
Sharing Transformation and Dishonest Majority
MPC with Packed Secret Sharing

Vipul Goyal1,2, Antigoni Polychroniadou3, and Yifan Song1

1 Carnegie Mellon University, Pittsburgh, PA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, CA
3 J.P. Morgan AI Research, New York, NY

antigonipoly@gmail.com

Abstract. In the last few years, the efficiency of secure multi-party
computation (MPC) in the dishonest majority setting has increased by
several orders of magnitudes starting with the SPDZ protocol family
which offers a speedy information-theoretic online phase in the prepos-
sessing model. However, state-of-the-art n-party MPC protocols in the
dishonest majority setting incur online communication complexity per
multiplication gate which is linear in the number of parties, i.e. O(n),
per gate across all parties. In this work, we construct the first MPC
protocols in the preprocessing model for dishonest majority with sub-
linear communication complexity per gate in the number of parties n.
To achieve our results, we extend the use of packed secret sharing to the
dishonest majority setting. For a constant fraction of corrupted parties
(i.e. if 99 percent of the parties are corrupt), we can achieve a commu-
nication complexity of O(1) field elements per multiplication gate across
all parties.
At the crux of our techniques lies a new technique called sharing trans-
formation. The sharing transformation technique allows us to transform
shares under one type of linear secret sharing scheme into another, and
even perform arbitrary linear maps on the secrets of (packed) secret
sharing schemes with optimal communication complexity. This technique
can be of independent interest since transferring shares from one type of
scheme into another (e.g., for degree reduction) is ubiquitous in MPC.
Furthermore, we introduce what we call sparsely packed Shamir sharing
which allows us to address the issue of network routing efficiently, and
packed Beaver triples which is an extension of the widely used technique
of Beaver triples for packed secret sharing (for dishonest majority).

1 Introduction

In this work we initiate the study of sharing transformations which allow us
to perform arbitrary linear maps on the secrets of (possibly packed) secret-
sharing schemes. More specifically, suppose Σ and Σ′ are two linear secret shar-
ing schemes over a finite field F. A set of n parties {P1, P2, . . . , Pn} start with
holding a Σ-sharing X. Here X could be the sharing of a single field element or

2 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

a vector of field elements (e.g., as in packed secret sharing where multiple secrets
are stored within a single sharing). The parties wish to compute a Σ′-sharing Y
whose secret is a linear map of the secret of X. Here a linear map means that
each output secret is a linear combination of the input secrets (recall that the
secret can be a vector in F). We refer to this problem as sharing transformation.

Restricted cases of sharing transformations occur frequently in the construc-
tion of secure computation protocols based on secret sharing. For example,

– In the well-known BGW protocol [BOGW88] and DN protocol [DN07] and
their followups (see [CGH+18,BGIN20,GLO+21] and the citations therein),
when evaluating a multiplication gate, all parties first locally compute a
Shamir secret sharing of the result with a larger degree. To proceed the
computation, all parties wish to transform it to a Shamir secret sharing of
the result with a smaller degree. Here the two linear secret sharing schemes
Σ,Σ′ are both the Shamir secret sharing schemes but with different degrees.

– A recent line of works [CCXY18,PS21,CRX21] use the notion of reverse
multiplication-friendly embeddings (RMFE) to construct efficient information-
theoretic MPC protocols over small fields or rings Z/p`Z. This technique
requires all parties to transform a secret sharing of a vector of secrets that
are encoded by an encoding scheme to another secret sharing of the same
secrets that are encoded by a different encoding scheme.

– A line of works [DIK10,GIP15,GSY21,BGJK21,GPS21] focus on the strong
honest majority setting (i.e., t = (1/2 − ε) · n) and use the packed secret-
sharing technique [FY92] to construct MPC protocols with sub-linear com-
munication complexity in the number of parties. The main technical difficulty
is to perform a linear map on the secrets of a single packed secret sharing
(e.g., permutation or fan-out). In particular, depending on the circuit, each
time the linear map we need to perform can be different.

Unlike the above results, our sharing transformation protocol (1) can perform
arbitrary linear maps (2) is not restricted to a specific secret-sharing scheme and
(3) can achieve optimal communication complexity4. Our transformation can
find applications to different protocols based on different secret sharing schemes.
In this work we focus on applications to information-theoretic (IT) MPC proto-
cols. Furthermore, since we can handle any linear secret sharing scheme, our shar-
ing transformation works for an arbitrary packing factor k as long as t ≤ n−2k+1
where n is the number of participants and t is the number of corrupted parties
by the adversary. This allows us to present the first IT MPC protocols with
online communication complexity per gate sub-linear in the number of parties in

4 To be more precise, our protocol achieves linear communication complexity in the
summation of the sharing sizes of the two secret sharing schemes in the transforma-
tion. This is optimal (up to a constant factor) since it matches the communication
complexity of using an ideal functionality to do sharing transformation: the size of
the input is the sharing size of the first secret sharing scheme, the size of the out-
put is the sharing size of the second secret sharing scheme, and the communication
complexity is the size of the input and output.

Sharing Transformation and Dishonest Majority MPC with Packed SS 3

the circuit-independent prepossessing model for a variety of corruption thresh-
olds based on packed secret sharing. That said, we are able to extend the use of
packed secret sharing beyond the strong honest majority setting.

For the case where t = n−1, any function can be computed with IT security
in the preprocessing model with online communication complexity of O(n) field
elements per gate across all parties [DPSZ12]. Existing protocols in the literature
even for t ∈ [(n − 1)/2, n − 1] still required communication complexity of O(n)
elements per gate. We note that most of these protocols follow the “gate-by-
gate” design pattern described in [DNPR16]. In particular, the work [DNPR16]
shows that any information-theoretic protocol that works in this design pattern
must communicate Ω(n) for every multiplication gate. However, recent protocols
in the strong honest majority setting, based on packed secret-sharing [FY92],
where the number of corrupted parties t = (1/2− ε) ·n and ε ∈ (0, 1/2) [GPS21]
do achieve O(1/ε) communication complexity per gate among all parties. Note
that the packed secret sharing technique evaluates a batch of multiplication
gates in parallel, which differs from the above “gate-by-gate” design pattern
in [DNPR16], and therefore does not contradict with the result in [DNPR16].
Our result closes the gap in achieving sub-linear communication complexity per
gate in the number of parties for the more popular settings of standard honest
majority and dishonest majority.

1.1 Our Contributions

Sharing Transformation. For our arbitrary linear-map transformation on (packed)
linear secret sharing schemes we obtain the following informal result focusing on
share size 1 (i.e., each share is a single field element).

Theorem 1 (Informal). Let k = (n−t+1)/2. For all k tuples of {(Σi, Σ′i, fi)}ki=1

linear secret sharing schemes with injective sharing functions and for all Σi-
sharings {Xi}ki=1, there is an information-theoretic MPC protocol with semi-
honest security against t corrupted parties that transforms Xi to a Σ′i-sharing
Yi such that the secret of Yi is equal to the result of applying a linear map fi
on the secret of Xi for all i ∈ {1, . . . , k} (Here the secrets of Xi and Yi can be
vectors). The cost of the protocol is O(n3/k2) elements of communication per
sharing in a (sharing independent) preprocessing stage leading to preprocessed
data of size O(n2/k), and O(n2/k) elements of communication per sharing in
the online phase. When t = (1 − ε) · n for a positive constant ε, the overall
communication complexity is O(n) elements per sharing transformation.

The formal theorem is stated in the full version of this paper [GPS22]. In
Section 4, we show that our sharing transformation works for any share size `
(with an increase in the communication complexity by a factor `), and in the
full version of this paper [GPS22], we show that it is naturally extended to any
finite fields and rings Z/p`Z. The main application of our sharing transformation
technique is to construct MPC protocols. And we achieve malicious security
by directly compiling our semi-honest MPC protocol instead of relying on a

4 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

maliciously secure sharing transformation protocol. Therefore, in this work, we
do not attempt to achieve malicious security for our sharing transformation
technique.

We now turn our attention to constructing general MPC using our sharing
transformation technique.

Dishonest majority. In the setting of dishonest majority where the number of
corrupted parties t = (1 − ε) · n for a positive constant ε, our MPC protocol
achieves the cost of O(1/ε2) elements of (the size of) preprocessing data, and
O(1/ε) elements of communication per gate among all parties. Thus when ε is
a constant (e.g., up to 99 percent of all parties may be corrupted), the achieved
communication complexity in the online phase is O(1) elements per gate.

Honest Majority. As a corollary of our results in the dishonest majority setting,
we can achieve O(1) elements per gate of online communication and O(1) ele-
ments of preprocessing data per gate across all parties in the standard honest
majority setting (i.e., where the number of corrupted parties t is (n− 1)/2).

Our main results are summarized below. Note that we have omitted the
additive terms of the overhead of the communication complexity in the informal
theorems below. The additive terms are dependent on n and the depth of the
evaluated circuit. Our first theorem is for the semi-honest setting:

Theorem 2 (Informal). For an arithmetic circuit C over a finite field F of size
|F| ≥ |C|+ n, there exists an information-theoretic MPC protocol in the prepro-
cessing model which securely computes the arithmetic circuit C in the presence
of a semi-honest adversary controlling up to t parties. The cost of the protocol
is O(|C| · n2/k2) elements of preprocessing data, and O(|C| · n/k) elements of
communication where k = n−t+1

2 is the packing parameter. For the case where
k = O(n), the achieved communication complexity in the online phase is O(1)
elements per gate.

Our theorem also holds in the presence of a malicious adversary for all
1 ≤ k ≤ [n+2

3]. The formal theorem for semi-honest security is stated in Theo-
rem 3. We refer the readers to the full version of this paper [GPS22] for the for-
mal theorem for malicious security. Moreover, using our sharing transformation
based on the construction of [GPS21], we can also achieve online communication
complexity of O(1) elements per gate for small finite fields of size |F| ≥ 2n. We
refer the readers to the full version of this paper [GPS22] for more details.

