiently using any cycles of elliptic curves where DLOG is hard.

With the description thus far, the size of an IVC proof (which is a purported
witness for the running relaxed R1CS instance) is Oλ(|F |). Instead of sending
such a proof to a verifier, at any point in the incremental computation, Nova’s
prover can prove the knowledge of a satisfying witness to the running relaxed
R1CS instance in zero-knowledge with an Oλ(log |F |)-sized succinct proof using
a zkSNARK that we design by adapting Spartan [38]. The following theorem
summarizes our key result.

Theorem 2. For any incremental function where each step of the incremental
function applies a (non-deterministic) function F , there exists an IVC scheme
with the following efficiency characteristics, assuming N -sized vectors are com-
mitted with an Oλ(1)-sized commitments.

– IVC proof sizes are O(|F |) and the verifier’s work to verify them is Oλ(|F |).
The prover’s work at each incremental step is ≈|F |. Specifically, the prover’s
work at each step is dominated by two multiexponentiations of size ≈|F |.

– Succinct zero-knowledge proofs of valid IVC proofs are size Oλ(log |F |), and
the verifier’s work to verify them is either Oλ(log |F |) or Oλ(|F |) depending
on the commitment scheme for vectors. The prover’s work to produce this
succinct zero-knowledge proof is Oλ(|F |).

4

1.3 Implementation and Performance Evaluation

We implement Nova as a library in about 6,000 lines of Rust [3]. The library is
generic over a cycle of elliptic curves and a hash function (used internally as the
random oracle). The library provides candidate implementations with the Pasta
cycle of elliptic curves [4] and Poseidon [2,26]. Finally, the library accepts F (i.e.,
a step of the incremental computation) as a bellperson gadget [1].

Recursion Overheads. We measure the size of Nova’s verifier circuit, as it
determines the recursion overhead : the number of additional constraints that the
prover must prove at each incremental step besides proving an invocation of F .

We find that Nova’s verifier circuit is ≈20,000 R1CS constraints. This is
the smallest verifier circuit in the literature and hence Nova incurs the lowest
recursion overhead. Specifically, Nova’s recursion overhead is > 10× lower than in
SNARK-based IVC [6] with state-of-the-art per-circuit trusted setup SNARK [27],
and over 100× smaller than with a SNARK without trusted setup [21]. Compared
to recent works, Nova’s recursion overhead is over 7× lower than Halo’s [12], and
over 2× lower than the scheme of Bunz et al. [15].

Primary Curve Secondary Curve

Scalar multiplications 12,362 12,362
Random oracle call 1,431 1,434
Collision-resistant hash 2,300 2,306
Non-native arithmetic 3,240 3,240
Glue code 1,251 1,782

Total 20,584 21,124

Fig. 1: A detailed breakdown of sub-routines in Nova’s verifier’s circuit and the associated
number of R1CS constraints. The verifier circuit on each of the curves in the cycle
are not identical as they have slightly different base cases. We find that a majority of
constraints in the verifier circuit step from the group scalar multiplications.

Performance of Nova. We experiment with Nova on an Azure Standard
F32s v2 VM (16 physical CPUs, 2.70 GHz Intel(R) Xeon(R) Platinum 8168, and
64 GB memory). In our experiments, we vary the number of constraints in F .
Our performance metrics are: the prover time, the verifier time, and proof sizes.
We measure these for Nova’s IVC scheme as well as its Spartan-based zkSNARK
to compress IVC proofs. Figure 2 depicts our results, and we find the following.

– The prover’s per-step cost to produce an IVC proof and compress it scale
sub-linearly with the size of F (since the cost is dominated by two multiex-
ponentiations, which scale sub-linearly due to the Pippenger algorithm and
parallelize better at larger sizes). When |F | ≈ 220 constraints, the prover’s
per-step cost to produce an IVC proof is ≈1µs/constraint. For the same F ,
the cost to produce a compressed IVC proof is ≈24µs/constraint.3

3 If the prover produces a compressed IVC proof every ≈24 steps, the prover incurs at
most 2× overhead to compress IVC proofs. Similarly, if the prover compresses its
IVC proof every ≈240 steps, the overhead drops to ≈20%.

5

10
−1

10
0

10
1

10
2

2
14

2
15

2
16

2
17

2
18

2
19

2
20p

ro
v
er

 t
im

e
(s

)

constraints

10
0

10
1

10
2

10
3

10
4

10
5

2
14

2
15

2
16

2
17

2
18

2
19

2
20p

ro
o
f

si
ze

 (
K

B
)

constraints

10
1

10
2

10
3

10
4

2
14

2
15

2
16

2
17

2
18

2
19

2
20

v
e
ri

fi
e
r

ti
m

e
 (

m
s)

constraints

IVC Scheme (per step) A zkSNARK of a Valid IVC Proof

Fig. 2: Performance of Nova as a function of |F |. See the text for details.

– Compressed IVC proofs are ≈ 8–9 KB and are significantly shorter than IVC
proofs (e.g., they are ≈7,400× shorter when |F | ≈ 220 constraints).

– Verifying a compressed proof is only ≈2× higher costs than verifying a
significantly longer IVC proof.

1.4 A More Detailed Comparison with Prior Work

Figure 3 compares Nova with prior approaches. Nova’s approach can be viewed
as taking Halo’s approach to the extreme. Specifically:

– At each incremental step, Halo’s verifier circuit verifies a “partial” SNARK.
This still requires Halo’s prover to perform |F |-sized FFTs and O(|F |) expo-
nentiations (i.e., not an |F |-sized multiexponentiation). Whereas, in Nova,
the verifier circuit folds an entire NP instance representing computation at
the prior step into a running relaxed R1CS instance. This only requires Nova’s
prover to commit to a satisfying assignment of an ≈|F |-sized circuit (which
computes F and performs the verifier’s computation in a folding scheme for
relaxed R1CS), so at each step, Nova’s prover only computes an O(|F |)-sized
multiexponentiation and does not compute any FFTs. So, Nova’s prover
incurs lower costs than Halo’s prover, both asymptotically and concretely.

– The verifier circuit in Halo is of size Oλ(log |F |) whereas in Nova, it is Oλ(1).
Concretely, the dominant operations in Halo’s circuit is O(log |F |) group
scalar multiplications, whereas in Nova, it is two group scalar multiplications.

– Halo and Nova have the same proof sizes Oλ(log |F |) and verifier time Oλ(|F |).

Bünz et al. [16] apply Halo’s approach to other polynomial commitment
schemes. Halo Infinite [10] generalizes the approach in Halo [12] to any homomor-
phic polynomial commitment scheme; they also obtain PCD (and hence IVC)
even when polynomial commitment schemes do not satisfy succinctness.

Bünz et al. [15] propose a variant of the approach in Halo, where they realize
PCD (and hence IVC) without relying on succinct arguments. Specifically, they
first devise a non-interactive argument of knowledge (NARK) for R1CS with
Oλ(N)-sized proofs and Oλ(N) verification times for N -sized R1CS instances.
Then, they show that most of the NARK’s verifier’s computation can be deferred
by performing Oλ(1) work in the verifier circuit. For zero-knowledge, Nova relies
on zero-knowledge arguments with succinct proofs, whereas their approach does

6

“Verifier circuit” Prover Proof size Verifier assumptions
(dominant ops) (each step)

BCTV14 [6] with [27]† 3 P O(C) FFT Oλ(1) Oλ(1) q-type
O(C) MSM

Spartan [38]-based IVC O(
√
C) G O(C) MSM Oλ(

√
C) Oλ(

√
C) DLOG, RO

Fractal [21] Oλ(log2 C) F O(C) FFT Oλ(log2 C) Oλ(log2 C) RO
O(log2 C) H O(C) MHT

Halo [12] O(logC) G O(C) FFT Oλ(logC) Oλ(C) DLOG, RO
O(C) EXP

BCLMS [15]? 8 G O(C) FFT Oλ(C) Oλ(C) DLOG, RO
O(C) MSM

Nova (this work) 2 G O(C) MSM Oλ(logC) Oλ(C) DLOG, RO

Nova (this work) 2 GT O(C) MSM Oλ(logC) Oλ(logC) SXDH, RO
† Requires per-circuit trusted setup and is undesirable in practice
O(C) FFT: FFT over an O(C)-sized vector costing O(C logC) operations over F

O(C) MHT: Merkle tree over an O(C)-sized vector costing O(C) hash computations
O(C) EXP: O(C) exponentiations in a cryptographic group
O(C) MSM: O(C)-sized multi-exponentiation in a cryptographic group

