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Abstract. A distributed point function (DPF) is a cryptographic prim-
itive that enables compressed additive sharing of a secret unit vector
across two or more parties. Despite growing ubiquity within applications
and notable research efforts, the best 2-party DPF construction to date
remains the tree-based construction from (Boyle et al, CCS’16), with no
significantly new approaches since.
We present a new framework for 2-party DPF construction, which ap-
plies in the setting of feasible (polynomial-size) domains. This captures
in particular all DPF applications in which the keys are expanded to
the full domain. Our approach is motivated by a strengthened notion
we put forth, of programmable DPF (PDPF): in which a short, input-
independent “offline” key can be reused for sharing many point functions.
– PDPF from OWF. We construct a PDPF for feasible domains from

the minimal assumption that one-way functions exist, where the sec-
ond “online” key size is polylogarithmic in the domain size N .

Our approach offers multiple new efficiency features and applications:
– Privately puncturable PRFs. Our PDPF gives the first OWF-based

privately puncturable PRFs (for feasible domains) with sublinear keys.
– O(1)-round distributed DPF Gen. We obtain a (standard) DPF with

polylog-size keys that admits an analog of Doerner-shelat (CCS’17)
distributed key generation, requiring onlyO(1) rounds (versus logN).

– PCG with 1 short key. Compressing useful correlations for secure
computation, where one key is of minimal size. This provides up to
exponential communication savings in some application scenarios.

Keywords: Distributed Point Function, Puncturable Psuedorandom Func-
tion.

1 Introduction

A distributed point function (DPF) [28,13] is a cryptographic primitive that
enables compressed sharing of a secret unit vector across two or more parties.
More concretely, a two-party DPF allows one to split any point function fα
(i.e., for which fα(x) = 1 if x = α, and 0 otherwise4) into succinctly described

4 Slightly more generally, fα,β with fα,β(α) = β for β ∈ {0, 1}.



functions f0, f1, that individually hide fα, and which support a simple additive
per-input reconstruction fα(x) = f0(x) + f1(x).

DPFs with function share fi size (sometimes referred to as “key size”) com-
parable to the truth table of fα are trivially achievable, by simply taking the
function shares fi to be an additive secret sharing of the full truth table itself.
Efficient constructions with small key size, roughly logarithmic in the domain
size of fα, have been built from one-way functions [28,13].

The appealing compressing structure of DPF constructions has enabled a
wide range of cryptographic applications, ranging from Private Information Re-
trieval (PIR) [19,28], to anonymous messaging systems [21], secure computation
for RAM programs [26] and programs with mixed-mode operations [14,7], and
recently Pseudorandom Correlation Generators [8,14,12] for expanding small cor-
related seeds into large pseudorandom instances of cryptographic correlations,
with applications to secure computation and beyond.

In many (if not most) of these applications, the parties perform a full eval-
uation of the DPF function shares, on every input within the domain of the
function fα. This means that, in particular, the necessary DPF constructions
are only relevant for relatively small, polynomial-size domains.

The growing list of applications has provided significant motivation for deeper
study of the DPF primitive, including alternative constructions and careful fine-
tuning of efficiency. However, despite notable research efforts, the best 2-party
DPF construction to date (even concrete constants) remains the tree-based con-
struction from [13]. In addition, no significantly new approaches toward con-
struction have emerged since this time.

1.1 Our Results

We present a new approach of DPF construction, whose structure dramatically
differs from existing DPFs, and which offers new efficiency features and applica-
tions in the setting of feasible (polynomial)-size domains.

Programmable DPF. Perhaps the primary downside of DPFs is that their
security guarantees inherently require the existence of two or more non-colluding
parties who receive shares f0 and f1 of the secret function. For example, DPFs
yield solutions to the problem of two-server PIR, but seem useless for single-
server PIR. Unfortunately, this non-collusion trust assumption is to some de-
gree unavoidable for efficient solutions. For problems like PIR, for example, it
is known that single-server cheap (symmetric-key) solutions simply cannot ex-
ist [25]. However, the two-server state of affairs has a further downside beyond
the assumption of trust. Given two servers operating, DPF-based solutions in-
cur twice as much computation, communication, and coordination costs between
parties than if a single server could suffice.

Given the barrier of efficient single-server solutions, we consider a next best
alternative: a form of “1.5-server” DPF, or what we will refer to as a pro-
grammable DPF. The idea is that participation and cost to one of the two
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servers will be pushed to minimum, thus incurring the burden of only “half”
a server. Concretely, in a programmable DPF scheme, the share f0 given to the
first server is simply a random (i.e., “programmed”) 128-bit string,5 indepen-
dent of the choice of—or in some cases, even the parameters of—the secret point
function being shared. For example, one can execute the role of the first server
across several applications via a public service.

Naive PDPF. As a baseline, consider a naive construction of PDPF: The offline
key is a standard PRF key, and the online key is simply a domain-size string
which together with the full-doman expansion of the PRF form additive secret
shares of the desired truth table. The runtime of key generation is linear in
the domain size N (which, looking ahead, will match that of our construction).
However, the online key size is also linear inN , which we will succeed to compress
exponentially. In addition, for the case of sharing a random point function, we
will also obtain exponential improvement in the online key generation.

Related notions. Our PDPF goal is related to two existing notions from the lit-
erature: privately puncturable PRFs [5], and two-server PIR in an offline/online
model recently studied by Corrigan-Gibbs and Kogan [22].

Privately puncturable PRFs are pseudorandom functions (PRFs) that sup-
port generation of punctured keys which enable evaluation of the PRF on all but
a single punctured input x∗, and which further hide the identity of x∗. (Single-
key) privately puncturable PRFs are in fact implied by programmable DPFs, by
taking the master PRF key to be the first-server DPF share, and generating a
punctured key at x∗ by computing a second-server DPF share for the function
fα,β with α = x∗ and β ← {0, 1} selected at random. In turn, privately punc-
tured PRF constructions can provide a direction toward programmable DPFs.
However, the only existing instantiations of privately puncturable PRFs make
use of heavy public-key cryptography machinery, and provide heavy costs for
concrete applications [4,18,17,37]. There is also no clear way “scale down” these
constructions to a polynomial-size domain in a way that circumvents these issues.

Analogous to the “half server” of programmable DPF, the offline/online 2-
server PIR protocols of [22,39] consider a setting where first server’s query and
response (analogous to our first-server DPF key) can be computed offline, before
the target input (analogous to the punctured point x∗) is specified. However, the
resulting schemes do not yield the stronger target of a DPF. Indeed, the clos-
est object they construct supports a nonlinear reconstruction procedure more
complex than simple addition, which precludes a large subset of DPF applica-
tions requiring this structure (such as secure aggregation). In addition, [39] uses
public-key cryptography.

Given the collective state of the art, no solutions exist for nontrivial pro-
grammable DPF without public-key cryptography, even for the restricted case
of polynomial-size domains.

5 Or rather, λ bits, where λ is the security parameter.
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Programmable DPF on small domains from OWF. We present a 2-party
programmable DPF (PDPF) construction for polynomial-size domains, relying
on the minimal assumption that one-way functions exist.

We begin with a basic construction which has a non-negligible privacy error
ϵ, which appears as a factor of log(1/ϵ2) in the key size and 1/ϵ2 in full-domain
evaluation, and which provides appealing concrete efficiency. For this reason,
we express the result statement in terms of a length-doubling pseudorandom
generator (whose existence is equivalent to one-way functions). We remark that
small constant privacy error is motivated in many applications in the context of
concrete efficiency, such as those anyway offering differential privacy guarantees
(e.g., use of DPFs for private aggregate statistics in [3]).

For the final feasibility result, we then reduce this to negligible error via
a nontrivial amplification procedure. Combining these two theorems provides
a construction of PDPF with polylogarithmic online key size, from one-way
functions.

Theorem 1 (1/poly-secure PDPF on small domains - Informal). Given
length doubling PRG G : {0, 1}λ → {0, 1}2λ, there exists a computationally ϵ-
secure Programmable DPF for point functions fα : [N ] → {0, 1} over output
group G = Z, with online key size |k1| = λ log(/ϵ2).

– Key generation makes (2N log(N/ϵ2))/λ invocations of G, and
– Full domain evaluation makes (2N logN)/(ϵ2λ) invocations of G.

Theorem 2 (Security amplification - Informal). Suppose there exists a
small-domain computationally 1/p(N)-secure PDPF for any polynomial p. Then
there exists a small-domain PDPF with negligible security error.

Corollary 1 (PDPF from OWF - Informal). Assuming the existence of
OWF, there exists a PDPF for point functions fα : [N ] → {0, 1} where the
runtime of key generation, single point evaluation, and full domain evaluation
is quasilinear in N , and with online key size poly(λ, logN).

A few remarks are in order.

