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Abstract. We revisit the question of minimizing the randomness com-
plexity of protocols for secure multiparty computation (MPC) in the set-
ting of perfect information-theoretic security. Kushilevitz and Mansour
(SIAM J. Discret. Math., 1997) studied the case of n-party semi-honest
MPC for the XOR function with security threshold t < n, showing that
O(t2 log(n/t)) random bits are sufficient and Ω(t) random bits are nec-
essary. Their positive result was obtained via a non-explicit protocol,
whose existence was proved using the probabilistic method.
We essentially close the question by proving an Ω(t2) lower bound on
the randomness complexity of XOR, matching the previous upper bound
up to a logarithmic factor (or constant factor when t = Ω(n)). We also
obtain an explicit protocol that uses O(t2 · log2 n) random bits, matching
our lower bound up to a polylogarithmic factor. We extend these re-
sults from XOR to general symmetric Boolean functions and to addition
over a finite Abelian group, showing how to amortize the randomness
complexity over multiple additions.
Finally, combining our techniques with recent randomness-efficient con-
structions of private circuits, we obtain an explicit protocol for evaluating
a general circuit C using only O(t2 · log |C|) random bits, by employing
additional “helper parties” who do not contribute any inputs. This upper
bound too matches our lower bound up to a logarithmic factor.

1 Introduction

The randomness complexity of probabilistic algorithms and distributed proto-
cols is an important complexity measure that has been the subject of a large
body of research. From a practical point of view, the design of algorithms and
protocols that use a minimal amount of randomness is motivated by the diffi-
culty of generating high-quality randomness from physical sources. While pseu-
dorandomness provides a generic way of reducing the amount of randomness
in a computational setting, this solution (besides requiring unproven crypto-
graphic assumptions) is not always practical, especially in a distributed setting
or when parties may be subject to resetting attacks. This motivated a line of
work on minimizing the amount of randomness used by secure cryptographic
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hardware [24,22,2,3,17,14,19]. From a theoretical perspective, the goal of mini-
mizing the use of randomness is a fundamental challenge that has driven many
important developments in computer science, including a rich theory of pseudo-
randomness and randomness extraction.

This work studies the randomness complexity of secure multiparty computa-
tion (MPC) in the simplest setting of perfect security against a passive (semi-
honest) adversary who may corrupt up to t parties. Such an MPC protocol al-
lows n parties, each holding a local input xi ∈ Di, to jointly compute a function
f : D1 × D2 × . . . × Dn → Z of their inputs by exchanging messages over se-
cure point-to-point channels. At the end of the protocol, all parties should learn
f(x1, x2, . . . , xn). We say that the protocol is t-secure if every set of at most t
parties jointly learn nothing beyond what follows from their inputs and the out-
put. To achieve this goal, the parties may toss random coins at any time during
the protocol’s execution, possibly depending on their inputs and the messages
they receive. The randomness complexity of the protocol is the total number of
random bits used by all parties.

Classical MPC protocols for this setting [4,11] can compute every function f
with randomness complexity Õ(s · t2), where s is the Boolean circuit size of f ,
as long as t < n/2. (For bigger thresholds t, most functions cannot be realized
at all in the information-theoretic setting.) In the useful special case of the XOR
function, where f(x1, x2, . . . , xn) = x1⊕x2⊕· · ·⊕xn (or more generally, addition
over a finite Abelian group), the “textbook” protocol from [5,13] requires O(nt)
random bits for any t < n.

The question of minimizing the randomness complexity of MPC has been the
topic of a fairly large body of work [29,27,31,6,9,18,25,30,21,7,22,16,28]. While
some of these works focus on the minimal security thresholds of t = 1 or t = 2,
here we are interested in how the randomness complexity grows with t.

We will be mainly interested in the simple special case of computing the XOR
function and, more generally, addition over finite Abelian groups, but will also
consider other classes of functions f , including symmetric functions and even
general functions. The case of addition is particularly well motivated because of
its usefulness for many applications, including secure voting [5], anonymous com-
munication [10], linear sketching [23], privacy-preserving analytics [15], federated
learning [8], and more.

The randomness complexity of XOR was studied by Kushilevitz and Man-
sour [27], who proved that O(t2 log(n/t)) random bits are sufficient and Ω(t)
random bits are necessary. This leaves a quadratic gap between the two bounds.
Another question left open by [27] is the existence of an explicit protocol meeting
the upper bound. The positive result was obtained via a non-explicit protocol,
relying on a combinatorial object that can either be generated by an efficient
probabilistic construction (with small but nonzero failure probability) or gener-
ated deterministically in super-polynomial time. Blundo et al. [6] obtain a lower
bound of Ω(t2/(n − t)), which is asymptotically matched by the upper bound
of [5,13] when t = n−Ω(1), but still leaves a quadratic gap when t ≤ (1− ε)n.
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1.1 Our Contribution

In this work, we settle the main open questions about the randomness complexity
of t-secure MPC for XOR and addition over finite Abelian groups, and obtain
similar results for other functions. Concretely, we obtain the following results.

Lower bounds. We prove an Ω(t2) lower bound on the randomness complexity
of XOR, matching the previous upper bound of Kushilevitz and Mansour [27]
up to a logarithmic factor (or even a constant factor when t = Ω(n)). Our lower
bound extends to arbitrary symmetric Boolean functions, including AND and
majority. It applies also when the output is revealed to a strict subset of the
parties and even in the case where there are additional participating parties who
do not hold an input.

Our lower bounds do not apply to statistically private (let alone computa-
tionally private) MPC for the following inherent reason: in the setting of statis-
tical privacy, one of the parties can pick a random committee P of σ parties,
for a statistical security parameter σ, and the parties can securely add their
inputs by secret-sharing them among the parties in P. This folklore protocol,
which is statistically 2−Ω(σ)-secure against any (non-adaptive) adversary cor-
rupting t = 0.99n parties, has randomness complexity O(n · σ), which beats our
Ω(n2) lower bound when σ = o(n). This explains the quick deterioration of the
information-theoretic lower bound technique from [6], which is robust to small
statistical deviations, when t gets farther away from n. Indeed, our lower bound
proof relies on combinatorial rather than information-theoretic methods.

Explicit upper bounds for XOR and addition. To complement our lower
bounds, we obtain an explicit protocol for XOR that uses O(t2 · log2 n) random
bits, matching our lower bound up to a polylogarithmic factor and at most a
polylog-factor worse than the non-explicit protocol from [27]. We extend the
protocol from XOR to general symmetric Boolean functions as well as addition
over any finite Abelian group, and show that t additions can be performed using
only Õ(t2) random bits, namely essentially for the same price as one.

Upper bounds for general functions. Finally, building on the techniques
with recent randomness-efficient constructions of private circuits [19], we obtain
an explicit protocol for evaluating a general circuit C using only O(t2 · log |C|)
random bits, but in an easier setting that allows for additional “helper parties”
who do not contribute any inputs but still participate in the protocol. This
upper bound too matches our lower bound up to the logarithmic factor, and
gives at least a factor Ω(t) improvement over previous randomness-efficient MPC
protocols from [9,22].

We leave open the question of characterizing the randomness complexity of
general MPC without helper parties, as well as closing the remaining (polylog-
arithmic) gaps between our lower bounds and upper bounds. Evidence for the
difficulty of these questions in some parameter regimes was given by Kushilevitz
et al. [29], who showed a two-way relation between the randomness complexity
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of f for t = 1 and its circuit complexity. We refer the readers to the full version
of this paper [20] for discussion about other related directions.

2 Technical Overview

In this section, we give an overview of the technical ideas behind the main results.

2.1 Background: Secure Multiparty Computation

We consider the standard model of information-theoretic MPC: a set of n parties
{P1, P2, . . . , Pn}, each holding an input xi from a finite domain Di, jointly run
a protocol Π to compute a function f : D1 ×D2 × . . .×Dn → Z. At the end of
the protocol, all parties will receive the function output f(x1, x2, . . . , xn).

During the protocol execution, when needed, each party can toss a random
coin and use this random bit in the computation. The randomness complexity
of the protocol Π is measured by the total number of random bits that are used
during the protocol execution.

In the following, we will use x = (x1, x2, . . . , xn) to denote the input, and
r = (r1, r2, . . . , rn) to denote the random tapes of all parties. The function
output is denoted by f(x), and an execution of the protocol Π with input x and
random tapes r is denoted by Π(x, r).

We consider the standard definition of correctness and semi-honest security.

– The correctness of the protocol Π requires that, when all parties honestly
follow the protocol, they will finally output f(x) at the end of the protocol.

– Let t be the number of corrupted parties. The semi-honest security of the
protocol Π requires that the joint view of any set of t parties can be perfectly
simulated by their inputs and the function output.

Note that the semi-honest security implies that, for any set T of t parties, and
for all x,x′ such that f(x) = f(x′) and xi = x′i for all i ∈ T , the distribution of
the joint view of parties in T of a random execution with input x is identical to
that of a random execution with input x′.

2.2 Randomness Lower Bound for XOR and Symmetric Functions

To better exhibit our idea, we begin with an n-ary XOR function for simplicity.
Concretely, we consider the function f : ({0, 1})n → {0, 1} defined by

f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn.

Suppose Π is an MPC protocol that computes f . Our result shows that any
such protocol must use Ω(t2) random bits, improving the previous Ω(t) lower
bound from [27] and matching their O(t2 log(n/t)) upper bound up to at most
a logarithmic factor.

