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Abstract. The Meet-in-the-Middle approach is one of the most power-
ful cryptanalysis techniques, demonstrated by its applications in preim-
age attacks on the full MD4, MD5, Tiger, HAVAL, and Haraka-512 v2 hash
functions, and key recovery of the full block cipher KTANTAN. The suc-
cess relies on the separation of a primitive into two independent chunks,
where each active cell of the state is used to represent only one chunk
or is otherwise considered unusable once mixed. We observe that some
of such cells are linearly mixed and can be as useful as the independent
ones. This leads to the introduction of superposition states and a whole
suite of accompanied techniques, which we incorporate into the MILP-
based search framework proposed by Bao et al. at EUROCRYPT 2021
and Dong et al. at CRYPTO 2021, and find applications on a wide range
of AES-like hash functions and block ciphers.
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1 Introduction

Hash function is a function mapping a document of arbitrary length into a short
fixed-length digest. For a cryptographically secure hash function, it should fulfill
three basic security requirements: collision resistance, preimage resistance, and
second-preimage resistance. In this paper, we focus on the security notion of
preimage and collision resistance, i.e., it should be computationally difficult to
invert the function or find two inputs map to the same digest. Specially, for
an ideal hash function H with n-bit digest and a target T given at random, it
should cost no less than 2n compression function evaluations to find an input x
such that H(x) = T . Preimage attack refers to an algorithm achieving this in
lesser evaluations. Collision attack refers to an algorithm finding different x and
x′ such that H(x) = H(x′) with lesser evaluations than birthday attack, i.e.,
2n/2 computations.
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Traditionally, there are two common methods to construct cryptographic
hash functions. One is to convert from block ciphers through mode of operations,
and the other is to build from scratch. There are 12 secure PGV modes [23],
which enjoy the proof of security reduction of the hash function to the underlying
block cipher. This method is especially useful when a block cipher like AES [10]
has long-standing security against intensive cryptanalysis. When it is already
implemented for other purposes like encryption, the same implementation can
be re-used to construct a hash function by implementing the additional mode
only. In this way it also leads to performance merits. Particularly, hash function
constructed from AES through PGV modes are called AES hashing, and they
have been standardized by Zigbee [1] and also suggested by ISO/IEC [17]. Due
to the well understood security and high performance, many dedicated block
ciphers and hash functions built from scratch follow similar design strategy by
using an AES-like round function, such as Whirlpool [7] and Grøstl [13].

The Meet-in-the-Middle (MITM) attack has a long history and an im-
portant role in various cryptanalysis on various primitives. It was introduced to
preimage attacks on hash functions by Aumasson et al. [3] and Sasaki et al. [25] in
2008. Since then, MITM preimage attack has shown its power on many MD/SHA
families of hash functions. That includes the full versions of MD4 [15], MD5 [27],
Tiger [15], and HAVAL [25], as well as lightweight block cipher KTANTAN [8].

The basic MITM idea is to find ways to split the cipher into two computa-
tional chunks and find the so-called neutral bits from each side, independent of
the computation of the state of the other side. Hence, the two chunks can be
computed independently but end up at a common state, where previously in-
dependent computations are finally pairwise matched. The critical point is that
the independence between the two chunks allows their results to be pairwise
matchable, enabling this MITM procedure to require fewer computations than
a trivial enumeration.

In 2011, MITM was introduced by Sasaki [24] for the first time to preim-
age attack on AES hashing, invalidating the preimage resistance of the 7-round
reduced version. To avoid dealing with the key schedule, the key value of AES
was pre-set to a constant, and hence the same number of rounds was attacked
for AES hashing based on all three versions of AES (AES-128, AES-192, and
AES-256). In 2019, the attack was revisited in [4], and it was found that the
degree of freedoms from the key values can be utilized for at least one side of
the computation. This observation led to the attack complexity improvements
over 7-round AES-128 hashing, and increased the number of attacked rounds
from 7 to 8 for the AES-hashing based on AES-192 and AES-256. In 2020, the
MITM preimage attack was introduced to meet a popular automatic tool, the
Mixed-Integer-Linear-Programming (MILP) [5]. This match with MILP enables
the previously invented enhancements for MITM, e.g., the initial structure, the
selection and cancellation of neutral bits, to evolve to a more generalized form.
The MILP models characterizing the generalized formalization of MITM, pro-
duced many improved preimage attacks on AES hashing, penetrated 8-round
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AES-128 hashing and full rounds of Haraka v2-512. In 2021, MITM-MILP mod-
els find more applications not only in preimage attacks but also in key-recovery
and collision attacks on AES-like ciphers [11].

A common practice in all these MITM attacks is the byte-oriented decompo-
sition of states, i.e., each useful byte carries the influence of neutral bits from
at most one direction. Once influences of neutral bits from both directions reach
the same byte, this byte will be considered unusable for the either chunk. An
immediate consequence of this practice is that the information from unusable
bytes is lost, and any byte in the subsequent round computed from it becomes
unusable too.

1.1 Our Contribution

Superposition Meet-in-the-Middle Attack Framework. In this work, dif-
ferent from the byte-oriented decomposition, we propose Superposition MITM
attack framework with the help of Superposition State (SupP), under which
every byte is viewed as a combination of two virtual bytes separately represent-
ing the influence of the neutral bits from one direction each. It becomes obvious
to see that, the advantage of this representation is the preservation of linearity,
i.e., any state which is a linear combination of neutral bits from both directions
will be kept so when linear operations such as MixColumns and AddRoundKey are
applied. SupP opens up the possibility of new local collisions between/within the
encryption and key states, thus maximizes the chances of canceling impacts on
independence and enables new MITM attack configurations. Enabled by SupP,
a suite of techniques is added into the MILP-based search framework proposed
by Bao et al. [5] and Dong et al. [11], which greatly enlarged the solution space
and led to rich results on AES-like ciphers.

Guess-and-Determine (GnD) is a popular technique and has countless ap-
plications in cryptanalysis against symmetric-key primitives such as stream ci-
phers [31] and block ciphers [9]. The basic idea is that, in the process of some
attack, the gain of guessing some state or key bits is higher than the price, i.e.,
the guess itself comes with a probability p then the attack needs to repeat at
least 1/p times in order to have a correct guess. This technique has also been
used in the MITM preimage attacks [15, 28, 30], where the guess allows further
computation of more state/message bits which help either extend the attack to
more rounds or lower the time complexities. It is noted that GnD has never been
incorporated into the MILP models for the MITM attacks in [5, 11].

Bi-direction Attribute-Propagation and Cancellation (BiDir). In
previous MITM attacks [4, 5, 11, 24, 28, 30], each computation chunk propagates
towards a single direction. Although the idea of adding constraints to some neu-
tral bits in order to cancel their impact on the opposite computation has already
appeared, such cancellations are only allowed in one direction in each chunk. In
this work, we allow cancellation between neutral bytes in both directions. This
led us to attack configurations with lower time complexities.
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Multiple Ways of AddRoundKey (MulAK). The identical encryption and
key-schedule of Whirlpool allows the AddRoundKey to be moved around the
MixColumns using an equivalent key state already involved in the key-schedule.
We add the flexibility of key-addition at different positions in each round into
the model, and make it possible to save the double consumption of freedom de-
grees between the encryption and key-schedule. This simple yet efficient strategy
makes it possible to attack one more round on reduced Whirlpool.

Application Results. The superposition MITM attack framework aided by the
additional techniques shows its effectiveness when applied to the popular AES-
like hashing Whirlpool (an ISO/IEC standard), Grøstl (a finalist of the SHA-3
competition), AES-hashing modes (widely used, e.g., AES-MMO in Zigbee proto-
cols), and tweakable block cipher SKINNY (in its way to be included in ISO/IEC
18033). Broad improvements upon the previous best results on preimage, colli-
sion, and key-recovery attacks were obtained. The updates and a comparison
with the state-of-the-art results in literature are summarized in Table 1.

For Whirlpool, the preimage resistance of its 7-round reduced version out of
the total 10 rounds gets challenged for the first time, a decade after MITM itself
challenging its 5-round [24] for the first time, or GnD joining MITM challenging
its 6-rounds [28]. Meanwhile, the complexities of preimage attacks on the 5- and
6-round reduced versions are significantly improved. The new attack on 7-round
Whirlpool relies on multiple modeling enhancements, including GnD, BiDir, and
MulAK. Noticeably, in terms of preimage resistance, the presented attack reduces
one round security margin out of the remaining four for this important target.

For Grøstl, there are two main instances, Grøstl-256 and Grøstl-512, named
after the size of their digests. The preimage resistance of their longest attacked
variants, 6-round Grøstl-256 and 8-round Grøstl-512, get updated eight years
after [32]. Improvements with larger complexity reductions are also found on
variants with lesser rounds. The improved attacks are achieved by allowing BiDir,
in addition to the GnD. Such improvement is not possible using only MITM-GnD,
and MITM-GnD is already considered in [22,32].