2 Technical Overview

In this section, we give an overview of our techniques. We use bold letters to
represent vectors.

Sharing Transformation and Dishonest Majority MPC with Packed SS 5

Reducing Sharing Transformation to Random Sharing Preparation. Usually,
sharing transformation is solved by using a pair of random sharings (R,R′)
such that R is a random Σ-sharing and R′ is a random Σ′-sharing which satis-
fies that the secret of R′ is equal to the result of applying f on the secret of R,
where f is the desired linear map. Then all parties can run the following steps
to efficiently transform X to Y .

1. All parties locally compute X +R and send their shares to the first party
P1.

2. P1 reconstructs the secret ofX+R, denoted by w. Then P1 computes f(w)
and generates a Σ′-sharing of f(w), denoted by W . Finally, P1 distributes
the shares of W to all parties.

3. All parties locally compute Y =W −R′.

If we use rec, rec′ to denote the reconstruction maps of Σ and Σ′ (which are
linear by definition) respectively, the correctness follows from that

rec′(Y) = rec′(W)−rec′(R′) = f(w)−f(rec(R)) = f(rec(X+R)−rec(R)) = f(rec(X)).

And the security follows from the fact thatX+R is a randomΣ-sharing and thus
reveals no information about the secret of X. Therefore, the problem of sharing
transformation is reduced to preparing a pair of random sharings (R,R′). Let
Σ̃ = Σ̃(Σ,Σ′, f) be the secret sharing scheme which satisfies that a Σ̃-sharing of
a secret x consists of X which is a Σ-sharing of x, and Y which is a Σ′-sharing
of f(x). Then, the goal becomes to prepare a random Σ̃-sharing.

The generic approach of preparing random sharings of a linear secret sharing
scheme over F is as follows:

1. Each party Pi first samples a random sharing Ri and distributes the shares
to all other parties.

2. All parties use a linear randomness extractor over F to extract a batch of
random sharings such that they remain uniformly random even given the ran-
dom sharings sampled by corrupted parties. For a large finite field, we can
use the transpose of a Vandermonde matrix [DN07] as a linear randomness
extractor. The use of a randomness extractor is to reduce the communica-
tion complexity per random sharing. Alternatively, we can simply add all
random sharings {Ri}ni=1 and output a single random sharing, which results
in quadratic communication complexity in the number of parties.

If t is the number of corrupted parties, all parties can extract n − t random
sharings when using a large finite field. Then, the amortized communication
cost per sharing is n2/(n− t) field elements (assuming each share is a single field
element). When n − t = O(n), e.g., the honest majority setting, the amortized
cost becomes n2/(n−t) = O(n), which is generally good enough since it matches
the communication complexity of delivering a random sharing by a trusted party,
which seems like the best we can hope, up to a constant factor.

Thus when we need to prepare many random sharings for the same lin-
ear secret sharing scheme, the generic approach is already good enough. And

6 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

in particular, it is good enough for random Σ̃-sharings which are used for the
same sharing transformation defined by Σ̃ = Σ̃(Σ,Σ′, f), since Σ̃ is also a
linear secret sharing scheme. This is exactly the case when we need to do
degree reduction in [BOGW88,DN07] and change the encoding of the secrets
in [CCXY18,PS21,CRX21]. However, it is a different story if we need to prepare
random sharings for different linear secret sharing schemes: If only a constant
number of random sharings are needed for each linear secret sharing scheme, the
amortized cost per sharing becomes O(n2) field elements. This is exactly the case
when we need to perform permutation on the secrets of a packed secret sharing
in [DIK10,GIP15,BGJK21,GPS21]. In their setting, the permutations are de-
termined by the circuit structure. In particular, these permutations can all be
distinct in the worst case. As a result, the cost of preparing random sharings
becomes the dominating term in the communication complexity in the MPC pro-
tocols. To avoid it, previous works either restrict the number of different secret
sharing schemes they need to prepare random sharings for [DIK10,GIP15,GPS21]
or restrict the types of circuits [BGJK21].

This leads to the following fundamental question: Can we prepare random
sharings (used for sharing transformations) for different linear secret sharing
schemes with amortized communication complexity O(n)?

2.1 Preparing Random Sharings for Different Linear Secret Sharing
Schemes

To better expose our idea, we focus on a large finite field F. In the following, we
use n for the number of parties, and t for the number of corrupted parties. We
assume semi-honest security in the technical overview.

Linear Secret Sharing Scheme over F. For a linear secret sharing scheme Σ over
F, we use Z = Fk̃ to denote the secret space. k̃ is also referred to as the secret size
of Σ. For simplicity, we focus on the linear secret sharing schemes that have share
size 1 (i.e., each share is a single field element even though the secret is a vector
of k̃ elements). Let share : Z×Fr̃ → Fn be the deterministic sharing map which
takes as input a secret x and r̃ random field elements, and outputs a Σ-sharing of
x. We focus on linear secret sharing schemes whose sharing maps are injective,
which implies that k̃ + r̃ ≤ n. Let rec : Fn → Z be the reconstruction map
which takes as input a Σ-sharing and outputs the secret of the input sharing.
As discussed above, we have shown that preparing many random sharings for
the same linear secret sharing scheme can be efficiently achieved.

We use the standard Shamir secret sharing scheme over F, and use [x]t to
denote a degree-t Shamir sharing of x. A degree-t Shamir sharing requires t+ 1
shares to reconstruct the secret. And any t shares of a degree-t Shamir sharing
are independent of the secret.

Starting Point - Preparing a Random Sharing for a Single Linear
Secret Sharing Scheme Let Σ be an arbitrary linear secret sharing scheme.

Sharing Transformation and Dishonest Majority MPC with Packed SS 7

Although we have already shown how to prepare a random sharing for a single
linear secret sharing scheme Σ, we consider the following process which is easy
to be extended (discussed later).

1. All parties prepare k̃ + r̃ random degree-t Shamir sharings. Let τ be the
secrets of the first k̃ sharings, and ρ be the secrets of the last r̃ sharings.
Our goal is to compute a random Σ-sharing of τ with random tape ρ, i.e.,
share(τ ,ρ).

2. Since share is F-linear, for all j ∈ {1, 2, . . . , n}, the j-th share of share(τ ,ρ)
is a linear combination of the values in τ and ρ. Thus, all parties can locally
compute a degree-t Shamir sharing of the j-th share of share(τ ,ρ) by using
the degree-t Shamir sharings of the values in τ and ρ prepared in Step 1
and applying linear combinations on their local shares. Let [Xj]t denote the
resulting sharing.

3. For all j ∈ {1, 2, . . . , n}, all parties send their shares of [Xj]t to Pj to let Pj
reconstruct Xj . All parties take X = (X1, . . . , Xn) as output.

Note that τ and ρ are all uniform field elements, and X = share(τ ,ρ). There-
fore, the output X is a random Σ-sharing.

We note that this approach requires to prepare k̃+ r̃ = O(n) random degree-t
Shamir sharings and communicate n2 field elements in order to prepare a random
Σ-sharing, which is far from O(n). To improve the efficiency, we try to prepare
random sharings for a batch of (potentially different) secret sharing schemes each
time.

Preparing Random Sharings for a Batch of Different Linear Secret
Sharing Schemes We note that the above vanilla process can be viewed as all
parties securely evaluating a circuit for the sharing map share of Σ. In partic-
ular, (1) the circuit only involves linear operations, and (2) circuits for different
secret sharing schemes (i.e., share1, share2, . . . , sharek) all satisfy that each
output value is a linear combination of all input values with different coeffi-
cients. When we want to prepare random sharings for a batch of different secret
sharing schemes, the joint circuit is very similar to a SIMD circuit (which is a
circuit that contains many copies of the same sub-circuit). The only difference
is that, in our case, each sub-circuit corresponds to a different secret sharing
scheme, and therefore the coefficients used in different sub-circuits are distinct.
On the other hand, a SIMD circuit would use the same coefficients in all sub-
circuits. Thus, it motivates us to explore the packed secret-sharing technique
in [FY92], which is originally used to evaluate a SIMD circuit.

Starting Idea. SupposeΣ1, Σ2, . . . , Σk are k arbitrary linear secret sharing schemes
(Recall that we want to prepare random sharings for different sharing transfor-
mations, and every different sharing transformation requires to prepare a random
sharing of a different secret sharing scheme). We assume that they all have share
size 1 (i.e., each share is a single field element) for simplicity. We consider to
use a packed secret sharing scheme that can store k secrets in each sharing. Our
attempt is as follows:

8 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

1. All parties first prepare n random packed secret sharings (Our construction
will use the packed Shamir secret sharings introduced below). The secrets
are denoted by r1, r2, . . . , rn, where each secret rj is a vector of k random
elements in F.

2. For all i ∈ {1, 2, . . . , k}, we want to use the i-th values of all secret vectors to
prepare a random sharing of Σi. With more details, suppose Σi has secret
space Zi = Fk̃i , and the sharing map of Σi is sharei : Zi × Fr̃i → Fn.
Consider the vector (r1,i, r2,i, . . . , rn,i) which contains the i-th values of all
secret vectors. We plan to use the first k̃i values as the secret τi, and the
next r̃i values as the random tape ρi. Recall that we require sharei to be
injective. We have k̃i+ r̃i ≤ n. Therefore, there are enough values for τi and
ρi. The goal is to compute a random Σi-sharing Xi of the secret τi with
random tape ρi, i.e., Xi = sharei(τi,ρi).

3. For each party Pj , let uj denote the j-th shares of X1, . . . ,Xk. We want
to use the packed secret sharings of r1, . . . , rn to compute a single packed
secret sharing of uj .

4. After obtaining a packed secret sharing of uj , we can reconstruct the sharing
to Pj so that he learns the j-th share of each of X1, . . . ,Xk. Thus, we
start with n packed secret sharings (of r1, . . . , rn) of the same secret sharing
scheme and end with k sharings X1, . . . ,Xk of k potentially different secret
sharing schemes.