We start with the following known fact:
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Fact 1. For every Pi, the messages exchanged with Pi together with f(x) fully
determine its input xi.

A similar fact was proved and used in [13] to show a lower bound on the
communication complexity of the XOR function, and in [6] to show a lower
bound on the randomness complexity of the XOR function.4

Ideas Behind Fact 1. To see why this fact is true, suppose that there are two
executions, Π(x, r) and Π(x′, r′), such that xi and x′i are different, but the
messages exchanged with Pi and the function output are identical. Now consider
a third execution Π(x̃, r̃) where x̃ = x except that x̃i = x′i, and r̃ = r except
that r̃i = r′i. I.e., the third execution Π(x̃, r̃) is the first execution Π(x, r) except
that we replace Pi’s input and random tape by those in the second execution
Π(x′, r′). Consider the messages exchanged with Pi in these three executions:

– From the point of view of the party Pi, Pi uses the same input and random
tape in Π(x′, r′) and Π(x̃, r̃). Therefore, if Pi always receives the same
messages from other parties in these two executions, he cannot distinguish
these two executions, and thus will always send the same messages to other
parties.

– Similarly, from the point of view of all other parties {Pj}j 6=i, they use the
same input and random tapes in Π(x, r) and Π(x̃, r̃). Therefore, if {Pj}j 6=i
always receive the same messages from Pi in these two executions, they
cannot distinguish these two executions, and thus will always send the same
messages to Pi.

Note that before the first message exchanged with Pi, Pi cannot distinguish
Π(x′, r′) and Π(x̃, r̃), and all other parties {Pj}j 6=i cannot distinguish Π(x, r)
and Π(x̃, r̃). It implies that the first message exchanged with Pi is always the
same in these three executions. Thus, by induction, the messages exchanged with
Pi are identical in these three executions.

It follows that parties other than Pi cannot distinguish between Π(x, r) and
Π(x̃, r̃) at the end of the protocol, which means that they will output the same
value in both executions. However, since x and x̃ only differ in the i-th input,
for the XOR function f , we must have f(x) 6= f(x̃). It means that at least one
of Π(x, r) and Π(x̃, r̃) outputs an incorrect result, which contradicts with the
correctness of Π. Thus, Fact 1 holds.

With Fact 1, we can view the messages exchanged with Pi together with
the function output as an encoding of Pi’s input xi. Moreover, we observe that
this encoding is t-private, i.e., the distribution of any t messages in a random
codeword of xi is independent of xi.

Fact 2. For every Pi, the messages exchanged with Pi together with f(x) form
a t-private encoding of xi.

4 [6] focuses on a broader class of functions which they refer to as functions with
sensitivity n. The XOR function is a concrete instance in this class.
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Ideas Behind Fact 2. Intuitively, it follows from the semi-honest security of Π:
for any t messages, the joint view of the senders and the receivers (other than
Pi) of these t messages should not reveal the input of Pi. To formally argue it,
we consider the following encoding scheme:

– Let x = (0, 0, . . . , 0, 1), i.e., all inputs are 0 except the last input is 1. And
let x′ be the input subject to x′i = 1 and x′j = 0 for all j 6= i. Then
f(x) = f(x′) = 1 but xi 6= x′i.

– The encoding of 0 is the messages exchanged with Pi in a random execution
with input x. And the encoding of 1 is the messages exchanged with Pi of a
random execution with input x′.

For t ≤ n−2 and any t messages, we want to show that the distribution of these
t messages in a random codeword of 0 is identical to that in a random codeword
of 1. To this end, we consider the set T of t parties which are senders or receivers
(other than Pi) of these t messages.

If Pn 6∈ T , then we have xj = x′j = 0 for all j ∈ T . Since f(x) = f(x′), by
the semi-honest security of Π, the distribution of the joint view of parties in T
of a random execution with input x is identical to that of a random execution
with input x′. Note that these t messages are in the joint view of parties in T .
Therefore, the distribution of these t messages in a random execution with input
x is identical to that in a random execution with input x′.

When Pn ∈ T , the above argument fails because xn = 1 while x′n = 0. To
fix it, we consider another input x̃ as an intermediate step towards proving the
t-privacy. Since t ≤ n−2, there is a party Pi? which is not in T

⋃
{Pi}. We choose

x̃ subject to x̃i? = 1 and x̃j = 0 for all j 6= i?. Then f(x) = f(x′) = f(x̃) = 1.

On one hand, since xi = x̃i = 0 and f(x) = f(x̃), by the semi-honest
security of Π, Pi cannot distinguish a random execution with input x from a
random execution with input x̃. Note that these t messages are in the view of
Pi. Therefore, the distribution of these t messages in a random execution with
input x is identical to that in a random execution with input x̃.

On the other hand, since x′j = x̃j = 0 for all j ∈ T and f(x′) = f(x̃), by
the semi-honest security of Π, {Pj}j∈T cannot distinguish a random execution
with input x′ from a random execution with input x̃. Note that these t messages
are also in the joint view of parties in T . Therefore, the distribution of these t
messages in a random execution with input x′ is identical to that in a random
execution with input x̃.

Combining these two parts together, we have shown that the above encoding
scheme is t-private.

With Fact 2, we are interested in the randomness complexity of a t-private
encoding scheme. In our work, we show that for any t-private encoding scheme
for a single bit, the support of 0 (i.e., the set of all possible codewords of 0) is of
size at least 2t. In Section 2.2, we will discuss how we prove this result. Jumping
ahead, this implies that when the input is x, the view of each party Pi has at
least 2t possibilities.
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Connection to Randomness Complexity. In [31,21], it has been shown that for a
fixed input x, if the protocol execution with input x has 2d different transcripts
(i.e., the joint view of all parties), then the protocol uses at least d random bits.
Thus, the result that the view of Pi has at least 2t possibilities implies that the
protocol requires at least t random bits.

Final Piece. Indeed, the above result is when we only consider the view of a
single party. We note that, if we fix the view of the first party P1 (by corrupting
P1), the protocol Π effectively computes the XOR function for the rest of n− 1
parties that is secure against t−1 parties. In particular, we show that the above
argument continues to work for the view of the second party: given the view
of P1, the view of P2 has at least 2t−1 possibilities. In general, we show the
following:

Fact 3. For all i ∈ {1, 2, . . . , t}, for a fixed input x and given the views of the
first i− 1 parties, the view of Pi has at least 2t−i+1 different possibilities.

Thus, for a fixed input x, the joint view of the first t parties has at least∏t
i=1 2t−i+1 = 2t(t+1)/2 different possibilities. It implies that the protocol Π

requires Ω(t2) random bits.
We note that this lower bound argument holds even if the output is only

given to a strict (nonempty) subset of the parties and even if there is an arbitrary
number of additional “helper” parties who do not have an input.

Extending to Symmetric Functions. We generalize the previous lower bound
to an arbitrary (nontrivial) symmetric Boolean function. For this, it suffices to
prove that the above three facts still hold.

– For Fact 1, the main task is to find two executions Π(x, r) and Π(x′, r′)
such that (1) xi 6= x′i but the messages exchanged with Pi together with
the function output in Π(x, r) are identical to those in Π(x′, r′), and (2)
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) 6= f(x′). We show that such two executions

exist for any symmetric function that outputs a single bit.
– For Fact 2, it relies on Fact 1 and the semi-honest security of the protocol.

Beyond that, we also need to find proper inputs x,x′ for the encoding scheme
and x̃ that is used to prove the t-privacy of the encoding scheme. We observe
that for a symmetric function, we can continue to use the inputs we construct
above.

– For Fact 3, it follows from Fact 2 and the randomness complexity of t-private
encoding schemes.

Thus, we show that for any non-constant n-ary symmetric function that outputs
a single bit, any MPC protocol requires Ω(t2) random bits.

Randomness Complexity of t-Private Encoding Schemes Let (Enc, Dec)
be a t-private encoding scheme for a single bit. Here t-privacy means that the
distribution of any t bits in a random codeword is independent of the input bit.
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Our goal is to show that the support of 0 (i.e., the set of all possible codewords
of 0) is of size at least 2t. Let supp(m) denote the support of m ∈ {0, 1}. The
lower bound is proved using the following simple inductive argument:

1. When t = 1, we show that the support of 0 is of size at least 2. Let c
be a codeword of 0 and c′ be a codeword of 1. By the correctness of the
encoding scheme, c 6= c′. Without loss of generality, assume the first bits of c
and c′ are different. Since the encoding scheme is 1-private, the distribution
of the first bit in a random codeword of 0 is identical to that in a random
codeword of 1. Then the first bit in a random codeword of 0 is not a constant
bit. Otherwise, the first bit in a random codeword of 1 should be the same
constant bit, which contradicts with the assumption that the first bits of c
and c′ are different.
Since the first bit can take both 0 and 1, there are at least two codewords of
0. The statement holds for t = 1.

2. Suppose the statement holds for t − 1. With the same argument as above,
there exists a bit in a random codeword of 0 which is not a constant bit.
Without loss of generality, assume that it is the first bit.
Since the encoding scheme is t-private, the distribution of any t bits in a
random codeword of 0 is identical to that in a random codeword of 1. Then,
given the first bit, the encoding scheme is (t − 1)-private. Thus, according
to the induction hypothesis, there are at least 2t−1 codewords of 0 given the
first bit. Note that the first bit can take both 0 and 1, and in each case, there
are at least 2t−1 codewords of 0 given the first bit. Thus, there are at least
2t codewords of 0. The statement holds for t.