In addition, the MILP models for searching preimage attacks can be directly
transformed into models searching for collision attacks on hash functions and key-
recovery attacks on block ciphers. With the superposition MITM-GnD models,
immediate improvements were obtained on many more targets: For Grøstl-256,
the collision resistance of its output transformation’s longest attacked version,
the 6-round, gets updated; For AES-hashing, the collision resistance of hash
functions based on AES-128 reduced to 7-round get challenged, more than a
decade after rebound attacks challenging its 6-round [14, 19], or two years after
quantum attacks challenging its 7-round version [16]. For SKINNY, the security
in terms of key-recovery attack in the single-key setting of the longest attacked
version, 23-round SKINNY-n-3n, gets updated. Remarkably, data complexity is
drastically reduced, e.g., from 252 to 228 for SKINNY-64-192.
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Organization. Section 2 briefly introduces the AES-like hashing and MITM
preimage attacks. Section 3 describes the details of our enhanced MILP model.
The application to Whirlpool and Grøstl is given in Section 4 and 5, respectively.
Section 6 briefly introduces the applications to collision and key-recovery attack.
Please refer to the full version [6] for more details. Relevant source codes can be
found via https://github.com/MITM-AES-like.

2 AES-like Hashing and MITM Preimage Attacks
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Fig. 1: Overview of AES-like hashing [5]

The AES-like hashing in our context refers to those hash functions whose com-
pression function (CF) or output transformation (OT) uses an AES-like round
function as depicted in Figure 1, where the state can be viewed as a Nrow×Ncol
matrix of c-bit cells. There are 4 general operations in order:

– SubBytes (SB) applies a non-linear substitution-box operation to each cell.
– ShiftRows (SR) cyclically shifts each row by a pre-defined number of positions.
– MixColumns (MC) mixes every column, e.g., by multiplying an (MDS) matrix.
– AddRoundKey (AK) adds the round key (or round message).

For some designs, the SR and MC may work on the transpose of the matrix, i.e.,
SR on columns and MC on rows; the SR can be a cell-permutation.

The MITM Preimage Attacks generally cut the entire encryption process
into two chunks (forward and backward chunks), and there are few neutral bits
from each side, so that the computation of each chunk can be done independently
starting from the cutting point (starting point). The two computations end at a
common intermediate (partial) state (matching point), and the computed results
from the two sides can be pairwise matched via a linear relation.

Since MITM has been applied to preimage attacks on MD4, MD5, and HAVAL [3,
20,25,26], it has been developed further and applied to preimage attacks on many
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Table 1: Updated results on (pseudo-) preimage attacks
(Pseudo-) Preimage

Cipher (Target) #R Time-1 Time-2 (
−→
db,
←−
dr,
→←
m

,
−→
dgb

,
←−
dgr )

Critical Tech. Ref.

5/10 2416 2448 (16, 12, 16, 0, 0) Dedicated [28]
5/10 2352 2433 (20, 20, 20, 0, 0) MILP, BiDir, MulAK ∗Fig. 13Whirlpool (Hash) 6/10 2448 2481 (32, 8, 32, 0, 24) Dedicated, GnD [28]
6/10 2440 2477 (9, 24, 24, 15, 0) MILP, GnD ∗Fig. 12
7/10 2480 2497 (16, 4, 16, 0, 12) MILP, GnD, MulAK ∗Fig. 3, 11

5/10 2192 2234.67 (8, 8, 8, 0, 0) Dedicated ‡ [22, 32]
5/10 2184 2232 (9, 9, 16, 0, 0) MILP, BiDir ∗Fig. 14, 15Grøstl-256 (CF+OT) 6/10 2240 2252 (8, 2, 8, 0, 6) Dedicated, GnD ‡ [22, 32]
6/10 2224 2245.33 (4, 20, 16, 12, 0) MILP, GnD, BiDir ∗Fig. 5, 6

7/14 2416 2480 (19, 12, 19, 0, 7) MILP, GnD, BiDir ∗Fig. 16, 17Grøstl-512 (CF+OT) 8/14 2472 2504 (10, 10, 18, 5, 5) Dedicated † [32]
8/14 2472 2500 (9, 5, 10, 0, 4) MILP, GnD, BiDir ∗Fig. 7, 8

9/12 2120 2125 (1, 1, 1, 0, 0) MILP [5]
AES-192 Hashing 9/12 2112 2121 (2, 2, 2, 0, 0) MILP, SupP, BiDir ∗Fig. 18

8/10 2120 2123 (1, 4, 4, 0, 0) Dedicated [4]
Kiasu-BC Hashing 9/10 2120 2125 (1, 1, 1, 0, 0) MILP, SupP, BiDir ∗Fig. 19

(Free-start) Collision

Cipher (Target) #R Time Mem Setting & Type Critical Tech. Ref.

Grøstl-256 (OT) 6/10 2124 2124 classic collision MILP [11]
6/10 2116 2116 classic collision MILP, BiDir ∗Fig. 20

Grøstl-512 (OT) 8/14 2248 2248 classic collision MILP [11]
8/14 2244 2244 classic collision MILP, BiDir ∗Fig. 21

AES-128 Hashing
6/10 256 232 classic collision Dedicated [14, 19]
7/10 242.5 (248) quantum collision Dedicated [16]
7/10 256 256 classic free-start MILP, BiDir ∗Fig. 22

Key-recovery
Cipher (Target) #R Time Mem Data Critical Tech. Ref.

SKINNY-64-192 23/40 2188 24 252 MILP [11]
23/40 2184 28 260 MILP, SupP ∗Fig. 23
23/40 2188 24 228 MILP, SupP ∗Fig. 24

SKINNY-128-384 23/56 2376 28 2104 MILP [11]
23/56 2368 216 2120 MILP, SupP ∗Fig. 23
23/56 2376 28 256 MILP, SupP ∗Fig. 24

– CF: Compression Function; OT: Output Transformation; Dedicated: Dedicated method;
– Time-1 and Time-2 are complexities of pseudo-preimage and preimage attacks following the
notions in [4] when the target is a hash function, and complexities of inverting OT and CF+OT
(pseudo-preimage) following the notions in [30] for Grøstl, respectively.
– ∗ Please refer to the full version of this paper [6].
– † The presented complexities for the attacks in [32] are recomputed by removing constant factors
(e.g., the cost CT L for lookup table is replaced by 1) and replacing C2(2n, b) that is lower bounded
by b/2 in [30] with C2(2n, b) that can be 20 considering the amortized complexity. Thus, all
complexities are computed follow the same way.
– ‡ The 5- and 6-round attacks in [22] are on the OT of Grøstl-256. To convert to pseudo-preimage,
we used the results for the case with no truncation in [22]. However, for the 6-round attack, in
which guessing are required, it cannot be directly used. Thus, we combined the attack on OT
in [22] with the best previous attack on the CF in [32].
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other hash functions. Advanced techniques in MITM preimage attacks were de-
veloped, including the splice-and-cut [2], (probabilistic) initial structure [15,27],
and (indirect) partial matching techniques [2, 27].

The splice-and-cut technique [2] views the input and output of the compres-
sion function connected through the feedforward operation. The initial structure
is a few consecutive starting steps, where the two chunks overlap and two sets
of neutral words (denoted by

−→N and
←−N ) appear simultaneously at these steps.

Typically, one adds constraints to the values of
−→N and

←−N to limit their im-
pact on the opposite chunk such that steps after the initial structure (forward
chunk) can be computed independently of

←−N and steps before the initial struc-
ture (backward chunk) can be computed independently of

−→N . The (indirect-)
partial matching exploits any easily determined relations between the computed
ending states from the two computation chunks instead of requiring values of
full states. There may or may not be any neutral bits from the message of the
compression function (or key of the underlying block cipher).

The Attack Framework. The procedure and complexity of the MITM attack
depend on how the computation is decomposed into independent chunks, how
neutral bits are selected and constrained, and how to match. Once these config-
urations have been determined, the basic MITM pseudo-preimage attack on a
CF goes as follows (with initial structure and partial matching).

1. Assign arbitrary compatible values to all bytes except those that depend on
the neutral bytes.

2. Obtain possible values of neutral bytes
−→N and

←−N under the constraints on
them. Suppose there are 2d1 values for

−→N , and 2d2 for
←−N .

3. For all 2d1 values of
−→N , compute forward from the initial structure to the

matching point to get a table
−→L , whose indices are the values for matching,

and the elements are the values of
−→N .

4. For all 2d2 values of
←−N , compute backward from the initial structure to the

matching point to get a table
←−L , whose indices are the values for matching,

and the elements are the values of
←−N .

5. Check whether there is a match on indices between
−→L and

←−L .
6. In case of partial-matching exist in the above step, for the surviving pairs,

check for a full-state match. In case none of them are fully matched, repeat
the procedure by changing values assigned in Step 1 till find a full match.