Fig. 3: Asymptotic costs of Nova and its baselines to produce and verify a proof for an
incremental computation where each incremental step applies a function F . C denotes
the size of the computation at each incremental step, i.e., |F |+ |CV |, where CV is the
“verifier circuit” in IVC. The “verifier circuit” column depicts the number of dominant
operations in CV , where P denotes a pairing in a pairing-friendly group, F denotes
the number of finite field operations, H denotes a hash computation, and G denotes a
scalar multiplication in a cryptographic group. The prover column depicts the cost to
the prover for each step of the incremental computation, and proof sizes and verifier
times refer respectively to the size of the proof of the incremental computation and the
associated verification times. For Nova’s proof sizes and verification times, we depict the
compressed proof sizes (otherwise, they are Oλ(C)) and the time to verify a compressed
proof (otherwise, they are Oλ(C)). Rows with RO require heuristically instantiating
the random oracle with a concrete hash function in the standard model.

not rely on succinct arguments. However, Nova’s approach has several conceptual
and efficiency advantages over the work of Bünz et al [15]:

– Nova introduces a new primitive called a folding scheme, which is conceptually
simpler and is easier to realize than prior notions such as (split) accumulation
schemes used in prior work [15, 16]. Furthermore, a folding scheme for NP
directly leads to IVC and is again easier to analyze than with prior notions.

– At each step, their prover performs an O(|F |)-sized FFT (which costs
O(|F | log |F |) operations over F). Whereas, Nova does not perform any FFTs.

– Their prover’s work for multiexponentitions at each step and the size of their
verifier circuit are both higher than in Nova by ≈4×.

– Proof sizes are Oλ(|F |) in their work, whereas in Nova, they are Oλ(log |F |).
We believe, in theory, they can also compress their proofs, using a succinct
argument, but unlike Nova, they do not specify how to do so in a concretely
efficient manner. Furthermore, using succinct arguments is inconsistent with
their goal of not employing them.

7

Concurrent work. In an update concurrent with this work, Bünz et al. [15] provide
an improved construction of their NARK for R1CS, which leads to an IVC that,
like Nova, avoids FFTs. Furthermore, they improve the size of the verifier circuit
by ≈2×, which is still larger than Nova’s verifier circuit by ≈2×. The per-step
computation of the prover remains 4× higher than Nova.

1.5 An Overview of the Rest of the Paper

Section 2 provides the necessary background. Section 3 formally defines folding
schemes and their properties. In Section 4, we introduce a variant of R1CS
called relaxed R1CS for which we provide a folding scheme satisfying Theorem 1.
Then, in Section 5, we use a non-interactive version of the folding scheme (§4.2)
to construct an IVC scheme and a scheme to compress IVC proofs satisfying
Theorem 2 by assuming the existence of a zkSNARK for relaxed R1CS with
logarithmic-sized proofs. Finally, in Section 6, we construct such a zkSNARK.

2 Preliminaries

Let F denote a finite field with |F | = 2Θ(λ), where λ is the security parameter.
Let ∼= denote computational indistinguishability with respect to a PPT adversary.
We globally assume that generator algorithms that produce public parameters
are additionally provided appropriate size bounds.

2.1 A Commitment Scheme for Vectors over F

We require a commitment scheme for vectors over F that is additively homo-
morphic and succinct. We formally define these two properties and others noted
below in [30, App. F]. Below, we define the syntax for commitment schemes.

Definition 1 (A Commitment Scheme for Vectors). A commitment scheme
for Fm is a tuple of three protocols with the following interface.

– Gen(1λ,m)→ pp: takes length parameter m; produces public parameters pp.
– Com(pp, v, r)→ C: takes vector v ∈ Fm and r ∈ F ; produces commitment C.
– Open(pp, C, v, r)→ {0, 1}: verifies the opening of commitment C to v ∈ Fm.

A commitment scheme satisfies hiding (the commitment reveals no information),
binding (a PPT adversary cannot open a commitment to two different values),
and succinctness (the commitment size is logarithmic in the opening size).

2.2 Non-Interactive Arguments of Knowledge

Definition 2 (Non-Interactive Argument of Knowledge). Consider a re-
lation R over public parameters, structure, instance, and witness tuples. A non-
interactive argument of knowledge for R consists of PPT algorithms (G,P,V)
and deterministic K, denoting the generator, the prover, the verifier and the
encoder respectively with the following interface.

8

– G(1λ)→ pp: On input security parameter λ, samples public parameters pp.
– K(pp, s) → (pk, vk): On input structure s, representing common structure

among instances, outputs the prover key pk and verifier key vk.
– P(pk, u, w) → π: On input instance u and witness w, outputs a proof π

proving that (pp, s, u, w) ∈ R.
– V(vk, u, π)→ {0, 1}: Checks instance u given proof π.

An argument of knowledge satisfies completeness if for any PPT adversary A

Pr

V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← P(pk, u, w)

 = 1.

An argument of knowledge satisfies knowledge soundness if for all PPT adversaries
A there exists a PPT extractor E such that for all randomness ρ

Pr

V(vk, u, π) = 1,
(pp, s, u, w) 6∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; ρ),
(pk, vk)← K(pp, s),
w ← E(pp, ρ)

 = negl(λ).

Definition 3 (Zero-Knowledge). An argument of knowledge (G,K,P,V) for
relation R satisfies zero-knowledge if there exists PPT simulator S such that for
all PPT adversaries A (pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← P(pk, u, w)

∼=

 (pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
(pp, τ)← S(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← S(pp, u, τ)

Definition 4 (Succinctness). A non-interactive argument system is succinct
if the size of the proof π is polylogarithmic in the size of the witness w.

2.3 Incrementally Verifiable Computation

Incrementally verifiable computation (IVC) [43] enables verifiable computation
for repeated function application. Intuitively, for a function F , with initial input
z0, an IVC scheme allows a prover to produce a proof Πi for the statement
zi = F (i)(z0) (i.e., i applications of F on input z0) given a proof Πi−1 for
the statement zi−1 = F (i−1)(z0). Formally, IVC schemes additionally permit
F to take auxiliary input ω. We recall the definition of IVC using notational
conventions of modern argument systems.

Definition 5 (IVC). An incrementally verifiable computation (IVC) scheme is
defined by PPT algorithms (G,P,V) and deterministic K denoting the generator,

9

the prover, the verifier, and the encoder respectively. An IVC scheme (G,K,P,V)
satisfies perfect completeness if for any PPT adversary A

Pr

V(vk, i, z0, zi, Πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi, zi−1, ωi−1, Πi−1)← A(pp),
(pk, vk)← K(pp, F),
zi = F (zi−1, ωi−1),
V(vk, i− 1, z0, zi−1, Πi−1) = 1,
Πi ← P(pk, i, z0, zi; zi−1, ωi−1, Πi−1)

 = 1

where F is a polynomial time computable function. Likewise, an IVC scheme
satisfies knowledge-soundness if for any constant n ∈ N, and expected polynomial
time adversaries P∗ there exists expected polynomial-time extractor E such that
for any input randomness ρ

Pr

 zn 6= z,
V(vk, n, z0, z,Π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
F, (z0, z,Π)← P∗(pp; ρ),
(pk, vk)← K(pp, F),
(ω0, . . . , ωn−1)← E(pp, z0, z; ρ),
zi ← F (zi−1, ωi−1) ∀i ∈ {1, . . . , n}

 ≤ negl(λ).

An IVC scheme satisfies succinctness if the size of the IVC proof Π does not
grow with the number of applications n.

We note that in the definition above, the number of steps n is treated as a
fixed environment variable that characterizes the extractor. This model is required
for all known general recursive techniques as they rely on recursive extractors
that blowup polynomially for each additional recursive step [10, 13, 15, 16, 21].
Bitansky et al. [8] avoid such a restriction by making non-blackbox assumptions
about the extractors runtime with respect to that of the malicious prover. In any
case, there are no known attacks on arbitrary depth recursion.

3 Folding Schemes

This section formally defines folding schemes. Intuitively, a folding scheme for a
relation R is a protocol that reduces the task of checking two instances in R to
the task of checking a single instance in R.

