
Securing Approximate Homomorphic Encryption
using Differential Privacy?

Baiyu Li1[0000−0003−1088−9328], Daniele Micciancio1[0000−0003−3323−9985], Mark
Schultz1[0000−0001−5761−9662], and Jessica Sorrell1[0000−0001−9227−1032]

University of California, San Diego, USA
{baiyu,daniele,mdschultz,jlsorrel}@eng.ucsd.edu

Abstract. Recent work of Li and Micciancio (Eurocrypt 2021) has shown
that the traditional formulation of indistinguishability under chosen plain-
text attack (IND-CPA) is not adequate to capture the security of approx-
imate homomorphic encryption against passive adversaries, and identi-
fied a stronger IND-CPAD security definition (IND-CPA with decryption
oracles) as the appropriate security target for approximate encryption
schemes. We show how to transform any approximate homomorphic en-
cryption scheme achieving the weak IND-CPA security definition, into one
which is provably IND-CPAD secure, offering strong guarantees against
realistic passive attacks. The method works by postprocessing the output
of the decryption function with a mechanism satisfying an appropriate
notion of differential privacy (DP), adding an amount of noise tailored
to the worst-case error growth of the homomorphic computation.

We apply these results to the approximate homomorphic encryption
scheme of Cheon, Kim, Kim, and Song (CKKS, Asiacrypt 2017), proving
that adding Gaussian noise to the output of CKKS decryption suffices
to achieve IND-CPAD security. We precisely quantify how much Gaus-
sian noise must be added by proving nearly matching upper and lower
bounds, showing that one cannot hope to significantly reduce the amount
of noise added in this post-processing step. As an additional contribution,
we present and use a finer grained definition of bit security that distin-
guishes between a computational security parameter (c) and a statistical
one (s). Based on our upper and lower bounds, we propose parameters
for the counter-measures recently adopted by open-source libraries im-
plementing CKKS.

Lastly, we investigate the plausible claim that smaller DP noise param-
eters might suffice to achieve IND-CPAD-security for schemes supporting
more accurate (dynamic, key dependent) estimates of ciphertext noise
during decryption. Perhaps surprisingly, we show that this claim is false,
and that DP mechanisms with noise parameters tailored to the error
present in a given ciphertext, rather than worst-case error, are vulnera-
ble to IND-CPAD attacks.
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stitute of Technology and NSF Award 1936703.
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1 Introduction

Fully homomorphic encryption (FHE) on approximate numbers, proposed by
Cheon, Kim, Kim and Song in [8], has attracted much attention in the past
few years as a method to improve the efficiency of computing on encrypted
data in a wide range of applications (like privacy preserving machine learning)
where approximate results are acceptable [9,7,6,10,5,14,25]. The CKKS scheme
[8], just like most other (homomorphic) encryption schemes based on lattices, can
be proved to satisfy the well established security notion of indistinguishability
under chosen plaintext attack (IND-CPA) [13] under widely accepted complexity
assumptions, like the average-case hardness of the Learning With Errors (LWE)
problem or the worst-case complexity of computational problems on (algebraic)
point lattices [31,20,27,26].

Recently Li and Micciancio [19] have shown that the traditional formulation
of IND-CPA security is inadequate to capture security of approximate encryption
against passive attacks, and demonstrated that the CKKS scheme is susceptible
to a very efficient total key recovery attack, mounted by a passive adversary. The
problem highlighted in [19] is not with the IND-CPA security definition per se,
which remains a good and well accepted definition for exact FHE schemes, but
with the specifics of approximate decryption, which may inadvertently leak infor-
mation about the secret key even when used by honest parties. The work [19] also
proposes a new, enhanced formulation of IND-CPA security (called IND-CPAD,
or IND-CPA with decryption oracles), which properly captures the capabilities
of a passive attacker against an approximate FHE scheme, and is equivalent
to the standard notion of IND-CPA security for encryption schemes with ex-
act decryption. The work [19] also suggested some practical countermeasures
to avoid their attack, and all major open source libraries implementing CKKS
(e.g., [32,15,24,18]) included similar countermeasures shortly after the results in
[19] were made public. However, neither [19] nor any of these libraries present
a solution that provably achieves the IND-CPAD security definition proposed in
[19], leaving it as an open problem.

1.1 Our Results and Techniques

In this work we show how to achieve IND-CPAD security in a provable way. More
specifically, we present a general technique to transform any approximate FHE
scheme satisfying the (weak) IND-CPA security notion into one achieving the
strong IND-CPAD security definition proposed in [19]. We then demonstrate how
to apply the technique to the specific case of the CKKS scheme, which is the
most prominent example of approximate homomorphic encryption.