Clearly, the main question is how to realize Step 3. We observe that, since
Σi is a linear secret sharing scheme, the j-th share of Xi can be written as a
linear combination of the values in τi and ρi. Therefore, the j-th share of Xi

is a linear combination of the values (r1,i, r2,i, . . . , rn,i). Since it holds for all
i ∈ {1, 2, . . . , k}, there exists constant vectors c1, . . . , cn ∈ Fk such that

uj := c1 ∗ r1 + . . .+ cn ∗ rn,

where ∗ denotes the coordinate-wise multiplication operation. Thus, what we
need is a packed secret sharing scheme that supports efficient coordinate-wise
multiplication with a constant vector. We note that the packed Shamir secret
sharing scheme fits our need as we show next.

Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The
packed Shamir secret sharing scheme [FY92] is a natural generalization of the
standard Shamir secret sharing scheme [Sha79]. It allows to secret-share a batch
of secrets within a single Shamir sharing. For a vector x ∈ Fk, we use [x]d to
denote a degree-d packed Shamir sharing, where k − 1 ≤ d ≤ n − 1. It requires
d + 1 shares to reconstruct the whole sharing, and any d − k + 1 shares are
independent of the secrets. The packed Shamir secret sharing scheme has the
following nice properties:

– Linear Homomorphism: For all d ≥ k−1 and x,y ∈ Fk, [x+y]d = [x]d+[y]d.
– Multiplicative: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all
x,y ∈ Fk, [x∗y]d1+d2 = [x]d1 ·[y]d2 , where the multiplications are performed
on the corresponding shares.

Sharing Transformation and Dishonest Majority MPC with Packed SS 9

Note that when d ≤ n − k, all parties can locally multiply a public vector
c ∈ Fk with a degree-d packed Shamir sharing [x]d:

1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of
c, denoted by [c]k−1. Note that for a degree-(k − 1) packed Shamir sharing,
all shares are determined by the secret c.

2. All parties then locally compute [c ∗ x]n−1 = [c]k−1 · [x]n−k.

We simply write [c ∗x]n−1 = c · [x]n−k to denote the above process. We refer to
this property as multiplication-friendliness.

To make sure that the packed Shamir secret sharing scheme is secure against
t corrupted parties, we also require d ≥ t + k − 1. When d = n − k and k =
(n − t + 1)/2, the degree-(n − k) packed Shamir secret sharing scheme is both
multiplication-friendly and secure against t corrupted parties.

Observe that when we use the degree-(n − k) packed Shamir secret sharing
scheme in our attempt, all parties can locally compute a degree-(n− 1) packed
Shamir sharing of uj by

[uj]n−1 = c1 · [r1]n−k + . . .+ cn · [rn]n−k,

which solves the problem.

Summary of Our Construction. In summary, all parties run the following steps to
prepare random sharings for k different linear secret sharing schemesΣ1, Σ2, . . . , Σk.

1. Prepare Packed Shamir Sharings: All parties prepare n random degree-(n−k)
packed Shamir sharings, denoted by [r1]n−k, . . . , [rn]n−k.

2. Use Packed Secrets as Randomness for Target LSSS: For all i ∈ {1, 2, . . . , k},
let τi = (r1,i, . . . , rk̃i,i) and ρi = (rk̃i+1,i, . . . , rk̃i+r̃i,i). LetXi = sharei(τi,ρi).

3. Compute a Single Packed Shamir Sharing for All j-th Shares of Target LSSS
via Local Operations: For all j ∈ {1, 2, . . . , n}, let uj be the j-th shares of
(X1, . . . ,Xk). All parties locally compute a degree-(n − 1) packed Shamir
sharing of uj by using [r1]n−k, . . . , [rn]n−k. The resulting sharing is denoted
by [uj]n−1.

4. Reconstruct the Single Packed Shamir Sharing of All j-th Shares to Pj : For
all j ∈ {1, 2, . . . , n}, all parties reconstruct the sharing [uj]n−1 to Pj to let
him learn uj = (u

(1)
j , . . . , u

(k)
j). Then all parties take {Xi = (u

(i)
1 , . . . , u

(i)
n)}ki=1

as output.

We note that in Step 4, [uj]n−1 is not a random degree-(n − 1) packed
Shamir sharing of uj . Directly sending the shares of [uj]n−1 to Pj may leak
the information about honest parties’ shares. To solve it, all parties also pre-
pare n random degree-(n − 1) packed Shamir sharings of 0 ∈ Fk, denoted by
[o1]n−1, . . . , [on]n−1. Then all parties use [oj]n−1 to refresh the shares of [uj]n−1
by computing [uj]n−1 := [uj]n−1 + [oj]n−1. Now [uj]n−1 is a random degree-
(n− 1) packed Shamir sharing of uj . All parties send their shares of [uj]n−1 to
Pj to let him reconstruct uj .

10 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Communication Complexity. Thus, to prepare random sharings for k linear se-
cret sharing schemes, our construction requires to prepare n random degree-
(n − k) packed Shamir sharings and n random degree-(n − 1) packed Shamir
sharings of 0 ∈ Fk. And the communication complexity is n2 field elements.
On average, each random sharing costs 2n/k packed Shamir sharings and n2/k
elements of communication. When we use the generic approach to prepare ran-
dom packed Shamir sharings, the total communication complexity per random
sharing is O(n2/k) elements.

Recall that k = (n−t+1)/2. When t = (1−ε)·n for a positive constant ε, the
communication complexity per random sharing is O(n) elements, which matches
the communication complexity of delivering a random sharing by a trusted party
up to a constant factor. In Section 4, we show that our technique works for any
share size ` (with an increase in the communication complexity by a factor `),
and is naturally extended to any finite fields and rings Z/p`Z.

Efficient Sharing Transformation. Recall that in the problem of sharing trans-
formation, all parties start with holding a sharing X of a linear secret sharing
scheme Σ. They want to compute a sharing Y of another linear secret sharing
scheme Σ′ such that the secret of Y is a linear map of the secret of X.

As we discussed above, sharing transformation can be achieved efficiently
with the help of a pair of random sharings (R,R′) such that R is a random
Σ-sharing and R′ is a random Σ′-sharing which satisfies that the secret of R′
is equal to the result of applying the desired linear map on the secret of R.
A key insight is that (R,R′) can just be seen as a linear secret sharing on its
own. With our technique of preparing random sharings for different linear secret
sharing schemes, we can efficiently prepare a pair of random sharings (R,R′),
allowing efficient sharing transformation from X to Y .

When t = (1 − ε) · n for a positive constant ε, each sharing transformation
only requires O(n) field elements of communication.

2.2 Application: MPC via Packed Shamir Secret Sharing Schemes

In this section, we show that our technique for sharing transformation allows us
to design an efficient MPC protocol via packed Shamir secret sharing schemes.
We focus on the dishonest majority setting and information-theoretic setting
in the circuit-independent preprocessing model. In the preprocessing model, all
parties receive correlated randomness from a trusted party before the computa-
tion. The preprocessing model enables the possibility of an information-theoretic
protocol in the dishonest majority setting, which otherwise cannot exist in the
plain model. The cost of a protocol in the preprocessing model is measured by
both the amount of preprocessing data prepared in the preprocessing phase and
the amount of communication in the online phase [Cou19,BGIN21].

Let n be the number of parties, and t be the number of corrupted parties. For
any positive constant ε, we show that there is an information-theoretic MPC pro-
tocol in the circuit-independent preprocessing model with semi-honest security
(or malicious security) that computes an arithmetic circuit C over a large finite

Sharing Transformation and Dishonest Majority MPC with Packed SS 11

field F (with |F| ≥ |C|+ n) against t = (1− ε) · n corrupted parties with O(|C|)
field elements of preprocessing data and O(|C|) field elements of communication.
Compared with the recent work [GPS21] that achieves O(|C|) communication
complexity in the strong honest majority setting (i.e., t = (1/2 − ε) · n), our
construction has the following advantages:

1. Our protocol works in the dishonest majority setting.
2. With our new technique for sharing transformation, we avoid the heavy

machinery in [GPS21] for the network routing (see more discussion in the
full version of this paper [GPS22]).

On the other hand, we note that the protocol in [GPS21] works for a finite field
of size 2n while our protocol requires the field size to be |C|+n. We discuss how
our technique for sharing transformation can be used to simplify the protocol
in [GPS21] and how to extend their protocol to the dishonest majority setting
using our techniques in the full version of this paper [GPS22]. We also refer the
readers to the full version of this paper [GPS22] for a more detailed comparison
with [GPS21] and other related works.

Review the Packed Shamir Secret Sharing Scheme. We recall the notion of the
packed Shamir secret sharing scheme. Let α1, . . . , αn be n distinct elements in F
and pos = (p1, p2, . . . , pk) be another k distinct elements in F. A degree-d (d ≥
k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn)
for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that
f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all i ∈ {1, 2, . . . , n}. The
i-th share wi is held by party Pi.

In our protocol, we will always use the same elements α1, . . . , αn for the
positions of the shares of all parties. However, we may use different elements
pos for the secrets. We will use [x‖pos]d to denote a degree-d packed Shamir
sharing of x ∈ Fk stored at positions pos. Let β = (β1, . . . , βk) be distinct field
elements in F that are different from α1, . . . , αn. We will use β as the default
positions for the secrets, and simply write [x]d = [x‖β]d.

Recall that t is the number of corrupted parties. Let k = (n − t + 1)/2 and
d = n − k. As we have shown in Section 2.1, all parties can locally multiply a
public vector with a degree-(n− k) packed Shamir sharing, and a degree-(n− k)
packed Shamir sharing is secure against t corrupted parties.