Definition 6 (Folding Scheme). Consider a relation R over public parameters,
structure, instance, and witness tuples. A folding scheme for R consists of a
PPT generator algorithm G, a deterministic encoder algorithm K, and a pair of
PPT algorithms P and V denoting the prover and verifier respectively, with the
following interface:

– G(1λ)→ pp: On input security parameter λ, samples public parameters pp.
– K(pp, s)→ (pk, vk): On input pp, and a common structure s between instances

to be folded, outputs a prover key pk and a verifier key vk.

10

– P(pk, (u1, w1), (u2, w2))→ (u,w): On input instance-witness tuples (u1, w1)
and (u2, w2) outputs a new instance-witness tuple (u,w) of the same size.

– V(vk, u1, u2)→ u: On input instances u1 and u2, outputs a new instance u.

Let

(u,w)← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

denote the the verifier’s output instance u and the prover’s output witness w from
the interaction of P and V on witnesses (w1, w2), prover key pk, verifier key vk
and instances (u1, u2). Likewise, let

tr = 〈P(pk, w1, w2),V(vk)〉(u1, u2)

denote the corresponding interaction transcript. A folding scheme satisfies perfect
completeness if for all PPT adversaries A

Pr

 (pp, s, u, w) ∈ R

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← K(pp, s),
(u,w)← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

 = 1.

A folding scheme satisfies knowledge soundness if for any expected polynomial-time
adversary P∗ there is an expected polynomial-time extractor E such that

Pr

 (pp, s, u1, w1) ∈ R,
(pp, s, u2, w2) ∈ R

∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, u2))← P∗(pp, ρ),
(w1, w2)← E(pp, ρ)

 ≥
Pr

 (pp, s, u, w) ∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, u2))← P∗(pp, ρ),
(pk, vk)← K(pp, s),
(u,w)← 〈P∗(pk, ρ),V(vk)〉(u1, u2)

− negl(λ)

where ρ denotes arbitrary input randomness for P∗. We call a transcript an
accepting transcript if P outputs a satisfying folded witness w for the folded
instance u. We consider a folding scheme non-trivial if the communication costs
and V’s computation are lower in the case where V participates in the folding
scheme and then checks a witness sent by P for the folded instance than the case
where V checks witnesses sent by P for each of the original instances.

Definition 7 (Non-Interactive). A folding scheme (G,K,P,V) is non-interactive
if the interaction between P and V consists of a single message from P to V.
This single message is denoted as an output of P, and an input to V.

Definition 8 (Zero-Knowledge). A folding scheme (G,K,P,V) satisfies zero-
knowledge for relation R if there exists a PPT simulator S such that for all PPT

11

adversaries A, and V∗, and input randomness ρ tr

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pk, vk)← K(pp, s),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
tr = 〈P(pk, w1, w2),V∗(vk, ρ)〉(u1, u2)

∼=

 tr

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← K(pp, s),
tr← SV∗(vk,ρ)(pk, u1, u2)

Definition 9 (Public Coin). A folding scheme (G,K,P,V) is called public coin
if all the messages sent from V to P are sampled from a uniform distribution.

Typically, knowledge soundness is difficult to prove directly. To assist these
proofs, prior works employ the forking lemma [11], which abstracts away much
of the probabilistic reasoning. The original forking lemma shows that to prove
knowledge soundness it is sufficient to construct a PPT extractor that takes
as input a “tree” of accepting transcripts and outputs a satisfying witness.
However, in our setting, this extractor must additionally take as input the prover’s
output (i.e., the folded instance and witness) for each of these transcripts, which
contains information needed to reconstruct the original witness. So, we introduce
a small variant of the forking lemma that captures this modification.

Lemma 1 (Forking Lemma for Folding Schemes). Consider a (2µ + 1)-
move folding scheme Π = (G,K,P,V). Π satisfies knowledge soundness if there
exists a PPT X such that for all input instance pairs u1, u2, outputs satisfy-
ing witnesses w1, w2 with probability 1 − negl(λ), given public parameters pp,
structure s, and an (n1, . . . , nµ)-tree of accepting transcripts and corresponding
folded instance-witness pairs (u,w). This tree comprises n1 transcripts (and
corresponding instance-witness pairs) with fresh randomness in V’s first message;
and for each such transcript, n2 transcripts (and corresponding instance-witness
pairs) with fresh randomness in V’s second message; etc., for a total of

∏µ
i=1 ni

leaves bounded by poly(λ).

Proof Intuition. A proof for our variant of the forking lemma is similar to that
of Bootle et al. [11]. We present a formal proof in [30, App. F].

4 A Folding Scheme for NP

In this section, we describe a public-coin, zero-knowledge interactive folding
scheme for NP. We additionally discuss how to make it non-interactive. We
leverage the non-interactivity property to realize IVC in the next section, and
the zero-knowledge property to achieve zero-knowledge IVC proof compression.

12

4.1 A Public-Coin, Zero-Knowledge Folding Scheme

To design a folding scheme for NP, we need an NP-complete language. While
theoretically any NP-complete language is a viable candidate, we focus on R1CS,4

a popular algebraic representation that generalizes arithmetic circuit satisfiability.

Definition 10 (R1CS). Consider a finite field F . Let the public parameters
consist of size bounds m,n, ` ∈ N where m > `. The R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. An instance x ∈ F ` consists of public inputs and outputs and is satisfied
by a witness W ∈ Fm−`−1 if (A · Z) ◦ (B · Z) = C · Z, where Z = (W, x, 1).

As we show in the next section, to realize IVC, we only need a folding
scheme that can fold two R1CS instances with the same R1CS matrices (A,B,C).
Specifically, given R1CS matrices (A,B,C), and two corresponding instance-
witness pairs (x1,W1) and (x2,W2), we would like to devise a scheme that reduces
the task of checking both instances into the task of checking a single new instance-
witness pair (x,W) against the same R1CS matrices (A,B,C). Unfortunately, as
we illustrate now, it is difficult to devise a folding scheme for R1CS such that it
satisfies completeness, let alone knowledge soundness.

First Attempt. As R1CS is an algebraic system, the most direct approach
would be to take a random linear combination. Ignoring efficiency concerns,
suppose that the prover sends witnesses W1 and W2 in the first step. The verifier
responds with a random r ∈ F ; the prover and the verifier both compute

x← x1 + r · x2

W ←W1 + r ·W2,

and set the new instance-witness pair to be (x,W). However, for non-trivial
Z1 = (W1, x1, 1) and Z2 = (W2, x2, 1), and Z = (W, x, 1), we roughly have that

AZ ◦BZ = A(Z1 + r · Z2) ◦B(Z1 + r · Z2)

= AZ1 ◦BZ1 + r · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + r2 · (AZ2 ◦BZ2)

6= CZ.

The failed attempt exposes three issues. First, we must account for an addi-
tional cross-term, r · (AZ1 ◦BZ2 +AZ2 ◦BZ1). Second, the terms excluding the
cross-term combine to produce a term that does not equal CZ:

AZ1 ◦BZ1 + r2 · (AZ2 ◦BZ2) = CZ1 + r2 · CZ2 6= CZ1 + r · CZ2 = CZ.

Third, we do not even have that Z = Z1+r ·Z2 because Z1+r ·Z2 = (W, x, 1+r ·1).

4 R1CS is implicit in the QAPs formalism of GGPR [23], but it was made explicit in
subsequent work [40]; they refer to it as a “constraint system in quadratic form”.

13

Second Attempt. To handle the first issue, we introduce a “slack” (or error)
vector E ∈ Fm which absorbs the cross terms generated by folding. To handle
the second and third issues, we introduce a scalar u, which absorbs an extra
factor of r in CZ1 + r2 ·CZ2 and in Z = (W, x, 1 + r · 1). We refer to a variant of
R1CS with these additional terms as relaxed R1CS.

Definition 11 (Relaxed R1CS). Consider a finite field F . Let the public
parameters consist of size bounds m,n, ` ∈ N where m > `. The relaxed R1CS
structure consists of sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m)
non-zero entries in each matrix. A relaxed R1CS instance consists of an error
vector E ∈ Fm, a scalar u ∈ F , and public inputs and outputs x ∈ F `. An instance
(E, u, x) is satisfied by a witness W ∈ Fm−`−1 if (A ·Z)◦ (B ·Z) = u · (C ·Z) +E,
where Z = (W, x, u).

Note that any R1CS instance can be expressed as a relaxed R1CS instance by
augmenting it with u = 1 and E = 0, so relaxed R1CS retains NP-completeness.