The Attack Complexity. Denote the size of the internal state by n, the degree
of freedom in the forward and backward chunks by d1 and d2, and the number
of bits for (partial-) matching by m, the time complexity of the attack is [4]:

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) ≃ 2n−min(d1,d2,m). (1)
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3 MILP Model for the Configuration Search

3.1 Basic MILP Model for MITM

For searching MITM attacks using MILP, one should characterize valid attack
configurations in MILP language.

To generate MILP models and search for the best MITM attack, the high-
level workflow is as follows. Given a targeted cipher, enumerate all possible com-
binations of starting and matching points (detailed in Searching Framework.).
For each combination, build the MILP model as follows: 1) claim variables in-
dicating the attribute of each state cell in the input/output of each operation
in each round, introduce necessary auxiliary variables; 2) define linear equations
and inequalities to express relations and constraints among those variables ac-
cording to the cipher specification and attack principles; 3) write the objective
function corresponding to the optimal computational complexity. For each gen-
erated MILP model, use an MILP solver to search its optimal solution; Among
solutions of various MILP models, select the best one; parse the solution into
the attack.

The challenging parts of the modeling are to formalize new attack settings
and techniques into explicit rules and then translate into linear inequalities/equations.
The linear inequalities/equations should be exact such that the solutions can
one-to-one correspond to valid attack configurations.

In the following, we describe the basic modeling method following the frame-
work in [5]. As introducing the basic model, we directly introduce some natural
generalizations, while other generalizations and enhancements are deferred to
the sequel subsections.

Notations and Encoding. For the ease of notation, the conversational coloring
scheme for describing and visualizing MITM attacks [4,5,11,24,28,30] is adopted
here to characterize the attributes of state cells. As in the MILP modeling in [5],
the attribute of individual state cell is encoded using two binary variables (x, y)
and defined as follows. A cell is
• Gray ( ) if and only if its value is a predefined constant, thus is known and

fixed in both forward and backward chunks; Indicating variables (x, y) = (1, 1);
• Blue ( ) if and only if its value is determined by forward neutral bytes and

predefined constants, thus is known and active in the forward chunk but
unknown in the backward; Indicating variables (x, y) = (1, 0);

• Red ( ) if and only if its value is determined by backward neutral bytes and
predefined constants, thus is known and active in the backward chunk but
unknown in the forward; Indicating variables (x, y) = (0, 1);

• White ( ) if and only if its value is determined by both forward and back-
ward neutral bytes, thus can be computed independently in neither chunk;
Indicating variables (x, y) = (0, 0).

For convenience, Black ( ) is used to represent any of the 4 cells ( , , , ).
Additionally, indicating variables β and ω are defined as follows.
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– β =

{
1 is inactive, do not contain degree of freedom; is Gray;
0 is active, is Blue, Red or White.

– ω =

{
1 cannot be computed in both forward and backward chunks; is White;
0 can be computed in at least one direction; is Blue, Red, or Gray.

Searching Framework. The top-level of a search for the optimal MITM at-
tacks is to enumerate all high-level configurations. A high-level configuration is
determined by four parameters, including totalr, initE

r , initK
r , and matchr,

representing the total number of targeted rounds, the location of the initial state
in encryption, the location of the initial state in the key-schedule, and the loca-
tion of the matching point, respectively. For the complete search of totalr-round
attacks, all possible combinations of values of initE

r , initK
r , and matchr should

be tried; each combination corresponds to an independent MILP model; The
following description of the modeling method is for an individual model with a
fixed (totalr, initE

r , initK
r , matchr).

When building an MILP model, constraints are imposed on propagation of
attributes starting from some initial states (i.e.,

←→
S ENC and

←→
S KSA in round initE

r

and initK
r ) and terminating at some ending states (i.e.,

−−→
End and

←−−
End in round

matchr) from two directions.

– In all states in both encryption and key-schedule data-paths, constraints
are imposed on attribute-indicating variables for state cells. The constraints
indicate the relations of cells between consecutive states intra-round and
inter-round. The change of attributes of cells from state to state is attribute
propagation.

– In the initial states in encryption and key-schedule (i.e., in
←→
S ENC and

←→
S KSA),

the attribute of each cell is constrained to be non-White. Thus, its indicating
variables can take three assignments, i.e., (xi, yi) ∈ {(1, 0), (0, 1), (1, 1)} for
∀ i ∈ N , where N = {0, 1, · · · , Nrow · Ncol − 1}. The states in the starting
round are called initial because initial degree of freedoms are all contained
in these states. Denote the initial degree of freedom for the forward by −→ι ,
and that for backward by ←−ι . Accordingly, one has the equations for −→ι and
←−ι as in Eq. (2), where |BLENC|, |RDENC|, |BLKSA|, and |RDKSA| denote the
number of Blue, Red cells in

←→
S ENC, and Blue, Red cells

←→
S KSA, respectively.

– In the ending states at the matching round (i.e.,
−−→
End and

←−−
End), each column

is associated with a general variable since the matching is performed column-
wise. Specifically, for each pair of input/output columns of the states before
and after MixColumns, the associated variable →←m i indicates the degree of
matching in column i and is constrained by the numbers of Blue, Red, and
Gray cells. The total degree of matching of the attack, denoted as →←m , is the
sum of the degrees of matching from all columns, as shown in Eq. (4).

In order for Blue- and Red-attribute to independently propagate from initial
states to ending states and remain matchable, special constraints might be oc-
casionally imposed to indicate whether to cancel impact by consuming degrees
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of freedom. Concrete constraints on how attributes propagate and how freedom
be consumed will be introduced shortly. At this moment, let’s denote the ac-
cumulated consumed degree of freedom of forward by −→σ and that of backward
by ←−σ . The remaining degrees of freedom in forward and backward (denoted
by
−→
db and

←−
dr , respectively) after the occasionally freedom-consuming during

attribute-propagation are constrained as in Eq. (3). Note that the
−→
db and

←−
dr

are the essential degrees of freedom for the attack, which determine the attack
complexity.

According to the attack complexity in Formula 1, the search for a valid attack
corresponds to the search for a valid attribute propagation with min{

−→
db ,
←−
dr ,
→←
m

} ≥ 1; the search of the optimal attack corresponds to the search with maxi-
mized min{

−→
db ,
←−
dr ,
→←
m }. Thus, the objective of the search model is to maximize

a variable τObj, which is constrained by Eq. (5).

{−→ι = |BLENC|+ |BLKSA|,
←−ι = |RDENC|+ |RDKSA|.

{−→
db = −→ι −−→σ ,
←−
dr =←−ι −←−σ .

→←
m =

Ncol−1∑
i=0

→←
m i .


τObj ≤

−→
db ,

τObj ≤
←−
dr ,

τObj ≤
→←
m .

(2) (3) (4) (5)

Basic Rules for Attributes to Propagate and to Match. The attribute
propagation and the matching are governed by two types of constraints. The
first type is due to the specification of the targeted cipher; the second type
is due to the principle of the attack. If attacks are technically improved, the
second type constraints should be adapted to the improvement. In turn, when
the second type constraints are properly relaxed, the attack space is expanded
so that improved attacks might be discovered.

Remark 1 (Bi-direction attribute-propagation and cancellation (BiDir)). Previ-
ously [4, 5, 11, 24, 28, 30], the constraints are imposed such that the propagation
of Red-attribute can “make a concession” 5 to the propagation of Blue, but Blue
never “gives in” to Red for forward computation, and vice versa. Unlike the pre-
vious work, in this work, the constraints are relaxed such that the propagation
of Blue or Red attribute can make a concession (cancel its impact by consum-
ing its degree of freedom) to the propagation of the opposite attribute in both
directions. The reasons are as follows.
5 Here, the use of phrases “make a concession” or “give in” is due to a view of the for-

ward computation and backward computation be in a competition for being able to
be propagated unaffected. In previous attacks, for forward computation, propagation
of Blue-attribute is of high priority. When unaffected propagation of Blue-attribute
becomes not straightforward due to the existence of cells of Red-attribute, we may
try to cancel the impact by consuming the freedom of backward to ensure the propa-
gation of Blue-attribute. We say such cancellation of impact by consuming freedom
“concede”, “make a concession ” or “give in”.

10



– In the modeling, we introduce neutral bytes into key states as well as in
encryption states to bring more degree of freedom. In attribute propagation
through encryption, letting Blue-propagation concede such that a local Red-
cell be reserved, that might enable a remote Red-cell introduced from the
key state be canceled such that Blue-propagation be possible in that remote
point. That also applies to the case of Red-propagation.

– Besides, letting Blue to concede and reserve a local Red-cell might enable
this local Red-cell to propagate and combine with other Red-cells at a remote
point such that their impacts on a certain cell be mutually canceled through
MixColumns and benefit Blue-propagation.

– In addition, once an attribute of Blue or Red propagate to the ending states
no matter from which direction, it provides source of degree of matching.