An Overview of Our Construction. At a high-level,

1. All parties start with sharing their input values by using packed Shamir
sharings.

2. In each layer, addition gates and multiplication gates are divided into groups
of size k. Each time we will evaluate a group of k gates:
(a) For each group of k gates, all parties prepare two packed Shamir sharings,

one for the first inputs of all gates, and the other one for the second inputs
of all gates. Note that the secrets we want to be in a single sharing can
be scattered in different output sharings from previous layers. This step

12 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

is referred to as network routing. Relying on our technique of sharing
transformation, we can use a much simpler approach to handle network
routing than that in [GPS21].

(b) After preparing the two input sharings, all parties evaluate these k gates.
Addition gates can be locally computed since the packed Shamir secret
sharing scheme is linearly homomorphic. For multiplication gates, we
extend the technique of Beaver triples [Bea91] to our setting, which we
refer to as packed Beaver triples. All parties need to prepare packed
Beaver triples in the preprocessing phase.

3. After evaluating the whole circuit, all parties reconstruct the sharings they
hold to the parties who should receive the result.

Sparsely Packed Shamir Sharings. Our idea is to use a different position to store
the output value of each gate. Recall that |F| ≥ |C| + n. Let β1, β2, . . . , β|C| be
|C| distinct field elements that are different from α1, α2, . . . , αn. (Recall that we
have already defined β = (β1, . . . , βk), which are used as the default positions
for a packed Shamir sharing.) We associate the field element βi with the i-th
gate in C. We will use βi as the position to store the output value of the i-th
gate in a degree-(n− k) packed Shamir sharing (see an example below).

Concretely, for each group of k gates, all parties will compute a degree-(n−k)
packed Shamir sharing such that the results are stored at the positions associated
with these k gates respectively. For example, when k = 3, for a batch of 3 gates
which are associated with the positions β1, β3, β6 respectively, all parties will
compute a degree-(n− k) packed Shamir sharing [(z1, z3, z6)‖(β1, β3, β6)]n−k for
this batch of gates, where z1, z3, z6 are the output wires of these 3 gates.

As we will see later, it greatly simplifies the protocol for network routing.

Network Routing In each intermediate layer, for every group of k gates, sup-
pose x are the first inputs of these k gates, and y are the second inputs of these k
gates. All parties will prepare two degree-(n−k) packed Shamir sharings [x]n−k
and [y]n−k stored at the default positions using the following approach. The rea-
son of choosing the default positions is to use the packed Beaver triples, which
use the default positions since the preprocessing phase is circuit-independent
(discussed later). We focus on how to obtain [x]n−k.

Let x = (x1, x2, . . . , xk). For simplicity, we assume that x1, x2, . . . , xk are
output wires from k distinct gates. Later on, we will show how to handle the
scenario where the same output wire is used multiple times by using fan-out
operations. Since we use a different position to store the output of each gate, the
positions of these k gates are all different. Let p1, . . . , pk denote the positions of
these k gates and pos = (p1, . . . , pk). We first show that all parties can locally
compute a degree-(n− 1) packed Shamir sharing [x‖pos]n−1.

Selecting the Correct Secrets. For all i ∈ {1, 2, . . . , k}, let [x(i)‖pos(i)]n−k be the
degree-(n− k) packed Shamir sharing that contains the secret xi at position pi
from some previous layer. Let ei be the i-th unit vector in Fk (i.e., only the i-th

Sharing Transformation and Dishonest Majority MPC with Packed SS 13

term is 1 and all other terms are 0). All parties locally compute a degree-(k− 1)
packed Shamir sharing [ei‖pos]k−1. Consider the following degree-(n−1) packed
Shamir sharing:

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.
We claim that, the resulting sharing satisfies that the value stored at position
pi is xi and the values stored at other positions in pos are all 0. To see this,
recall that each packed Shamir sharing corresponds to a polynomial. Let f be the
polynomial corresponding to [ei‖pos]k−1, and g be the polynomial corresponding
to [x(i)‖pos(i)]n−k. Then f satisfies that f(pi) = 1 and f(pj) = 0 for all j 6= i,
and g satisfies that g(pi) = xi. Note that h = f ·g is the polynomial corresponding
to the resulting sharing [ei‖pos]k−1 ·[x(i)‖pos(i)]n−k, which satisfies that h(pi) =
f(pi) · g(pi) = 1 · xi = xi, and h(pj) = f(pj) · g(pj) = 0 · g(pj) = 0 for all j 6= i.
Thus, the resulting sharing has value xi in the position pi and 0 in all other
positions in pos. Effectively, we select the secret xi from [x(i)‖pos(i)]n−k at
position pi and zero-out the values stored at other positions in pos.

Getting all Secrets into a Single Packed Shamir Sharing. Thus, for the following
degree-(n− 1) packed Shamir sharing

k∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k,

it has value xi stored in the position pi for all i ∈ {1, 2, . . . , k}, which means that
it is a degree-(n − 1) packed Shamir sharing [x‖pos]n−1. Therefore, all parties
can locally compute [x‖pos]n−1 =

∑k
i=1[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

Applying Sharing Transformation. Finally, to obtain [x]n−k = [x‖β]n−k, all
parties only need to do a sharing transformation from [x‖pos]n−1 to [x]n−k.
Relying on our technique for sharing transformation, we can achieve this step
with O(n) field elements of communication.

Therefore, our protocol for network routing only requires a local computation
for [x‖pos]n−1 and an efficient sharing transformation for [x]n−k with O(n) field
elements of communication.

Handling Fan-out Operations. The above solution only works when all the wire
values of x come from different gates. In a general case, x may contain many
wire values from the same gate. We modify the above protocol as follows:

1. Suppose x′1, . . . , x′k′ are the different values in x. Let x
′ = (x′1, . . . , x

′
k′ , 0, . . . , 0) ∈

Fk. For all i ∈ {1, 2, . . . , k′}, let pi be the position associated with the gate
that outputs x′i. We choose pk′+1, . . . , pk to be the first (k−k′) unused posi-
tions and set pos = (p1, . . . , pk). Then, all parties follow a similar approach
to locally compute a degree-(n− 1) packed Shamir sharing of [x′‖pos]n−1.

2. Note that x′ contains all different values in x. Thus, there is a linear map
f : Fk → Fk such that x = f(x′). Therefore, relying on our technique for
sharing transformation, all parties transform [x′‖pos]n−1 to [x]n−k.

The communication complexity remains O(n) field elements.

14 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Evaluating Multiplication Gates Using Packed Beaver Triples For a
group of k multiplication gates, suppose all parties have prepared two degree-(n−
k) packed Shamir sharings [x]n−k and [y]n−k. Let pos be the positions associated
with these k gates. The goal is to compute a degree-(n−k) packed Shamir sharing
of x ∗ y stored at positions pos. To this end, we extend the technique of Beaver
triples [Bea91] to our setting, which we refer to as packed Beaver triples. We
make use of a random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), where a, b
are random vectors in Fk and c = a ∗ b. All parties run the following steps:

1. All parties locally compute [x+ a]n−k = [x]n−k + [a]n−k and [y + b]n−k =
[y]n−k + [b]n−k.

2. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and
reconstructs the secrets x + a,y + b. Recall that x = (x1, . . . , xk) and a =
(a1, . . . , ak) are vectors in Fk, and x+ a = (x1 + a1, . . . , xk + ak). Similarly,
y+b = (y1+b1, . . . , yk+bk). P1 computes the sharings [x+a]k−1, [y+b]k−1
and distributes the shares to other parties.

3. All parties locally compute

[z]n−1 := [x+a]k−1 ·[y+b]k−1−[x+a]k−1 ·[b]n−k−[y+b]k−1 ·[a]n−k+[c]n−k.

Here the resulting sharing [z]n−1 has degree n − 1 due to the second term
and the third term.

4. Finally, all parties transform the sharing [z]n−1 to [z‖pos]n−k. Relying on
our technique of sharing transformation, this can be done with O(n) field
elements of communication.

Note that in the above steps, all parties only reveal [x + a]n−k and [y + b]n−k
to P1. Recall that [a]n−k and [b]n−k are random degree-(n− k) packed Shamir
sharings. Therefore, [x + a]n−k and [y + b]n−k are also random degree-(n − k)
packed Shamir sharings, which leak no information about x and y to P1. Thus,
the security follows.

Therefore, to evaluate a group of k multiplication gates, all parties need to
prepare a random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), which is of size
O(n) field elements. The communication complexity is O(n) field elements.

Summary In summary, our protocol works as follows. All parties first prepare
enough packed Beaver triples stored at the default positions in the preprocessing
phase. Then in the online phase, all parties evaluate the circuit layer by layer.
For each layer, all parties first use the protocol for network routing to prepare
degree-(n − k) packed Shamir sharings for the inputs of this layer. Then, for
every group of addition gates, all parties can compute them locally due to the
linear homomorhpism of the packed Shamir secret sharing scheme. For every
group of multiplication gates, we use the technique of packed Beaver triple to
evaluate these gates. In particular, evaluating each group of multiplication gates
will consume one fresh packed Beaver triple prepared in the preprocessing phase.

When t = (1−ε)·n for a positive constant ε, we have k = (n−t+1)/2 = O(n).
For the amount of preprocessing data, we need to prepare a packed Beaver triple

Sharing Transformation and Dishonest Majority MPC with Packed SS 15

for each group of k multiplication gates. Thus, the amount of preprocessing data
is bounded by O(|C|k ·n) = O(|C|). For the amount of communication, note that
all parties need to communicate during the network routing and the evaluation
of multiplication gates. Both protocols require O(n) elements of communication
to process k secrets. Thus, the amount of communication complexity is also
bounded by O(|C|k · n) = O(|C|).

Therefore, we obtain an information-theoretic MPC protocol in the circuit-
independent preprocessing model with semi-honest security that computes an
arithmetic circuit C over a large finite field F (with |F| ≥ |C| + n) against
t = (1− ε) ·n corrupted parties with O(|C|) field elements of preprocessing data
and O(|C|) field elements of communication.