Small domains: Applications and non-applications. Note that the key generation
and full evaluation algorithms of our construction run in time linear in N , and
as such we are restricted to polynomial-sized domains in order to execute within
polynomial time. As an additional point of interest, our techniques do not admit
a more efficient single-point evaluation algorithm than a full-domain evaluation.
An outstanding open problem in our work is to achieve a construction where the
running time of key generation and a single point evaluation is only poly logN .

For many applications of DPFs, the required parameters are anyway on small
(polynomial-size) domain. This captures a motivated range of applications and
implemented systems, including:

1. Private “reading” applications, such as PIR, or private tag-based search for
tag space of modest size. For example, the Popcorn system [30] ran 2-server
PIR on N = 8, 000 Netflix movies.
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2. Private “writing” applications, such as secure distributed storage [36], vot-
ing, and aggregation. This includes Prio-style [20] applications for private
collection of aggregate statistics, and Riposte [21], Blinder [1] and Spec-
trum [35] for anonymous messaging.

3. Pseudorandom correlation generators (PCGs) for useful correlations. Rele-
vant correlation examples include “silent” generation of permuted one-time
truth table correlations, oblivious linear evaluation (OLE), or authenticated
multiplication triples [12,10] (for some simpler correlations the full power of
DPF is not needed – see below).

4. Mixed-mode secure computation with small-domain gates. DPFs and their
derivatives, most notably distributed comparison functions (DCF) (i.e. secret
sharing functions of the form f≤

α that evaluate to 1 on all inputs x ≤ α),
yield a method for highly efficient secure computation of certain types of non-
arithmetic gates in the preprocessing model [14]. A DCF can be implemented
by a logarithmic number of DPF invocations, one for each prefix of the shared
point. However, in our small-domain construction the communication and
computation for this DCF implementation essentially match those of a single
DPF since both require full domain evaluation. Small-domain DPFs and
DCFs suffice, e.g., for secure evaluation of zero-test, comparison/threshold,
ReLU, splines, or finite-precision fixed-point arithmetic gates, on moderate-
size inputs [14,7]. We remark that small domain sizes often arise naturally
in settings such as privacy-preserving machine learning, where computations
are frequently run in low precision.

Aside from the last (Item 4), each of the above application frameworks further
requires the parties to perform a full-domain evaluation of the corresponding
DPF function shares, inherently limiting the desired DPF tools to small domains.

The programmable feature of our PDPF, where the offline key is short and
reusable, offers beneficial properties in the above settings. For example, for pseu-
dorandom correlation generation, this enables a central server to have a single
short PCG key for generating authenticated multiplication triples or truth-table
correlations with many different users, requiring total storage of only 128 bits
improving over present solutions that require the server to store approximately
1MB per user. Such a “short-key PCG” can make a big difference in certain ap-
plications of secure two-party computation. For instance, this is the case when
during a setup phase one of the two parties can be temporarily trusted. In this
case, she can generate a pair of PCG seeds, send the short (128-bit) seed to the
other party, and keep the longer one to herself. We discuss this application in
more detail in Section 1.1.

There are, of course, application settings in which small-domain DPFs are
not relevant. Prominent examples include:

1. Private keyword search, corresponding to PIR-type private queries where the
space of possible inputs (e.g., universe of keywords) is large.

2. Simpler pseudorandom correlation generators, such as “silent” oblivious trans-
fer, vector OLE, or (unauthenticated) multiplication triples, do not require
the full 2-sided guarantees (so-called “puncturable PRFs” suffice).
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3. Mixed-mode secure computation with large-domain gates. The above mixed-
mode application is viable also for large domains, in which case our small-
domain DPFs do not provide a solution. This includes instances of the above
gates over large inputs.

Concrete efficiency. In Table 1 we compare the efficiency of our programmable
DPF construction to a “naive” construction with O(N) key size, for domain
size N (see Section 5 for more details). The comparison is done with output
group Z and with payloads in {0, 1}, capturing a typical aggregation scenario.
We compare these solutions with respect to key size, and estimate the running
time of an AES-based implementation by using a standard benchmark of 1.8·108
length-doubling PRG calls per second on a single core.

To give one data point, for a domain of size N = 100, 000 and security
error ϵ = 2−8, the naive construction has 97.7 KB key size, and the running
time for either key generation or full domain evaluation is 72.1 µs, while our
construction achieves 0.5KB key size, 548.3µs running time for key generation,
and 1.6sec running time for full domain evaluation6. In another data point, where
N = 20, 000 and ϵ = 2−6, the naive construction yields 14.7 KB key size and
running time of 12.4µs for both key generation and full domain evaluation, while
our constructions has 0.4KB key size, 68.7 µs running time for key generation,
and 17.3ms running time for full domain evaluation. Note that in applications
that only require a random point α, the cost of Gen can be substantially smaller:
0.006 µs for a domain of size N = 100, 000 and security error ϵ = 2−8, and
0.005 µs for N = 20, 000 and ϵ = 2−6.

To conclude, for small input domains and small (but non-negligible) privacy
levels ϵ, our construction offers a big advantage in key size, a moderate slowdown
on the client side (running the key generation), and a more significant slowdown
on the server side (running the full domain evaluation). Overall, we expect it
to be attractive for applications where the client’s communication is the most
expensive resource.

Comparison to standard DPF. Compared to a standard two-party DPF, our
PDPF construction offers several qualitative advantages which can be appealing
in the following settings:

– When simplifying the interaction pattern is important. For some DPF appli-
cations, the “1.5-server” feature means that online interaction only involves
a single message from the client to the online server (and no interaction be-
tween servers). This offers several advantages for practical systems such as
avoiding the dependence on two online, synchronised servers, reducing net-
work latency, and also hiding the identity of the offline server, rendering the
non-collusion assumption more realistic.

6 In fact, the naive construction, as mentioned in Section 1.1, can provide a negligible
privacy error for small output groups. Nevertheless, in aggregation-type applications,
over output group Z, we get a constant privacy error. See Remark 3 for more details.
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– When the client can play the role of the online server, as in the “trusted-
offline PCG” application discussed in Section 4.3. In such cases, a PDPF
yields a near-exponential improvement in the total communication cost, since
it only requires a one-time communication of an offline key which is reused
many times without further interaction.

– When distributed key generation is carried out over a high-latency network,
the constant-round black-box protocol from Section 4.2 can offer significant
speedup.

All of the above advantages seem relevant for practical use cases. Our PDPF
construction has a reasonable concrete overhead (to be discussed below) when
settling for small but non-negligible values of ϵ, comparable to the acceptable
practices for differential privacy.

Other than the application scenarios described above, our current PDPF
construction is less practical than existing DPF constructions. First, it cannot
offer negligible privacy error ϵ with good concrete efficiency; second, the running
time of Gen and (single-point) Eval scale linearly (rather than logarithmically)
with the domain size; finally, it has worse dependence (multiplicative rather than
additive) on the size of the payload β. These gaps are smaller in applications
that require a full-domain evaluation EvalAll, or alternatively only require key
generation for a random point α (see below).

Comparing the key size of the two constructions, note that the size of the
keys in PDPF is log(N/ϵ2) PRG seeds for the online party and just a single PRG
seed for the offline party, while the key size of both parties in standard DPF is
roughly log(N) PRG seeds. Ignoring the qualitative advantages of PDPF over
DPF, the total client communication, or total key size, of PDPF is smaller by
almost a factor of two for concretely relevant parameters.

In the case of a random-input PDPF, the client computation becomes roughly
equal to that of a standard DPF, i.e. dominated by log(N) calls to a PRG, since
the client generates one key which is a seed of a GGM PRF and another key
which is the same PRF punctured at a random point. A random-input PDPF is
good enough for some applications, such as distributed key generation, on which
we elaborate in Section 4.2. There, a random-input PDPF and can be converted
to a chosen-input DPF by sending a log(N)-bit offset to the offline server.

While our PDPF construction has higher overhead as the output size grows
compared to a standard DPF, in Proposition 3 we provide an optimization to our
construction for big payloads beyond the naive approach of executing a separate
PDPF instance for every bit of the payload.

Applications. We explore three applications of our programmable DPF con-
struction and associated techniques: (1) Privately Puncturable PRFs (on poly-
nomial size domains); (2) (Standard) Distributed Point Functions that admit
particularly efficient secure distributed key generation protocols; and (3) A new
application regime of trusted-offline pseudorandom correlation generators. We
additionally explore an optimization toward DPFs with larger payloads.
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Privately puncturable PRFs (on small domains). As discussed, our construction
directly implies the first nontrivial privately puncturable PRF for domain size
N = poly(λ) under the minimal one-way function assumption. Here, nontrivial-
ity corresponds to requiring the key size of a (privately) punctured key that is
sublinear in the truth table output size.

Even given the restriction to feasible domain sizes, this constitutes the first
such construction without relying on structured public-key assumptions such as
the Learning with Errors assumption or multi-linear maps [4,18,17,37].