Relaxing the model in this way results in attacks with bi-direction attribute-
propagation; the attack space is expanded so that improved attacks are possible.
However, this relaxation caused the models to be solved less efficiently. When the
efficiency is acceptable, we used such relaxed model for better attacks. Otherwise,
we restricted the models such that in certain rounds of the cipher, one attribute
can only propagate in one direction and concede in the other direction.

In the following, we describe the MILP modeling with the relaxed model as
the basic setting. The difference between this basic modeling and the modeling
in [5] and how to get the restricted models will be indicated alongside.

Modeling of the Attribute Propagation through SubBytes and ShiftRows. The
SubBytes operation does not change the attribute of the cells, thus is not involved
when building the basic model. The ShiftRows operation permutes the state cells,
thus can be modeled by a set of equations or hardcoded variable substitution.

Modeling of the Attribute Propagation through AddRoundKey and XOR (XOR-RULE).
The AddRoundKey operation is involved in the model when the cipher has KeySched-
ule (message schedule), and the attack exploits freedom from the key state. Ba-
sically, the attribute propagation through AddRoundKey is governed by a set of
cell-wise constraints under the name XOR-RULE. The high-level principle is that
White is the dominant attribute, Gray is the recessive attribute, Blue and Red
are mutually exclusive attributes. The concrete rules are as follows.

– A White cell XORed with a cell of any attribute results in a White cell, i.e.,
( ⊕ ) −→ ;

– a Gray cell XORed with a cell of any attribute results in the cell of the same
attribute, i.e.,
( ⊕ ) −→ ;

– a couple of Blue and Red cells results in a cell deteriorated to White, i.e.,
( ⊕ ) −→ ;

– a couple of Blue cells can keep the attributes without consuming or evolve
to Gray by consuming a degree of freedom of Blue, i.e.,
( ⊕ ) −→ or ( ⊕ ) −1×−−−−→ ;

11



– a couple of Red cells can keep the attributes without consuming or evolve to
Gray by consuming a degree of freedom of Red, i.e.,
( ⊕ ) −→ or ( ⊕ ) −1×−−−−→ .

These propagation rules can be described using only a few variables, thus can
be easily translated into inequalities using convex hull computations [29].

Modeling of the Attribute Propagation through MixColumns (MC-RULE). The at-
tribute propagation through MixColumns is governed by a set of column-wise
constraints under the name MC-RULE. The MC-RULE constraints are mostly gov-
erned by the branch number (Brn) of the MixColumns. Again, the high-level
principle is that White is the dominant attribute, Gray is the recessive attribute,
Blue and Red are mutually exclusive attributes. The concrete rules are as follows:

– any White cell in an input column results in all cells in the output column
deteriorated to White, i.e.,
(i× , j × ) −→ (Nrow × ), where i ≥ 1, i + j = Nrow;

– the Gray attribute inherits to the output without consuming degrees of free-
dom only if all cells in the input column are Gray, i.e.,
(Nrow × ) −→ (Nrow × );

– existing no White cell, a column of i Blue, j Red, and k Gray cells propagate
to a column of i′ Blue, j′ Red, k′ Gray, and ℓ′ White cells by consuming
j′ + k′ degree of freedom from Blue, and i′ + k′ from Red, i.e.,
(i× , j × , k× ) −(j′+k′)× if i ̸=0−−−−−−−−−−−−→

−(i′+k′)× if j ̸=0
(i′× , j′× , k′× , ℓ′× ), where

i + j + k = i′ + j′ + k′ + ℓ′ = Nrow and

{
j′ + k′ < i ≤ Nrow if i ̸= 0
j′ + k′ = Nrow otherwise

,{
i′ + k′ < j ≤ Nrow if j ̸= 0
i′ + k′ = Nrow otherwise

. Note that when i ̸= 0 , j′ + k′ < i ⇔

Nrow − i′ − l′ < i ⇔ i + i′ + l′ >= Nrow + 1, which is due to the branch
number; similarly, i′ + k′ < j when j ̸= 0 is due to the branch number.

To formalize these propagation rules into a system of inequalities, the involved
number of variables is not small. Concretely, the involved variables include the
binary variables that indicate the attribute of each cell in the input and output
columns, i.e., (xI

i , yI
i ), (xO

i , yO
i ), and ωI

i for i ∈ {0, 1, · · · , Nrow − 1}, the general
variables cx⃗ and cy⃗ representing the consumed degree of freedom from Blue and
Red, respectively. Apart from those variables, three auxiliary binary variables
are introduced to indicate the following attributes of the input column:

ω⃗ =
{

1 exists White cell,
0 otherwise.

x⃗ =
{

1 all are Blue/Gray,
0 exists Red/White.

y⃗ =
{

1 all are Red/Gray,
0 exists Blue/White.

(6) (7) (8)

The constraints can then be formalized using inequalities listed in Eq. (15, 16,
17) in the full version [6].
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Modeling of the Matching through MixColumns and AddRoundKey (MATCH-RULE).
The modeling for matching also focuses on the MixColumns and AddRoundKey
operations. The matching through MixColumns and AddRoundKey is governed
by a set of column-wise constraints under the name MATCH-RULE.

The involved states are those around MixColumns at the matching round,
including

−−→
End and

←−−
End in encryption and

−−→
EndKMC or

←−−
EndK in key-schedule.

Note that
−−→
End and

←−−
End are states that have not been added with key-state−−→

EndKMC or
←−−
EndK. Since AddRoundKey is linear, the influence of AddRoundKey

for matching can be formalized using simple rules. Concretely, only a White cell
in key state destroy the match-ability of the corresponding cell in encryption
state. The Blue and Red cells in key state do not impact the match-ability but
on the contrary might provide degree of matching.

Remark 2. For specific targeted cipher whose key-schedule is almost identical to
the encryption, e.g., Whirlpool, one can use

−−→
End⊕

−−→
EndKMC as an equivalent key

addition to
←−−
End⊕

←−−
EndK. The color pattern (most importantly, the distribution

of White cells) of
−−→
EndKMC and

←−−
EndK are different in most cases. Thus, adding

−−→
EndKMC or

←−−
EndK, these two ways may have different effects on the degree of

matching. To find the optimal solution, one should consider both ways. However,
we can simply choose to use the key state with fewer White cells. That is because,
known the propagation direction of the key-schedule (i.e., initK

r ), between the
two states

−−→
EndKMC and

←−−
EndK, the one that is near to the initial key state must

have set of White cells be subset of that in the remote state, thus has less impact.

The condition for the i-th column to have →←m i degree of matching is as
follows: denote the number of known cells (i.e., except White cells) in the input
and output columns by mki; when mki > Nrow, →←m i= mki − Nrow; otherwise,
→←
m i= 0. Denote the number of white cells by mwi; Since mki = 2·Nrow−mwi, one

have →←m i= max(0, Nrow−mwi). Accordingly, the concrete system of inequalities
modeling MATCH-RULE can be obtained as explained in Sect. A and as listed
in Eq. (18) in the full version [6].

3.2 Superposition States and Separate Attribute-Propagation

Except for allowing bi-direction attribute-propagation, the above basic modeling
is in line with previous work [4, 5, 11, 24, 28, 30], where Blue and Red attributes
propagate exclusively and competitively through each operation. Once the two
exclusive attribute propagate into the same cell position, this cell is considered
being White, cannot be independently computed in either forward nor backward.

However, such modeling might miss valid attacks as will be discussed shortly.
In our final modeling, the two exclusive attributes Blue and Red propagate inde-
pendently as long as it is possible. This is achieved by introducing superposition
states. Superposition states are all intermediate states in encryption and key-
schedule being separated into two virtual states. One virtual state carries one
attribute propagation independently of the other attribute propagation. The two
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virtual states are combined only when going through non-linear operations. In
this way, two exclusive attributes can simultaneously propagate through all lin-
ear operations in both encryption and key-schedule. See Fig. 3 for an example.
This superposition setting captures the independence of the computation in a
more essential way, allows new ways of local collisions between/within the en-
cryption and key states, thus, maximize the chances of canceling impacts on
independence and enables new ways of MITM decomposition. Concretely, the
reasons and benefits of separating propagation with superposition states are as
follows.