Other Results

Malicious Security of the Online Protocol. To achieve malicious security, we ex-
tend the idea of using information-theoretic MACs introduced in [BDOZ11,DPSZ12]
to authenticate packed Shamir sharings. Concretely, at the beginning of the com-
putation, all parties will prepare a random degree-(n−k) packed Shamir sharing
[γ]n−k, where γ = (γ, γ, . . . , γ) ∈ Fk and γ is a random field element. The se-
crets γ serve as the MAC key. To authenticate the secrets of a degree-(n − k)
packed Shamir sharing [x]n−k, all parties will compute a degree-(n− k) packed
Shamir sharing [γ ∗ x]n−k. We will show that almost all malicious behaviors of
corrupted parties can be transformed to additive attacks, i.e., adding errors to
the secrets of degree-(n− k) packed Shamir sharings.

Note that if the corrupted parties change the secrets x to x + δ1, they also
need to change the secrets γ∗x to γ∗x+δ2 such that δ2 = γ∗δ1. However, since γ
is a uniform value in F, the probability of a success attack is at most 1/|F|. When
the field size is large enough, we can detect such an attack with overwhelming
probability. See more details in the full version of this paper [GPS22].

Using the Result of [GPS21] for Small Finite Fields. Recall that our protocol
requires the field size to be at least |C| + n. On the other hand, the protocol
in [GPS21] can use a finite field of size 2n. This is due to the use of different
approaches to handle network routing.

When using a small finite field, we can use the technique in [GPS21] to
handle network routing. Our technique for sharing transformation also improves
the concrete efficiency of computing fan-out gates and performing permutations
in [GPS21]. More details can be found in the full version of this paper [GPS22].

3 Preliminaries

In this work, we use the client-server model for the secure multi-party compu-
tation. In the client-server model, clients provide inputs to the functionality and
receive outputs, and servers can participate in the computation but do not have
inputs nor get outputs. Each party may have different roles in the computation.

16 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Note that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients and
n denote the number of servers. For all clients and servers, we assume that ev-
ery two of them are connected via a secure (private and authentic) synchronous
channel so that they can directly send messages to each other.

We focus on functions that can be represented as arithmetic circuits over a
finite field F with input, addition, multiplication, and output gates.5 We use κ
to denote the security parameter, C to denote the circuit, and |C| for the size
of the circuit. In this work, we assume that the field size is |F| ≥ 2κ. Note that
it implies |F| ≥ |C|+ n since both the number of parties and the circuit size are
bounded by poly(κ).

We are interested in the information-theoretic setting in the (circuit-independent)
preprocessing model. The preprocessing model assumes that there is an ideal
functionality which can prepare circuit-independent correlated randomness be-
fore the computation. Then the correlated randomness is used in a lightweight
and fast online protocol. In particular, the preprocessing model enables the pos-
sibility of an information-theoretic protocol in the dishonest majority setting,
which otherwise cannot exist in the plain model. The cost of a protocol in the
preprocessing model is measured by both the amount of communication via pri-
vate channels in the online phase and the amount of preprocessing data prepared
in the preprocessing phase [Cou19,BGIN21].

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. One
benefit of the client-server model is that it is sufficient to only consider maximum
adversaries, i.e., adversaries which corrupt exactly t parties. We refer the readers
to the full version of this paper [GPS22] for more details about the security
definition and the benefit of the client-server model. In the following, we assume
that there are exactly t corrupted parties.

4 Preparing Random Sharings for Different Arithmetic
Secret Sharing Schemes

4.1 Arithmetic Secret Sharing Schemes

Let R be a finite commutative ring. In this work, we consider the following
arithmetic secret sharing schemes from [ACD+20] (with slight modifications).

Definition 1 (Arithmetic Secret Sharing Schemes). The syntax of an R-
arithmetic secret sharing scheme Σ consists of the following data:

– A set of parties I = {1, . . . , n}.
5 In this work, we only focus on deterministic functions. A randomized function can
be transformed to a deterministic function by taking as input an additional random
tape from each party. The XOR of the input random tapes of all parties is used as
the randomness of the randomized function.

Sharing Transformation and Dishonest Majority MPC with Packed SS 17

– A secret space Z = Rk. k is also denoted as the number of secrets packed
within Σ.

– A share space U = R`. ` is also denoted as the share size.
– A sharing space C ⊂ UI , where UI denotes the indexed Cartesian product∏

i∈I U .
– An injective R-module homomorphism: share : Z ×Rr → C, which maps a

secret x ∈ Z and a random tape ρ ∈ Rr, to a sharing X ∈ C. share is also
denoted as the sharing map of Σ.

– A surjective R-module homomorphism: rec : C → Z, which takes as input
a sharing X ∈ C and outputs a secret x ∈ Z. rec is also denoted as the
reconstruction map of Σ.

The scheme Σ satisfies that for all x ∈ Z and ρ ∈ Rr, rec(share(x,ρ)) = x.
We may refer to Σ as the 6-tuple (n,Z, U,C, share, rec).

For a non-empty set A ⊂ I, the natural projection πA maps a tuple u =
(ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA.

Definition 2 (Privacy Set and Reconstruction Set). Suppose A ⊂ I is
nonempty. We say A is a privacy set if for all x0,x1 ∈ Z, and for all vector
v ∈ UA,

Pr
ρ
[πA(share(x0,ρ)) = v] = Pr

ρ
[πA(share(x1,ρ)) = v].

We say A is a reconstruction set if there is an R-module homomorphism
recA : πA(C)→ Z, such that for all X ∈ C,

recA(πA(X)) = rec(X).

Intuitively, for a privacy set A, the shares of parties in A are independent of
the secret. For a reconstruction set A, the shares of parties in A fully determine
the secret.

Threshold Linear Secret Sharing Schemes and Multiplication-friendly Property.
In this work, we are interested in threshold arithmetic secret sharing schemes.
Concretely, for a positive integer t < n, a threshold-t arithmetic secret sharing
scheme satisfies that for all A ⊂ I with |A| ≤ t, A is a privacy set.

We are interested in the following property.

Property 1 (Multiplication-Friendliness). We sayΣ = (n,Z = Rk, U, C, share, rec)
is multiplication-friendly if there is an R-arithmetic secret sharing scheme Σ′ =
(n,Z = Rk, U ′, C ′, share′, rec′) and n functions {fi : Rk × U → U ′}ni=1 such
that for all c ∈ Rk and for all X ∈ C,

– Y = (f1(c, X1), f2(c, X2), . . . , fn(c, Xn)) is in C ′, i.e., a sharing in Σ′. We
will use Y = c ·X to represent the computation process from c and X to
Y .

18 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

– rec′(Y) = c ∗ rec(X), where ∗ is the coordinate-wise multiplication opera-
tion.

Intuitively, for a multiplication-friendly scheme Σ, if all parties hold a Σ-
sharing of a secret x ∈ Z and a public vector c ∈ Rk, they can locally compute a
Σ′-sharing of the secret c∗x, where ∗ denotes the coordinate-wise multiplication
operation. We prove Lemma 1 in the full version of this paper [GPS22].

Lemma 1. If Σ is a multiplication-friendly threshold-t R-arithmetic secret shar-
ing scheme, and Σ′ be the R-arithmetic secret sharing scheme defined in Prop-
erty 1, then Σ′ has threshold t.

4.2 Packed Shamir Secret Sharing Scheme

In our work, we are interested in the packed Shamir secret sharing scheme. We
use the packed secret-sharing technique introduced by Franklin and Yung [FY92].
This is a generalization of the standard Shamir secret sharing scheme [Sha79].
Let F be a finite field of size |F| ≥ 2n. Let n be the number of parties and k
be the number of secrets that are packed in one sharing. Let α1, . . . , αn be n
distinct elements in F and pos = (p1, p2, . . . , pk) be another k distinct elements
in F. A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is
a vector (w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X] of degree
at most d such that f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all
i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi. Reconstructing a degree-
d packed Shamir sharing requires d + 1 shares and can be done by Lagrange
interpolation. For a random degree-d packed Shamir sharing of x, any d− k+1
shares are independent of the secret x.

In our work, we will always use the same elements α1, . . . , αn for the shares
of all parties. However, we may use different elements pos for the secrets. We
will use [x‖pos]d to denote a degree-d packed Shamir sharing of x ∈ Fk stored at
positions pos. In the following, operations (addition and multiplication) between
two packed Shamir sharings are coordinate-wise. We recall two properties of the
packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x + y‖pos]d =
[x‖pos]d + [y‖pos]d.

– Multiplicative: Let ∗ denote the coordinate-wise multiplication operation.
For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x,y ∈ Fk, [x ∗
y‖pos]d1+d2 = [x‖pos]d1 · [y‖pos]d2 .

These two properties directly follow from the computation of the underlying
polynomials.

Note that the second property implies that, for all k − 1 ≤ d ≤ n − k, a
degree-d packed Shamir secret sharing scheme is multiplication-friendly (defined
in Property 1). Concretely, for all x, c ∈ Fk, all parties can locally compute
[c ∗ x‖pos]d+k−1 from [x‖pos]d and the public vector c. To see this, all parties
can locally transform c to a degree-(k − 1) packed Shamir sharing [c‖pos]k−1.

Sharing Transformation and Dishonest Majority MPC with Packed SS 19

Then, they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x‖pos]d+k−1 = [c‖pos]k−1 · [x‖pos]d.

Recall that t is the number of corrupted parties. Also recall that a degree-d
packed Shamir secret sharing scheme is of threshold d − k + 1. To ensure that
the packed Shamir secret sharing scheme has threshold t and is multiplication-
friendly, we choose k such that t ≤ d − k + 1 and d ≤ n − k. When d = n − k
and k = (n− t+ 1)/2, both requirements hold and k is maximal.