Proposition 1 (Privately puncturable PRF - Informal). Assuming the
existence of OWF, there exist (selectively secure, 1-key) privately puncturable
PRF (P-PPRF), where the runtime of punctured key generation and evaluation
is quasilinear in the domain size M , and with punctured key size poly(λ, logM).

DPF with constant-round black-box distributed key generation. In any applica-
tion of (standard) DPFs where the role of “client” is jointly executed across
parties—including secure computation for RAM programs [26] or mixed-mode
operations [14,7], use of pseudorandom correlation generators for secure compu-
tation preprocessing [8,14,12], and more—the Gen algorithm of the DPF must
in turn be executed distributedly via a secure computation protocol. Minimizing
the costs of this procedure is a highly desirable target.

This was highlighted by the work of Doerner and shelat [26], which identi-
fied that the low cost of distributed DPF Gen makes it a strong approach for
secure computation of RAM programs. They presented a distributed DPF Gen
protocol, which remains the most efficient to date, requiring computation time
linear in the DPF domain size N , and runs in logN sequential communication
rounds, but which crucially makes only black-box use of oblivious transfer and
a pseudorandom generator. In contrast, alternative approaches each require the
expensive secure evaluation of (many instances of) a circuit evaluating the PRG.

In particular, for any DPF with key size polylogarithmic in the domain size
N ,7 no protocol exists for distributed Gen which is black-box in the underlying
cryptographic tools and lower than O(logN) round complexity.

The techniques behind our PDPF give the first DPF (for feasible domains)
which simultaneously achieves key size polylogarithmic in N , and admits a dis-
tributed Gen protocol that makes only black-box use of OT and a PRG, executing
in constant round complexity. More concretely, we show that 5 rounds suffice.

Proposition 2 (Constant-round distributed Gen - Informal). There ex-
ists a small-domain DPF (Gen,Eval), with key size poly(λ, logN), where Gen
on secret-shared α, β can be implemented by a constant-round (5-round) protocol
making only a black-box use of oblivious transfer and a pseudorandom generator.

As with our PDPF constructions, the runtime of our DPF Eval algorithm
will be linear in the domain size N . Note, however, that the application of DPF

7 DPFs with significantly worse key size N ϵ for constant ϵ > 0 can be built with lower
depth Gen, e.g. by “flattening” the tree structure of current best DPF constructions.
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within secure computation of RAM programs anyway requires EvalAll as opposed
to individual Eval operations (where we achieve the same linear complexity). In
addition, our resulting DPF Gen procedure will only be logarithmic in N . This
will be result of modifying the PDPF, adding a short second “offset” message
to be added to the key k0 after the choice of the secret point function f̂α,β . This
extra step adds minor cost in regard to computation and key size, but means the
resulting construction is a DPF and not a programmable DPF which in particular
requires the first key k0 to be independent of the point function to be shared.

Compressing DPF corelations. Standard DPFs have a variety of applications
in the context of secure 2-party computation (2PC). For instance, they serve
as crucial building blocks for concretely efficient 2PC of RAM programs [26] or
for pseudorandom correlation generators (PCGs) of truth-table correlations [11]
and (authenticated) multiplication triples [10]. Evaluating large circuits or mul-
tiple instances necessitates several DPF correlations. In particular, this strongly
motivates the goal of generating many independent instances of a random DPF
correlation with low communication cost. However, there are no known practical
methods for achieving this.

We observe that PDPF inherently provides a solution for generating many
such instances, where the size of one key scales with the number of instances,
but one key is short.

In turn, our PDPF provides a solution to the above problem within a subset
of interesting applications, captured by the following “trusted-offline” setting for
2PC. In an offline phase, Alice owns a long-term secret s (say, a secret key for
encryption, identification, or signature). To eliminate a single point of failure,
she splits s into two shares, sA and sB , sending sB to Bob and keeping sA to
herself. She then erases all information except sA. In the online phase, the parties
receive online inputs Pi (resp., ciphertexts to decrypt, nonces for identification,
or messages to sign) and wish to securely compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that in the above setting, Alice can be fully trusted
during the offline phase, since if she is corrupted at this phase (before erasing s)
then the long-term secret is entirely compromised. In fact, if Pi is public, then s is
the only secret in the system. For this reason, we can also trust Alice to generate
pairs of DPF keys (kj0, k

j
1) in the offline phase, offload the keys kj0 to Bob, and

keep ki1 to herself. However, when Alice wants to generate many DPF instances
for the purpose of evaluating many g-gates, this has high communication cost.

A PDPF can provide a dramatic efficiency improvement in this scenario,
where Alice needs only to send the single short PDPF key to Bob, and simply
store the longer key locally. This reduces the communication requirements of
existing solutions within this setting by an exponential factor.

Big payload optimization. Some applications of DPF explicitly require the point
function payload to be larger than a single bit, e.g. an element in Z2ℓ , and to be
random. A natural adaptation of our technique to this setting is to repeat the
programmable DPF scheme with binary outputs ℓ times, once for each bit, and
then locally map the outputs to elements in Z2ℓ . However, evaluation using this
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approach suffers from an O(ℓ3) computational overhead compared to a binary
programmable DPF achieving the same security8.

We propose an optimization which maintains key size and reduces the com-
putational overhead by O(ℓ) compared to the repetition method. In more detail,
each PRF value is a pair of a point x in the input domain [N ] and a value y ∈ Z2ℓ .
One key of the programmable DPF is again the short PRF key, while the sec-
ond key is punctured at O(ℓ) points which evaluate to (α, yi), i = 1, . . . , O(ℓ).
The DPF evaluation at each point x is the sum of all yi such that the PRF (or
punctured PRF) evaluate to (x, yi) at some point. This approach leads to the
following:

Proposition 3 (Big payload optimization - Informal). Given length dou-
bling PRG G : {0, 1}λ → {0, 1}2λ, there exists a computationally ϵ-secure PDPF
for point functions fα : [N ]→ Z2ℓ , with online key size |k1| = O

(
λt log tN

ϵ2

)
for

t = ℓ + 2log 1
ϵ . The number of invocations of G in the key generation algorithm

is O(tN log t
ϵ2 ), and in the full domain evaluation algorithm it is O(Nt2

ϵ2 ).

Due to space limitations, we defer the full treatment of this optimization to
the full version of the paper.

1.2 Overview of Techniques

We now proceed to describe our techniques in greater detail. We focus here on
the core construction of programmable DPF from OWF. We refer the reader to
the main body for further detail on the related applications.

1/poly-Secure PDPF. We begin by describing our construction of a computation-
ally secure PDPF, which takes inspiration from the puncturable pseudorandom
sets of Corrigan-Gibbs and Kogan [22].

Our construction relies on an underlying tool of Punctuarable Pseudorandom
Functions (PPRF) [6,32,15]. Puncturable PRFs are an earlier-dating, weaker
variant of privately puncturable PRFs discussed above, which similarly have the
ability of generating punctured keys kp from a master PRF key k enabling eval-
uation on all but a punctured input xp. Even given the punctured key kp, the
output of the PRF at input xp remains pseudorandom. Unlike privately punc-
turable PRFs, no hiding requirement is made for the identity of the punctured
input xp given the punctured key kp, which makes the goal significantly easier
to achieve. Such primitives can be constructed in a simple manner based on
one-way functions via a GGM [29] tree [6,32,15].

Our construction proceeds roughly as follows. Consider the first party in the
programmable DPF. The first (programmable) key of the DPF is simply the

8 In this approach, to get statistical error of ϵ we need to reduce the value of ϵ in
each of the ℓ instances by a factor of ℓ. Since the computational cost per instance
depends quadratically on 1/ϵ, this results in a total slowdown (compared to the 1-bit
baseline) of ℓ · ℓ2 = ℓ3.
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master key k for a PPRF whose output space is the input space for the DPF,
[N ]. The PRF input space D will be selected in the discussion following, as a
function of the desired privacy error. (In particular, larger domain will yield
smaller error, but higher complexity.)

In order to expand its DPF key to a full-domain evaluation on the input
domain [N ], the first party begins by evaluating its PRF tree on all inputs.
Recall that each leaf of the PRF evaluation tree is now labeled by some element
of [N ]. For each x ∈ [N ], the corresponding DPF output evaluation f1(x) is
defined to be the integer number of occurrences of the value x within the leaves
of the PRF tree: i.e., the number of values ζ in the input space D of the PRF
for which PRFk(ζ) = x.

Pictorially, each PRF leaf evaluation can be viewed as a “ball” thrown into
one of N bins, labeled 1, . . . , N . Evaluating on the complete PRF tree (given
the master key k) results in a histogram, of number of balls per bin, which
constitutes the evaluated DPF output share values.

The second key in the programmable DPF is generated given the target point
function fα∗ we wish to share. Observe that (for payload β = 1) the goal is to
recreate the same “balls in bins” histogram as above, but with 1 less ball in the
α∗ ∈ [N ] bucket.9 Indeed, if this can be achieved, then the parties’ shares differ
by 0 in all places apart from α∗, and precisely by 1 at α∗. To do so, the second
server will be given the PRF key punctured at a random input xp whose PRF
output is α∗. In effect, one (random) ball is removed from the α∗ bin.