– As mentioned above, under certain constraints, Blue propagation can make
a concession so that impacts are canceled and Red can propagate unaffected,
and vice versa. To cancel impact, it requires consuming degrees of freedom.
To be able to consume degrees of freedom, different types of operations im-
pose different requirements on the attribute of input states. Concretely, the
XOR-RULE and MC-RULE requires differently for canceling impacts. Attributes
of state cells might not meet the individual requirements but it is actually
possible to cancel impacts when combining these two linear operations.
In [5], the propagation through the combination of AddRoundKey and Mix-
Columns is characterized using the set of XOR-MC-RULE. In XOR-MC-RULE, the
OR of the attribute indicating variables of encryption and key-state cell is
used to indicate the attribute of the input cell of MixColumns. In that way,
the group of cells of the same attribute in both encryption and key states
can jointly cancel their impacts on certain output cells.
However, using only XOR-MC-RULE, the possibility of the following scenario is
missed. That is, an attribute can be completely canceled via XOR-RULE before
propagating through MixColumns (refer to Fig. 2a for an illustration). Thus,
to find optimal attack configurations, applying XOR-RULE-then-MC-RULE and
XOR-MC-RULE should be both considered in the models.
In this work, we model the combination of AddRoundKey and MixColumns
by considering the separation of (Blue and Red) attribute propagation with
superposition states. Note that AddRoundKey and MixColumns are linear.
Essentially, for linear operations, in the same state, the attributes of Blue
and Red can separately propagate through them and then combine by cell-
wise XOR upon the non-linear operation (i.e., SubBytes).
Due to this separation with superposition states, XOR-RULE and MC-RULE
without XOR-MC-RULE are sufficient (refer to Fig. 2 for an illustration of the
separation of attribute-propagation through AddRoundKey and MixColumns).

– Additionally, the key/message-schedule of the ciphers also has linear oper-
ations. It is possible that before going through the non-linear operation in
the key-schedule, the attribute of one cell in the round-key is a linear com-
bination of Blue and Red. If not be separately considered, such a linear
combination of Blue and Red becomes White. Separately, the Blue compo-
nent in the linear combination in a key state can be used to cancel impact
from the Blue component in another key state or in an encryption state, and
same for the Red component. Consequently, impacts that cannot be canceled
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in previous models can be canceled now, thus independent propagation gets
more chances (see Fig. 22 in the full version [6] for an example.)

– Moreover, at the matching point, if a key state cell is in superposition (a
linear combination of Blue and Red), it does not impact the matching ability
of the corresponding state cell, and instead, the Blue component and Red
component may provide degrees of matching (see Fig. 18 in the full version [6]
for an example.)

XOR-MC

XOR-MC

MC

XOR-then-MC

−1

(a) XOR-MC-RULE does not
cover a propagation

XOR-MC
−1

XOR-MC

MC

XOR-then-MC

MC

MC-then-XOR

MC

(b) XOR-MC-RULE is necessary if not in
superposition

MC

−1

Blue

MC

Red

(c) XOR-RULE and MC-RULE are suf-
ficient once in superposition

– In 2a, using XOR-MC-RULE, a result of full Red attribute can not be achieved, which can be
obtained by XOR-then-MC-RULE.

– In 2b, without superposition, (Blue and Red) attribute-propagation ruled by XOR-MC-RULE
cannot be obtained directly by XOR-then-MC-RULE and MC-then-XOR-RULE.

– In 2c, with (Blue and Red) attribute-propagation in superposition, XOR-RULE and MC-RULE are
sufficient (2c achieve the same results as achieved by XOR-MC-RULE 2b).

Fig. 2: Combination of linear operations and superposition attribute-propagation

3.3 Multiple Ways of AddRoundKey (MulAK)

In Whirlpool, the key-schedule shares the same operations with the encryption
except for AddRoundKey. This identity between encryption and key-schedule
enables that in encryption, the AddRoundKey can be easily moved around Mix-
Columns. Moving around MixColumns is simply switching between adding #KMC
or adding k, where #KMC and k are the states before and after MixColumns in
the round function of key-schedule, that is, a switch between adding the real
round-key k or an equivalent (up to MixColumns) round-key #KMC.

Moving AddRoundKey before MixColumns and using #KMC can bring more
advantages in some cases. Take the case where we need to reserve Blue by
consuming Red for example. Let’s focus on one column of the state. Suppose
there is one Red cell in that column of #MC and one Red cell in the same cell-
position in #KMC; the influence of these single Red cells will be diffused into
the whole columns in both states if there is no constraint. In such case, adding
#KMC with #MC and letting the Red cell in #MC be canceled by the Red cell in
#KMC achieve the same cancellation effect but consume fewer degrees of freedom
than adding #AK with k (take using #MC5 ⊕ #KMC4 vs. #AK5 ⊕ k5 in Fig. 3
for an example). Similarly, it is also possible that adding #AK with k after the
MixColumns has more advantages than adding #MC with #KMC (take using
#SB4 ⊕ k3 vs. #MC5 ⊕ k2 in Fig. 3 for an example).
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Thus, to find optimal attack configurations, both scenarios should be consid-
ered. The essential difference between the scenarios is to either firstly use freedom
in the key state to directly cancel impacts before diffusion or to postpone the
insertion of the key state in order to postpone impacts from the key. We name
the choice of applying the first scenario by AK-MC-RULE and the second scenario
by MC-AK-RULE. The integration of the two scenarios into one model is in the
form of indicator constraints that is available in Gurobi. Note that, for forward
computation, AK-MC-RULE corresponds to using #MC⊕#KMC, MC-AK-RULE cor-
responds to using #AC⊕k; for backward computation, AK-MC-RULE corresponds
to using #SB⊕ k, and MC-AK-RULE corresponds to using #MC⊕ #KMC;

In addition, since the MixColumns is column-wise, different columns can apply
different ways (apply AK-MC-RULE or MC-AK-RULE) independently. Besides, since
MixColumns is linear, with superposition states, different attributes of Blue and
Red can independently apply AK-MC-RULE or MC-AK-RULE.

Integrating such flexibility of choice into the MILP models expand the covered
attack space but make the solving less efficient. So, to decide in which way to
proceed for each column, we use the heuristic that when the key-schedule has
already consumed some degree of freedom in that column, we apply MC-AK-RULE;
otherwise, apply AK-MC-RULE.

3.4 Enhanced Model with Guess-and-Determine (GnD)

The Guess-and-Determine Strategy. In MITM attacks, one unfavorable situation
is that a single or a few unknown cells in the input column of MC makes all cells
in the output column unknown (refer to point 1 of MC-RULE). This is inevitable
due to the diffusion of MixColumns, especially the property of the MDS matrix.

To turn things around in such situations, Sasaki et al. in [28] invent the
following guess-and-determine strategy. That is, guess values of the few unknown
cells to continue the propagation of attribute to reach the matching point, after
(partial) matching, check the consistency of the few guessed cells. If the gained
degree of matching is sufficient and the required guesswork is very little, one can
still achieve a better attack complexity than a brute-force attack.

Concretely, denote 2c by ς (where c is the number of bits in each cell). Let:

–
−→
dgb

be the number of cells only guessed to be Blue (forward computation);
–
←−
dgr be the number of cells only guessed to be Red (backward computation);

–
←→
dgbr

be the number of cells guessed to be both Blue and Red. 6

The framework of the MITM attack with GnD is as follows:

1. Assign arbitrary compatible values to all cells except for those depending on
the neutral bits, and assign arbitrary values to the constants in pre-defined
constraints on neutral bits;

6 Since we allow bi-direction attribute propagation in superposition states, it might
bring benefit to guess a superposition cell to be simultaneously Blue and Red. Thus,
here is a slight generalization of the previous GnD strategy.
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2. Compute values {−→v i} of forward neutral bits and values {←−v i} of backward
neutral bits fulfilling pre-defined constraints.

3. For all ς
−→
db values {−→v i} of forward neutral bits, and ς(

−→
dgb

+
←−→
dgbr

) guessed values
{−→v g} for forward, compute forward to the matching point and store all
ς
−→
db+
−→
dgb

+
←−→
dgbr partial matching values {−→v m} in a look up table

−→T (the values
are −→v i and −→v g, and the index is −→v m).

4. For all ς
←−
dr values {←−v i} of backward neutral bits, and ς(

←−
dgr +

←−→
dgbr

) guessed
values {←−v g} for backward, compute backward to the matching point, obtain
the partial matching values ←−v m.

5. For all values of −→v i and −→v g in entry
−→T [←−v m], use −→v i and ←−v i to compute

and check if the guessed values −→v g and ←−v g are compatible. For compatible
guesses, compute to the matching point to check if it is a full-state match. If
so, use −→v i and←−v i to compute the preimage, output it, and return; otherwise,
repeat from Step 1 by changing values assigned at that step.

In the above framework of the MITM attack with GnD,

– the total degree of freedom for Blue with guessing is
−→
db +

−→
dgb

+
←→
dgbr

;
– the total degree of freedom for Red with guessing is

←−
dr +

←−
dgr

+
←→
dgbr

;
– the expected number of matched pairs is ς

−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ;

– the required number of repetitions to get a full match at the guessing cells
and a full-state match is ς−(

−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ) · ς

−→
dgb

+
←−→
dgbr

+
←−
dgr ·

ς(n−
→←
m ), which equals ςn−

−→
db−
←−
dr−
←−→
dgbr ;

Thus, the complexity of the attack is ςn−
−→
db−
←−
dr−
←−→
dgbr ·(ς

−→
db+
−→
dgb

+
←−→
dgbr +ς

←−
dr+
←−
dgr +

←−→
dgbr +

ς
−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m ), which equals

ςn · (ς−(
←−
dr−
−→
dgb

) + ς−(
−→
db−
←−
dgr ) + ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

))
≃ ςn ·max(ς−(

←−
dr−
−→
dgb

), ς−(
−→
db−
←−
dgr ), ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

))
(9)

Accordingly, the complexity is determined by

min(
←−
dr −

−→
dgb

,
−→
db −

←−
dgr

,
→←
m −

−→
dgb
−
←−
dgr
−
←→
dgbr

).