Building on the first attempt, the prover and verifier can now use E to
accumulate the cross-terms. In particular, for Zi = (Wi, xi, ui), the prover and
verifier additionally compute

u← u1 + r · u2

E ← E1 + r · (AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1CZ2 − u2CZ1) + r2 · E2,

and set the new instance-witness pair to be ((E, u, x),W). Conveniently, updating
u in this manner also keeps track of how the constant term in Z should be updated,
which motivates our choice to use u in Z = (W, x, u) rather than introducing a
new variable. Now, for Z = (W, x, u), and for random r ∈ F ,

AZ ◦BZ = AZ1 ◦BZ1 + r · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + r2 · (AZ2 ◦BZ2)

= (u1CZ1 + E1) + r · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + r2 · (u2CZ2 + E2)

= (u1 + r · u2) · C(Z1 + rZ2) + E

= uCZ + E.

This implies that, for R1CS matrices (A,B,C), the folded witnessW is a satisfying
witness for the folded instance (E, u, x) as promised. A few issues remain: in the
above scheme, the prover sends witnesses (W1,W2) for the verifier to compute E.
As a result, the folding scheme is not non-trivial; it is also not zero-knowledge.

Final Protocol. To circumvent these issues, we use succinct and hiding addi-
tively homomorphic commitments to W and E in the instance, and treat both
W and E as the witness. We refer to this variant of relaxed R1CS as committed
relaxed R1CS. Below, we describe a folding scheme for committed relaxed R1CS,
where the prover sends a single commitment to aid the verifier in computing
commitments to the folded witness (W,E).

Definition 12 (Committed Relaxed R1CS). Consider a finite field F and a
commitment scheme Com over F . Let the public parameters consist of size bounds

14

m,n, ` ∈ N where m > `, and commitment parameters ppW and ppE for vectors of
size m and m−`−1 respectively. The committed relaxed R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. A committed relaxed R1CS instance is a tuple (E, u,W, x), where E and
W are commitments, u ∈ F , and x ∈ F ` are public inputs and outputs. An instance
(E, u,W, x) is satisfied by a witness (E, rE ,W, rW) ∈ (Fm, F , Fm−`−1, F) if E =
Com(ppE , E, rE), W = Com(ppW ,W, rW), and (A ·Z) ◦ (B ·Z) = u · (C ·Z) +E,
where Z = (W, x, u).

Construction 1 (A Folding Scheme for Committed Relaxed R1CS).
Consider a finite field F and a succinct, hiding, and homomorphic commitment
scheme Com over F . We define the generator and the encoder as follows.

– G(1λ) → pp: output size bounds m,n, ` ∈ N, and commitment parameters
ppW and ppE for vectors of size m and m− `− 1 respectively.

– K(pp, (A,B,C))→ (pk, vk): output pk← (pp, (A,B,C)) and vk← ⊥.

The verifier V takes two committed relaxed R1CS instances (E1, u1,W 1, x1) and
(E2, u2,W 2, x2). The prover P , in addition to the two instances, takes witnesses to
both instances, (E1, rE1

,W1, rW1
) and (E2, rE2

,W2, rW2
). Let Z1 = (W1, x1, u1)

and Z2 = (W2, x2, u2). The prover and the verifier proceed as follows.

1. P: Send T := Com(ppE , T, rT), where rT ←R F and with cross term

T = AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − u2 · CZ1.

2. V: Sample and send challenge r ←R F .
3. V,P: Output the folded instance (E, u,W, x) where

E ← E1 + r · T + r2 · E2

u ← u1 + r · u2

W ←W 1 + r ·W 2

x ← x1 + r · x2

4. P: Output the folded witness (E, rE ,W, rW), where

E ← E1 + r · T + r2 · E2

rE ← rE1
+ r · rT + r2 · rE2

W ←W1 + r ·W2

rW ← rW1
+ r · rW2

Theorem 3 (A Folding Scheme for Committed Relaxed R1CS). Con-
struction 1 is a public-coin folding scheme for committed relaxed R1CS with
perfect completeness, knowledge soundness, and zero-knowledge.

15

Proof Intuition. With textbook algebra, we can show that if witnesses (E1, rE1 ,
W1, rW1

) and (E2, rE2
,W2, rW2

) are satisfying witnesses, then the folded witness
(E, rE ,W, rW) must be a satisfying witness. We prove knowledge soundness via
the forking lemma (Lemma 1) by showing that the extractor can produce the
initial witnesses given three accepting transcripts and the corresponding folded
witnesses. Specifically, the extractor uses all three transcripts to compute Ei and
rEi , and any two transcripts to compute Wi and rWi for i ∈ {1, 2}. The choice
of which two transcripts does not matter due to the binding property of the
commitment scheme. We present a formal proof in [30, App. B].

4.2 Achieving Non-Interactivity via the Fiat-Shamir Transform

To design Nova’s IVC scheme, we require our folding scheme for committed
relaxed R1CS to be non-interactive in the standard model. To do so we first
achieve non-interactivity in the random oracle model using the (strong) Fiat-
Shamir transform [22]. Next, we heuristically instantiate the random oracle using
a cryptographic hash function. As a result, we can only heuristically argue the
security of the resulting non-interactive folding scheme. Note that all existing
IVC constructions in the standard model require instantiating the random oracle
with a cryptographic hash function [12,15,21,43].

Construction 2 (A Non-Interactive Folding Scheme). We achieve non-
interactivity in the random oracle model using the strong Fiat-Shamir trans-
form [22]. Let ρ denote a random oracle sampled during parameter genera-
tion and provided to all parties. Let (G,K,P,V) represent our interactive fold-
ing scheme (Construction 1). We construct a non-interactive folding scheme
(G,K,P,V) as follows:

– G(1λ): output pp← G(1λ).
– K(pp, (A,B,C)): vk← ρ(pp, s) and pk← (pp, (A,B,C), vk); output (vk, pk).
– P(pk, (u1, w1), (u2, w2)): runs P((pk.pp, pk.(A,B,C)) to retrieve its first mes-

sage T , and sends T to V; computes r ← ρ(vk, u1, u2, T), forwards this to P,
and outputs the resulting output.

– V(vk, u1, u2, T): runs V with T as the message from the prover and with
randomness r ← ρ(vk, u1, u2, T), and outputs the resulting output.

Assumption 1 (RO instantiation). Construction 2 is a non-interactive folding
scheme that satisfies completeness, knowledge soundness, and zero-knowledge in
the standard model when ρ is instantiated with a cryptographic hash function.

5 Nova: An IVC Scheme with Proof Compression

This section describes Nova, an IVC scheme designed from a non-interactive fold-
ing scheme, which when instantiated with any additively-homomorphic commit-
ment scheme with succinct commitments achieves the claimed efficiency (Lemma 4).
In addition, Nova incorporates an efficient zkSNARK to prove the knowledge

16

of valid IVC proofs succinctly and in zero-knowledge, providing a succinct,
zero-knowledge proof of knowledge of a valid IVC proof.

In Nova, at each incremental step, the prover folds a particular step of the
incremental computation (represented as a committed relaxed R1CS instance-
witness pair) into a running committed relaxed R1CS instance-witness pair. At
any step in the incremental computation, a valid “IVC proof”, in a nutshell, is
a satisfying witness of the running committed relaxed R1CS instance (which
an honest prover can compute by folding witnesses associated with each step
of the incremental computation) along with the running committed relaxed
R1CS instance. Furthermore, at any incremental step, Nova’s prover can prove
in zero-knowledge and with a succinct proof—using a variant of an existing
zkSNARK [38] (Section 6)—that it knows a valid IVC proof (i.e., a satisfying
witness) to the running committed relaxed R1CS instance (Construction 4).

Note that Nova is not a zero-knowledge IVC scheme, as that would additionally
require an IVC proof to be zero-knowledge (in Nova’s case, an IVC proof does
not hide witnesses associated with steps of the incremental computation). This
difference is immaterial in the context of a single prover since it can use Nova’s
auxiliary zkSNARK to provide a zero-knowledge proof of knowledge of a valid
IVC proof; we leave it to future work to achieve zero-knowledge IVC.

5.1 Constructing IVC from a Folding Scheme for NP

Recall that an IVC scheme allows a prover to show that zn = F (n)(z0) for some
count n, initial input z0, and output zn. We now show how to construct an IVC
scheme for a non-deterministic, polynomial-time computable function F using our
non-interactive folding scheme for committed relaxed R1CS (Construction 2).5

In our construction, as in a SNARK-based IVC, the prover uses an augmented
function F ′ (Figure 4), which, in addition to invoking F , performs additional
bookkeeping to fold proofs of prior invocations of itself.