Correctness of the construction holds as above. But, we find ourselves en-
countering a serious security challenge. While clearly the first party’s share is
independent of the secret function fα∗ , security against the second party must
somehow rely on hiding the punctured PRF evaluation given access to a punc-
tured key. However, in a puncturable PRF, pseudorandomness is only guaranteed
when the punctured input is chosen independently of the PRF evaluation values.
In contrast, the input we puncture is selected based on the PRF evaluations. In
fact, the issue is even worse. Even the stronger notion of adaptive security of
PPRF does not suffice, where the punctured input can be selected as function of
the PRF evaluations on other inputs. In our construction the punctured input is
chosen as function of its own evaluation—in general, one cannot hope to achieve
this kind of security.

Indeed, the resulting construction does not provide negligible leakage in pri-
vacy. This corresponds to the (non-negligible, efficiently identifiable) statistical
difference in the N histogram counts when throwing a polynomial number of
balls and then removing a ball from one bin. This statistical difference can be
decreased by increasing the total number of balls thrown: this corresponds di-
rectly to a larger choice of the puncturable PRF domain D. Roughly, increasing
D by a factor of c > 1 cuts the error by a factor of 1/

√
c.

9 To account for the fact that the payload could be β = 0, we actually introduce
dummy bucket N + 1 to the PRF output space; removing a ball from this bucket
means that all [N ] buckets remain equal across parties.
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We provide a tight analysis of privacy error via a careful sequence of hybrid
experiments, where the α∗-output-punctured key is ultimately replaced by a key
punctured at a random independent input. Each step within the proof introduces
negligible error, aside from one: in which we move from a PRF key where we
puncture an input with a random output value (i.e., the DPF construction for a
random α∗, to one where we puncture a random input.

It is interesting to observe that the construction is sensitive to specific design
choices. For example, slightly modifying the above procedure to instead puncture
the first input whose output α∗ (instead of a random such input) yields a serious
attack: given the punctured PRF key, the second party can directly infer for all
values α′ ∈ [N ] appearing as PRF evaluations before the punctured point that
fα′ is not the secret shared point function.

Amplification. To amplify a DPF with 1/poly privacy error into one with negli-
gible error, we apply a privacy amplification technique based on a locally random
reduction. The idea is to lift the input domain to a codeword in a Reed-Muller
code and decode along a random low-degree curve. This effectively reduces a sin-
gle DPF with secret input α to a small number of instances of DPF with secret
inputs αi, where the αi are λ-wise independent. By combining a “statistical-to-
perfect” lemma from [33,27] with a computational hardcore lemma of [34], the
1/poly leakage on each αi can be argued to be no worse than completely leaking
each αi with small probability, which by λ-wise independence suffices to hide α
except with negligible probability.

2 Preliminaries

Notation. For N ∈ N we let [N ] = {1, . . . , N}. We denote the inner product of
two vectors u and v of the same length by ⟨u, v⟩ =

∑
i uivi. We denote by negl

a negligible function.

Probability. For two distributionsD1, D2 we denote by d(D1, D2) =
1
2

∑
ω |PrD1

[ω]−
PrD2

[ω]| their statistical distance. We denote by Uℓ uniformly distributed ran-
dom strings of length ℓ.

Groups. We represent an Abelian group G of the form G = Zq1 × · · · × Zqℓ , for

prime powers q1, . . . , qℓ by Ĝ = (q1, . . . , qℓ) and represent a group element of G
by a sequence of ℓ non-negative integers. Unlike previous DPF definitions, here
we will also consider infinite groups, using qi =∞ for the group of integers Z.

Point functions. Given a domain size N and Abelian group G, a point function
fα,β : [N ]→ G for α ∈ [N ] and β ∈ G evaluates to β on input α and to 0 ∈ G on
all other inputs. Unlike previous DPF definitions, here we will also consider the
case where the output β is guaranteed to be taken from a subset G′ ⊆ G, where
the subset G′ can be leaked. This extension is especially useful where G = Z, in
which we will typically let G′ = {0, 1}. When G′ is omitted, we assume G′ = G.
We denote by f̂α,β = (N, Ĝ, Ĝ′, α, β) the representation of such a point function.

12



2.1 Distributed Point Functions

We begin by defining a slightly generalized notion of distributed point functions
(DPFs), which accounts for the extra parameter G′.

Definition 1 (DPF [28,13]). A (2-party) distributed point function (DPF)
is a triple of algorithms Π = (Gen,Eval0,Eval1) with the following syntax:

– Gen(1λ, f̂α,β)→ (k0, k1): On input security parameter λ ∈ N and point func-

tion description f̂α,β = (N, Ĝ, Ĝ′, α, β), the (randomized) key generation al-
gorithm Gen returns a pair of keys k0, k1 ∈ {0, 1}∗. We assume that N and
G are determined by each key.

– Evali(ki, x) → yi: On input key ki ∈ {0, 1}∗ and input x ∈ [N ] the (deter-
ministic) evaluation algorithm of server i, Evali returns yi ∈ G.

We require Π to satisfy the following requirements:

– Correctness: For every λ, f̂ = f̂α,β = (N, Ĝ, Ĝ′, α, β) such that β ∈ G′, and

x ∈ [N ], if (k0, k1)← Gen(1λ, f̂), then Pr
[∑1

i=0 Evali(ki, x) = fα,β(x)
]
= 1.

– Security: Consider the following semantic security challenge experiment for
corrupted server i ∈ {0, 1}:
1. The adversary produces two point function descriptions (f̂0 = (N, Ĝ, Ĝ′,

α0, β0), f̂
1 = (N, Ĝ, Ĝ′, α1, β1))← A(1λ), where αi ∈ [N ] and βi ∈ G′.

2. The challenger samples b
$← {0, 1} and (k0, k1)← Gen(1λ, f̂ b).

3. The adversary outputs a guess b′ ← A(ki).
Denote by Adv(1λ,A, i) = Pr[b = b′]−1/2 the advantage of A in guessing b in
the above experiment. For circuit size bound S = S(λ) and advantage bound
ϵ(λ), we say that Π is (S, ϵ)-secure if for all i ∈ {0, 1} and all non-uniform
adversaries A of size S(λ) and sufficiently large λ, we have Adv(1λ,A, i) ≤
ϵ(λ). We say that Π is:

• Computationally ϵ-secure if it is (S, ϵ)-secure for all polynomials S.

• Computationally secure if it is (S, 1/S)-secure for all polynomials S.

We will also be interested in applying the evaluation algorithm on all in-
puts. Given a DPF (Gen,Eval0,Eval1), we denote by EvalAlli an algorithm which
computes Evali on every input x. Hence, EvalAlli receives only a key ki as input.

DPF efficieny measures. We will pay attention to the following efficiency mea-
sures of a DPF:

– The key sizes |k0|, |k1|.
– The running time of Gen,Eval0,Eval1.
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Small-domain and large-domain DPF. We say that a DPF is small-domain
(resp., large-domain) if Gen,Eval0,Eval1 have running time polynomial in N
(resp., logN) and their input length.

Next, we introduce our new notion of programmable DPF.

Definition 2 (PDPF). We say that a small-domain DPF (Gen,Eval0,Eval1)
is a programmable DPF, or PDPF for short, if Gen can be decomposed into a
pair of algorithms Π = (Gen0,Gen1) with the following syntax:

– Gen0(1
λ, N, Ĝ, Ĝ′)→ k0: On input security parameter λ, domain size N and

output group description Ĝ, returns a key k0 = (k∗, N, Ĝ, Ĝ′) where k∗ ∈
{0, 1}λ.

– Gen1(k0, f̂α,β) → k1: On input key k0 = (k∗, N, Ĝ, Ĝ′) and point function

description f̂α,β = (N, Ĝ, Ĝ′, α, β), returns a key k1 ∈ {0, 1}∗.

Moreover, we require that k∗, returned by Gen0 as part of k0, is a uniform random

string, namely, k∗
$← {0, 1}λ.

Since the operation of Gen0 is fixed, in our PDPF constructions we will omit
the description of Gen0. Moreover, we will not be concerned with its running
time or the key length of k0. Finally, since our construction realizes EvalAll at
essentially the same cost as Eval, we will directly describe the EvalAll algorithm.

In the full version of the paper we define the reusability feature for DPFs
discussed in the Introduction, and show an easy construction of reusable DPF
from PDPF (and vice versa).

Simulation based security. While for both DPF and PDPF we use a definition
with indistinguishability-based security, there is an equivalent definition using
simulation-based security [13]. There, the simulator is given “leakage” which
is the description of the DPF function class. Simulation takes place by simply
generating a key for an arbitrary function in the function class.

2.2 Pseudorandom Generators and Functions

We defer the definitions of PRG, PRF and puncturable PRF (PPRF) to the full
version of the paper.