Our technique works by combining a given (approximate) FHE scheme with
another fundamental tool from the cryptographers’ toolbox: differential privacy.
The construction is very simple and intuitive: given an approximate FHE scheme
(like CKKS), we modify the decryption function by post-processing its output
(the decrypted message) with a properly chosen differentially private mechanism.
Using differential privacy to limit the key leakage of approximate decryption
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is a fairly natural idea, and it is essentially the intuition behind the practical
countermeasures proposed in [19] and implemented by the libraries. But formally
analyzing the method and provably achieving IND-CPAD security raises a number
of technical challenges:

– The Hamming metric, commonly used to define and analyze differentially
private mechanisms, is not well suited to the setting of (lattice based) ho-
momorphic encryption.

– Similarly, the Laplace noise commonly used and studied in the standard
setting of differential privacy is not a good match for our target application,
as it is both associated with the wrong norm (`1, rather than `2 or `∞), and
has heavier tails than, e.g., the Gaussian distribution, and so will give worse
bounds on the error introduced by post-processing.

– Formally proving the security of our construction requires a careful definition
of what it means for an FHE scheme to be approximate. Previous works [8,19]
simply defined approximate FHE as an encryption scheme which does not
satisfy the correctness requirement

Dec(Eval(f,Enc(m1), . . . ,Enc(mk))) = f(m1, . . . ,mk) (1)

without imposing any specific limitation on how a scheme may deviate from
it.

– Perturbing the output of the decryption function with a differentially private
mechanism comes at the cost of lowering the output quality, making the
result of the (already approximate) decryption function even less accurate,
highlighting the necessity of carefully tuning the amount of noise added.

– The minimal security level considered acceptable by applications in practice
typically depends on whether the cryptographic primitive is statistically se-
cure (against computationally unbounded adversaries) or computationally
secure (in which case a higher security margin is advisable to anticipate
possible algorithmic or implementation improvements in the attacks.) Our
application of statistical security tools (differential privacy) to encryption
seems to require the instantiation of statistical security with the high secu-
rity parameters of a computational encryption scheme.

In order to address the above obstacles, we

– provide a general definition of differential privacy, parameterized by an ar-
bitrary norm, and then instantiate it with the Euclidean norm for the case
of lattice-based encryption;

– employ a differentially private mechanism (for the Euclidean norm) based
on Gaussian noise, which blends well with the probability distributions used
in lattice cryptography;

– give formal definitions of approximate FHE, which provide precise guaran-
tees on the output quality of the (approximate) decryption function. In fact,
we identify two possible definitions, based on what we call static and dy-
namic noise estimates, and show that they result in quite different security
properties (more on this below);
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– use KL-divergence and other probabilistic tools to carefully calibrate the
mechanism noise to the output quality, showing that Θ(κ) bits of noise are
required to formally achieve κ-bit IND-CPAD security;

– present and use a finer grained definition of bit-security that distinguishes
between a computational security parameter c and a statistical one s, which
can be set to a lower value than c (more on this below).

We first elaborate on our definition of approximate FHE. Previous works
[8,19] did not include a precise definition of what it means for an encryption
scheme (or decryption function) to be approximate, because the quality of the
approximation (and more generally, the definition of the decryption function it-
self) does not impact the IND-CPA security of a scheme. This is contrasted with
our work, where bounding the approximation quality of the decryption function
plays a critical role in our analysis. Generally speaking, an approximate FHE
scheme provides a guarantee (upper bound) on how much the output of the
decryption function Dec(Eval(f,Enc(m1), . . . ,Enc(mk))) may deviate from the
output of the computation f(m1, . . . ,mk). We distinguish two types of approx-
imate FHE:

– Approximate FHE with static noise estimates, where this bound can be pub-
licly computed as a function of the homomorphic computation f performed
on the input ciphertexts. This is, for example, the type of noise estimates
used in the HElib library [15].

– Approximate FHE with dynamic noise estimates, where this bound is com-
puted by the decryption function Dec using also the input ciphertext and
the secret key. An ingenious method for dynamic noise estimation has been
proposed by the PALISADE library [24].

Most of our results, like our general framework based on differential privacy and
a provably IND-CPAD secure variant of the CKKS approximate FHE scheme, are
in the setting of static noise estimates. In this setting, we are able to establish
the security of our generic construction (Theorem 2), and provide precise secu-
rity guarantees for the modified approximate FHE scheme, showing that if the
original scheme is κ-bit IND-CPA secure, then combining it with an appropri-
ate differentially private mechanism achieves κ − 8 bits of security against the
stronger IND-CPAD security definition, losing only 8 bits of security (Theorem 2).
The amount of noise required to achieve this result is quantified by the notion
of ρ-KLDP (Kullback-Leibler Differential Privacy), for a sufficiently small value
of ρ. Our analysis is nearly tight for the CKKS scheme, in the sense that if one
uses a substantially smaller amount of noise, we are able to exhibit an attack
that breaks IND-CPAD security (Theorem 4).