4.3 Preparing Random Sharings for Different Arithmetic Secret
Sharing Schemes

In this part, we introduce our main contribution: an efficient protocol that pre-
pares random sharings for a batch of different arithmetic secret sharing schemes.
Let R be a finite commutative ring. Let Π = (n, Z̃, Ũ , C̃, shareΠ , recΠ) be
an R-arithmetic secret sharing scheme. Our goal is to realize the functionality
Frand-sharing presented in Functionality 1.

Functionality 1: Frand-sharing(Π)

1. Frand-sharing receives the set of corrupted parties, denoted by Corr.
2. Frand-sharing receives from the adversary a set of shares {uj}j∈Corr where uj ∈

Ũ for all j ∈ Corr.
3. Frand-sharing samples a random Π-sharing X such that the shares of X held

by corrupted parties are identical to those received from the adversary, i.e.,
πCorr(X) = (uj)j∈Corr. If such a sharing does not exist, Frand-sharing sends
abort to all honest parties and halts.

4. Otherwise, Frand-sharing distributes the shares of X to honest parties.

Initialization. LetΣ = (n,Z = Rk, U, C, share, rec) be a multiplication-friendly
threshold-t R-arithmetic secret sharing scheme. In the following, we will use [x]
to denote a Σ-sharing of x ∈ Rk. Let Σ′ = (n,Z ′ = Rk, U ′, C ′, share′, rec′)
be the R-arithmetic secret sharing scheme in Property 1. By Lemma 1, Σ′ has
threshold t. We use 〈y〉 to denote a Σ′-sharing of y ∈ Rk. For all c ∈ Rk, we
will write

〈c ∗ x〉 = c · [x]

to represent the computation process from c and [x] to 〈c ∗ x〉 in Property 1.
Our construction will use the ideal functionality Frand = Frand-sharing(Σ)

that prepares a random Σ-sharing, and the ideal functionality FrandZero (Func-
tionality 2) that prepares a random Σ′-sharing of 0 ∈ Rk.

Let Π1, Π2, . . . ,Πk be k arbitrary R-arithmetic secret sharing schemes with
the restriction that all schemes have the same share size, i.e., the share space

20 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Functionality 2: FrandZero

1. Let Σ′ = (n,Z′ = Rk, U ′, C′, share′, rec′). FrandZero receives the set of cor-
rupted parties, denoted by Corr.

2. FrandZero receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′
for all Pj ∈ Corr.

3. FrandZero samples a random Σ′-sharing of 0 ∈ Rk, 〈0〉, such that the shares
of corrupted parties are identical to those received from the adversary, i.e.,
πCorr(〈0〉) = (u′j)j∈Corr. If such a sharing does not exist, FrandZero sends
abort to all honest parties and halts.

4. Otherwise, FrandZero distributes the shares of 〈0〉 to honest parties.

Ũ = R˜̀. Let Z̃i = Rk̃i be the secret space of Πi and sharei : Z̃i ×Rr̃i → C̃i be
the sharing map. Since sharei is injective, and C̃i ⊂ ŨI , we have k̃i+ r̃i ≤ n · ˜̀.

The goal is to prepare k random sharings X1,X2, . . . ,Xk such that Xi is a
random Πi-sharing, i.e., realizing {Frand-sharing(Πi)}ki=1.

Protocol Description. The construction of our protocol Rand-Sharing appears
in Protocol 3. We prove Lemma 2 in the full version of this paper [GPS22].
Protocol Rand-Sharing requires n2 · ˜̀· (`+ `′) ring elements of preprocessing
data and n2 · ˜̀· `′ ring elements of communication to prepare k random sharings
forΠ1, Π2, . . . ,Πk, one for each secret sharing scheme. The detailed cost analysis
can also be found in the full version of this paper [GPS22].

Lemma 2. For any k R-arithmetic secret sharing schemes {Πi}ki=1 such that
they have the same share size, Protocol Rand-Sharing securely computes
{Frand-sharing(Πi)}ki=1 in the {Frand,FrandZero}-hybrid model against a semi-
honest adversary who controls t parties.

4.4 Instantiating Protocol Rand-Sharing via Packed Shamir
Secret Sharing Scheme

Recall that when k = (n − t + 1)/2, a degree-(n − k) packed Shamir secret
sharing has threshold t and is multiplication-friendly. Therefore, we use a degree-
(n−k) packed Shamir secret sharing scheme to instantiate Σ in Protocol Rand-
Sharing. Then Σ′ is a degree-(n−1) packed Shamir secret sharing scheme. For
Σ and Σ′,

– The secret space is Fk, where k = (n− t+ 1)/2.
– The share space is F, i.e., each share is a single field element. Therefore
` = `′ = 1.

Thus, we obtain a protocol that prepares random sharings for Π1, Π2, . . . ,Πk

with 2·n2· ˜̀= O(n2· ˜̀) field elements of preprocessing data and n2· ˜̀field elements

Sharing Transformation and Dishonest Majority MPC with Packed SS 21

Protocol 3: Rand-Sharing

1. Let Π1, Π2, . . . , Πk be k arbitrary R-arithmetic secret sharing schemes such
that they have the same share size. Let Ũ = R˜̀ denote the share space. For
all i ∈ {1, 2, . . . , k}, let Z̃i = Rk̃i be the secret space of Πi, and sharei :
Z̃i ×Rr̃i → C̃i be the sharing map of Πi. We have k̃i + r̃i ≤ n · ˜̀.

2. All parties invoke Frand n· ˜̀times and obtain n· ˜̀random Σ-sharings, denoted
by [r1], [r2], . . . , [rn·˜̀]. For all i ∈ {1, 2, . . . , k}, let τi = (r1,i, r2,i, . . . , rk̃i,i

) ∈
Rk̃i , and ρi = (rk̃i+1,i, rk̃i+2,i, . . . , rk̃i+r̃i,i

) ∈ Rr̃i . The goal of this protocol
is to compute the Πi-sharing Xi = sharei(τi,ρi).

3. All parties invoke FrandZero n · ˜̀ times and obtain n · ˜̀ random Σ′-sharings of
0 ∈ Rk, denoted by {〈o(1)j 〉, 〈o

(2)
j 〉, . . . , 〈o

(˜̀)
j 〉}

n
j=1.

4. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let L(i,m)
j :

Z̃i ×Rr̃i → R denote the R-module homomorphism such that for all τ ∈ Z̃i

and ρ ∈ Rr̃i , L(i,m)
j (τ ,ρ) outputs the m-th element of the j-th share of the

Πi-sharing sharei(τ ,ρ). Then there exist c(i,m)
j,1 , . . . , c

(i,m)

j,k̃i+r̃i
∈ R such that

L(i,m)
j (τ ,ρ) =

k̃i∑
v=1

c
(i,m)
j,v · τv +

r̃i∑
v=1

c
(i,m)

j,k̃i+v
· ρv.

For all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , ˜̀}, and v ∈ {1, . . . , n · ˜̀}, let

c
(?,m)
j,v = (c

(1,m)
j,v , c

(2,m)
j,v , . . . , c

(k,m)
j,v) ∈ Rk,

where c(i,m)
j,v = 0 for all v > k̃i + r̃i.

5. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let u(i,m)
j =

L(i,m)
j (τi,ρi). Let u(?,m)

j = (u
(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j). For all j ∈ {1, 2, . . . , n}

and m ∈ {1, 2, . . . , ˜̀}, all parties locally compute a Σ′-sharing

〈u(?,m)
j 〉 = 〈o(m)

j 〉+
n·˜̀∑
v=1

c
(?,m)
j,v · [rv].

Then, all parties send their shares of 〈u(?,m)
j 〉 to Pj .

6. For all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, Pj reconstructs the Σ′-
sharing 〈u(?,m)

j 〉 and learns u(?,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j). Then for

all i ∈ {1, 2, . . . , k}, Pj sets his share of the Πi-sharing, Xi, to be u(i)
j =

(u
(i,1)
j , u

(i,2)
j , . . . , u

(i,˜̀)
j). All parties take X1,X2, . . . ,Xk as output.

of communication. On average, the cost per random sharing is O(n2

n−t+1 · ˜̀)
field elements of both preprocessing data and communication. Note that when
t = (1− ε) · n for a positive constant ε, the achieved amortized cost per sharing

22 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

is O(n · ˜̀) field elements. In particular, n · ˜̀ is the sharing size of Πi for all
i ∈ {1, 2, . . . , k}. Essentially, it costs the same as letting a trusted party generate
a random Πi-sharing and distribute to all parties.

In the full version of this paper [GPS22], we discuss how to instantiate Pro-
tocol Rand-Sharing for small fields Fq and rings Z/p`Z.

4.5 Application of Frand-sharing

Let Σ and Σ′ be two threshold-t R-arithmetic secret sharing schemes. Let f :
Z → Z ′ be an R-module homomorphism, where Z and Z ′ are the secret spaces
of Σ and Σ′ respectively. Suppose given a Σ-sharing, X, all parties want to
compute a Σ′-sharing, Y , subject to rec′(Y) = f(rec(X)), where rec and rec′

are reconstruction maps of Σ and Σ′, respectively. We refer to this problem as
sharing transformation.

As discussed in Section 2, sharing transformation can be efficiently solved
with the help of a pair of random sharings (R,R′), where R is a Σ-sharing,
and R′ is a Σ′-sharing subject to rec′(R′) = f(rec(R)). Consider the following
R-arithmetic secret sharing scheme Σ̃ = Σ̃(Σ,Σ′, f):

– The secret space is Z, the same as that of Σ.
– The share space is U × U ′, where U is the share space of Σ and U ′ is the

share space of Σ′.
– For a secret x ∈ Z, the sharing of x is the concatenation of a Σ-sharing of
x and a Σ′-sharing of f(x).

– For a sharing X, recall that each share of Σ̃ consists of one share of Σ and
one share of Σ′. The secret of X can be recovered by applying rec of Σ on
the sharing which consists of the shares of Σ in X.

Then, (R,R′) is a random Σ̃-sharing. The problem is reduced to prepare a
random Σ̃-sharing, which can be done by Frand-sharing(Σ̃).