Theorem 3 ((P)PRF from OWFs [6,32,15]). If OWFs exist, there exists
a PPRF.

More concretely, given a black-box access to a PRG G : {0, 1}λ → {0, 1}2λ,
a PPRF, PPRF = (Eval,Punc,PuncEval), with input domain [M ] and output
domain [N ], can be implemented with punctured key length |kp| = λ log2 M ,
such that Eval,Punc,PuncEval make (log2(M/N) log2 N)/2λ calls to G.

Furthermore, if Eval or PuncEval is computed on all points in [M ], it requires
only ((2M − 1) log2 N)/2λ calls to G.
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3 Small-Domain PDPF from One-Way Functions

In this section we construct small-domain PDPFs. We will first obtain a con-
struction with inverse-polynomial security. Then, in Section 3.1, we will show
how to amplify security and get negligible security error.

As was discussed in the introduction, our construction relies on analyzing the
statistical distance between balls-and-bins experiments, where, after throwingM
balls into N bins, we remove a single ball (randomly) from either bin i or bin
j. The following lemma gives an exact expression for the statistical distance be-
tween these two distributions, and also provides an estimate which, numerically,
is close up to a multiplicative factor of ≈ 0.564 (see Section 5).

Lemma 1. For integers M > N > 0 and i, j ∈ [N ], let Di and Dj be dis-
tributions over {1, . . . , N,⊥}M of the locations of M balls independently and
randomly thrown into N bins, such that we then change the position of a single
ball, chosen randomly from bin i and bin j, respectively, to ⊥ (this corresponds
to the ball’s “removal” from the bin). Then

d(Di, Dj) =

M∑
w=0

(
M

w

)(
1− 2

N

)M−w
(

w
⌊w/2⌋

)
Nw

≤
√

N

M

We prove the lemma in the full version of the paper.
Next, we state Theorem 4, which constructs a PDPF (Figure 1), restricted

to output group Z and to payloads β ∈ {0, 1}. Later, we extend this PDPF in
Theorem 5 to work over any finite Abelian group G and any payload β ∈ G.
The proof of the theorem below essentially mirrors that of Lemma 1 in the
computational world by replacing the random configuration of M balls thrown
into N bins by a pseudorandom configuration, using the truth table of a PPRF.
Compared to Lemma 1, this yields an additive error term which is negligible in
λ.

We defer the proofs of Theorem 4 and Theorem 5 to the full version of the
paper.

Theorem 4 (Small-domain PDPF with 1/poly(λ,N) privacy error).
Suppose that PPRF = (PPRF.Eval, PPRF.Punc,PPRF.PuncEval) is a secure PPRF
for input domain size M and output domain size N , with punctured key size
Kp(λ,M,N). In addition, let G : {0, 1}λ → [N + 1]× {0, 1}λ be a PRG. Then,
the construction in Figure 1 is a small-domain computationally ϵ-secure PDPF,

ϵ(λ,M,N) =

√
(N + 1)

M
+ negl(λ)

for point functions with output group G = Z, G′ = {0, 1}, domain size N ,
and key size |k1| = Kp(λ,M,N + 1). The number of invocations to PPRF in
Gen1,EvalAll0,EvalAll1 is at most O(M).
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Gen1(k0 = (k∗, N, Ĝ, Ĝ′), f̂α,β = (N, Ĝ, α, β)):

– Compute (s, kPPRF) = G(k∗).
– If β = 1 then α′ ← α, else α′ ← N + 1
– Find all indices

L←
{
ℓ ∈ [M ] : PPRF.Eval(kPPRF,M,N + 1, ℓ) + s = α′} .

– Pick a random ℓ ∈ L, compute kp ← PPRF.Punc(kPPRF,M,N + 1, ℓ), and
output k1 = (kp, s).

EvalAll0(k0 = (kPPRF, N, Ĝ, Ĝ′)):

– Compute (s, kPPRF) = G(k∗).
– For every α ∈ [N ], simultaneously compute

Yα ← |{ℓ ∈ [M ] : PPRF.Eval(kPPRF,M,N + 1, ℓ) + s = α}| .

– Output Y = (Yα)α∈[N ].

EvalAll1(k1 = (kp, s)):

– For every α ∈ [N ], simultaneously compute

Yα ← (− |{ℓ ∈ [M ] : PPRF.PuncEval(kp, ℓ) + s = α}|) .

– Output Y = (Yα)α∈[N ].

Fig. 1. Small-domain computationally 1/poly(λ,N)-secure PDPF for point functions
with output group G = Z, payload set G′ = {0, 1}, and domain size N . Here M is a
parameter corresponding to the input space of the PPRF.

16



Theorem 5 (Small-domain PDPF over any payload set G′). If OWFs
exists, there exists a small-domain computationally log |G′|/poly(λ,N)-secure
PDPF for point functions with any allowed payload set G′, Abelian output group
G ⊇ G′, domain size N , and key size |k1| = O(log |G′|λ(log λ+ logN)).

We finish this section with an optimization to Theorem 4.

Proposition 4 (Lazy Gen computation). When instantiated with a PPRF
from Theorem 3, the computation of Gen1 in Figure 1 can be done in just ((N +
1) log2 M)/λ calls to a PRG, at the expense of an additional 2−(N+1) error in
correctness or privacy.

Proof. Instead of having Gen1 compute the entire set L and picking ℓ ∈ L at
random, it is sufficient to keep trying values ℓ ∈ [M ] at random until one is
found such that PPRF.Eval(k∗,M,N +1, ℓ)+ s takes the correct value. This has
a 1/(N + 1) probability of success. By making T queries, the chance of failure
is 1/(N + 1)T . If we pick T = (N + 1)/ log2(N + 1), the failure chance becomes
2−(N+1), which we can attribute to either correctness or privacy. Since each
PPRF evaluation takes (log2 M log2(N + 1))/λ calls to the PRG, we are done.

3.1 Security Amplification

To amplify security we rely on Locally Decodable Codes (LDC). Theorem 4 gives
us a PDPF with 1/poly leakage of α, which as we argue in the full version of the
paper, is no worse than α leaking completely with probability 1/poly, and stay-
ing (computationally) hidden otherwise. By utilizing a locally decodable code
with additive decoding we can essentially secret share α into shares α1, . . . , αq

which are λ-wise independent. Since every αi leaks independently with small
probability, by using a Chernoff bound, α leaks with negligible probability.

To describe the main idea of the security amplification construction (Figure
2) in more detail, note first that fα(x) = ⟨ex, TT (fα)⟩, where ex is a unit vector
with 1 at index x, and TT (fα) is the truth table of a point function fα (also a
unit vector). Now, we utilize a q-query LDC C with additive reconstruction and
choose α1, . . . , αq to be the queries to C for coordinate α, which by the additive
decoding of C yields

⟨C(ex), TT (fα1
) + . . .+ TT (fαq

)⟩ = ⟨ex, TT (fα)⟩ = fα(x).

Next, using the additive reconstruction of the PDPF, implying TT (fαj
) =

TT (f0
αj
) + TT (f1

αj
), j = 1, . . . , q, each server i = 0, 1 can locally compute

zi = ⟨C(ex), TT (f
i
α1
) + . . . + TT (f i

αq
)⟩ using EvalAll of each of the q PDPF

keys, such that z0+z1 = fα(x) (hence yielding a PDPF). Here, the offline server
will receive a single offline key, which it can expand to q offline keys using a
PRF, while the online server will receive the q matching online keys.

The following lemma provides the locally decodable code (LDC) with the
parameters we require (c.f. [16, Section 4]).
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Lemma 2. Fix integers λ,w > 0, a prime p, and let r,N > 0 be such that
N =

(
r+w
r

)
and r = O(N1/w). There exist a deterministic mapping C : ZN

p → ZL
p

and a randomized mapping d : [N ]→ [L]q, L, q ∈ N, such that for every z ∈ ZN
p

and α ∈ [N ] it holds that

Pr

[
∆← d(α) :

q∑
ℓ=1

C(z)∆ℓ
= zα

]
= 1.

Moreover, the following properties hold:

1. q = O(λ2N1/w) and L = O(pw+1λw+1N1+ 1
w ).

2. C, d are computable in polynomial time.
3. For every α ∈ [N ], the random variables ∆1, . . . ,∆q are λ-wise independent.

We prove this lemma in the full version of the paper. Intuitively, C cor-
responds to the LDC encoder taking N symbols to L > N , the randomized
mapping d determines the set of q queried symbols of the codeword given a tar-
get index α ∈ [N ] of the “message” vector z ∈ ZN

p , and the decoding procedure
is simply the sum of the queried symbols

∑q
ℓ=1 C(z)∆ℓ

= zα. For example, these
requirements can be met by a form of Reed-Muller code, where the distribu-
tion of queried points ∆ ← d(α) corresponds to random λ-degree polynomial
evaluations through the desired point (namely, Shamir secret sharing of α).