We first describe a simplified version of F ′, to provide intuition. F ′ takes
as non-deterministic advice two committed relaxed R1CS instances ui and Ui.
Suppose that Ui represents the correct execution of invocations 1, . . . , i− 1 of F ′

so long as ui represents the correct execution of invocation i of F ′. F ′ performs
two tasks. First, it executes a step of the incremental computation: instance ui
contains zi which F ′ uses to output zi+1 = F (zi). Second, F ′ invokes the verifier
of the non-interactive folding scheme to fold the task of checking ui and Ui into
the task of checking a single instance Ui+1. The IVC prover then computes a
new instance ui+1 which attests to the correct execution of invocation i+ 1 of F ′,
thereby attesting that zi+1 = F (zi) and Ui+1 is the result of folding ui and Ui.
Now, we have that Ui+1 represents the correct execution of invocations 1, . . . , i
of F ′ so long as ui+1 represents the correct execution of invocation i+ 1 of F ′.

The above description glossed over a subtle discrepancy: Because F ′ must
output the running instance Ui+1 for the next invocation to use, it is contained

5 While, in theory, we can use any folding scheme for NP, we specifically invoke our
construction for committed relaxed R1CS for a simpler presentation.

17

Ui+1 ←
NIFS.V(Ui, ui)

ui.x
?
=

hash(i, z0, zi,Ui)

hi+1 ← hash

(i + 1, z0, zi+1,Ui+1)

F

z0

i

zi

ui

Ui

zi+1

hi+1

Fig. 4: Overview of F ′. F ′ represented as a committed relaxed R1CS instance ui+1

encodes the statement that there exists ((i, z0, zi, ui,Ui),Ui+1, T) such that ui.x =
hash(vk, i, z0, zi,Ui), hi+1 = hash(vk, i+1, z0, F (zi),Ui+1), Ui+1 = NIFS.V (vk,Ui, ui, T),
and that F ′ outputs hi+1. The diagram omits depicting vk, ω, and T .

in ui+1.x (i.e., the public IO of ui+1). But, in the next iteration, F ′ must fold
ui+1.x into Ui+1.x, meaning that F ′ is stuck trying to squeeze Ui+1 into Ui+1.x.
To handle this inconsistency, we modify F ′ to output a collision-resistant hash
of its public IO rather than producing it directly (this ensures that the public IO
of F ′ is a constant number of finite field elements). The next invocation of F ′

then additionally takes the preimage of this hash as non-deterministic advice. We
assume that the hash function takes an additional random input (which provides
hiding) but for notational convenience we do not explicitly depict this.

Producing IVC Proofs. Let (u⊥,w⊥) be the trivially satisfying instance-
witness pair, where E,W, and x are appropriately-sized zero vectors, rE = 0,
rW = 0, and E and W are commitments of E and W respectively.

Now, in iteration i+ 1, the IVC prover runs F ′ and computes ui+1 and Ui+1

as well as the corresponding witnesses wi+1 and Wi+1. Because ui+1 and Ui+1

together attest to the correctness of i+1 invocations of F ′ (which indirectly attests
to i + 1 invocations of F) the IVC proof Πi+1 is ((Ui+1,Wi+1), (ui+1,wi+1)).
Moreover, succinctness is maintained by the properties of the underlying folding
scheme. We formally describe our construction below.

Construction 3 (IVC). Let NIFS = (G,K,P,V) be the non-interactive folding
scheme for committed relaxed R1CS (Construction 2). Consider a polynomial-
time function F that takes non-deterministic input, and a cryptographic hash
function hash. We define our augmented function F ′ as follows (all arguments to
F ′ are taken as non-deterministic advice):

F ′(vk,Ui, ui, (i, z0, zi), ωi, T)→ x:

If i is 0, output hash(vk, 1, z0, F (z0, ωi), u⊥);

18

otherwise,
(1) check that ui.x = hash(vk, i, z0, zi,Ui), where ui.x is the public IO of ui,
(2) check that (ui.E, ui.u) = (u⊥.E, 1),
(3) compute Ui+1 ← NIFS.V(vk,U, u, T), and
(4) output hash(vk, i+ 1, z0, F (zi, ωi),Ui+1).

Because F ′ can be computed in polynomial time, it can be represented as a
committed relaxed R1CS structure sF ′ . Let

(ui+1,wi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T))

denote the satisfying committed relaxed R1CS instance-witness pair (ui+1,wi+1)
for the execution of F ′ on non-deterministic advice (vk,Ui, ui, (i, z0, zi), ωi, T).

We define the IVC scheme (G,K,P,V) as follows.

G(1λ)→ pp: Output NIFS.G(1λ).

K(pp, F)→ (pk, vk):

Compute (pkfs, vkfs)← NIFS.K(pp, sF ′) and output (pk, vk)← ((F, pkfs), (F, vkfs)).

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:

Parse Πi as ((Ui,Wi), (ui,wi)) and then
(1) if i is 0, compute (Ui+1,Wi+1, T)← (u⊥,w⊥, u⊥.E);

otherwise, compute (Ui+1,Wi+1, T)← NIFS.P(pk, (Ui,Wi), (ui,wi)),
(2) compute (ui+1,wi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T)), and
(3) output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1)).

V(vk, (i, z0, zi), Πi)→ {0, 1}:

If i is 0, check that zi = z0;
otherwise,

(1) parse Πi as ((Ui,Wi), (ui,wi)),
(2) check that ui.x = hash(vk, i, z0, zi,Ui),
(3) check that (ui.E, u.u) = (u⊥.E, 1), and
(4) check that Wi and wi are satisfying witnesses to Ui and ui respectively.

Lemma 2 (Completeness). Construction 3 is an IVC scheme that satisfies
completeness.

Proof Intuition. Given a satisfying IVC proof Πi = ((Ui,Wi), (ui,wi)) sup-
pose that P outputs Πi+1 = ((Ui+1,Wi+1), (ui+1,wi+1)). Because Πi is a valid
IVC proof, (ui,wi) and (Ui,Wi) are satisfying instance-witness pairs. Because
(Ui+1,Wi+1) is obtained by folding (ui,wi) and (Ui,Wi), it must be satisfying
by the folding scheme’s completeness. By construction, (ui+1,wi+1) is satisfying
instance-witness pair that satisfies the IVC verifier’s auxiliary checks. Thus, Πi+1

is satisfying. [30, App. C] provides a formal proof.

19

Lemma 3 (Knowledge Soundness). Construction 3 is an IVC scheme that
satisfies knowledge soundness.

Proof Intuition. For function F , constant n, pp← G(1λ), and (pk, vk)← K(pp, F),
consider an adversary P∗ that outputs (z0, z,Π) such that V(vk, (n, z0, z), Π) = 1
with probability ε. We construct an extractor E that with input (pp, z0, z), outputs
(ω0, . . . , ωn−1) such that by computing zi ← F (zi−1, ωi−1) for all i ∈ {1, . . . , n}
we have that zn = z with probability ε − negl(λ). We show inductively that E
can construct an extractor Ei that outputs (zi, . . . , zn−1), (ωi, . . . , ωn−1), and Πi

such that for all j ∈ {i + 1, . . . , n}, zj = F (zj−1, ωj−1), V(vk, i, z0, zi, Πi) = 1,
and zn = z with probability ε − negl(λ). Then, because in the base case when
i = 0, V checks that z0 = zi, it is sufficient for E to run E0 to retrieve values
(ω0, . . . , ωn−1). Initially, En simply runs the assumed P∗ to get a satisfying Πn.
Given extractor Ei that satisfies the inductive hypothesis, we can construct
extractor Ei−1. [30, App. C] provides a formal proof.

Lemma 4 (Efficiency). When instantiated with the Pedersen commitment
scheme, we have that |F ′| = |F | + o(2 · G + 2 · H + R), where |F | denotes the
number of R1CS constraints to encode a function F , G is the number of constraints
required to encode a group scalar multiplication, H is the number of constraints
required to encode hash, and R is the number of constraints to encode the RO ρ.

Proof. On input instances U and u, NIFS.V computes E ← U.E + r · T + r2 · u.E
and W ← U.W + r · u.W . However, by construction, u.E = u⊥.E = 0. So, NIFS.V
computes two group scalar multiplications, as it does not need to compute r2 ·u.E.
NIFS.V additionally invokes the RO once to obtain a random scalar. Finally, F ′

makes two additional calls to hash (details are in the description of F ′).