Building Model for Guessing. To model the mechanism of GnD, three binary
variables, gb, gr, gbr, are introduced for each cell in the input state of MixColumns
(invMixColumns for the backward computation).

The variables indicate whether the values of the cells should be guessed to
be of one attribute. Concretely, gb = 1 for guessing one White cell to be Blue.
gr = 1 for guessing one White cell to be Red. gbr = 1 for guessing one White cell
to be Blue (for forward propagation) and also Red (for backward propagation).

With these guess-indicating variables, attribute-indicating variables of each
cell in the input of MixColumns are thus constrained together with attribute-
indicating variables of the cell in output state of last operations (e.g., ShiftRows
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or AddRoundKey). Besides, according to the complexity Eq. (9) of the attack
with GnD, the objective should turn from min(

−→
db ,
←−
dr ,
→←
m ) to min(

−→
db −

←−
dgr

,
←−
dr −−→

dgb
,
→←
m −

−→
dgb
−
←−
dgr
−
←→
dgbr

). Thus, the variable that to be maximized is constrained
as in Eq. (10) and (11).

−→
dgb =

totalr−1,n−1∑
r=0,i=0

gb
r
i ,

←−
dgr =

totalr−1,n−1∑
r=0,i=0

gr
r
i ,

←→
dgbr =

totalr−1,n−1∑
r=0,i=0

gbr
r
i ,

(10)


τObj ≤

−→
db −

←−
dgr ,

τObj ≤
←−
dr −

−→
dgb ,

τObj ≤
→←
m −

−→
dgb −

←−
dgr −

←→
dgbr .

(11)

Note that in the starting round, all cells are known and in the matching round,
guessing brought no advantage. Thus, for these two rounds, such constraints on
guessing can be omitted. Besides, generally, guessing are only required around
the matching point. Thus, when trade-off between search quality and search
efficiency is needed, these guessing constraints can be added only for rounds
around the matching point.

3.5 Transforming to Models for Searching for Collision Attacks

A MITM partial target preimage attack whose matching point is at the last round
can be transformed into a collision attack, as described by Li et al. in [21]. Thus,
the searching of MITM preimage attacks can be constraint to search for such
partial target preimage attacks, and then translate into valid collision attack.
Concretely, one have the follows.

Definition 1 ((t-bit) partial target pseudo preimage attack on CF [21]).
Given the value v of t bits in T , find (h′, m′) such that t bits in T ′ := CF(h′, m′)
at the same position as the t bits in T , take value v.

Let A be a random algorithm that can find a t-bit partial target pseudo preimage
with a complexity of 2s. This complexity can be in the average sense, which
means that A can generate 2r different (h′, m′, T ′) in one time with a complexity
2r+s. Additionally, assume A output different (h′, m′, T ′)’s for different calls.
Then, a free-start collision attack goes as follows.

– Set t-bit arbitrary value d′ to the target. Call A with d′ as the partial target
and run it to obtain 2(n−t)/2 values of (h′, m′, T ′).

– From the 2(n−t)/2 values of (h′, m′, T ′), find a collision on the remaining
(n− t) bits of T ′.

According to the birthday paradox, with a high probability, the above procedure
produces a valid collision pair. The total complexity of this attack is 2s+(n−t)/2.

The above complexity analysis misses the details of the MITM complex-
ity. In the following, we re-formalize the complexity analysis of the above col-
lision attack using its correspondence with the MITM-GnD preimage attack.
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Essentially, the A can be the core of a MITM pseudo preimage attack on CF.
The t-bit partial target corresponds to c× →←m bits for partial matching in the
MITM attack. Essentially, the t bits for partial matching can be a fixed t-bit
linear relations on ℓ bits for ℓ ≥ t, which restrict the values of ℓ bits to a
subspace of dimension ℓ − t. Thus, matching through MixColumns instead of
matching at exact same bit positions does not have essential influence on the
effectiveness of the attack. The 2s computational complexity of A corresponds to
ς

max
{

(
−→
db+
−→
dgb

+
←−→
dgbr

),(
←−
dr+
←−
dgr +

←−→
dgbr

),(
−→
db+
−→
dgb

+
←−→
dgbr

+
←−
dr+
←−
dgr +

←−→
dgbr
−
→←
m )

}
/ς
−→
db+
←−
dr+
←−→
dgbr
−
→←
m , which

equals to ς
max

{
(
−→
dgb
−
←−
dr),(

←−
dgr−

−→
db),(

−→
dgb

+
←−
dgr +

←−→
dgbr
−
→←
m )

}
/ς−

→←
m . Thus, the total com-

plexity is ς
max

{
(
−→
dgb
−
←−
dr),(

←−
dgr−

−→
db),(

−→
dgb

+
←−
dgr +

←−→
dgbr
−
→←
m )

}
/ς−

→←
m × ς

n−
→←

m
2 , i.e.,

ς
−min

{
(
←−
dr−
−→
dgb

),(
−→
db−
←−
dgr ),(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

)
}
× ς

n+
→←

m
2 . (12)

For a valid attack (better than birthday attack), the following should be fulfilled

{−→
db −

←−
dgr

>
→←
m /2,

←−
dr −

−→
dgb

>
→←
m /2,

−→
dgb

+
←−
dgr

+
←→
dgbr

<
→←
m /2

}
. (13)

For searching for the best attack, the objective function is the same as that for
preimage attack, i.e.,

max
{

min
{−→

db −
←−
dgr ,
←−
dr −

−→
dgb

,
→←
m −

−→
dgb
−
←−
dgr −

←→
dgbr

}}
. (14)

Remark 3. A solution to the MILP model only corresponds to a valid attack
configuration but does not formally imply a valid attack. For the attack com-
plexity in Eq. 1, 9, and 12 to be valid, the attacker should be able to generate
each value of neutral bytes with (amortized) computational complexity O(1). In
some obtained attack configurations, the neutral bytes are constrained in such a
sophisticated manner that it is not trivial to efficiently generate their values. For
such non-trivial cases, we propose to use local meet-in-the-middle procedures to
solve the problem (as done for the pseudo-preimage attack on 7-round Whirlpool
in Sect. 4.1). Such local meet-in-the-middle procedures might be found by man-
ual analysis or aided by automatic tools, such as the Automatic-tool from [9].
Sometimes, to achieve amortized computational complexity O(1), it is necessary
to pre-compute values of neutral bytes for many fixed bytes (enumerated in the
outermost loop of the attack) at once. However, for some very complex cases,
even aided by automatic-tools and considering amortized complexity, it might be
difficult to find pre-computation procedures with total complexity lower than the
main procedure. As a theoretical problem for all attacks under this framework,
this problem of efficiently generating values of neutral bits stays open.

3.6 Exploit Symmetry of the Ciphers

Integrating that many technical generalizations, the search space is greatly en-
larged but the search is slow down. One needs to make a trade-off between the
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quality of the searching result and the efficiency of the search. Apart from the
ways of trade-off mentioned alongside the introduction of the modeling, one can
reduce the problem scale using symmetry of the ciphers. Specifically, in many
AES-like designs, the states and operations have symmetric structures and pa-
rameters. The symmetry allows projecting attacks on small-size versions to that
on large-size versions. Concretely, a state of 8× 8 cells can be viewed as a 2× 2
matrix of state of 4 × 4 cells, or a 1 × 2 matrix of state of 8 × 4 cells. Suppose
the ShiftRows parameters of the 8×8 state version are {p0, p1, . . . , p7} and (pi+4
mod 4) = pi for i ∈ {0, . . . , 3}, and 2 times the branch number of MixColumns
of a 4 × 4 state version is no less than that of the 8 × 8 state version. Then,
obtaining an attack on the 4 × 4 state version, cloning the state patterns four
times and placing them in a 2 × 2 matrix, this will result in an attack on the
8× 8 state version. Exploiting such symmetry of the ciphers, the search can be
efficient, while might lose asymmetric attack configurations.