3. By induction, we conclude that |supp(0)| ≥ 2t.

In the full version of this paper [20], we provide an alternative proof (due
to Yuval Filmus) of a slightly weaker lower bound using Fourier analysis. This
alternative proof also applies to t-private encodings with imperfect correctness.

2.3 Explicit Randomness Upper Bounds for XOR and Addition

In [27], Kushilevitz and Mansour gave an n-party MPC protocol for the XOR
function with semi-honest security against t corrupted parties, which uses O(t2 ·
log(n/t)) random bits. This upper bound matches our lower bound, Ω(t2) ran-
dom bits, up to (at most) a logarithmic factor. However, the construction in [27]
is non-explicit, relying on a combinatorial object that can either be generated
by a probabilistic construction (with small but nonzero failure probability) or

generated deterministically in time (n/t)
O(t)

. In this part, we introduce our
techniques towards constructing an explicit n-party computation protocol for
the XOR function, which uses O(t2 · log2 n) random bits, and where the running
time of all parties is polynomial in n.

Basic Protocol. We start with describing the construction in [27]. Following [27],
we first assume that there is an ideal functionality Frand that generates correlated
random bits for all parties. The protocol is as follows:
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1. Frand first prepare n random bits r1, r2, . . . , rn subject to ⊕ni=1ri = 0. We
will specify the distribution of these n bits later. Then Frand sends ri to Pi.

2. Each party Pi uses ri to mask its input xi by computing gi = xi ⊕ ri. Note
that ⊕ni=1gi = (⊕ni=1xi) ⊕ (⊕ni=1ri) = ⊕ni=1xi. Therefore, the task becomes
to compute the XOR of g1, g2, . . . , gn.

3. From i = 2 to n, the party Pi receives the partial result Gi−1 = ⊕i−1j=1gj
from Pi−1 and computes the partial result Gi = Gi−1 ⊕ gi. Then this result
is sent to Pi+1. Thus, the last party Pn learns Gn = ⊕ni=1gi = ⊕ni=1xi and
distributes the function output to all other parties.

The correctness of the protocol follows from the description. As for security,
note that when (r1, r2, . . . , rn) are uniformly random subject to ⊕ni=1ri = 0,
(g1, g2, . . . , gn) are also uniformly random subject to ⊕ni=1gi = f(x), where
f(x) is the function output. Thus, even learning all {gi}ni=1 reveals no infor-
mation about honest parties’ inputs. Therefore, the protocol is secure when
(r1, r2, . . . , rn) are uniformly random subject to ⊕ni=1ri = 0.

Kushilevitz and Mansour [27] noted that, as long as the distribution of the
joint view of corrupted parties remains unchanged, we can relax the requirement
of the distribution of r = (r1, r2, . . . , rn) without breaking the security. Con-
cretely, let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly random bits subject to ⊕ni=1r̃i = 0.
Let View(Pi,x, r) denote the view of Pi in an execution with input x and ran-
dom bits r. A sufficient condition of maintaining the protocol security is that,
for all x and for all set T of t parties, the random variables r satisfy that

{View(Pi,x, r)}i∈T ≡ {View(Pi,x, r̃)}i∈T .

Note that View(Pi,x, r) contains (xi, ri, Gi−1, Gn) (Here Gn is the value received
from Pn). Recall that gi = xi ⊕ ri for all i ∈ {1, 2, . . . , n}. Given x, we are
interested in (ri,⊕i−1j=1rj ,⊕nj=1rj). Let W = {ri,⊕i−1j=1rj}i∈T

⋃
{⊕nj=1rj}. Then

the above condition can be interpreted as

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) refer to the distributions of the variables in W
instantiated by r and r̃ respectively.5

Based on this observation, Kushilevitz and Mansour [27] showed the existence
of a sampling space of r of size (n/t)O(t). Therefore, sampling a random r requires
O(t · log(n/t)) random bits. Finally, to obtain a protocol in the standard model,
it is sufficient to realize Frand. This is done by letting each of the first t + 1
parties sample a fresh copy of the random string r. Then all parties use the
XOR of all random strings in the protocol. Intuitively, since there are at most
t corrupted parties, at least one copy of the random string is generated by an
honest party, which is unknown to the corrupted parties. Therefore, given the
random strings generated by corrupted parties, the XOR of all random strings
has the same distribution as that generated by Frand. In this way, Kushilevitz and
Mansour [27] obtained an MPC protocol for XOR with randomness complexity
O(t2 · log(n/t)).

5 This formalization is from [19].
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Parity Sharing Generator [19]. In [19], Goyal et al. generalized the approach of
Kushilevitz and Mansour [27] to support any order of computing the XOR of
g1, g2, . . . , gn.6 Similarly to [19], our protocol is based on a tree Tr with n leaf
nodes that represents a possible way of computing the parity of n bits. However,
unlike [19], for our explicit construction it is crucial that Tr be a low-depth
full binary tree (i.e., each node has either two children or no child). Then Tr

has exactly n − 1 internal nodes and logarithmic depth. The tree Tr defines
the following order of computing the XOR of n bits: All parties start with n
bits g1, g2, . . . , gn associated with all leaf nodes. Each time, Pi is responsible to
compute the bit associated with the i-th internal node by querying from other
parties the bits associated with the two children of the i-th internal node and
XORing these two bits. Finally, Pn−1 computes the bit associated with the root
node, which is equal to

∑n
i=1 gi.

For a node v ∈ Tr, let gv denote the value associated with v, and Sv denote
the set of all leaf nodes that are descendants of v. Then {gv}v∈Tr satisfy that for
all internal node v, gv =

∑
i∈Sv

gi. For a set T of t corrupted parties, let V be the
set of nodes such that for all v ∈ V , gv is in the joint view of all corrupted parties.
Note that the view of each party only contains gv’s for a constant number of
nodes v. We have |V | = O(t). Consider the set W := {⊕i∈Sv

ri | v ∈ V }. With a
similar argument, a sufficient condition of proving security is that, the random
variables r satisfy that

D(r,W ) ≡ D(r̃,W ),

where r̃ = (r̃1, r̃2, . . . , r̃n) are uniformly random subject to ⊕ni=1r̃i = 0.

To generate such random bits r, Goyal et al. [19] introduced the notion of
parity sharing generators.7

Definition 1 (Access Set [19]). An access set A of a set of random vari-
ables {r1, r2, . . . , rn} is a set of jointly distributed random variables satisfying
the following requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.

2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Definition 2 (Parity Sharing Generators [19]). Let G : {0, 1}m → {0, 1}n
be a function, u = (u1, u2, . . . , um) be a vector of random variables in {0, 1}m
that are uniformly distributed, and r = (r1, r2, . . . , rn) = G(u). Let A be an
access set of the random variables {r1, r2, . . . , rn}. The function G is a t-resilient
parity sharing generator with respect to A if the following holds:

1. The output r = (r1, r2, . . . , rn) satisfies that r1 ⊕ r2 ⊕ . . .⊕ rn = 0.

6 The work [19] focuses on the private circuits model of [24]. However, it can be
transformed to the setting of MPC.

7 In fact, Goyal et al. [19] introduced the stronger notion of robust parity sharing
generators, but only gave a probabilistic construction. See more discussion in the
full version of this paper [20].
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2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in {0, 1}n which are
uniformly distributed subject to r̃1 ⊕ r̃2 ⊕ . . . ⊕ r̃n = 0. For any set W of t
variables in A, the output r satisfies that

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when they are instantiated by r and r̃ respectively.

Note that when we choose the access set A = {⊕i∈Sv
ri | v ∈ Tr}, the

output of an O(t)-resilient parity sharing generator with respect to A satisfies
the sufficient condition. Thus, to obtain an explicit MPC protocol for the XOR
function, it is sufficient to construct an explicit parity sharing generator with
respect to A.

Explicit Construction of Parity Sharing Generators. For a set of random vari-
ables {r1, r2, . . . , rn} and a full binary tree Tr with n leaf nodes, an access set
A with respect to Tr is defined by A = {⊕i∈Sv

ri | v ∈ Tr}. We are interested
in access sets that are based on full binary trees. Our construction uses a t-wise
independent pseudo-random generator in a black box way.

Our idea is to assign a bit to each node in Tr such that for all internal node
v and its two children c0, c1, the bit assigned to v is equal to the XOR of the
bits assigned to c0 and c1. Then the bits associated with the leaf nodes are the
output. Note that the access set A consists of the bits associated with all nodes
in Tr. For a node v ∈ Tr, we use val(v) to denote the bit associated with v.

Let D be the depth of Tr. Our construction works as follows:

1. We start with the root node. We set val(rt) = 0. This ensures that the XOR
of the bits associated with all leaf nodes is equal to 0.

2. From d = 2 to D, assume that we have assigned bits to nodes of depth d−1.
Let `d denote the number of nodes of depth d. Since Tr is a full binary tree,
`d is even. We use c1, c1, . . . , c`d to denote the nodes of depth d such that for
all i ∈ {1, 2, . . . , `d/2}, (c2i−1, c2i) are the two children of a node vi of depth
d− 1.
Since val(c2i) = val(c2i−1) ⊕ val(vi), we only need to assign a bit to the
node c2i−1 and then compute the bit associated with c2i accordingly. For

{c2i−1}`d/2i=1 , we use the output of a t-wise independent PRG.

Consider a set W of t bits in A. Let V = {v | val(v) ∈ W}. Then |V | = t. We
want to prove that

D(r, {val(v)}v∈V ) ≡ D(r̃, {val(v)}v∈V ).