Next, we show that any small-domain computationally 1/poly(λ,N)-secure
PDPF can be transformed into a small-domain PDPF.

Theorem 6. Fix integers λ,w > 0, let r,N > 0 be such that N =
(
r+w
r

)
and r = O(N1/w), and let p = poly(λ,N) be a prime. Furthermore, let L =
L(w, λ,N), q = q(w, λ,N) be as in Lemma 2. Suppose there exists a small-
domain computationally O(1/L·q)-secure PDPF for point functions with Abelian
output group Zp, domain size L, and key size |k1| = K. Then, the construction in
Figure 2 gives a small-domain computationally secure PDPF for point functions
with Abelian output group Zp, domain size N , and key size |k1| = q ·K.

We give the proof of Theorem 6 in the full version of the paper.

Remark 1. Via CRT we can handle any smooth integer characteristic. By intro-
ducing a small correctness error and converting it to privacy error we can handle
any Abelian group.

Next, we prove the following corollary, in similar vein to how Theorem 5 was
derived from Theorem 4. Note, however, that here G cannot be a general (finite)
Abelian group, and we are restricted to G which is a product of Zp for prime p.

Corollary 2. Fix integers λ,w > 0, and let r,N > 0 be such that N =
(
r+w
r

)
and r = O(N1/w). If OWFs exist, there exists a

(
log |G| · 2−Ω(λ)

)
-secure PDPF

for point functions with Abelian output group G =
∏

i Zpi , where pi are primes
such that

∑
i pi ≤ poly(λ,N), polynomial domain size N , and key size |k1| =

O(log |G|λ3N1/w(log λ+ logN)).
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Notation: Let C : ZN
p → ZL

p and d : [N ] → [L]q be the mappings from Lemma
2. In addition, let (PDPF.Gen1,PDPF.EvalAll0,PDPF.EvalAll1) be a small-domain
computationally O(1/L ·q)-secure PDPF for point functions with Abelian output
group Zp, domain size L, and let PRF.Eval be a PRF.

Gen1(k0 = (k∗, N, Ĝ), f̂α,β = (N, Ĝ = Ẑp, α, β)):

– Compute ∆← d(α).

– For ℓ = 1, . . . , q let kℓ
∗ = PRF.Eval(k∗, q, λ, ℓ), k

ℓ
0 = (kℓ

∗, L, Ẑp), and

kℓ
1 ← PDPF.Gen1(k

ℓ
0, (L, Ẑp,∆ℓ, β)).

– Output k1 = (k1
1 . . . , k

q
1).

Eval0(k0 = (k∗, N, Ĝ = Ẑp), x):

– For ℓ = 1, . . . , q let kℓ
∗ = PRF.Eval(k∗, q, λ, ℓ) and kℓ

0 = (kℓ
∗, L, Ẑp).

– Compute and output〈
C(ex),

q∑
ℓ=1

PDPF.EvalAll0(k
ℓ
0)

〉
,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Eval1(k1 = (k1
1 . . . , k

q
1), x):

– Compute and output〈
C(ex),

q∑
ℓ=1

PDPF.EvalAll1(k
ℓ
1)

〉
,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Fig. 2. Security amplification via LDC
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Theorem 5 and Corollary 2 have the downside that their key length grows
multiplicatively with log |G|. We show in the full version of the paper that this
can be reduced to an additive term whenever log |G| ≫ λ, at the cost of losing
programmability, which still has the benefit of a DPF with one short (λ+log |G|)-
length key.

4 Applications

In this section, we present three applications of our programmable DPF construc-
tion and associated techniques: (1) Privately Puncturable PRFs (on polynomial-
size domains) from the minimal assumption of one-way functions; (2) (Standard)
Distributed Point Functions that admit particularly efficient secure distributed
key generation protocols, namely the first to achieve constant round complex-
ity while making only black-box use of oblivious transfer and a pseudorandom
generator; and (3) A new application regime of trusted-offline pseudorandom
correlation generators. We discuss each in turn within the following subsections.

4.1 Privately Puncturable PRFs

Our programmable DPF construction makes use of puncturable pseudorandom
functions (PRFs); namely, PRFs supporting generation of punctured keys that
enable evaluation of the PRF on all but a single punctured input x∗. Puncturable
PRFs are lightweight objects, with simple constructions known from one-way
functions [6,32,15] (for example, in a GGM-tree PRF on n-bit inputs, simply give
the n co-path PRG evaluations). However, all such known simple constructions
inherently reveal the identity of the punctured input x∗.

Interestingly, if one wishes to obtain the same functionality, while hiding
the identity of x∗, the corresponding object becomes much more challenging to
obtain. Such notion is known as a privately puncturable PRF [5]. In contrast
to the simple puncturable PRF constructions, despite significant effort, the only
known instantiations of privately puncturable PRFs make use of heavy public-
key cryptography machinery, and rely on structured public-key assumptions such
as the Learning with Errors assumption or multi-linear maps [4,18,17,37].

This challenging state of affairs remains the situation even for the case where
the domain of the PRF is of feasible size. Indeed, there is no clear way “scale
down” the constructions from above to a polynomial-size domain in a way that
lessens the computational assumption, without reverting to trivial constructions
where the key size grows to the entire truth table. Placing a requirement that
the key size be sublinear in the domain size (or polylogarithmic, to more closely
match the large-domain case), then the resulting notion falls in the same state
of knowledge as in the general case: necessitating one-way functions, but only
known to be achievable from the heavy public-key cryptography as above.

We observe that our notion of programmable DPF in fact directly implies
privately puncturable PRFs with the same parameters. In turn, we provide the
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first construction of privately puncturable PRFs (on polynomial-size domains)
from the minimal assumption of one-way functions.

We next present the definition of privately puncturable PRFs, together with
our new feasibility result. We adapt the definition to mirror our PRF syntax,
where Eval and Punc explicitly take the input domain size M ∈ N as input. For
simplicity, we focus on the case of output space Z2, and thus omit output domain
size from the syntax (we can, however, support more general output spaces as in
Corollary 2). As with essentially all known constructions of privately constrained
PRFs, we consider a setting of selective security, with security against 1 key
query. We remark that in this setting, it was shown that indistinguishability-
based and simulation-based definitions are equivalent [18].

Definition 3 (Privately Puncturable PRF (1-Key, Selective Security)).
A puncturable PRF (Gen,Punc,Eval,PuncEval) is a (selectively secure, 1-key)
privately puncturable PRF family if for every non-uniform polynomial-time
stateful adversary A, there exists a polynomial-time simulator Sim such that
the following are computationally indistinguishable:

{REALA(1λ)}λ∈N

c∼= {IDEALA,Sim(1
λ)}λ∈N,

where the real and ideal experiments are defined as follows:

Experiment REALA(1
λ) Experiment IDEALA,Sim(1

λ)
x∗ ← A(1λ) x∗ ← A(1λ)
k ← Gen(1λ) k∗ ← Sim(1λ)
k∗ ← Punc(k,M, x∗) b← A(k∗); Output b
b← A(k∗); Output b

Intuitively, this notion of privately puncturable PRFs are directly implied by
programmable DPFs, by taking the master PRF key to be the first-server DPF
share, and generating a punctured key at x∗ by computing a second-server DPF
share for the function fα,β with α = x∗ and β ← {0, 1} selected at random.

Proposition 5 (Small-Domain Privately Puncturable PRF from OWF).
Assume the existence of a length-doubling PRG (implied by OWF). Then there
exists a (selectively secure, 1-key) privately puncturable PRF (Gen,Punc,Eval,PuncEval),
with the following complexity properties:

– Gen(1λ) outputs a master PRF key of size λ bits; PuncEval on domain size
M outputs a punctured key of size poly(λ, log(M)) bits.

– The runtime of Punc and PuncEval on domain size M consists of O(N) PRG
evaluations. In particular, for polynomial-size domain M = M(λ), then Punc
and PuncEval each run in probabilistic polynomial time.

The proof appears in the full version of the paper.

Remark 2 (Privately Puncturable PRF ⇔ PDPF). We note that in regard to
feasibility, this implication in fact goes in both directions. That is, existence
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of a privately puncturable PRF (P-PPRF) additionally implies the existence of
a PDPF. Intuitively, a P-PPRF is precisely a PDPF but with random, versus
chosen, payload. For small output domains (such as Z2), however, this can be
addressed, e.g., by rejection sampling.

Namely, given a P-PPRF, the corresponding Gen0(1
λ,M, Ẑ2) will sample

a random (“master”) PRF key k0. The algorithm Gen1(k0, f̂α,β) for a given

point function f̂α,β will run independent executions of the randomized proce-
dure Punc(k0,M, α) to generate a PRF key punctured at α, repeating until the
resulting punctured key k1 ← Punc(k0,M, α) yields the desired target offset
Eval(k0,M, α) + PuncEval(k1, α) = β. The algorithms Eval0 and Eval1 of the
PDPF then become the corresponding executions of Eval and PuncEval of the
P-PPRF. Security follows from the privacy of the identity of the punctured input
(intuitively, hiding α) together with pseudorandomness of the punctured evalu-
ation on feasible output domain (intuitively, a punctured key for the real offset
β is indistinguishable from a key for random β′ ← Z2, since there are polynomi-
ally many possible offsets). And, since the output domain size is feasible, these
algorithms remain polynomial time.