4 Application to Preimage Attacks on Whirlpool

Whirlpool [7] is a block-cipher based secure hash function designed by Rijmen
and Barreto in 2000 and has been adopted as an ISO/IEC standard. It produces
a 512-bit hash value using Miyaguchi-Preneel-mode (MP-mode) CF. The CF is
defined as CF(Hi, Mi) = EHi(Mi) ⊕Mi ⊕ Hi, where E is a 10-round AES-like
block cipher with 8× 8-byte internal states. This underlying block cipher takes
the 512-bit chaining value Hi as the key material and the 512-bit message block
Mi as the input of the encryption. Both the encryption and key-schedule use
round functions consisting of four operations:

– SubBytes (SB) applies the Substitution-Box to each byte.
– ShiftColumns (SC) cyclically shifts the j-column downwards by j bytes.
– MixRows (MR) multiplies each row of the state by an MDS matrix.
– AddRoundKey (AK or AddRoundConstants AC) XOR the round key (or round

constants in key-schedule) to the state.

Note that the last round is a complete round which is unlike AES; a whiting key
is added before the first round of encryption. However, the effect of whitening
key will be canceled in the splice-and-cut MITM attacks due to the feed-forward
mechanism of MP-mode. Please refer to [7] for a detailed description of Whirlpool.

4.1 New Attacks Resulted from Applying the MILP Modeling

Applying the MILP modeling in Sect. 3 on Whirlpool, improved attacks are found
for 5- and 6-round, and first attacks are found for 7-round.

For 5-round attacks, guess-and-determine is not required, but allowing bi-
direction attribute-propagation/cancellation is essential to achieve the best com-
plexity. For 6-round attacks, guess-and-determine is the critical technique that
enables the improved results. For 7-round attacks, guess-and-determine and
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multiple ways of AddRoundKey (flexible choices from applying AK-MC-RULE or
MC-AK-RULE) are the two critical points.

The remaining of this section describes how to use one of the resulted at-
tack configurations to launch a concrete attack on 7-round Whirlpool. A brief
description of the improved 6-round attack is then followed. In the description,
ShiftRows and MixColumns instead of ShiftColumns and MixRows are used. Thus,
the states should be transposed to correspond with the specification of Whirlpool.
This transposition does not influence the attacks.

Please refer to Figures 11, 12, and 13 in the full version [6] for visualizations
of configurations of the 7-, 6-, and 5-round attacks, and refer to Sect. B [6] for a
summary of notations.

The attack on 7-round Whirlpool can be obtained by searching on a small
version with Nrow × Ncol = 4 × 4 states and then projecting to attack on the
8×8-state version. In the sequel, to facilitate readers to find the correspondence
between the text description and the code implementation for experimental verifi-
cation of the attack, we describe it using the small version with Nrow×Ncol = 4×4
states that is depicted in Fig. 3. One can quickly project this attack on the small
version to the real version of Whirlpool (refer to Sect. 3.6 and the correspondence
between Figures 10 and 11 in the full version [6] for illustrations). The attack
complexity on the real version is the fourth power of that on the small version.

The attack configuration in Fig. 3a is found with the MILP models. With
this configuration, one can conceive an equivalent configuration shown in Fig. 3b.
Following both configurations, one can devise the attack, with different proce-
dures to compute initial values of backward neutral bytes. The latter (Fig. 3b)
is more direct for the computation; thus, it will be used in the following descrip-
tion. In the following description, all referred states are actual states that are
the combination of two virtual states.

Compute initial values of neutral bytes in Red. To get the initial values of back-
ward neutral bytes (in Red), one only needs to enumerate all possible values of
cell k3[15], and fix values of cells in the main anti-diagonal of #SB4. That is
due to the following observation. Fixing the values of cells in the first column of
#MC4 to be 0 (equivalently, fixing the values of cells in the main anti-diagonal of
#SB4 to be Sbox−1[0]), the values of the first column of #SB5 equals that of k4.
Note that the operations of the round function in encryption and key-schedule
are exactly the same, excepting the former using AddRoundKey and the latter us-
ing AddRoundConstants. Thus, the first anti-diagonal of #MC5 will equal that of
#KMC4. Consequently, the impact brought by adding Red cells in the 4th round
(k4) will be canceled in the next round by adding #KMC4 without consuming
degrees of freedom.

Compute initial values of neutral bytes in Blue. To get the initial values of
forward neutral bytes (in Blue), one focuses on the constraints among states
{#MC2, #AK2, #SB3, #MC3, #AK3} (refer to Fig. 3b).
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There are five degrees of freedom (in bytes) for the forward (Blue). Using
four out of the five, one can keep the same attack complexity because the degree
of freedom for backward is the bottleneck. Thus, we fix the value of one Blue
cell in #AK3, i.e., #AK3[3], as indicated by C .

Note that values of Blue cells are constrained such that they have no impact
on the last anti-diagonal of #MC2 and the first diagonal of #AK3 (are mapped
to constants on these state cells). Denote the constants by #MC2

C[3, 6, 9, 12] and
#AK3

C[0, 5, 10]. The initial values of forward neutral bytes can be computed us-
ing a local meet-in-the-middle procedure as shown in Algorithm 1 in the full
version [6]. In Algorithm 1 [6], the procedure starts from guessing two free cells
in the first column of #AK3 and one cell in each of the columns in #SB3, com-
putes other undetermined cells column-by-column using predetermined constant-
impacts on cells in #MC2, and compute back pair-wisely to match at constant
cells in #AK3. From Algorithm 1 [6], the computational complexity for obtaining
the initial values of neutral bytes in Blue is 232 and the memory required is 232

(blocks).

The Main Procedure (refer to Fig. 3b). Assign arbitrary values to those constant
impacts of Blue on Red in #MC2 (i.e., #MC2

C[3, 6, 9, 12]) and to #AK3
C[3]. Set

#AK3[0, 5, 10, 12, 13, 14] be 0, k3[0, 5, 10] and #SB4[0, 5, 10, 15] be Sbox−1[0].
Compute the initial values of backward neutral bytes as described above and

as shown in Algorithm 1 [6], store the result in
−−→TInit.

1. For a new value of 12 Gray bytes k3[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], calculate
the values of Gray bytes in k4 and #KMC4 (this is expected to repeat ς11

times before terminating from Step 1(b)iiiE according to Sect. 3.4).
(a) For each value −→v i of Blue cells in #MC3 stored in

−−→TInit,
i. start from #MC3, compute forward (only cells in Blue) with the

values of Gray bytes in k3 and k4 to #MC5;
ii. XOR #MC5 with the values of Gray bytes in #KMC4;
iii. set the first anti-diagonal of #MC5 to be zero, and compute forward

to #MC6 (without AddRoundKey with k5 but need to XOR the round
constant RC[5], because #KMC4 is used instead);

iv. compute MC(#MC6) and get the value −→v m of the main diagonal
v. store −→v i in a look-up table

−→T with −→v m as index;
(b) For each value ←−v i of the Red cell in k3, with the value of Gray cells,

i. compute all values of the round keys, i.e., k2, k1, k0, km, k4, k5, k6,
where km is the master key;

ii. set the Red cell #AK3[15] to be ←−v i ⊕ Sbox−1[0], combine with the
constant value in #AK3, compute backward up to #AK0;

iii. For each value ←−v g of the Pink cells in #AK0,
A. with the value of Red cell in the first column of #AK0, compute

backward through feed-forward, XOR the given target T , compute
#AK6;

B. get the value ←−v m of the main diagonal of #AK6.
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C. for each value −→v i of Blue cells in #MC3 stored in
−→T [←−v m], com-

bine the values of Red cells, restart the computation from #AK3

up to #AK0;
D. If the newly computed value −→v ′g of the Pink cells in #AK0 does

not equal ←−v g, go to Step 1(b)iii. Else, compute to #AK6, denote
the value by ←−v .

E. Start from #AK3 with the combined knowledge of values of both
Blue and Red cells, compute to MC(#MC6), if its value −→v equals
←−v , a full-state match is found, output the state #SB0 and the
key state km, and terminate. Otherwise, go to Step 1.

Complexity. As analyzed above, the computational and memory complexity of
the precomputation of the initial value of forward neutral bytes is 232. As for the
complexity of the main procedure, the attack configuration on the small version
(n = Nrow ×Ncol = 4× 4 = 16) is,

−→
db = 4,

←−
dr = 1,

←−
dgr = 3, →←m = 4, ς = 28, and

−→
dgb

=
←→
dgbr

= 0. According to Eq. (9), the complexity of the whole attack on the
small version is therefore ςn · (ς−(

←−
dr−
−→
dgb

) + ς−(
−→
db−
←−
dgr ) + ς−(

→←
m −

−→
dgb
−
←−
dgr−

←−→
dgbr

)) =
ς16 ·max(ς−1 + ς−(4−3) + ς−(4−3)) = ς15 = 2120

Projecting to the real version of Whirlpool (n = Nrow × Ncol = 16 · 4 = 64),
the complexity will be (2120)4 = 2480. Concretely, the attack configuration will
be
−→
db = 4 · 4 = 16,

←−
dr = 1 · 4 = 4,

←−
dgr = 3 · 4 = 12, →←m = 4 · 4 = 16, ς = 28,

and
−→
dgb

=
←→
dgbr

= 0. Accordingly, the attack complexity on the real version of
7-round Whirlpool is ς64 ·max(ς−4 + ς−(16−12) + ς−(16−12)) = 2480.