We summarize the functionality Ftran in Functionality 4 and the protocol
Tran for Ftran in Protocol 5.

Lemma 3. For all threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and
for all R-module homomorphism f : Z → Z ′, Protocol Tran securely com-
putes Ftran in the Frand-sharing-hybrid model against a semi-honest adversary
who controls t parties.

A formal theorem of Theorem 1 can be found in the full version of this pa-
per [GPS22].

5 Semi-Honest Protocol

In this section, we focus on the semi-honest security. We show how to use packed
Shamir sharing schemes and Ftran (introduced in Section 4.5) to evaluate a

Sharing Transformation and Dishonest Majority MPC with Packed SS 23

Functionality 4: Ftran

1. Ftran receives the set of corrupted parties, denoted by Corr. Ftran also receives
two threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and an R-module
homomorphism f : Z → Z′.

2. Ftran receives a Σ-sharing X from all parties and computes f(rec(X)).
3. Ftran receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′

for all Pj ∈ Corr.
4. Ftran samples a random Σ′-sharing, Y , such that rec′(Y) = f(rec(X)) and

the shares of corrupted parties are identical to those received from the adver-
sary, i.e., πCorr(Y) = (u′j)j∈Corr. If such a sharing does not exist, Ftran sends
abort to honest parties and halts.

5. Otherwise, Ftran distributes the shares of Y to honest parties.

Protocol 5: Tran

1. Let Σ,Σ′ be two threhsold-tR-arithmetic secret sharing schemes and f : Z →
Z′ be an R-module homomorphism. All parties hold a Σ-sharing, X, at the
beginning of the protocol.

2. Let Σ̃ = Σ̃(Σ,Σ′, f) be the threshold-tR-arithmetic secret sharing scheme de-
fined above. All parties invoke Frand-sharing(Σ̃) and obtain a Σ̃-sharing (R,R′).

3. All parties locally compute X+R and send their shares to the first party P1.
4. P1 reconstructs the secret of X +R, denoted by w. Then P1 computes f(w)

and generates a Σ′-sharing of f(w), denoted by W . Finally, P1 distributes
the shares of W to all parties.

5. All parties locally compute Y =W −R′.

circuit against a semi-honest adversary who controls t parties. Let k = (n− t+
1)/2.

Recall that we use [x‖pos]d to represent a degree-d packed Shamir sharing
of x ∈ Fk stored at positions pos = (p1, p2, . . . , pk). Also recall that the shares
of a degree-d packed Shamir sharing are at evaluation points α1, α2, . . . , αn.
Let β = (β1, β2, . . . , βk) be k distinct elements in F that are different from
(α1, α2, . . . , αn). We use β as the default positions for a degree-d packed Shamir
sharing, and simply write [x]d = [x‖β]d.

5.1 Circuit-Independent Preprocessing Phase

In the circuit-independent preprocessing phase, all parties need to prepare packed
Beaver triples. For every group of k multiplication gates, all parties prepare a
packed Beaver triple ([a]n−k, [b]n−k, [c]n−k) where a, b are random vectors in Fk
and c = a ∗ b. We will use the technique of packed Beaver triples to compute

24 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

multiplication gates in the online phase. The functionality Fprep for the circuit
independent preprocessing phase appears in Functionality 6.

Functionality 6: Fprep

For every group of k multiplication gates:

1. Fprep receives the set of corrupted parties, denoted by Corr.
2. Fprep receives from the adversary a set of shares {(aj , bj , cj)}j∈Corr. Fprep sam-

ples two random vectors a, b ∈ Fk and computes c = a ∗ b. Then Fprep com-
putes three degree-(n− k) packed Shamir sharings [a]n−k, [b]n−k, [c]n−k such
that for all Pj ∈ Corr, the j-th share of ([a]n−k, [b]n−k, [c]n−k) is (aj , bj , cj).

3. Fprep distributes the shares of ([a]n−k, [b]n−k, [c]n−k) to honest parties.

5.2 Online Computation Phase

Recall that for the field size it holds that |F| ≥ |C|+ n, where |C| is the circuit
size. Let β1, β2, . . . , β|C| be |C| distinct field elements that are different from
α1, α2, . . . , αn. (Recall that we have already defined β = (β1, . . . , βk), which are
used as the default positions for a packed Shamir sharing.) We associate the field
element βi with the i-th gate in C. We will use βi as the position to store the
output value of the i-th gate in a degree-(n− k) packed Shamir sharing.

Concretely, for each layer, gates that have the same type are divided into
groups of size k. For each group of k gates, all parties will compute a degree-
(n− k) packed Shamir sharing such that the results are stored at the positions
associated with these k gates respectively.

Input Layer In the input layer, input gates are divided into groups of size k
based on the input holders. For a group of k input gates belonging to the same
client, suppose x are the inputs, and pos = (p1, p2, . . . , pk) are the positions
associated with these k gates. The client generates a random degree-(n − k)
packed Shamir sharing [x‖pos]n−k and distributes the shares to all parties.

Network Routing In each intermediate layer, all gates are divided into groups
of size k based on their types (i.e., multiplication gates or addition gates). For a
group of k gates, all parties prepare two degree-(n− k) packed Shamir sharings,
one for the first inputs of all gates, and the other one for the second inputs of
all gates.

Concretely, for a group k gates in the current layer, suppose x are the first
inputs of these k gates, and y are the second inputs of these k gates. All parties

Sharing Transformation and Dishonest Majority MPC with Packed SS 25

will prepare two degree-(n−k) packed Shamir sharings [x]n−k and [y]n−k stored
at the default positions. The reason of choosing the default positions is to use the
packed Beaver triples all parties have prepared in the preprocessing phase. Recall
that the packed Beaver triples all use the default positions. In the following, we
focus on inputs x.

Collecting Secrets from Previous Layers. Let x′1, x′2, . . . , x′`1 be the different val-
ues in x from previous layers. Let c1, c2, . . . , c`2 be the constant values in x. Then
`1 + `2 ≤ k. For each of the rest of k − `1 − `2 values in x, it is the same as x′i
for some i ∈ {1, 2, . . . , `1}. In this step, we will prepare a degree-(n− 1) packed
Shamir sharing that contains the secrets x′1, x′2, . . . , x′`1 and c1, c2, . . . , c`2 .

Note that {x′i}
`1
i=1 are the output values of `1 different gates in previous layers.

Let p1, p2, . . . , p`1 be the positions associated with these `1 gates. We choose
another arbitrary k− `1 different positions p`1+1, . . . , pk which are also different
from α1, α2, . . . , αn, and set pos = (p1, p2, . . . , pk). Suppose for all 1 ≤ i ≤ `1,
[x(i)‖pos(i)]n−k is the degree-(n−k) packed Shamir sharing from some previous
layer that contains the secret x′i stored at position pi.

Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other
terms are 0). All parties locally compute a degree-(k−1) packed Shamir sharing
[ei‖pos]k−1. Let x′ = (x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) be a vector in Fk. Then

all parties locally compute

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +
`2∑
i=1

ci · [e`1+i‖pos]k−1.

We show that this is a degree-(n − 1) packed Shamir sharing of x′ stored at
positions pos. It is clear that the resulting sharing has degree n − 1. We only
need to show the following three points:

– For all 1 ≤ j ≤ `1, the secret stored at position pj is equal to x′j .
– For all `1+1 ≤ j ≤ `1+ `2, the secret stored at position pj is equal to cj−`1 .
– For all `1 + `2 + 1 ≤ j ≤ k, the secret stored at position pj is equal to 0.

For all 1 ≤ i ≤ `1 + `2, let fi be the polynomial corresponding to [ei‖pos]k−1.
For all 1 ≤ i ≤ `1, let gi be the polynomial corresponding to [x(i)‖pos(i)]n−k.
Then the polynomial corresponding to the resulting sharing is h =

∑`1
i=1 fi ·gi+∑`2

i=1 ci · f`1+i.
Note that fi satisfies that fi(pi) = 1 and fi(pj) = 0 for all j 6= i. And gi

satisfies that gi(pi) = x′i. Therefore, for all 1 ≤ j ≤ `1,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +
`2∑
i=1

ci · f`1+i(pj) = fj(pj) · gj(pj) = x′j .

For all `1 + 1 ≤ j ≤ `2,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +
`2∑
i=1

ci · f`1+i(pj) = cj−`1 · fj(pj) = cj−`1 .

26 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

For all `1 + `2 + 1 ≤ j ≤ k,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +
`2∑
i=1

ci · f`1+i(pj) = 0.

Thus, the resulting sharing is a degree-(n−1) packed Shamir sharing of x′ stored
at positions pos, denoted by [x′‖pos]n−1.

Transforming to the Desired Sharing. Now all parties hold a degree-(n − 1)
packed Shamir sharing [x′‖pos]n−1. Recall that x′ contains all different values
in x from previous layers and all constant values. For each of the rest of values
in x, it is the same as x′i for some i ∈ {1, 2, . . . , `1}. Then there is a linear map
f : Fk → Fk such that x = f(x′). Recall that β = (β1, . . . , βk) are the default
positions. Let Σ be the degree-(n − 1) packed Shamir secret sharing scheme
that stores secrets at positions pos. Let Σ′ be the degree-(n− k) packed Shamir
secret sharing scheme that stores secrets at positions β. Then [x′‖pos]n−1 is a Σ-
sharing, and the sharing we want to prepare, [x]n−k = [x‖β]n−k, is a Σ′-sharing
with x = f(x′).

All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and obtain [x]n−k.

Summary of Network Routing. We describe the protocol Network of preparing
an input degree-(n− k) packed Shamir sharing [x]n−k in Protocol 7.