5.2 Compressing IVC Proofs with zkSNARKs

To prove a statement about an incremental computation, the prover can produce
an IVC proof using the construction in the prior section and send the IVC
proof to the verifier. However, this does not satisfy zero-knowledge (as the IVC
proof described in the prior section does not hide the prover’s non-deterministic
inputs) and succinctness (as the IVC proof size is linear in the size F). In theory,
one can address this problem with any zkSNARK for NP. Specifically, P can
produce a zkSNARK proving that it knows Πi such that IVC verifier V accepts
for statement (i, z0, zi). Naturally, the proof sent to the verifier is succinct and
zero-knowledge due to the corresponding properties of the zkSNARK.

Unfortunately, employing an off-the-shelf zkSNARK makes the overall solu-
tion impractical as the zkSNARK prover must prove, among other things, the
knowledge of vectors whose commitments equal a particular value; this requires
encoding a linear number of group scalar multiplications in the programming
model of zkSNARKs (e.g., R1CS or circuits). To address this, we design a zk-
SNARK tailored for our particular purpose and we describe it in Section 6. Below,
we describe how to use a zkSNARK to prove the knowledge of a valid IVC proof.

20

Construction 4 (A zkSNARK of a Valid IVC Proof). Let IVC denote
the IVC scheme in Construction 3, let NIFS denote the non-interactive folding
scheme in Construction 2, and let hash denote a randomized cryptographic
hash function. Assume a zero-knowledge succinct non-interactive argument of
knowledge (Definition 2), zkSNARK, for committed relaxed R1CS. That is, given
public parameters pp, structure s, and instance u, zkSNARK.P can convince
zkSNARK.V in zero-knowledge and with a succinct proof (e.g., Oλ(logN)-sized
proof) that it knows a corresponding witness w such that (pp, s, u,w) is a satisfying
committed relaxed R1CS tuple.

Consider a polynomial-time computable function F . Suppose pp← IVC.G(1λ)
and (pk, vk)← IVC.K(pp, F). Suppose the prover P and verifier V are provided
an instance (i, z0, zi). We construct a zkSNARK that allows the prover to show
that it knows an IVC proof Πi such that IVC.V(vk, i, z0, zi, Πi) = 1.

In a nutshell, we leverage the fact that Π is two committed relaxed R1CS
instance-witness pairs. So, P first folds instance-witness pairs (u,w) and (U,W)
to produce a folded instance-witness pair (U′,W′), using NIFS.P. Next, P runs
zkSNARK.P to prove that it knows a valid witness for U′. In more detail, for
polynomial-time computable function F and corresponding function F ′ as defined
in Construction 3 (and instantiated with hash), we define (G,K,P,V) as follows.

G(1λ)→ pp:

(1) Compute ppNIFS ← NIFS.G(1λ)
(2) Compute ppzkSNARK ← zkSNARK.G(1λ)
(3) Output (ppNIFS, ppzkSNARK)

K(pp, F)→ (pk, vk):

(1) Compute (pkNIFS, vkNIFS)← NIFS.K(pp.ppNIFS, sF ′).
(2) Compute (pkzkSNARK, vkzkSNARK)← zkSNARK.K(pp.ppzkSNARK, sF ′).
(3) Output ((pkNIFS, pkzkSNARK), (vkNIFS, vkzkSNARK)).

P(pk, (i, z0, zi), Π)→ π:

If i is 0, output ⊥;
otherwise,

(1) parse Π as ((U,W), (u,w))
(2) compute (U′,W′, T)← NIFS.P(pkNIFS, (U,W), (u,w))
(3) compute πU′ ← zkSNARK.P(pkzkSNARK,U

′,W′)
(4) output (U, u, T , πU′).

V(vk, (i, z0, zi), π)→ {0, 1}:

If i is 0, check that z0 = zi;
otherwise,

21

(1) parse π as (U, u, T , πU′),
(2) check that u.x = hash(vkNIFS, i, z0, zi,U),
(3) check that (u.E, u.u) = (u⊥.E, 1),
(4) compute U′ ← NIFS.V(vkNIFS,U, u, T), and
(5) check that zkSNARK.V(vkzkSNARK,U

′, πU′) = 1.

Theorem 4. Construction 4 is a zkSNARK of a valid IVC proof produced by
Construction 3.

Proof Intuition. Completeness and knowledge soundness hold due to the com-
pleteness and knowledge soundness of the underlying zkSNARK and the non-
interactive folding scheme. Assuming the non-interactive folding scheme satisfies
succinctness (e.g., by using the Pedersen commitment scheme), succinctness holds
due to the fact that u, U, and T are succinct, and due to the succinctness of the
underling zkSNARK.

To prove zero-knowledge, we construct a simulator S that first iteratively
simulates (Ui, ui) for all i ∈ {1, . . . , n}. Specifically, given a simulated proof
(Ui, ui), S first uses the simulator of the non-interactive folding scheme to simulate
T i. S then folds Ui and ui using T i to produce Ui+1. S simulates ui using the
observation that all terms are randomized. In the final round, S folds un and
Un (again using a simulated Tn) to produce an instance U′, and then uses the
simulator of the zkSNARK to produce πU′ . S outputs (Un, un, Tn, πU′). We
provide a formal proof in [30, App. D].

6 A zkSNARK for Committed Relaxed R1CS

As described in Section 5.2, Nova needs a zkSNARK for committed relaxed R1CS
to prove the knowledge of a valid IVC proof succinctly and in zero-knowledge.
This section presents such a zkSNARK by adapting Spartan [38]. We build on
Spartan [38] to avoid FFTs and a trusted setup.

6.1 Background

We assume familiarity with polynomials. We provide background in [30, App. G].

Definition 13 (Polynomial Extension). Suppose f : {0, 1}` → F is a func-
tion that maps `-bit strings to an element of F . A polynomial extension of f
is a low-degree `-variate polynomial f̃ : F ` → F such that f̃(x) = f(x) for all
x ∈ {0, 1}`. A multilinear extension (MLE) of a function f : {0, 1}` → F is a
low-degree polynomial extension where the extension is a multilinear polynomial.

Every function f : {0, 1}` → F has a unique MLE, and conversely every
`-variate multilinear polynomial over F extends a unique function mapping
{0, 1}` → F . Below, we use f̃ to denote the unique MLE of f .

22

Lemma 5 (The Sum-Check Protocol [35]). For `-variate polynomial G over
F with degree at most µ in each variable, there exists a public-coin interactive
proof protocol (known as the sum-check protocol) to reduce the task of checking∑
x∈{0,1}` G(x) = T to the task of checking G(r) = e for r ∈ F `. The interaction

consists of a total of ` rounds, where in each round the verifier sends a single
element of F and the prover responds with µ+ 1 elements of F .

6.2 A Polynomial IOP for Idealized Relaxed R1CS

Our exposition below is based on Spartan [38] and its recent recapitulation [34].
The theorem below and its proof is a verbatim adaptation of Spartan’s polynomial
IOP for R1CS to relaxed R1CS.

Recall that an interactive proof (IP) [25] for a relation R is an interactive
protocol between a prover and a verifier where the prover proves the knowledge of
a witness w for a prescribed instance u such that (u,w) ∈ R. An interactive oracle
proof (IOP) [5, 37] generalizes interactive proofs where in each round the prover
may send an oracle (e.g., a string) and the verifier may query a previously-sent
oracle during the remainder of the protocol. A polynomial IOP [17] is an IOP in
which the oracle sent by the prover is a polynomial and the verifier may query for
an evaluation of the polynomial at a point in its domain. We consider a (minor)
variant of polynomial IOPs, where the verifier has oracle access to polynomials
in the R1CS structure and instance.

We first construct a polynomial IOP for an idealized version of relaxed
R1CS (Definition 14) where the instance contains a purported witness. We then
compile it into a zkSNARK for committed relaxed R1CS (Definition 12).

Definition 14 (Idealized Relaxed R1CS). Consider a finite field F . Let the
public parameters consist of size bounds m,n, ` ∈ N where m > `. The idealized
relaxed R1CS structure consists of sparse matrices A,B,C ∈ Fm×m with at most
n = Ω(m) non-zero entries in each matrix. A idealized relaxed R1CS instance
consists of an error vector E ∈ Fm, a scalar u ∈ F , witness vector W ∈ Fm,
and public inputs and outputs x ∈ F `. An instance (E, u,W, x) is satisfying if
(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

Construction 5 (Polynomial IOP for Idealized Relaxed R1CS). Con-
sider an idealized relaxed R1CS statement ϕ consisting of public parameters
(m,n, `), structure (A,B,C), and instance (E, u,W, x), Without loss of generality,
we assume that m and n are powers of 2 and that m = 2 · (`+ 1).