For a node v in Tr, we say v is a left node if v is a left child of some node in
Tr. Similarly, we say v is a right node if v is a right child of some node in Tr.
Effectively, we only assign bits to all left nodes in Tr. For each depth d ≥ 2, the
bits associated with all left nodes of depth d are t-wise independent. Thus, we
want to find a set V ′ ⊂ Tr such that V ′ only contains left nodes and the bits in
V ′ fully determine the bits in V .

Consider the following process:



12 Vipul Goyal, Yuval Ishai, and Yifan Song

– For each right node in V , since the bit associated with this node is determined
by the bits associated with its left sibling and its parent, we can remove this
right node from V and add its left sibling and its parent in V . We repeat the
same step for its parent until the parent node is a left node or a root node.

– Note that the bit associated with the root node is a constant 0. We can
always remove the root node from V .

In this way, we obtain the set V ′ that only contains left nodes such that the bits
in V ′ fully determine the bits in V . Thus, it is sufficient to prove that

D(r, {val(v)}v∈V ′) ≡ D(r̃, {val(v)}v∈V ′).

We observe that, to remove a right node in V , we may need to insert a left
node of each depth. In other words, for all d ≥ 2, removing a right node in V may
insert at most 1 left node of depth d. Therefore, the number of left nodes in V ′ is
bounded by |V | = t. Recall that in our construction, we use t-wise independent
random bits for all left nodes of each depth. It means that the bits associated
with nodes in V ′ are uniformly random. Thus D(r, {val(v)}v∈V ′) is identical to
the distribution of |V ′| random bits.

We can show that D(r̃, {val(v)}v∈V ′) is also identical to the distribution of
|V ′| random bits. Intuitively, this is because r̃ is already the most uniform output
we can hope. Since {val(v)}v∈V ′ are uniformly random bits when instantiated
by r, they should also be uniformly random when instantiated by r̃. Thus, our
construction yields a t-resilient parity sharing generator.

Regarding the input size of our construction (i.e., the number of random
bits), we need to invoke a t-wise independent PRG for each depth. Therefore,
the input size of our construction isD times the input size of a t-wise independent
PRG. It is well-known that when the output size is n, there is an explicit t-wise
independent PRG with input size O(t · log n). Also, we can choose to use a full
binary tree of depth log n. Therefore, we obtain an explicit construction of a t-
resilient parity sharing generator that uses O(t·log2 n) random bits. When we use
our explicit construction to instantiate the MPC protocol for XOR from [27,19],
we obtain an MPC protocol that uses O(t2 · log2 n) random bits.

From a Single Parity to Multiple Additions. All of the above techniques (includ-
ing the techniques from [27,19] and our techniques of constructing parity sharing
generators) can be naturally extended to addition over any Abelian group G,
increasing the randomness complexity by a log |G| factor. We show that one can
in fact do better in the amortized setting of computing many additions. Con-
cretely, the asymptotic randomness cost of computing t additions is essentially
the same computing a single addition. We outline the techniques below.

First, we naturally extend the notion of a parity sharing generator to a general
Abelian group G, referring to the generalized notion as a zero sharing generator.
We show that our technique also yields an explicit construction of zero-sharing
generator. We then amortize the randomness complexity by using the following
natural randomness extraction approach. Consider the case of Z2 for simplicity.
Suppose all parties want to compute the XOR function ` times. We can first
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prepare the random strings r(1), r(2), . . . , r(`) in a batch way, and then use one
fresh copy in each execution. Finally, we use a t-resilient randomness extractor
Ext : {0, 1}m → {0, 1}` for bit-fixing sources [12], guaranteeing that when the
input is randomly sampled from {0, 1}m, the output is uniformly random even
when conditioned on any t input bits.

To prepare the random strings r(1), r(2), . . . , r(`), we will let each Pi of the
first m parties distribute a fresh copy of the random string, denoted by τ (i).
Then all parties use Ext to extract ` random strings. By the property of a t-
resilient randomness extractor, the output strings {r(i)}`i=1 are random given
the random strings {τ (i)}i∈T generated by corrupted parties.

It is known that there is a t-resilient randomness extractor based on Vander-
monde matrices with input size m = `+ t · log(`+ t). Thus, we obtain an MPC
protocol for ` XOR computations that uses O((`+t · log(`+t)) ·t · log2 n) random
bits, giving an amortized cost of only O(t · log2 n) random bits per XOR.

2.4 Upper Bounds Beyond Linear Functions

The previous upper bounds apply only to linear functions over an Abelian group.
Building on these results, we obtain near-optimal upper bounds for general sym-
metric functions, or even general circuits if additional “helper parties” are al-
lowed.

Upper Bound for Symmetric Functions. For any symmetric function f : {0, 1}n →
{0, 1}, we show that there is an explicit MPC protocol that uses O(t2 · log3 n)
random bits. This includes useful functions such as majority or threshold, and
matches the previous lower bound for nontrivial symmetric functions up to a
polylogarithmic term. Our protocol uses the standard Shamir secret sharing
scheme and the BGW protocol [4,11]. We will use [r]t to denote a degree-t
Shamir sharing of r. Our idea works for all t < n

dlogne :

1. For a symmetric function f , the output only depends on the number of 1s
in the input bits. Let p be a prime such that n < p < 2n. Consider the finite
field Fp. All parties will first compute a degree-t Shamir secret sharing of
the summation of all input bits in Fp, denoted by [s]t. This is achieved by
the following steps:
(a) All parties first prepare a random degree-t Shamir sharing [r]t by letting

each of the first t+1 parties distributes a random degree-t Shamir sharing
and using the summation of these t + 1 sharings. They transform [r]t
to a random additive sharing by locally multiplying proper Lagrange
coefficients with their shares.

(b) All parties compute the summation of all input bits together with all
shares of the random additive sharing by using our protocol for addition
over Fp (recall that we extend the protocol for XOR to addition over
any Abelian group). Then the output is equal to s + r, where s is the
summation of all input bits.

(c) Finally, all parties locally compute [s]t = (s+ r)− [r]t.
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2. Note that s is the number of 1s in the input bits, and s ∈ {0, 1, . . . , n}.
Therefore, there exists a function g : {0, 1, . . . , n} → {0, 1} such that f(x) =
g(s), where s =

∑n
i=1 xi. We note that g can be represented by a degree-n

polynomial in Fp. Our idea is to compute a Shamir sharing of the output
g(s).

(a) All parties first use the BGW protocol to compute [s2
i

]t for all i ∈
{0, 1, . . . , dlog ne − 1}. This step requires O(log n) multiplications.

(b) Then, all parties can use {[s2i ]t}dlogne−1i=0 to locally compute a Shamir
sharing of sj for all j ∈ {1, 2, . . . , n}. In particular, the resulting sharing
has degree at most t · dlog ne < n. Therefore, the resulting sharing can
still be reconstructed by all parties. Thus, they can locally compute a
Shamir sharing of the output g(s) of degree at most t · dlog ne < n.

3. Finally, all parties reconstruct the Shamir sharing of g(s). This is achieved
by first transforming it to an additive sharing of g(s) and then using our
protocol for addition over Fp.

In summary, we need 2 invocations of the addition protocol over Fp and O(log n)
multiplications using the BGW protocol [4] (the preparation of a degree-t Shamir
sharing costs the same amount of randomness as doing 1 multiplication in [4]).
In [4], doing O(log n) multiplications require O(t2 · log n) random field elements.
Our addition protocol over Fp requires O(t2 · log2 n) random field elements. Since
each element in Fp is of size O(log n), for any symmetric function, we obtain an
explicit construct that uses O(t2 · log3 n) random bits. We refer the readers to
the full version of this paper [20] for more details.

Upper Bound for General Circuits with Helper Parties. Finally, we consider the
goal of evaluating general functions in a relaxed setting where there are extra
helper parties that can participate in the protocol but do not have inputs nor
receive the output. In this model, we give an explicit MPC protocol for a general
circuit C that uses O(t2 · log |C|) random bits, where |C| is the circuit size. Since
our lower bound for XOR extends to the setting of helper parties, this upper
bound is essentially optimal.

Our construction uses a variant of the private circuits model from [24] referred
to as a leakage-tolerant private circuit [22,1], building on the recent randomness-
efficient construction from [19].8 Informally, a leakage-tolerant private circuit
with (unprotected) input x and output y is a randomized circuit such that the
values of any t internal wire values can be simulated by probing t input and
output wires. Letting each party simulate a single gate in such a tolerant circuit,
we obtain an MPC protocol with helper parties in which corrupting t parties
reveals at most t inputs and outputs. Note that it does not directly give us an

8 In the current context, one could plausibly use the explicit construction of a pri-
vate circuit with quadratic randomness complexity in [14] as a substitute for the
quasilinar-randomness construction from [19]. However, the analysis of [14] only
considers standard leakage-resilience whereas here we need the stronger leakage-
tolerance property analyzed in [19].
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MPC protocol in the usual sense, since the revealed inputs and outputs may
belong to honest parties.

Our idea is to first let all parties secret-share their inputs among the helper
parties. Then all helper parties together emulate a leakage-tolerant private cir-
cuit to compute a secret-sharing of the function output. Finally, the output
is reconstructed to the parties who should receive it. To make this idea work,
we need to design an efficient protocol that allows parties to secret-share their
inputs:

1. We note that, for each party Pi, it is sufficient to use a t-private encoding of
its input. This is because corrupting any t helper parties reveals at most t
input and output values, which are independent of Pi’s input. We borrow the
encoding scheme from [19], which is based on a strong t-wise independent
PRG. It requires O(t · logm) random bits to encode m bits.