The memory required by the main procedure is the memory taken by
−→T ,

whose size is limited by the degree of freedom for forward, that is 232 for the
small version and 2128 for the real version.

To further verify the attack and its complexity analysis, we implemented
the attack on the small version with 4 × 4 states. The round functions of en-
cryption and key-schedule of small Whirlpool CF is simulated using the round
function of AES. To make the verification practical, the experiments aim for
partial matching instead of full-state matching, while preserving the complexity
gain. Concretely, the goal is to match m bits with complexity max{232, 2m−8}.
Please refer to https://github.com/MITM-AES-like/Whirlpool_7R for results
on m ∈ {36, 40, 44, 48}.

The attack on 6-round Whirlpool. When searching on the full-size version
(Nrow×Ncol = 8×8), results with asymmetric patterns were found. One example
is depicted in Fig. 12 [6]. Following the configuration, one can devise an attack on
6-round of Whirlpool with better complexity than previous ones. The concrete
attack configuration is

−→
db = 9,

←−
dr = 24,

−→
dgb

= 15, →←m = 24, ς = 28, and
←−
dgr

=
←→
dgbr

= 0. Accordingly, the attack complexity on the full-size version of
6-round Whirlpool is ς64 ·max(ς−24−15 + ς−(9) + ς−(24−15)) = 2440. The memory
required is 224×8 = 2192. The procedures to compute the initial values of neutral
bytes for both directions are relatively simpler than that of the above attack on
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(a) Configuration automatically found
This implies an attack on the full version (8 × 8) as shown in Fig. 11 with configuration ((
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db −
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dgr ,
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−→
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,
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m −
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−
←−
dgr −

←−→
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Fig. 3: An example of using (2 × 2 of 4 × 4) to search the MITM attack on 7-round
Whirlpool and an equivalent configuration used in the experimental verification
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(b) Equivalent configuration used in the experimental verification

Fig. 3: An example of using (2 × 2 of 4 × 4) to search the MITM attack on 7-round
Whirlpool and an equivalent configuration used in the experimental verification (cont.)
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7-round. That is because, the cancellation constraints on the Blue is at a single
point, i.e., (#MC2, #AK2). The cancellation constraints on the Red is also at
a single point, i.e., (#MC4, #AK4). As for such constraints, column-by-column
independent computations can be used to derive the initial values of neutral
bytes for both directions.

Conversion from Pseudo-Preimage to Preimage Attacks has been dis-
cussed in previous works. Here, we follow the Two Types of Last Block Attacks
from [28,30]. Denote the time complexity of inverting the reduced-Whirlpool com-
pression function as 2ℓ. A random message fulfills the padding rule of Whirlpool
with probability 2−9, hence it costs 2ℓ+9 to find a right last block. Then an unbal-
anced meet-in-the-middle is carried out between the initial value and the input
chaining value of the last block, which costs 2(512+ℓ)/2 and sums to 2(512+ℓ)/2 +
2ℓ+9 to find a long and full preimage. Detailed conversion results are summarized
in Table 1. We note further complexity optimizations are possible, by finding
pseudo-preimages under multi-target scenarios and utilizing them in the “unbal-
anced meet-in-the-middle” phase as discussed in [15].

4.2 Discussions on the New Attacks

The previous best attack on Whirlpool is up to 6-round [28]. In the 6-round
attack in [28], although the freedom degree in the key states is exploited, the
computational chunks between the key schedule and the encryption data-path
are designed to be almost identical due to the limitation of manual analysis. In
contrast, in the new attack, the computational chunks between the key schedule
and the encryption data-path are largely different. Thus, the degree of freedom
in Blue and Red can be relatively more balanced, and the required number of
guessing bytes is relatively less. Consequently, the complexity is better.

Attacking one more round than the previously best attacked, new strategies
are required on top of those appeared in [28]. In the new 7-round attack, apart
from GnD, flexibly using of equivalent round-keys #KMC or the real round keys k
(MulAK) is critical to save degrees of freedom. Moreover, complex non-linear con-
straints must be imposed on Blue cells to let Blue propagates towards backward
besides forward (BiDir), and then cancel their impacts on Red-attribute prop-
agation. Thus, efficient procedure (e.g., the local meet-in-the-middle procedure)
for obtaining initial values of neutral cells fulfilling the non-linear constraints is
necessary here.

5 Application to Preimage Attacks on Grøstl

Grøstl, proposed by Gauravaram et al. in [13], is one of the five finalists of SHA-3
competition hosted by NIST. Grøstl adopts a double-pipe design, i.e., the size of
the chaining value, which is 2n-bit, is twice as the hash size, which is n-bit. For
Grøstl-256, the hash size is 256 bits, and for Grøstl-512, it is 512 bits. Two 2n-bit
AES-like permutations P and Q are employed to build the CF and OT.
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5.1 New Attacks Resulted from Applying the MILP Modeling

Applying the MILP modeling approach described in Sect. 3 on the OT (and on
the P (Hi) ⊕ Hi part of the CF) of Grøstl-256 and Grøstl-512, new attacks are
found on 6-round and 8-round, respectively. Besides, many efficient attacks on
shorter rounds are found.

For the 6-round attack on the OT of Grøstl-256, GnD is the essential that
enables to cover one more attacked round than previous 5-round attacks [30];
BiDir is the essential that enables better complexity than previous 6-round at-
tacks [22]. Besides, many inferior attacks than the presented best one on 6-round
Grøstl-256 are found. For those inferior attacks, the computation of initial values
of neutral bytes is relatively easier, but the complexity of the entire attack is
higher. Thus, a non-trivial procedure to compute the initial structure (initial
values of neutral bytes) is essential for achieving the best complexity.

For the 8-round attack on the OT of Grøstl-512, GnD is the essential that en-
ables to achieve better complexity than the previous 8-round attack [30]. Besides,
compared to the 8-round attack in [30], in the presented attack, the initial struc-
ture covers one more round (4 rounds) by allowing one attribute-propagation
conceding to the opposite attribute-propagation in both directions.

The configurations of various attacks can be found in Figures 5, 6, 7, 8, 16, 17,
14, 15 in the full version [6]. The concrete attack procedures on 6-round OT of
Grøstl-256 and 8-round OT of Grøstl-512 are presented in Sect. C [6].

Conversion to Pseudo-Preimage Attacks. The attacks on the OT of
Grøstl can be converted into pseudo-preimage attacks on Grøstl combining with
similar attacks on the P (H)⊕H of the CF using the conversion method in [30].
The complexity of the converted pseudo-preimage attacks are summarized in
Table 1. More details about the conversion can be found in Sect. F of the full
version [6].

5.2 Discussions on the New Attacks

An interesting feature of the best attack on 6-round Grøstl-256 depicted in
Fig. 5 [6] is that, with necessary guessing, the computation of Blue covers the
full 6-round. That is, the Blue propagates to backward besides forward and
contributes to degrees of matching from both sides. Besides, like the attack on
7-round Whirlpool, it requires a non-trivial local meet-in-the-middle procedure
to compute initial values of neutral bytes.

Note that, obtaining the previous best attacks on Grøstl, the work in [30]
has already been assisted with automatic searching, and the 5-round attack on
Grøstl-256 in [30] was claimed to be optimal. However, the optimality hold only
in a restricted search space, apart from lacking the consideration of the GnD
technique. In contrast, the presented 5-round attacks on Grøstl-256 in Figures 14
and 15 [6] achieve better complexity than that in [30] and is optimal in an
expanded search space where BiDir and GnD are considered.
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6 Applications to Collision and Key-recovery Attacks

The MILP models for searching for the best preimage attacks can be directly
transformed to search for the best collision attacks on hash functions and key-
recovery attacks on block ciphers. For collision attacks, according to the analysis
in Sect. 3.5, what needs to be done is to simply restrict the matching point to
be at the last round and add constraints shown in Eq. 13. Applying to Grøstl’s
OT, AES-hashing, Kiasu-BC-hashing 7, new and improved attacks were found.

For key-recovery attacks, upon the MILP models for preimage attack, one
simply needs to constraint that the degrees of freedom in both forward and back-
ward only source from the key states, relax the degrees of matching such that
it is not included in the objective but simply be non-zero 8, and constraint that
the plaintext or ciphertext contains only Red and Gray cells or only Blue and
Gray cells. Besides, the objective can be set to maximize the number of Gray
cells in the plaintext or ciphertext, which can optimize data complexity. Apply-
ing to SKINNY-n-3n, improvements in terms of time complexity (see Fig. 23 of
the full version [6]) or data complexity (see Fig. 24 [6]) upon the attack in [11]
on 23-round reduced version were obtained. In Sect. F of the full version, visu-
alizations of representative attack configurations are presented. The complexity
of the attacks are summarized in Table 1.
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