Let s = logm. We interpret the matrices A,B,C as functions with signature
{0, 1}logm × {0, 1}logm → F in a natural manner. In particular, an input in
{0, 1}logm × {0, 1}logm is interpreted as the binary representation of an index
(i, j) ∈ [m]× [m], where [m] := {1, . . . ,m} and the function outputs (i, j)th entry

of the matrix. As such, let Ã, B̃, and C̃ denote multilinear extensions of A, B,
and C interpreted as functions, so they are 2 logm-variate sparse multilinear
polynomials of size n. Similarly, we interpret E and W as functions with respective
signatures {0, 1}logm → F and {0, 1}logm−1 → F . Furthermore, let Ẽ and W̃

23

denote the multilinear extensions of E and W interpreted as functions, so they
are multilinear polynomials in logm and logm− 1 variables respectively.

As noted earlier, the verifier has an oracle access to the following polynomials:
Ã, B̃, C̃, Ẽ, and W̃ . Additionally, the verifier reads u and x in entirety.

Let Z = (W, x, u). Similar to how we interpret matrices as functions, we
interpret Z and (x, u) as functions with the following respective signatures:

{0, 1}s → F and {0, 1}s−1 → F . Observe that the MLE Z̃ of Z satisfies

Z̃(X1, . . . , Xs) = (1−X1) · W̃ (X2, . . . , Xs) +X1 · (̃x, u)(X2, . . . , Xs) (1)

Similar to [38, Theorem 4.1], checking if ϕ is satisfiable is equivalent, except
for a soundness error of logm/|F | over the choice of τ ∈ F s, to checking if the
following identity holds:

0
?
=

∑
x∈{0,1}s

ẽq(τ, x) · F (x), (2)

where

F (x) =

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·
 ∑
y∈{0,1}s

B̃(x, y) · Z̃(y)

−
u · ∑

y∈{0,1}s
C̃(x, y) · Z̃(y) + Ẽ(x)

 ,

and ẽq is the multilinear extension of eq : {0, 1}s×{0, 1}s → F where eq(x, e) = 1
if x = e and 0 otherwise.

That is, if ϕ is satisfiable, then Equation (2) holds with probability 1 over
the choice of τ , and if not, then Equation (2) holds with probability at most
O(logm/|F |) over the random choice of τ .

To compute the right-hand side in Equation (2), the prover and the verifier
apply the sum-check protocol to the following polynomial: g(x) := ẽq(τ, x) · F (x)
From the verifier’s perspective, this reduces the task of computing the right-hand
side of Equation (2) to the task of evaluating g at a random input rx ∈ F s. Note
that the verifier can locally evaluate ẽq(τ, rx) in O(logm) field operations via
ẽq(τ, rx) =

∏s
i=1 (τirx,i + (1− τi)(1− rx,i)). With ẽq(τ, rx) in hand, g(rx) can

be computed in O(1) time given the four quantities:
∑
y∈{0,1}s Ã(rx, y) · Z̃(y),∑

y∈{0,1}s B̃(rx, y) · Z̃(y),
∑
y∈{0,1}s C̃(rx, y) · Z̃(y), and Ẽ(rx).

The last quantity can be computed with a single query to polynomial Ẽ.
Furthermore, the first three quantities can be computed by applying the sum-
check protocol three more times in parallel, once to each of the following three
polynomials (using the same random vector of field elements, ry ∈ F s, in each of

the three invocations): Ã(rx, y) · Z̃(y), B̃(rx, y) · Z̃(y), and C̃(rx, y) · Z̃(y).
To perform the verifier’s final check in each of these three invocations of the

sum-check protocol, it suffices for the verifier to evaluate each of the above three

24

polynomials at the random vector ry, which means it suffices for the verifier to

evaluate Ã(rx, ry), B̃(rx, ry), C̃(rx, ry), and Z̃(ry). The first three evaluations

can be obtained via the verifier’s assumed query access to (Ã, B̃, C̃). Z̃(ry) can

be computed (via Equation (1)) from a query to W̃ and from computing (̃x, u).
In summary, we have the following polynomial IOP.

1. V → P: τ ∈R F s

2. V ↔ P: run the sum-check protocol to reduce the check in Equation (2)
to checking if the following hold, where rx, ry are vectors in F s chosen at
random by the verifier over the course of the sum-check protocol:

– Ã(rx, ry)
?
= vA, B̃(rx, ry)

?
= vB , and C̃(rx, ry)

?
= vC ;

– Ẽ(rx)
?
= vE ; and

– Z̃(ry)
?
= vZ .

3. V:
– check if Ã(rx, ry)

?
= vA, B̃(rx, ry)

?
= vB , and C̃(rx, ry)

?
= vC , with a query

to Ã, B̃, C̃ at (rx, ry);

– check if Ẽ(rx)
?
= vE with an oracle query to Ẽ; and

– check if Z̃(ry)
?
= vZ by checking if: vZ = (1 − ry[1]) · vW + ry[1] ·

(̃x, u)(ry[2..]), where ry[2..] refers to a slice of ry without the first element

of ry, and vW ← W̃ (ry[2..]) via an oracle query (see Equation (1)).

Theorem 5. Construction 5 is a polynomial IOP for idealized relaxed R1CS
defined over a finite field F , with the following parameters, where m denotes the
dimension of the R1CS matrices, and n denotes the number of non-zero entries in
the matrices: Soundness error is O(logm)/|F |; round complexity is O(logm); The

verifier has query access to 2 logm-variate multilinear polynomials Ã, B̃, C̃ in the
structure, and (logm)-variate multilinear polynomial Ẽ, and (logm− 1)-variate

multilinear polynomial W̃ in the instance; the verifier issues a single query to
polynomials Ã, B̃, C̃, and W̃ , Ẽ, and otherwise performs O(logm) operations
over F ; the prover performs O(n) operations over F to compute its messages in

the polynomial IOP and to respond to the verifier’s queries to (W̃ , Ẽ, Ã, B̃, C̃).

Proof. Perfect completeness follows from perfect completeness of the sum-check
protocol and the fact that Equation (2) holds with probability 1 over the choice
of τ if ϕ is satisfiable. Applying a standard union bound to the soundness error
introduced by probabilistic check in Equation (2) with the soundness error of the
sum-check protocol [35], we conclude that the soundness error for the depicted
polynomial IOP as at most O(logm)/|F |.

The sum-check protocol is applied four times (although three of the invocations
occur in parallel and in practice combined into one [38]). In each invocation, the
polynomial to which the sum-check protocol is applied has degree at most 3 in each
variable, and the number of variables is s = logm. Hence, the round complexity
of the polynomial IOP is O(logm). Since each polynomial has degree at most 3
in each variable, the total communication cost is O(logm) field elements.

25

The claimed verifier runtime is immediate from the verifier’s runtime in
the sum-check protocol, and the fact that ẽq can be evaluated at any input
(τ, rx) ∈ F 2s in O(logm) field operations. As in Spartan [38], the prover’s work in
the polynomial IOP in O(n) operations over F using prior techniques [42,46].

6.3 Compiling Polynomial IOPs to zkSNARKs

As in prior works [17,20,38], we compile our polynomial IOP into a zkSNARK
using a polynomial commitment scheme [28] and the Fiat-Shamir transform [22].

Interpreting commitments to vectors as polynomial commitments. It is
well known that commitments to m-sized vectors over F are commitments to logm-
variate multilinear polynomials represented with evaluations over {0, 1}m [32, 38,
44, 47]. Furthermore, there is a polynomial commitment scheme for logm-variate
multilinear polynomials if there exists an argument protocol to prove an inner
product computation between a committed vector and an m-sized public vector
((r1, 1− r1)⊗ . . .⊗ (rlogm, 1− rlogm)), where r ∈ F logm is an evaluation point.
There are two candidate constructions in the literature. Note that the primary
difference between two schemes is in the verifier’s time.