2. However, we cannot afford the cost of allowing each party to use fresh random
seeds to encode their inputs, since it requires O(t ·n · logm) random bits. We
observe that all parties can actually use t-wise independent random seeds.
This is because each corrupted party who holds an input only observes its
own random seed, and each corrupted helper party receives at most one
bit of the encoding of some input. Thus, the joint view of corrupted parties
depends on the encoding of at most t inputs, which in turn depend on at most
t random seeds. Therefore, t-wise independent random seeds are sufficient.
Generating these random seeds (via a trusted party) require O(t2 · logm)
random bits.

3. Finally, note that we cannot use the same method as that in [27] to generate
these random seeds in a distributed way because the random seeds have size
O(t2 · logm). If we ask each of the first t + 1 parties to generate a fresh
copy of the random seeds, we would need O(t3 · logm) random bits. Our
idea is to use a t-resilient randomness extractor. We ask each of the first
2t parties to generate t-wise independent random seeds of size O(t · logm).
Then, all parties use a t-resilient randomness extractor to extract t copies of
fresh random seeds. Finally, each party concatenates its t copies and obtains
a random seed of length O(t2 · logm).

We use the construction of a leakage-tolerant private circuit from [19], which
uses O(t · log t|C|) random bits. Since the input size m is upper bounded by
the circuit size, we obtain an MPC protocol for a general circuit that uses only
O(t2 · log |C|) random bits.

As a final challenge, note that the leakage-tolerant private circuit in [19] is
not explicit. In the full version of this paper [20], we show that our technique al-
lows us to obtain an explicit multi-phase parity sharing generator, which outputs
multiple additive sharings of 0. Then, we show how to use our explicit construc-
tion of multi-phase parity sharing generators to instantiate the private circuit
in [19]. The instantiation only requires O(t2 · log2 t|C|) random bits. We use it
to obtain an explicit construction of an MPC protocol (with helper parties) for
a general circuit C that uses O(t2 · log2 t|C|) random bits.
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3 Preliminaries

3.1 Secure Multiparty Computation

In this work, we consider the setting where a set of n parties, {P1, P2, . . . , Pn},
each holding an input xi from a finite domain Di, jointly run a protocol to
compute a function f : D1 × . . . × Dn → Z. At the end of the protocol, all
parties receive the function output f(x1, . . . , xn).

Each party has a private random tape which contains uniformly random
bits. We use x = (x1, x2, . . . , xn) to denote the inputs of all parties and r =
(r1, r2, . . . , rn) to denote the random tapes of all parties. For a party Pi, we use
View(Pi,x, r) to denote the information that is observed by Pi in an execution
with inputs x and random tapes r, which includes his input, random tape, mes-
sages received from other parties, and the function output. We use View(Pi,x)
to denote the random variable over the distribution induced by View(Pi,x, r)
when r is sampled uniformly.

In this work, we consider perfect correctness and semi-honest security with
perfect privacy, defined as follows.

Definition 3 (Correctness and Security). Let f : D1× . . .×Dn → Z be an
n-ary function. For an n-party computation protocol Π that computes f ,

– (Correctness). We say Π achieves perfect correctness if for all input x, when
all parties honestly follow the protocol Π, they will finally output f(x).

– (Security). We say Π achieves semi-honest security with perfect privacy if
for all set T of at most t parties, and for all input x, there is a probabilistic
algorithm S, which takes as input the inputs of parties in T and the function
output, and outputs the views of parties in T , such that the following two
distributions are identical:

{S({xi}i∈T , f(x)), f(x)} ≡ {{View(Pi,x)}i∈T , f(x)}.

If Π achieves both perfect correctness and semi-honest security with perfect pri-
vacy, we say Π achieves perfect semi-honest security.

Intuitively, the security requires that the joint view of all corrupted parties
only depends on their inputs and the function output. We have the following
property of a protocol Π with semi-honest security and perfect privacy.

Property 1. Let f : D1 × . . . Dn → Z be an n-ary function. Let Π be an n-
party protocol that computes f with semi-honest security and perfect privacy
against t corrupted parties. Then for all set T of at most t parties, and for all
x,x′ ∈ D1 × . . . × Dn such that f(x) = f(x′) and xi = x′i for all i ∈ T , the
following two distributions are identical:

{View(Pi,x)}i∈T ≡ {View(Pi,x
′)}i∈T .
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Randomness Complexity of a Protocol. We follow the definition of randomness
complexity from [27]. At the beginning of the protocol, each party has a private
random tape that contains uniformly random bits. Each time a party needs to
use a random bit, he reads the rightmost unused bit on his random tape. Note
that each party may use different number of random bits in different executions.
The number of random bits that is used by the protocol is the total number of
random bits used by all parties. The randomness complexity is the worst case
(over all inputs and all executions) number of random bits. The same model for
randomness complexity is also used in [29,31,21].

We will use the following lemma from [31,21].

Lemma 1 ([31,21]). For a given input x, let d be the maximum, over all
protocol executions on x, of the number of random bits used by all parties during
a given execution. Then, the number of different transcripts (i.e., the joint view
of all parties) of the protocol execution on x is at most 2d.

For some of our positive results, it is convenient to use a natural generaliza-
tion of this model where parties can sample a uniform value from {1, 2, . . . , p}
for any choice of integer p > 1. We assume that dpe = O(log p) random bits
are consumed. This can be justified by either entropy considerations, or by the
fact that O(log p) random bits are sufficient to generate a uniform value from
{1, 2, . . . , p} in expectation [26,9].

We note that our lower bound also applies to the generalized model with the
help of Lemma 1 in the generalized model, of which we provide a proof in the
full version of this paper [20].

Helper Parties. We also consider a general model where there are extra k parties
{Pn+1, Pn+2, . . . , Pn+k}. These parties can participate in the computation but
do not have inputs, nor receive the output. We refer to these parties as helper
parties. The randomness complexity of a protocol in the general model also
counts the random bits used by helper parties. The perfect semi-honest security
in the general model is defined similarly.

Functions with Minimal Input Domain. For a party Pi, and two distinct inputs
xi 6= x′i, we say a function f is sensitive to (Pi, xi, x

′
i) if there exists {xj}j 6=i such

that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

We say a function f has minimal input domain if f is sensitive to all possible
(Pi, xi, x

′
i).

Note that if f is not sensitive to (Pi, xi, x
′
i), it means that the function

behaves identically on input xi and x′i. Then, Pi can always use xi when his input
is x′i without changing the output of the function, which reduces the size of Pi’s
input domain. Thus, for a function f that is not sensitive to all (Pi, xi, x

′
i), we

can repeat the above step and reduce the input domain of f . Therefore, without
loss of generality, it is sufficient to only consider functions with minimal input
domain.
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Symmetric Functions. We say a function f is a symmetric function if it satisfies
that:

– All inputs have the same input domain. I.e., D1 = D2 = . . . = Dn.
– The output of the function f is independent of the order of the inputs. I.e., for

all x = (x1, x2, . . . , xn) and x′ = (x′1, x
′
2, . . . , x

′
n), where x′ is a permutation

of x, f(x) = f(x′).

3.2 t-Private Encoding Schemes

Definition 4 (Encoding Scheme). Let `, n be positive integers. Let M ⊂
{0, 1}` be the message space and C ⊂ {0, 1}n be the codeword space. An encoding
scheme consists of a pair of algorithms (Enc, Dec) where:

– Enc is a randomized algorithm which takes as input a message m ∈M and a
random tape r ∈ R, and outputs a codeword c ∈ C, denoted by c = Enc(m; r).
When r is not important in the context, we will omit r and simply write
c = Enc(m).

– Dec is a deterministic algorithm which takes as input a codeword c ∈ C and
outputs a message m ∈M.

The correctness of an encoding scheme requires that for all m ∈M , the following
holds:

Pr[Dec(Enc(m)) = m] = 1

Definition 5 (t-Private Encoding Scheme). We say an encoding scheme
(Enc, Dec) is t-private, if for all m,m′ ∈ M and for all t indices i1, i2, ..., it ∈
{1, 2, . . . , n}, the following two distributions are identical:

{c← Enc(m) : c[i1], c[i2], . . . , c[it]} ≡ {c′ ← Enc(m′) : c′[i1], c′[i2], . . . , c′[it]},

where c[i] (resp., c′[i]) is the i-th bit of c (resp., c′).

Strong t-wise Independent Pseudo-random Generators. Our work will use the
standard notion of (strong) t-wise independent pseudo-random generators.

Definition 6 ((Strong) t-wise Independent PRG). Let G be a finite Abelian
group. A function G : G` → Gn is a t-wise independent pseudo-random genera-
tor (or t-wise independent PRG for short) if any subset of t group elements of
G(x) are uniformly random and independently distributed when x is uniformly
sampled from G`.

If any subset of t group elements of (x,G(x)) are uniformly random and
independently distributed when x is uniformly sampled from G`, then we say G
is a strong t-wise independent PRG.

We say that a (strong) t-wise independent PRG G is linear if every output
group element is a linear combination of the input group elements. In particular,
a linear (strong) t-wise independent PRG G satisfies that for all x, x′ ∈ G`,
G(x) +G(x′) = G(x+ x′).
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For a finite field F, it is well known that there is a linear and strong t-wise
independent PRG G : F` → Fn based on Reed-Solomon codes with input size
` = O(t · log n). (See [19] for a construction over binary field, which can be
extended to any finite field.)