When setting the parameters of a cryptosystem (or other computational cryp-
tographic primitive), it is common to use a very conservative security level to
anticipate reductions in both the hardware and operational cost of mounting an
attack. A common level of security considered adequate for most applications is
c = 128 bits of security. When applying a statistical technique (like differential
privacy) to a computational primitive, this seems to require instantiating the
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statistical technique with the same (high) level of bit security. We propose a
finer grained definition of bit-security (Definition 19) parameterized by both a
computational parameter c and statistical parameter s. Technically, we say that
a primitive achieves (c, s)-security if for any adversary A, either A has statistical
advantage bounded by 2−s (regardless of A’s running time or computational
assumptions), or the running time of the attack is at least 2c times larger than
the advantage achieved. Intuitively, this definition captures the notion that if
c bits of security are acceptable for a computational cryptographic primitive,
and s bits of security are enough for an unconditionally secure cryptographic
primitive (independent of any computational assumption), then (c, s)-security is
also adequate.

Still, (c, s)-security is technically easier to achieve than both c-bit computa-
tional security, and s-bit statistical security, and allows us to decrease the cost of
our countermeasure (Theorem 2) by lowering the required amount of DP noise
by (c − s)/2 bits. The standard notion of bit-security corresponds to setting
s = c, which gives no improvement. But for typical parameter settings (e.g.,
c = 128 and s = 64), the refined definition allows to reduce the required amount
of noise from ≈ 75 bits to ≈ 45, a substantial saving of ≈ 30 bits. As even more
conservative choices, such as s = 80 or s = 100, yield savings of ≈ 24 or ≈ 14
bits of noise, we expect this refined notion of security to be concretely useful
when securing CKKS against the attacks of [19].

All this is for static noise estimates. Dynamic estimates are interesting be-
cause they can provide stronger (probabilistic) guarantees on the output quality
of the decryption function. Interestingly, we show that the same intuitive idea of
combining approximate FHE with differential privacy, while calibrating the DP
noise via dynamic error estimates, does not result in a secure scheme. In particu-
lar, we describe attacks to the IND-CPAD security of CKKS using dynamic noise
estimates (Theorem 6), and complete key recovery attacks for other (artificially
constructed) IND-CPA-secure FHE schemes (Theorem 7).

1.2 Paper Outline

The rest of the paper is organized as follows. In Section 2 we present background
definitions and results from cryptography, fully homomorphic encryption, and
probability theory. In Section 3 we present our general framework to secure
approximate FHE using differential privacy, for the setting of static error esti-
mation. In Section 4 we apply the framework to the CKKS scheme, and develop
our relaxed notion of bit security. In Section 5 we present our (negative) results
for approximate FHE with dynamic error estimation. Section 6 concludes with
a summary of our results and open problems.

2 Preliminaries

We recall some notions and known results.
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2.1 Probability

We abbreviate a list of random variables (X1, . . . ,Xn) as (Xi)i. For such a list,
we write X<i to denote the prefix (X1, . . . ,Xi−1). A probability ensemble (Pθ)θ
is a family of probability distributions parameterized by a variable θ, which may
be a string or a vector.

Throughout this work we will use divergences to measure how far probability
distributions are from eachother.

Definition 1. A R-valued function δ(·||·) on pairs of discrete distributions is
called a divergence if it satisfies

– Non-negativity: For any discrete distributions P,Q, δ(P||Q) ≥ 0.
– Identity of Discernibles: If δ(P||Q) = 0, then P = Q.

Notably, divergences need not be symmetric, nor satisfy triangle inequality,
although specific divergences will typically satisfy some additional properties
than solely the above two.

Definition 2 (Statistical Distance). Let P,Q be discrete distributions with
common support X. The Statistical Distance (or Total Variation Distance) be-
tween P and Q is ∆(P,Q) = 1

2

∑
x∈X |P(x)−Q(x)|.

The statistical distance is a divergence that is symmetric and satisfies triangle
inequality, i.e. is a metric.

Definition 3 (KL Divergence). Let P,Q be discrete distributions with com-
mon support X. The Kullback-Leibler Divergence between P and Q is D(P||Q) :=∑
x∈X Pr[P = x] ln

(
Pr[P=x]
Pr[Q=x]

)
.