Overall, this close connection to P-PPRFs provides yet another motivation
for the study of PDPFs.

4.2 DPF with Constant-Round Black-Box Distributed Gen

In this section we demonstrate that the techniques behind our PDPF construc-
tion can be used to give the first (standard) DPF construction (for feasible
domain sizes) in which the key size is polylogarithmic in the domain size N ,
and whose key generation Gen admits a particularly efficient secure distributed
generation procedure. Namely, the distributed Gen protocol makes only black-
box use of OT and a PRG, and executes in a fixed constant round complexity.
Concretely, we show that 5 rounds suffice.

As with the previous sections, the runtime of our DPF Eval algorithm (as
well as EvalAll) will be linear in the domain size N . Note that in this section,
however, our DPF Gen procedure will only be logarithmic in N .

Concretely, by “distributed Gen,” we refer to a secure computation protocol
between two parties. We consider only security against a semi-honest adver-
sary (i.e., who follows the protocol as prescribed but attempts to extrapolate
information beyond its own input and output). The input consists of the desired
security parameter 1λ and input/output domain descriptions of the desired point
function as common input, as well as secret shares of the desired point function
values α and β over the respective spaces. The output is a randomly sampled
key pair (k0, k1)← Gen(1λ, f̂α,β), where each party learns its corresponding key.

Theorem 7 (Constant-round distributed Gen). There exists a small-domain
DPF (Gen,Eval), with key size poly(λ, logN), where Gen on secret-shared α, β
can be implemented by a 5-round protocol making only a black-box use of oblivi-
ous transfer and a pseudorandom generator.
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The DPF is based on our PDPF construction from Corollary 2: Given a point
function f̂α,β , the DPF keys are formed via poly(λ, logN) punctured PRFs, each

serving as a ϵ-secure PDPF for some related f̂αi,βi
. The choice of the values

(αi, βi) is computable via a small non-cryptographic randomized circuit as a
function of α, β. For simplicity we present the results for fixed payload β = 1
and output space Z; however, our construction extends naturally.

The main departure from our PDPF is that for each ϵ-secure DPF, in-
stead of puncturing the corresponding PRF key ki at a random input x∗

i with
the desired evaluation PRF.Eval(ki, x

∗
i ) = αi, we will instead simply puncture

the PRF at a completely random x∗
i , and provide both parties with the offset

∆i = (PRF.Eval(ki, x
∗
i ) − αi). Recall that puncturing at x∗

i corresponds to an
ϵ-secure DPF for α′ = PRF.Eval(ki, x

∗
i ). Thus the parties will simply “shift” all

evaluations by this offset ∆i, effectively converting it to a DPF on αi. This is
possible due to the communication with both parties, which leads to computa-
tion being only logarithmic in N , as opposed to being linear in N in “1.5-server”
regime, where we cannot afford online communication with both parties.

Consider the security of this modified scheme. Since the PPRF is now punc-
tured at a random input, independent of any of its PRF evaluations, the punc-
tured key (corresponding to DPF key k1) now directly hides the punctured
evaluation; thus, the offset ∆i completely hides the secret value αi. On the other
hand, given the PRF key (corresponding to DPF key k0), the evaluation of the
PRF on a random input has a close-to-uniform, but biased distribution, corre-
sponding to the unequal representation of different output values. This will yield
the inverse-polynomial ϵ security for the corresponding DPF (where αi is masked
by a biased one-time pad). Here the bias ϵ is precisely as in the statistical balls
and bins analysis from Lemma 1 in the PDPF analysis.

Note that this offset-to-random simplifies the key generation procedure (e.g.,
the cost of Gen no longer scales with the full domain sizeN), and adds only minor
cost in regard to computation and key size. The reason this was not used in the
prior sections is because the resulting construction is no longer a programmable
DPF, which in particular requires the first key k0 to be completely independent
of the point function to be shared. However, this intermediate version is also a
compelling construction offering alternative complexity tradeoffs.

Given this modified DPF construction, the new Gen procedure takes the fol-
lowing form. We mark by (*) those steps whose computation requires evaluation
of a cryptographic PRG; all other computations are non-cryptographic.

Gen(1λ, f̂α), where α ∈ [N ]:

1. Compute the randomized mapping (α1, . . . , αq) ← d(α), where d : [N ] →
[L]q is as in Lemma 2 (security amplification).10

2. Sample q random PPRF keys: k1, . . . , kq ← {0, 1}λ.
3. For each i ∈ [q]:

10 Note that d is non-cryptographic. Concretely, for the case of Reed-Muller locally
decodable codes, the mapping d corresponds to effectively generating Shamir secret
shares of the input value α.
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(a) (*) Generate a punctured key k∗i ← Punc(ki, x
∗
i ), for random input x∗

i .
(b) (*) Compute the punctured evaluation α′

i = PRF.Eval(ki, x
∗
i ).

(c) Compute offset ∆i = α′
i − αi

4. Output DPF keysK0 = ((k1, ∆1), . . . , (kq, ∆q)) andK1 = ((k∗1 , ∆1), . . . , (k
∗
q , ∆q)).

Consider now a protocol ΠGen for securely evaluating distributed Gen, where
parties know only secret shares of α and must learn only their own resulting
DPF key. Note that each non-cryptographic computation step can be securely
evaluated in constant rounds and making only black-box use of oblivious transfer
by using generic secure computation techniques.

This leaves two additional steps to address: puncturing the PPRF keys, and
computing (secret shares of) the evaluations of the PRFs at the punctured in-
puts. Note that the latter can be done directly if one party holds the full PRF
key ki and the other party holds the punctured PRF key k∗i , by each simply
computing the sum of all computable PRF output values, which differ precisely
by the punctured output. For the former step, of puncturing the PPRF keys, we
observe that a two-round protocol for precisely this task were presented in the
works of [9,38] (within the context of an application of PPRFs to pseudorandom
correlation generators for the OT correlation), applying the techniques of the
Doerner-shelat protocol for DPFs [26] to the simpler setting of PPRFs. Intu-
itively, in order to puncture one PPRF key, the protocol consists of a collection
of string OTs executed in parallel, one for each level in the evaluation tree of the
PPRF, where the selection bits correspond to the bits of the punctured input
x∗, and the message strings are computable as a function of the partial PRF
evaluations at the given level. In particular, the protocol supports direct secure
parallel composition of multiple instances.

Theorem 8 ([9,38]). Consider the GGM-based PPRF construction of [6,32,15].
There exists a two-round secure two-party protocol ΠPunc making only a black-
box use of oblivious transfer and a pseudorandom generator, for evaluating the
functionality with parties’ inputs ((ki)i∈[q], (x

∗
i )i∈[q]) and outputs (⊥, (k∗i )i∈[q]),

where each k∗i = Punc(ki, x
∗
i ).

We next describe the constant-round distributed Gen protocol, making use
of ΠPunc (and, in turn, the GGM-based PPRF). In the protocol description we
refer to the two parties as P0 and P1.

Distributed Gen protocol, ΠGen:

Inputs: Common: 1λ, domain size N . P0, P1 hold secret shares α0, α1 of α ∈
[N ].11

1. Party P0 locally samples q random PPRF keys: k1, . . . , kq ← {0, 1}λ.
2. Party P1 locally samples q random PPRF inputs x∗

1, . . . , x
∗
q .

3. Parties P0, P1 jointly execute q parallel executions of protocol ΠPunc, on re-
spective inputs (ki)i∈[q] and (x∗

i )i∈[q]. As output, party P1 learns q punctured
keys (k∗i )i∈[q].

11 This secret sharing can be over ZN , bitwise over Z2, or otherwise, with insignificant
effect for the given protocol. We describe w.r.t. shares over ZN for simplicity.
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4. For each i ∈ [q], each party locally computes the sum of all its computable
PPRF evaluations: For P0, this is σ0

i =
∑

x PPRF.Eval(ki, x). For P1, this
is σ1

i =
∑

x ̸=x∗
i
PPRF.PuncEval(k∗i , x), where sums are taken over ZN (the

domain space of the DPF).
5. The parties jointly perform a (generic) secure computation protocol for eval-

uating the following functionality:
– Input: Each party Pb holds its original input share αb and (σb

i )i∈[q].
– Computation:
(a) Evaluate the randomized mapping (α1, . . . , αq)← d(α0 + α1) ∈ [L]q

from Lemma 2, where α0 + α1 represents the reconstructed value of
the secret shared α (e.g., sum over ZN ).

(b) For each i ∈ [q], compute ∆i = (σ0
i − σ1

i )− αi. Recall σ
0
i is equal to

σ1
i plus the ith punctured evaluation.