Theorem 1. Let F be a finite field and n, t be positive integers. Then there
is a linear and strong t-wise independent PRG G : F` → Fn with input size
` = O(t · log n).

Randomness Efficient t-Private Encoding Scheme. We borrow the following lin-
ear t-private encoding scheme from [19].

Let G : {0, 1}` → {0, 1}n be a linear and strong t-wise independent PRG.
The encoding scheme (Enc, Dec) works as follows:

– The message space isM = {0, 1}n and the codeword space is C = {0, 1}`+n.
– The encoder Enc takes x ∈ {0, 1}n as input and ρ ∈ {0, 1}` as random tape.

Then
Enc(x;ρ) = (ρ, G(ρ)⊕ x).

– The decoder Dec takes (c1, c2) ∈ {0, 1}` × {0, 1}n as input and outputs

Dec(c1, c2) = G(c1)⊕ c2.

The linearity follows from that the t-wise independent PRG G is linear. As
for t-privacy, since G is a strong t-wise independent PRG, any t bits of (ρ, G(ρ))
are uniformly random when ρ is uniformly sampled from {0, 1}`. Therefore, any
t bits of (ρ, G(ρ)⊕ x) are also uniformly random and thus, independent of x.

3.3 Zero Sharing Generators

We first define the notion of access set of a set of random variables {r1, r2, . . . , rn}.

Definition 1 (Access Set [19]). An access set A of a set of random vari-
ables {r1, r2, . . . , rn} is a set of jointly distributed random variables satisfying
the following requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.
2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Let r = (r1, r2, . . . , rn). For a set W ⊂ A, we use D(r,W ) to denote the
distribution of the variables in W when they are instantiated by r.

We follow [19] and define the notion of zero sharing generators. In [19], Goyal,
et al focuses on the binary field. We extend this notion to any finite Abelian group
G.

Definition 7 (Zero Sharing Generators [19]). Let G be a finite Abelian
group. Let G : Gm → Gn be a function, u = (u1, u2, . . . , um) be a vector of ran-
dom variables in Gm that are uniformly distributed, and r = (r1, r2, . . . , rn) =
G(u). Let A be an access set of the random variables {r1, r2, . . . , rn}. The func-
tion G is a t-resilient zero sharing generator with respect to A if the following
holds:
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1. The output r = (r1, r2, . . . , rn) satisfies that r1 + r2 + . . .+ rn = 0.
2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in Gn which are

uniformly distributed subject to r̃1 + r̃2 + . . . + r̃n = 0. For any set W of t
variables in A, the output r satisfies that

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when they are instantiated by r and r̃ respectively.

One can view a t-resilient zero sharing generator as a generalization of a
t-wise independent PRG in the following two ways:

– First, the output vector should satisfies that the summation of all entries is
equal to 0.

– Second, for a t-wise independent PRG, one may think that there is an ad-
versary which can access any t entries in the output vector. A t-resilient zero
sharing generator allows an adversary to access any t variables in the access
set A which contains all entries of the output vector.

We can extend a t-resilient zero sharing generator to generating multiple zero
sharings with different number of shares as follows.

Definition 8 (Multi-Phase Zero Sharing Generators [19]). Let G be a
finite Abelian group. Let p and n1, n2, . . . , np be positive integers, G : Gm →
Gn1 ×Gn2 × . . .×Gnp be a function, u = (u1, u2, . . . , um) be a vector of random
variables in Gm that are uniformly distributed, and r = (r(1), . . . , r(p)) = G(u)

where r(j) = (r
(j)
1 , . . . , r

(j)
nj ) for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj be

an access set of the random variables {r(j)1 , . . . , r
(j)
nj }, and A =

⋃p
j=1Aj. The

function G is a multi-phase t-resilient zero sharing generator with respect to A
if the following holds:

1. For all j = {1, 2, . . . , p}, the output vector r(j) = (r
(j)
1 , . . . , r

(j)
nj ) satisfies

r
(j)
1 + . . .+ r

(j)
nj = 0.

2. Let r̃ = (r̃(1), . . . , r̃(p)) ∈ Gn1 × . . . × Gnp be uniformly random variables

such that for all j = {1, 2, . . . , p}, the vector r̃(j) = (r̃
(j)
1 , . . . , r̃

(j)
nj ) satisfies

r̃
(j)
1 + . . .+ r̃

(j)
nj = 0. For any set W of t variables in A, the output r satisfies

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when instantiated by r and r̃ respectively.

We say a (multi-phase) t-resilient zero sharing generator G is linear if every
output group element is a linear combination of the input group elements. In
particular, a linear (multi-phase) t-resilient zero sharing generator G satisfies
that for all u,u′ ∈ Gm, G(u) +G(u′) = G(u+ u′).
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Tree Based Access Sets. In our work, we are interested in access sets that are
based on full binary trees. A full binary tree Tr satisfies that every node has
either no children (i.e., a leaf node) or 2 children. For a set of random variables
{r1, r2, . . . , rn} and a full binary tree Tr with n leaf nodes, an access set A with
respect to Tr is defined as follows: We first associate the i-th leaf node with
the random variable ri. Then, each internal node is associated with a random
variable which is equal to the sum of the random variables associated with its
two children. The set A contains the random variables associated with all nodes
in Tr.

4 Lower Bound for Symmetric Functions

In this section we prove our main lower bound, improving over the previous
lower bound of [27]. We start with a technical lemma about the randomness
complexity of a t-private encoding scheme and then use it to obtain the lower
bound.

4.1 Lower bound for t-private Encoding Schemes

In this section, we discuss the randomness complexity of a t-private encoding
scheme. We focus on t-private encoding schemes that encode a single bit. We
will show that, for any t-private encoding scheme and any input bit m ∈ {0, 1},
the number of codewords of m is at least 2t. Note that it implies that any such
a t-private encoding scheme requires at least t random bits. This result will be
used to prove the lower bound of the randomness complexity of secure multiparty
computation in the next section.

Lemma 2. For any t-private encoding scheme (Enc, Dec) and any bit m ∈
{0, 1}, |supp(m)| ≥ 2t.

Proof. We prove the lemma by induction.

When t = 1, we show that the support of 0 is of size at least 2. Let c be
a codeword of 0 and c′ be a codeword of 1. By the correctness of the encoding
scheme, c 6= c′. Without loss of generality, assume the first bits of c and c′ are
different. Since the encoding scheme is 1-private, the distribution of the first
bit in a random codeword of 0 is identical to that in a random codeword of 1.
Then the first bit in a random codeword of 0 is not a constant bit. Otherwise,
the first bit in a random codeword of 1 should be the same constant bit, which
contradicts with the assumption that the first bits of c and c′ are different. Since
the first bit can take both 0 and 1, there are at least two codewords of 0. The
statement holds for t = 1.

Now suppose the statement holds for t−1, i.e., for any (t−1)-private encoding
scheme (Enc, Dec) and any bit m ∈ {0, 1}, |supp(m)| ≥ 2t−1. Consider a t-private
encoding scheme (Enc, Dec). With the same argument as above, there exists a
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bit in a random codeword of 0 which is not a constant bit. Without loss of
generality, assume that it is the first bit.

Consider the following encoding scheme (Enc′, Dec′):

– For m ∈ {0, 1}, Enc′(m) outputs a random codeword c = Enc(m) subject to
c[1] = 0. Here c[1] refers to the first bit of the codeword c.

– Dec′ = Dec.

We show that (Enc′, Dec′) is a (t − 1)-private encoding scheme. Let supp′(m)
denote the set of codewords of m defined by (Enc′, Dec′).

The correctness of (Enc′, Dec′) follows from the correctness of (Enc, Dec): if
there exists a codeword c ∈ supp′(m) such that Dec′(c) 6= m, since supp′(m) is
a subset of supp(m) and Dec′ = Dec, we have c ∈ supp(m) and Dec(c) 6= m,
which contradicts with the correctness of (Enc, Dec).

As for (t− 1)-privacy, recall that (Enc, Dec) is t-private. Therefore, for any t
bits, the distribution of these t bits in c = Enc(0) is identical to the distribution
of these t bits in c′ = Enc(1). Then, fixing the first bit to be 0, for any t− 1 bits,
the distribution of these t−1 bits in c = Enc(0) subject to c[1] = 0 is identical to
the distribution of these t−1 bits in c′ = Enc(1) subject to c′[1] = 0. Recall that
Enc′(m) outputs a random codeword c = Enc(m) subject to c[1] = 0. Therefore
(Enc′, Dec′) is (t− 1)-private.

According to the induction hypothesis, |supp′(0)| ≥ 2t−1. I.e., there are 2t−1

different codewords in supp(0) whose first bit is 0. By the same argument, there
are 2t−1 different codewords in supp(0) whose first bit is 1. Therefore, |supp(0)| ≥
2t.

By induction, we conclude that the lemma holds for all t.

We note the following direct corollary.

Corollary 1. Any t-private encoding scheme (Enc, Dec) uses at least t random
bits.

Proof. According to Lemma 2, |supp(0)| ≥ 2t. Therefore, Enc(0) has at least 2t

different output. Thus the random seed has length at least t.