1. PCBP. If the commitment scheme for vectors over F is Pedersen’s commitments,
as in prior work [44], Bulletproofs [14] provides a suitable inner product
argument protocol. The polynomial commitment scheme here achieves the
following efficiency characteristics, assuming the hardness of the discrete
logarithm problem. For a logm-variate multilinear polynomial, committing
takes Oλ(m) time to produce an Oλ(1)-sized commitment; the prover incurs
Oλ(m) costs to produce an evaluation proof of size Oλ(logm) that can be
verified in Oλ(m). Note that PCBP is a special case of Hyrax’s polynomial
commitment scheme [44].

2. PCDory. If vectors over F are committed with a two-tiered “matrix” commit-
ment (see for example, [18, 32]), which provides Oλ(1)-sized commitments to
m-sized vectors under the SXDH assumption. With this commitment scheme,
Dory [32] provides the necessary inner product argument. The polynomial
commitment here achieves the following efficiency characteristics, assuming
the hardness of SXDH. For a logm-variate multilinear polynomial, commit-
ting takes Oλ(m) time to produce an Oλ(1)-sized commitment; the prover
incurs Oλ(m) costs to produce an evaluation proof of size Oλ(logm) that
can be verified in Oλ(logm).

Polynomial commitments for sparse multilinear polynomials. In our
constructions below, we require polynomial commitment schemes that can ef-
ficiently handle sparse multilinear polynomials. Spartan [38, §7] (and its opti-
mization [41, §6]) provides a generic compiler to transform existing polynomial
commitment schemes for multilinear polynomials into those that can efficiently
handle sparse multilinear polynomials. Specifically, we apply [34, Theorem 5])
(which captures Spartan’s compiler in a generic manner) to PCBP and PCDory to

26

obtain their variants that can efficiently handle sparse multilinear polynomials;
we refer to them as “Sparse-PCBP” and “Sparse-PCDory” respectively.

Theorem 6 (A zkSNARK from PCBP). Assuming the hardness of the dis-
crete logarithm problem, there exists a zkSNARK in the random oracle model for
committed relaxed R1CS with the following efficiency characteristics, where m
denotes the dimensions of R1CS matrices and n denotes the number of non-zero
entries in the matrices: The encoder runs in time Oλ(n); The prover runs in
time Oλ(n); The proof length is Oλ(log n); and the verifier runs in time Oλ(n).6

Proof. For R1CS structure (A,B,C), we first have the encoder directly provide

(Ã, B̃, C̃) in the prover key, and additionally provide sparse polynomial commit-

ments to Ã, B̃, C̃ using Sparse-PCBP in both the prover and verifier keys. Next, we
apply the compiler of [17] using PCBP to the polynomial IOP from Construction 5.
At a high level, this replaces all of the oracles provided to the verifier with PCBP

commitments, which the prover and verifier then use to simulate ideal queries to
a committed oracle. By [17, Theorem 6] this provides a public-coin honest-verifier
zero-knowledge interactive argument of knowledge. In particular, we can treat
the resulting protocol as an argument for committed relaxed R1CS because the
verifier is now provided with (polynomial) commitments to E and W . Applying
the Fiat-Shamir transform [22] achieves non-interactivity and zero-knowledge in
the random oracle model.

The claimed efficiency follows from the efficiency of the polynomial IOP,
PCBP, and Sparse-PCBP. In more detail, using Sparse-PCBP, the encoder takes
Oλ(n) time to create commitments 2 logm-variate sparse multilinear polynomials

Ã, B̃, C̃. The prover’s costs in the polynomial IOP is O(n). Furthermore, proving
the evaluations of two O(logm)-variate multilinear polynomials using PCBP, it
takes Oλ(m) time. And, to prove the evaluations of three 2 logm-variate sparse
multilinear polynomials of size n, using Sparse-PCBP, it takes Oλ(n) time. In
total, the prover time is Oλ(n). The proof length in the polynomial IOP is
O(logm), and the proof sizes in the polynomial evaluation proofs is Oλ(log n),
so the proof length is Oλ(log n). The verifier’s time in the polynomial IOP is
O(logm). In addition, it verifies five polynomial evaluations, which costs Oλ(n)
time: the two polynomial in the instance take Oλ(m) time using PCBP, and the
three polynomials in the structure takes Oλ(n) time using Sparse-PCBP. So, in
total, the verifier time is Oλ(n).

Corollary 1 (A zkSNARK from PCDory). Assuming the hardness of the
SXDH problem, there exists a zkSNARK in the random oracle model for committed
relaxed R1CS with the following efficiency characteristics, where m denotes the
dimensions of R1CS matrices and n denotes the number of non-zero entries in
the matrices: The encoder runs in time Oλ(n); The prover runs in time Oλ(n);
The proof length is Oλ(log n); and the verifier runs in time Oλ(log n).

6 [30, App. H] describes a minor optimization and a corresponding Corollary.

27

References

[1] bellperson. https://github.com/filecoin-project/bellperson
[2] neptune. https://github.com/filecoin-project/neptune
[3] Nova: Recursive SNARKs without trusted setup. https://github.com/

Microsoft/Nova
[4] Pasta curves. https://github.com/zcash/pasta
[5] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle Proofs. In: TCC

(2016)
[6] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge

via cycles of elliptic curves. In: CRYPTO (2014)
[7] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back
again. In: ITCS (2012)

[8] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKs and proof-carrying data. In: STOC (2013)

[9] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[10] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive zk-
SNARKs from any Additive Polynomial Commitment Scheme. Cryptology
ePrint Archive, Report 2020/1536 (2020)

[11] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
EUROCRYPT (2016)

[12] Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

[13] Bowe, S., Grigg, J., Hopwood, D.: Halo2 (2020), https://github.com/zcash/
halo2

[14] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: S&P
(2018)

[15] Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data
without succinct arguments. Cryptology ePrint Archive, Report 2020/1618
(2020)

[16] Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from
accumulation schemes. In: TCC (2020)

[17] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: EUROCRYPT (2020)

[18] Bünz, B., Maller, M., Mishra, P., Vesely, N.: Proofs for inner pairing products
and applications. Cryptology ePrint Archive, Report 2019/1177 (2019)

[19] Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation
costs via incremental verification for ledger systems. Cryptology ePrint
Archive, Report 2020/1522 (2020)

https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/neptune
https://github.com/Microsoft/Nova
https://github.com/Microsoft/Nova
https://github.com/zcash/pasta
https://github.com/zcash/halo2
https://github.com/zcash/halo2

[20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: EUROCRYPT
(2020)

[21] Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent
recursive proofs from holography. In: EUROCRYPT (2020)

[22] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifica-
tion and signature problems. In: CRYPTO. pp. 186–194 (1986)

[23] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: EUROCRYPT (2013)

[24] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC. pp. 99–108 (2011)

[25] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof-systems. In: STOC (1985)

[26] Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.:
Poseidon: A new hash function for zero-knowledge proof systems. Cryptology
ePrint Archive, Paper 2019/458 (2019)

[27] Groth, J.: On the size of pairing-based non-interactive arguments. In: EU-
ROCRYPT (2016)

[28] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: ASIACRYPT. pp. 177–194 (2010)

[29] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

[30] Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Argu-
ments from Folding Schemes. Cryptology ePrint Archive, Paper 2021/370
(2021)

[31] Labs, O.: Mina cryptocurrency (2020), https://minaprotocol.com

[32] Lee, J.: Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. Cryptology ePrint Archive, Report 2020/1274
(2020)

[33] Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated
execution. In: S&P (2020)

[34] Lee, J., Setty, S., Thaler, J., Wahby, R.: Linear-time zero-knowledge SNARKs
for R1CS. Cryptology ePrint Archive, Report 2021/030 (2021)

[35] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interac-
tive proof systems. In: FOCS (Oct 1990)

[36] Micali, S.: CS proofs. In: FOCS (1994)

[37] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive
proofs for delegating computation. In: STOC. pp. 49–62 (2016)

[38] Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In: CRYPTO (2020)

[39] Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of
concurrent services in zero-knowledge. In: OSDI (Oct 2018)

[40] Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolv-
ing the conflict between generality and plausibility in verified computation.
In: EuroSys (Apr 2013)

29

https://minaprotocol.com

[41] Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryp-
tology ePrint Archive, Report 2020/1275 (2020)

[42] Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
CRYPTO (2013)

[43] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: TCC. pp. 552–576 (2008)

[44] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: S&P (2018)

[45] Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT. pp.
379–407 (2019)

[46] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct
zero-knowledge proofs with optimal prover computation. In: CRYPTO (2019)

[47] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL:
Verifying arbitrary SQL queries over dynamic outsourced databases. In: S&P
(2017)

30

	Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
	References