– Output: To both parties: (∆i)i∈[q].

Security of the protocol ΠGen follows by the security of the underlying ΠPunc

and generic constant-round secure computation protocols. The round complexity
of ΠGen consists of (1) an execution of ΠPunc, in 2 rounds, followed by (2) the
generic secure computation of a non-cryptographic functionality, in 3 rounds
(note that both parties receive output). Thus, the combined round complexity
is bounded by 5 rounds.

Comparison to Doerner-shelat[26]. As stated, the round complexity of our DPF
distributed generation protocol is constant (5 rounds), as opposed to logN as
in [26]. The communication complexity of our distributed Gen is also better
than [26], due to the roughly 2× improvement in our key size and an additive
communication overhead in [26]. To give some data points, for N = 105, and
2−10 ≤ ϵ ≤ 2−4 the communication complexity of a single data access in our
scheme is in the range of 48-122 KB, while in [26] it is ∼ 240KB.

The computational complexity of a data access is better than [26] for small
values of N and large errors, but the situation is reversed as N grows and the
linear scan of N data items in [26] vs. theM data items in our scheme dominates.
In [26] the access time for 103 ≤ N ≤ 105 is in the range 15-20 ms, while in our
scheme the access time is lower for the pairs (N = 103, ϵ = 10−8), (N = 20 ·104,
ϵ = 2−6), and (N = 105, ϵ = 2−4), but is higher for each N when ϵ is lower than
the quoted figure.

4.3 Compressing DPF Correlations

In this section we discuss an application of PDPFs for compressing correlated
randomness in certain secure computation applications.

Standard DPFs have a variety of applications in the context of secure 2-
party computation (2PC). For instance, they serve as crucial building blocks
for concretely efficient 2PC of RAM programs [26] or for pseudorandom cor-
relation generators (PCGs) of truth-table correlations [11] and (authenticated)
multiplication triples [10].
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As an example, suppose the two parties would like to securely evaluate a
circuit which consists of arbitrary n-gates g : {0, 1}n → {0, 1} (e.g., computing
the AND or the majority of the n input bits). Using instances of a random OT
correlation, the communication complexity of mapping a secret-shared input
to a secret-shared output is linear in the circuit size of g and and the round
complexity is linear in the circuit depth. But given a random DPF correlation,
this only requires n communication bits per party and a single communication
round [31,24]. Concretely, a random DPF correlation consists of secret-sharing of

a random α ∈ ZN , for N = 2n, and a pair of keys (k0, k1)← Gen(1λ, f̂α,1) where

f̂α,1 : ZN → Z2. The idea is that the DPF correlation can be locally expanded
into a truth-table correlation [11], which can in turn be used to evaluate a g-gate
with minimal online communication and round complexity.

Given many independent instances of a DPF correlation, one can obtain a
generic speedup for 2PC of Boolean circuits by grouping small sets of Boolean
gates into bigger g-gates [23]. This strongly motivates the goal of generating
many independent instances of a random DPF correlation with low communica-
tion cost. However, there are no known practical methods for achieving this.

We observe that PDPF can be used to solve this problem in the following
“trusted-offline” setting for 2PC. In an offline phase, Alice owns a long-term
secret s (say, a secret key for encryption, identification, or signature). To elim-
inate a single point of failure, she splits s into two shares, sA and sB , sending
sB to Bob and keeping sA to herself. She then erases all information except
sA. In the online phase, the parties receive online inputs Pi (resp., ciphertexts
to decrypt, nonces for identification, or messages to sign) and wish to securely
compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that Alice can be fully trusted in the offline phase,
since if she is corrupted before erasing s then the long-term secret is entirely
compromised. In fact, if Pi is public, then s is the only secret in the system.
Consequently, we trust Alice to generate pairs of DPF keys (kj0, k

j
1) in the offline

phase, offload the keys kj0 to Bob, and keep ki1. However, the communication
cost of generating DPF instances for evaluating many g-gates is high.

A PDPF can provide a dramatic efficiency improvement in this scenario.
To generate T independent instances of a DPF correlation, Alice generates and
communicates only a single reusable offline key k0 to Bob (128 communication
bits in practice). Then, for each j, she generates an online key kj1 for a point
function fαj ,1 using the PDPF algorithm Gen1. She also derives Bob’s (fresh)

ZN -share of αj from the offline key and computes its own share αj
1. In the end

of the silent generation process, Alice erases all information except her DPF
correlation entries (kj1, α

j
i ). Now the two parties hold T compressed instances of

a truth-table correlation that can be silently expanded just when needed.

Viewed more abstractly, the above PDPF-based solution yields a PCG for
generating T instances of a size-N truth-table correlation, where one of the keys
is of size λ and the other is of size ≈ T · λ logN . Thus, if Alice acts as a PCG
dealer (who is only trusted during the offline phase), the communication cost is
constant in T and N and the storage cost grows logarithmically with N . This
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should be contrasted with two alternative solutions: (1) using a standard DPF,
both PCG keys are of size ≈ T · λ logN , and so the communication cost is high
when T is large; (2) using a naive PDPF, with online key linear in the domain
size, keeps Bob’s key (communication) small, but requires Alice’s key (storage)
to grow linearly with T ·N instead of T · logN . A similar improvement is relevant
to other applications of DPF in 2PC, including silent generation of multiplication
triples [10] or low-communication simulation of RAM programs [26].

Concrete efficiency. We make a few remarks about the concrete efficiency of
using PDPF to generate truth-table correlations. First, because the above ap-
plications only require random DPF instances (where α is chosen at random),
the computational cost of the PDPF key generation is comparable to a standard
DPF. Second, while the PDPF evaluation of our constructions is only concretely
efficient for moderate values of N and ϵ (see Section 5), this can be good enough
for applications. In particular, even a relatively high value of ϵ (say ϵ = 2−6) only
amounts to a tiny (and easily quantifiable) leakage in the spirit of differential
privacy, which is often considered tolerable. Functions with a small truth-table
size N arise in many application scenarios, including S-box computations in dis-
tributed evaluation of block ciphers (cf. [24]) or nonlinear activation functions
in low-precision Machine Learning algorithms (cf. [2]).

PDPF correlations vs. FSS correlations. The truth-table correlations we gener-
ate via PDPF are quite broadly applicable, since they effectively allow using a
richer set of (small-domain) gates instead of just standard Boolean or arithmetic
gates (see [23,24]). Their main disadvantage is the computational overhead in-
herited from the evaluation algorithm of our PDPF, which scales linearly with
the truth-table size N . This should be contrasted with the recent use of FSS
correlations for secure computation with preprocessing [14,7], in which the com-
putation cost scales logarithmically with N . However, in applications where the
value of N is moderate, this computation overhead may not form an efficiency
bottleneck.

5 Concrete Efficiency

In this section we compare the concrete efficiency of our construction from Theo-
rem 4 to a naive PDPF construction. For our comparison we will consider PDPFs
over G = Z and β ∈ G′ = {0, 1}. Throughout the section we model the PPRF as
an ideal PPRF, see the full version of the paper for further analysis.

While Theorem 4 gives a ϵ ≈
√
N/M security bound, we empirically find

that the real statistical distance in the statistical variant of the balls-and-bins
experiment, as in Lemma 1 is ϵ ≈ 0.564

√
N/M , and we use this estimate in the

tables below. For estimating the running time of EvalAll in our construction we
use Theorem 3, by which EvalAll makes (M log2(N+1)/λ PRG calls. In addition,
by Proposition 4, Gen1 makes ((N + 1) log2 M)/λ PRG calls.

The naive PDPF construction is obtained by having EvalAll0 treat k∗ (ob-
tained by running Gen0) as a PRF key, expanding it to a truth table of length
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N over {0, . . . , ⌈1/ϵ⌉ − 1} for an integer 1/ϵ. Denote by f0 : [N ] → Z the func-
tion with this truth table. Then, Gen1 will generate k1 by simply computing the
truth table of the function f1 = fα,β − f0 (hence |k1| = N⌈log2(1/ϵ)⌉), and
EvalAll1 will output the truth table it got. Note that this naive PDPF construc-
tion is ϵ-secure. Because both Gen and EvalAll compute the PRF on all points,
by Theorem 3, they make (2N − 1)(logN)/(2λ) PRG calls.

Remark 3 (Privacy and key length for the naive PDPF). The naive construction
provides negligible privacy error and online key of N · log |G| for output group G.
In aggregation-type applications, one either needs to pick a very large finite G
or use the group of integers Z with key size N · c and settle for 2−c-privacy. To
make the comparison meaningful, we went for the latter option with ϵ = 2−c.

In Table 1 we compare the key size and running time of Gen and EvalAll of our
PDPF to the naive PDPF, for fixed λ = 128. Our time unit is PRG evaluations,
assuming 1.8 · 108 evaluations per second of G : {0, 1}128 → {0, 1}256.
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