In the full version of this paper [20], we give an alternative proof (due to Yuval
Filmus) of a variant of Lemma 2 by relying on Fourier analysis of Boolean
functions and a known bound on the number of roots of a low-degree polynomial
over the Boolean hypercube. This variant applies also to t-private encoding with
imperfect correctness, to which the above simple combinatorial argument does
not apply.

4.2 Randomness Lower Bound for Symmetric Functions

In this section we prove a lower bound on the randomness complexity of secure
multiparty computation protocols that compute symmetric functions with a sin-
gle output bit. This includes parity and threshold functions (including AND,
OR, majority) as special cases.
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Theorem 2. For all n ≥ 3 and t ≤ n− 2, and for all non-constant symmetric
functions f that outputs a single bit, any n-party protocol Π that computes f

with perfect semi-honest security against t corrupted parties requires at least t2

2
random bits. Moreover, this holds even with an arbitrary number k of helper
parties.

Proof. Recall that, without loss of generality, it is sufficient to only consider
functions with minimal input domain. In the following, we assume that f is
a non-constant symmetric function with minimal input domain. Without loss
of generality, we assume that in every round, each party sends a message in
{0, 1,⊥} to every other party. This can be achieved by requiring that in each
round, every party Pi sends a ⊥ to every party Pj if Pi does not need to send
any bit to Pj in this round, which does not change the randomness complexity
of the protocol.

Note that an execution is determined by the inputs and random tapes of all
parties. For an execution with inputs x and random tapes r, we use MPi(x, r)
to denote the messages that Pi receives from or sends to other parties. We use
MPi

(x) to denote the random variable over the distribution induced byMPi
(x, r)

when r is sampled uniformly.
By the definition of symmetric functions, all parties have the same input do-

main. Recall that we have assumed that f is a non-constant symmetric function
with minimal input domain. Also recall that f outputs a single bit.

We first prove the following lemma:

Lemma 3. For all Pi ∈ {P1, P2, . . . , Pn}, and for all (x, r) and (x′, r′) such
that xi 6= x′i,

(MPi
(x, r), f(x)) 6= (MPi

(x′, r′), f(x′))

Proof. For the sake of contradiction, assume that this lemma is not true. Then
there exists two executions, one with inputs x and random tapes r and the other
one with inputs x′ and random tapes r′, such that xi 6= x′i but

(MPi(x, r), f(x)) = (MPi(x
′, r′), f(x′))

Since f has minimal input domain, f is sensitive to (Pi, xi, x
′
i), which means

that there exists {x̃j}j 6=i such that

f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) 6= f(x̃1, . . . , x̃i−1, x
′
i, x̃i+1, . . . , x̃n).

Let x̃ = (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) and x̃′ = (x̃1, . . . , x̃i−1, x
′
i, x̃i+1, . . . , x̃n).

Then x̃i = xi, x̃
′
i = x′i, x̃j = x̃′j for all j 6= i, but f(x̃) 6= f(x̃′). Since f outputs

a single bit, either f(x) = f(x′) = f(x̃) or f(x) = f(x′) = f(x̃′). Without loss
of generality, assume that f(x) = f(x′) = f(x̃).

We first show that there exists r̃ such that (MPi(x, r), f(x)) = (MPi(x̃, r̃), f(x̃)).
Since x, x̃ satisfy that xi = x̃i and f(x) = f(x̃), by Property 1, the following
two distributions are identical:

{View(Pi,x)} ≡ {View(Pi, x̃)}
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Thus, there exists r̃ such that View(Pi,x, r) = View(Pi, x̃, r̃). Since (MPi(x, r), f(x))
is determined by Pi’s view, we have (MPi

(x, r), f(x)) = (MPi
(x̃, r̃), f(x̃)). Re-

call that (MPi
(x, r), f(x)) = (MPi

(x′, r′), f(x′)). Therefore, (MPi
(x̃, r̃), f(x̃)) =

(MPi
(x′, r′), f(x′)).

Let r̃′ = (r̃1, . . . , r̃i−1, r
′
i, r̃i+1, . . . , r̃n), i.e., r̃′ = r̃ except r̃′i = r′i. We will

prove that MPi(x̃
′, r̃′) = MPi(x̃, r̃) = MPi(x

′, r′) by induction:

– Consider the first message in MPi(x̃
′, r̃′). If it is a message sent from Pi to

another party, then this message is fully determined by x̃′i = x′i and r̃′i = r′i
since Pi does not receive any message from other parties. Thus, this message
is identical to the first message in MPi

(x′, r′). Since MPi
(x̃, r̃) = MPi

(x′, r′),
the statement holds for the first message.
If the first message in MPi(x̃

′, r̃′) is received from another party, then this
message is fully determined by {x̃′j , r̃′j}j 6=i since Pi does not send any message
to other parties. Note that {x̃′j , r̃′j}j 6=i = {x̃j , r̃j}j 6=i. Thus this message is
identical to the first message in MPi

(x̃, r̃). Since MPi
(x̃, r̃) = MPi

(x′, r′),
the statement holds for the first message.

– Assume the statement holds for the first ` − 1 messages. For the `-th mes-
sage, if it is a message sent from Pi to another party, then this message is
determined by x̃′i = x′i, r̃

′
i = r′i and the first ` − 1 messages in MPi

(x̃′, r̃′).
According to the induction hypothesis, the first `−1 messages in MPi

(x̃′, r̃′)
are identical to the first `−1 messages in MPi(x

′, r′). We also have (x̃′i, r̃
′
i) =

(x′i, r
′
i). Thus, the `-th message in MPi(x̃

′, r̃′) is identical to the `-th message
in MPi

(x′, r′) as well. Since MPi
(x̃, r̃) = MPi

(x′, r′), the statement holds
for the first ` messages.
If the `-th message of Pi is received from another party, then this message is
fully determined by {x̃′j , r̃′j}j 6=i and the first `−1 messages in MPi(x̃

′, r̃′). Ac-
cording to the induction hypothesis, the first `−1 messages in MPi

(x̃′, r̃′) are
identical to the first `− 1 messages in MPi

(x̃, r̃). We also have {x̃′j , r̃′j}j 6=i =
{x̃j , r̃j}j 6=i. Thus, the `-th message in MPi

(x̃′, r̃′) is identical to the `-th
message in MPi

(x̃, r̃) as well. Since MPi
(x̃, r̃) = MPi

(x′, r′), the statement
holds for the first ` messages.

– Therefore, by induction, the statement holds for all `. We have MPi
(x̃′, r̃′) =

MPi
(x̃, r̃) = MPi

(x′, r′).

Recall that f(x̃′) 6= f(x̃). On the other hand, for parties in {Pj}j 6=i, their
views are determined by {x̃′j , r̃′j}j 6=i andMPi

(x̃′, r̃′). Since {x̃′j , r̃′j}j 6=i = {x̃j , r̃j}j 6=i
and MPi

(x̃′, r̃′) = MPi
(x̃, r̃), parties in {Pj}j 6=i,j≤n will obtain the same out-

put in both the execution with (x̃′, r̃′) and the execution with (x̃, r̃), which
contradicts with f(x̃′) 6= f(x̃).

Lemma 3 shows that the messages a party (of the first n parties) receives
or sends together with the output can determine his input. Without loss of
generality, assume that 0, 1 are in the input domain. Now consider the first t
parties P1, P2, . . . , Pt. For all 1 ≤ i ≤ t, and for all vectors V subject to

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ] 6= 0,

we define an encoding scheme (Enc, Dec) for the message space {0, 1} as follows:
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– Let x = (0, 0, ..., 0, 1) (i.e., all inputs are 0 except the last input is 1) and
x′ ∈ {0, 1}n subject to x′i = 1 and x′j = 0 for all j 6= i. Since f is a symmetric
function, we have f(x) = f(x′) but xi 6= x′i.

Enc(0) samples r uniformly subject to {View(Pj ,x, r)}i−1j=1 = V and outputs
MPi(x, r).

Enc(1) samples r′ uniformly subject to {View(Pj ,x
′, r′)}i−1j=1 = V and out-

puts MPi
(x′, r′).

– The decoding algorithm takes as input a codeword c = MPi
(x̃, r̃), where

x̃ ∈ {x,x′}. Recall that f(x) = f(x′). Therefore, f(x̃) = f(x) = f(x′).
According to Lemma 3, (MPi(x̃, r̃), f(x̃)) can determine the input x̃i. Dec(c)
outputs the input determined by (c, f(x)).

We first show that supp(0) and supp(1) of the encoding scheme are not
empty. It is sufficient to show that there exist r and r′ such that

(View(P1,x, r), . . . , View(Pi−1,x, r)) = V

and

(View(P1,x
′, r′), . . . , View(Pi−1,x

′, r′)) = V.

Recall that V satisfies that Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ] 6= 0.
Therefore, the existence of r follows. Recall that f(x) = f(x′) and xj = x′j for
all j ∈ {1, 2, . . . , i− 1}, by Property 1, we have

{View(P1,x), . . . , View(Pi−1,x)} ≡ {View(P1,x
′), . . . , View(Pi−1,x

′)}.

Thus,

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ]

= Pr[(View(P1,x
′), . . . , View(Pi−1,x

′)) = V ] 6= 0.

The existence of r′ follows. This implies that the encoding scheme (Enc, Dec) is
well defined.

Lemma 4. The encoding scheme (Enc, Dec) constructed above is (t − i + 1)-
private.

We refer the readers to the full version of this paper [20] for the proof of
Lemma 4.