Evaluating Addition Gates and Multiplication Gates

Addition Gates. For a group of k addition gates, recall that all parties have
prepared two degree-(n− k) packed Shamir sharings [x]n−k, [y]n−k where x are
the first inputs of these k gates, and y are the second inputs of these k gates.
The description of Add appears in Protocol 8. Note that in Step 3 of Protocol
Add, we use the fact that a degree-(n−k) packed Shamir sharing can be viewed
as a degree-(n− 1) packed Shamir sharing.

Multiplication Gates. For a group of k multiplication gates, recall that all parties
have prepared two degree-(n−k) packed Shamir sharings [x]n−k, [y]n−k where x
are the first inputs of these k gates, and y are the second inputs of these k gates.
Let ([a]n−k, [b]n−k, [c]n−k) be the packed Beaver triple prepared in the prepro-
cessing phase. We will use the technique of packed Beaver triples to evaluate
multiplication gates. The description of Mult appears in Protocol 9.

Output Layer In the output layer, output gates are divided into groups of size
k based on the output receivers. For a group of k output gates belonging to the
same client, suppose x are the inputs. All parties invoke the protocol Network
to prepare [x]n−k. Then, all parties send their shares to the client to allow him
to reconstruct the output.

Sharing Transformation and Dishonest Majority MPC with Packed SS 27

Protocol 7: Network

1. Suppose all parties want to prepare a degree-(n − k) packed Shamir sharing
of x stored at the default positions β.

2. Let x′1, x
′
2, . . . , x

′
`1

be the different wire values in x from previous
layers. Let c1, c2, . . . , c`2 be the constant values in x. Let x′ =
(x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) ∈ Fk.

3. For all 1 ≤ i ≤ `1, let [x(i)‖pos(i)]n−k be the degree-(n − k) packed Shamir
sharing from some previous layer that contains the secret x′i stored at position
pi. Let p`1+1, . . . , pk be the first k−`1 distinct positions that are different from
p1, . . . , p`1 and α1, . . . , αn. Let pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all
other terms are 0). All parties locally compute a degree-(k−1) packed Shamir
sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1.

6. Let f : Fk → Fk be a linear map such that x = f(x′). Let Σ be the degree-
(n − 1) packed Shamir secret sharing scheme that stores secrets at positions
pos. Let Σ′ be the degree-(n − k) packed Shamir secret sharing scheme that
stores secrets at positions β.
All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and output [x]n−k.

Protocol 8: Add

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the addition
gates.

2. All parties locally compute [z]n−k = [x]n−k + [y]n−k.
3. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k ad-

dition gates. Recall that β = (β1, . . . , βk) are the default positions. Let Σ be
the degree-(n− 1) packed Shamir secret sharing scheme that stores secrets at
positions β. Let Σ′ be the degree-(n−k) packed Shamir secret sharing scheme
that stores secrets at positions pos. Let I : Fk → Fk be the identity map.
All parties invoke Ftran with (Σ,Σ′, I) and [z]n−k, and output [z‖pos]n−k.

Main Protocol Given the above protocols the main semi-honest protocol fol-
lows in a straightforward way. We refer the readers to the full version of this
paper [GPS22] for the description of our main protocol, the security proof, and
the analysis of the cost. Overall we obtain the following theorem.

28 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

Protocol 9: Mult

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the mul-
tiplication gates. All parties will use a fresh random packed Beaver triple
([a]n−k, [b]n−k, [c]n−k) prepared in the preprocessing phase.

2. All parties locally compute [x + a]n−k = [x]n−k + [a]n−k and [y + b]n−k =
[y]n−k + [b]n−k.

3. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and
reconstructs the secrets x + a,y + b. Then, P1 computes the sharings [x +
a]k−1, [y + b]k−1 and distributes the shares to other parties.

4. All parties locally compute

[z]n−1 := [x+a]k−1 ·[y+b]k−1−[x+a]k−1 ·[b]n−k−[y+b]k−1 ·[a]n−k+[c]n−k.

5. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k mul-
tiplication gates. Recall that β = (β1, . . . , βk) are the default positions. Let Σ
be the degree-(n− 1) packed Shamir secret sharing scheme that stores secrets
at positions β. Let Σ′ be the degree-(n − k) packed Shamir secret sharing
scheme that stores secrets at positions pos. Let I : Fk → Fk be the identity
map.
All parties invoke Ftran with (Σ,Σ′, I) and [z]n−1, and output [z‖pos]n−k.

Theorem 3. In the client-server model, let c denote the number of clients, n
denote the number of parties (servers), and t denote the number of corrupted
parties (servers). Let F be a finite field of size |F| ≥ |C| + n. For an arith-
metic circuit C over F, there exists an information-theoretic MPC protocol in
the preprocessing model which securely computes the arithmetic circuit C in the
presence of a semi-honest adversary controlling up to c clients and t parties. The
cost of the protocol is O(|C| · n

2

k2 +(Depth+c) · n
2

k) field elements of preprocessing
data and O(|C| · nk + (Depth + c) · n) field elements of communication, where
k = n−t+1

2 and Depth is the circuit depth.

Acknowledgements. V. Goyal, Y. Song—Supported by the NSF award 1916939,
DARPA SIEVE program under Agreement No. HR00112020025, a gift from Rip-
ple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for
financial services innovation award, and a Cylab seed funding award. Y. Song
was also supported by a Cylab Presidential Fellowship.
A. Polychroniadou—This paper was prepared in part for information purposes
by the Artificial Intelligence Research group of JPMorgan Chase & Co and its
affiliates (“JP Morgan”), and is not a product of the Research Department of
JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the infor-
mation contained herein. This document is not intended as investment research
or investment advice, or a recommendation, offer or solicitation for the purchase

Sharing Transformation and Dishonest Majority MPC with Packed SS 29

or sale of any security, financial instrument, financial product or service, or to
be used in any way for evaluating the merits of participating in any transaction,
and shall not constitute a solicitation under any jurisdiction or to any person,
if such solicitation under such jurisdiction or to such person would be unlawful.
2020 JPMorgan Chase & Co. All rights reserved.

References

ACD+20. Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, Matthieu
Rambaud, Chaoping Xing, and Chen Yuan. Asymptotically Good Multi-
plicative LSSS over Galois Rings and Applications to MPC over Z/pkZ. In
Advances in Cryptology – ASIACRYPT 2020, pages 151–180, Cham, 2020.
Springer International Publishing.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Pa-
terson, editor, Advances in Cryptology – EUROCRYPT 2011, pages 169–
188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference, pages 420–432. Springer,
1991.

BGIN20. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully se-
cure computation via distributed zero-knowledge proofs. In Advances in
Cryptology – ASIACRYPT 2020, pages 244–276, Cham, 2020. Springer In-
ternational Publishing.

BGIN21. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear GMW-
Style Compiler for MPC with Preprocessing. In Advances in Cryptology –
CRYPTO 2021, pages 457–485, Cham, 2021. Springer International Pub-
lishing.

BGJK21. Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk.
Order-c secure multiparty computation for highly repetitive circuits. In
Advances in Cryptology – EUROCRYPT 2021, pages 663–693, Cham, 2021.
Springer International Publishing.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing,
pages 1–10. ACM, 1988.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized Complexity of Information-Theoretically Secure MPC Revisited. In
Advances in Cryptology – CRYPTO 2018, pages 395–426, Cham, 2018.
Springer International Publishing.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority mpc for ma-
licious adversaries. In Annual International Cryptology Conference, pages
34–64. Springer, 2018.

Cou19. Geoffroy Couteau. A Note on the Communication Complexity of Multi-
party Computation in the Correlated Randomness Model. In Advances in
Cryptology – EUROCRYPT 2019, pages 473–503, Cham, 2019. Springer
International Publishing.

30 Vipul Goyal, Antigoni Polychroniadou, and Yifan Song

CRX21. Ronald Cramer, Matthieu Rambaud, and Chaoping Xing. Asymptotically-
Good Arithmetic Secret Sharing over Z/p`Z with Strong Multiplication and
Its Applications to Efficient MPC. In Advances in Cryptology – CRYPTO
2021, pages 656–686, Cham, 2021. Springer International Publishing.

DIK10. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
Annual international conference on the theory and applications of crypto-
graphic techniques, pages 445–465. Springer, 2010.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally se-
cure multiparty computation. In Annual International Cryptology Confer-
ence, pages 572–590. Springer, 2007.

DNPR16. Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael
Raskin. On the communication required for unconditionally secure mul-
tiplication. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, pages 459–488, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in
Cryptology–CRYPTO 2012, pages 643–662. Springer, 2012.

FY92. Matthew Franklin and Moti Yung. Communication Complexity of Se-
cure Computation (Extended Abstract). In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing, STOC ’92, page
699âĂŞ710, New York, NY, USA, 1992. Association for Computing Ma-
chinery.

GIP15. Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-
party computation: from passive to active security via secure simd circuits.
In Annual Cryptology Conference, pages 721–741. Springer, 2015.

GLO+21. Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and
Yifan Song. Atlas: Efficient and scalable mpc inÂăthe honest majority
setting. In Advances in Cryptology – CRYPTO 2021, pages 244–274, Cham,
2021. Springer International Publishing.

GPS21. Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional
Communication-Efficient MPC via Hall’s Marriage Theorem. In Advances
in Cryptology – CRYPTO 2021, pages 275–304, Cham, 2021. Springer In-
ternational Publishing.

GPS22. Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transfor-
mation and dishonest majority mpc with packed secret sharing. Cryptology
ePrint Archive, 2022.

GSY21. S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The More the
Merrier: Reducing the Cost of Large Scale MPC. In Advances in Cryptology
– EUROCRYPT 2021, pages 694–723, Cham, 2021. Springer International
Publishing.

PS21. Antigoni Polychroniadou and Yifan Song. Constant-Overhead Uncondi-
tionally Secure Multiparty Computation Over Binary Fields. In Advances
in Cryptology – EUROCRYPT 2021, pages 812–841, Cham, 2021. Springer
International Publishing.

Sha79. Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613,
November 1979.

	Sharing Transformation and Dishonest Majority MPC with Packed Secret Sharing