According to Lemma 2, |supp(0)| ≥ 2t−i+1. That is, for inputs x = (0, 0, . . . , 0, 1),
when fixing the views of the first i− 1 parties, the view of the i-th party has at
least 2t−i+1 different possibilities. Consider the joint view of the first t parties
when the inputs are x. It has at least

∏t
i=1 2t−i+1 = 2t(t+1)/2 different views. It

implies that the number of random bits required by the protocol in the worst
case is at least t(t + 1)/2 ≥ t2/2. Therefore, the randomness complexity of the
protocol is at least t2/2.
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Remark 1. We note that Theorem 2 holds even if the output is only given to a
strict (nonempty) subset of the parties.

To see it, note that for Lemma 3, the statement holds for Pi as long as there
is a party Pj 6= Pi that receives the function output. Therefore, if there are
at least two parties that receive the output, Lemma 3 holds. If only one party
receives output, say Pn, then the statement holds for all parties other than Pn.
Then in the rest of the proof, we can continue to focus on the number of views of
the first t parties. With the same argument, we can show that the randomness
complexity is at least t2/2.

5 Explicit Construction of Zero Sharing Generators

In this section, we will give an explicit construction of a linear (multi-phase)
t-resilient zero sharing generator by using a linear t-wise independent PRG in a
black box way.

Theorem 3. Let G be a finite Abelian group. Let p and n1, n2, . . . , np be positive
integers, and Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes
for all j ∈ {1, 2, . . . , p}. For each tree Trj, let Aj denote the access set determined
by Trj. Set n = n1 + n2 + . . .+ np, A =

⋃p
j=1Aj, and D to be the largest depth

of Tr1, Tr2, . . . , Trp. Suppose F : Gm → Gn is a linear t-wise independent PRG.
Then there exists an explicit linear multi-phase t-resilient zero sharing generator
with respect to the access set A that uses (D − 1) ·m random group elements in
G.

Proof. For every tree Trj and every node v ∈ Trj , the depth of v is the length
of the path towards the root of Trj plus 1. I.e., the root node of Trj has depth
1, the two children of the root node of Trj have depth 2, and so on. Note that
leaf nodes of Trj do not necessarily have the same depth.

Let Fr denote the collection of the trees Tr1, Tr2, . . . , Trp. Fr is also referred
to as a forest. Recall that F : Gm → Gn is a linear t-wise independent PRG.
To construct a linear multi-phase t-resilient zero sharing generator G, we will
assign to each node v in Fr a linear combination of the outputs of F , denoted
by val(v), such that for all internal node v and its two children c0, c1, val(v) =
val(c0) + val(c1). Then the values associated with the leaf nodes in Fr represent
the output of G.

Explicit Construction of Linear Multi-Phase Zero Sharing Generator. The con-
struction works as follows:

1. Let u = (u(1),u(2), . . . ,u(D−1)) ∈ G(D−1)×m be the input of G, where D is
the largest depth of Tr1, Tr2, . . . , Trp.

2. For all root node rtj , we set val(rtj) = 0.
3. From d = 2 to D, we will assign values to all nodes of depth d in Fr. Let
`d denote the number of nodes of depth d. Since Tr1, Tr2, . . . , Trp are full
binary trees, `d is even. We use c1, c1, . . . , c`d to denote the nodes of depth
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d such that for all i ∈ {1, 2, . . . , `d/2}, (c2i−1, c2i) are the two children of a
node vi of depth d− 1.
Suppose we have assigned values to all nodes of depth d−1 in Fr. We compute

y(d) = F (u(d−1)). Then for all i ∈ {1, 2, . . . , `d/2}, we set val(c2i−1) = y
(d)
i

and val(c2i) = val(vi)− y(d)i . In this way, for the node vi and its two children
c2i−1, c2i, we have val(vi) = val(c2i−1) + val(c2i).

4. The output of G are the values associated with the leaf nodes in Fr. In partic-

ular, for all j ∈ {1, 2, . . . , p}, r(j) = (r
(j)
1 , . . . , r

(j)
nj ) are the values associated

with the leaf nodes of Trj .

Lemma 5. The above construction is a linear multi-phase t-resilient zero shar-
ing generator.

We refer the readers to the full version of this paper [20] for the proof of Lemma 5.

When G is a finite field F, by Theorem 1, we can instantiate the linear t-
wise independent PRG F : Fm → Fn with input size m = O(t · log n). For all
j ∈ {1, 2, . . . , p}, we can use a full binary tree Trj with nj leaf nodes of depth
O(log nj) = O(log n). Thus, we have the following corollary.

Corollary 2. Let F be a finite field. Let p and n1, n2, . . . , np be positive integers,
and Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes of depth
O(log nj) for all j ∈ {1, 2, . . . , p}. For each tree Trj, let Aj denote the access set
determined by Trj. Set n = n1 + n2 + . . . + np and A =

⋃p
j=1Aj. Then there

exists an explicit linear multi-phase t-resilient zero sharing generator that uses
O(t · log2 n) random elements in F.

6 Upper Bound for Addition

In this section we prove our main new upper bounds, obtaining an explicit version
of the previous upper bound for XOR from [27] and extending it to Abelian
group addition. In the full version of this paper [20], we show (1) how to amortize
randomness complexity over multiple executions, (2) how to construct an explicit
protocol for any symmetric Boolean functions with O(t2 · log3 n) random bits,
and (3) how to construct an explicit protocol for general circuits with helper
parties, which uses O(t2 · log s) random bits, where s is the circuit size.

We start by considering a function f that computes addition of n elements
in a finite Abelian group G. Concretely, f takes xi ∈ G from the party Pi and
computes

∑n
i=1 xi. Assuming the existence of a linear t-resilient zero sharing

generator G : Gm → Gn, we construct an n-party computation protocol for f
against t corrupted parties with perfect semi-honest security.

Theorem 4. Let m,n, t be positive integers, Tr be a full binary tree with n leaf
nodes, and G be a finite Abelian group. Let f : Gn → G be the addition function
which is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi. Assume that G : Gm → Gn is

a linear (4t + 1)-resilient zero sharing generator with respect to the access set
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A determined by Tr. There is an n-party computation protocol for f against t
corrupted parties with perfect semi-honest security, which uses (t+1) ·m random
group elements in G.

Proof. We first construct a protocol for f assuming the existence of an ideal
functionality Frand that distributes correlated randomness to all parties. For a
full binary tree Tr with n leaf nodes, it has exactly n− 1 internal nodes. We use
{1, 2, . . . , n} to label the leaf nodes in Tr, and {n+ 1, n+ 2, . . . , 2n− 1} to label
the internal nodes in Tr. We also use rt to denote the root of Tr.

Protocol with Ideal Functionality Frand. Consider an ideal functionality Frand

that samples u ∈ Gm uniformly, computes r = (r1, r2, . . . , rn) = G(u), and
distributes ri to the party Pi for all i ∈ {1, 2, . . . , n}. All parties run the following
steps:

1. Each party Pi locally computes gi = xi + ri.
2. For each node v in Tr, let Sv be the set of indices of leaf nodes that are

descendants of v. We will ask a single party to compute gv :=
∑
i∈Sv

gi.
Note that for all leaf nodes v ∈ {1, 2, . . . , n}, we have already computed
gv = xv + rv in Step 1. Now we describe how parties compute gv for all
internal nodes. Recall that Tr has n− 1 internal nodes. From i = 1 to n− 1,
all parties run the following steps:

(a) Let v be the first internal node in Tr such that gv has not been computed
but gc0 , gc1 have been computed, where c0, c1 are the two children of v.
Suppose that gc0 is computed by Pj0 , and gc1 is computed by Pj1 .

(b) Pi receives gc0 from Pj0 and receives gc1 from Pj1 . Then Pi computes
gv = gc0 + gc1 .

3. Note that in the last iteration of Step 2, Pn−1 computes grt for the root node
rt. Then

grt =

n∑
i=1

gi =

n∑
i=1

xi +

n∑
i=1

ri.

Since G is a zero sharing generator and r = (r1, r2, . . . , rn) is the output of
G, we have

∑n
i=1 ri = 0. Therefore, grt =

∑n
i=1 xi. Thus, Pn−1 learns f(x).

Pn−1 sends the result to all other parties.

The correctness of our construction follows from the description. we show
that our construction is secure in the full version of this paper [20].

Realizing Frand. To obtain an n-party computation protocol for f in the plain
model, it is sufficient to realize Frand. We simply follow the approach in [27]:
Recall that G is a linear zero sharing generator. To realize Frand, we ask each
party Pi of the first t+ 1 parties randomly samples u(i) ∈ Gm, computes r(i) =

G(u(i)), and distributes r
(i)
j to Pj for all j 6= i. Then all parties locally set

r = r(1) + . . . + r(t+1) = G(u(1) + . . . + u(t+1)). The security follows from
the fact that at least one of the first t + 1 parties is not corrupted. Therefore,
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u =
∑t+1
i=1 u

(i) is uniformly random and r = G(u) has the same distribution as
that generated by Frand.

In summary, the whole protocol uses (t+ 1) ·m random elements in G.

When G is a finite field F, and when we use a full binary tree Tr with n
leaf nodes of depth O(log n), by Corollary 2, there is an explicit linear (4t+ 1)-
resilient zero sharing generator G : Fm → Fn with input size m = O(t · log2 n).
We have the following corollary.

Corollary 3. Let n, t be positive integers, F be a finite field, and f : Fn → F
be the addition function which is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi. There

is an n-party computation protocol for f against t corrupted parties with perfect
semi-honest security, which uses O(t2 · log2 n) random field elements in F.
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