Lemma 1 (Properties of the KL Divergence, Theorem 2.2 of [29]). The
KL divergence satisfies

1. Sub-Additivity for Joint Distributions: If (X0,X1) and (Y0,Y1) are pairs of
(possibly dependent) random variables, then

D((X0,X1)||(Y0,Y1)) ≤ Ex∼X0 [D((X1 | x)||(Y1 | x))] +D(X0||Y0)

≤ max
x

D((X1 | x)||(Y1 | x)) +D(X0||X1),

2. Data Processing Inequality: For any (potentially randomized) function f , for
any two distributions P,Q, D(f(P)||f(Q)) ≤ D(P||Q), and

3. Pinsker’s Inequality: ∆(P,Q) ≤
√
D(P||Q)/2.

We introduce the following notation to more compactly bound the divergence
between vectors of random variables.

Definition 4. Let X = (Xi)ni=1,Y = (Yi)ni=1 be two lists of discrete random
variables over the support

∏n
i=1Xi ⊆ Rn, and δ any divergence. We define the

vector divergence δ̂(X||Y) to be the non-negative real vector (v1, . . . , vn) ∈ Rn≥0
with coordinates vi = maxa δ([Xi | X<i = a]||[Yi | Y<i = a]).
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In this notation, sub-additivity of the KL divergence (for example) can be

written as D(X||Y) ≤ ‖D̂(X||Y)‖1. Our lower bound of Section 4.3 will require
the following bound.

Lemma 2 (Theorem 1.3 [11]). Let σ0, σ1 > 0. Then

∆(N (0, σ2
0),N (0, σ2

1)) ≥ 1

200
min

{
1,
|σ2

0 − σ2
1 |

σ2
0

}
. (2)

2.2 Bit Security

We use the notion of bit security from [22], which we briefly review below.

Definition 5 (Indistinguishability Game). Let {D0
θ}θ, {D1

θ}θ be two distri-
bution ensembles. The indistinguishability game is defined as follows: the chal-
lenger C chooses b ← U({0, 1}). At any time after that the adversary A may
send (adaptively chosen) query strings θi to C, and obtain samples ci ← Dbθi .
The goal of the adversary is to output b′ = b.

Definition 6 (Bit Security). For any adversary A playing an indistinguisha-
bility game G, we define its

– output probability as αA = Pr[A 6= ⊥], and its
– conditional success probability as βA = Pr[b′ = b|A 6= ⊥],

where the probabilities are taken over the randomness of the entire indistinguisha-
bility game (including the internal randomness of A). We also define A’s

– conditional distinguishing advantage as δA = 2βA − 1, and
– the advantage of A as advA = αA(δA)2.

The bit security of the indistinguishability game is minA log2
T (A)

advA
, where T (A)

is the running time of A.

As argued in [22], this is the correct way to define bit security for decision
problems. Notice quadratic scaling with δA, rather than the linear scaling used
for search problems. For additional motivation for the quadratic dependency,
we note it matches known sample complexity lower bounds for distinguishing
distributions that are close in the total variation distance, see Section 5.2 of [3].

Lemma 3 (Lemma 2 of [22]). Let Hi be k distributions and Gi,j be the in-
distinguishability game instantiated with Hi and Hj. Let C be a fixed constant.

Let εi,j = maxA advA over all adversaries A against Gi,j with T (A) ≤ C. Then

ε1,k ≤ 3k
∑k−1
i=1 εi,i+1.

The two distributions to be distinguished in a game G sometimes both post-
process samples from some other probability ensamble Pθ. The following theorem
bounds the loss of bit security of G if we replace P with another distribution Q.



8 B. Li et al.

Theorem 1 (Theorem 8 of [22]). Let GP be an indistinguishability game
with black-box access to a probability ensemble Pθ. If GPθ is κ-bit secure, and
maxθD(Pθ||Qθ) ≤ 2−κ+1, then GQθ is (κ− 8)-bit secure.

The aforementioned theorem is stated more generally in [22]. Our specializa-
tion of it requires that δ(P||Q) =

√
D(P||Q)/2 is what [22] calls a λ-efficient

measure, which is implicit in [2] and [30].
We will need a few novel bounds on the quantities previously mentioned in

this sub-section. These bounds are simplest to describe in terms of the following
divergence.

Definition 7 (Bit Security Divergence). Let X ,Y be random variables sup-
ported on X. The bit security divergence between X and Y is the quantity

δBS(X ,Y) = sup
S⊆X

PrX [S] + PrY [S]

2
∆ (X|S,Y|S)

2
,

where X|S,Y|S are the conditional distributions of X ,Y, conditioned on the
event S.

It is straightforward to verify that this is indeed a divergence, and moreover
it is symmetric (which is why we write δBS(·, ·) rather than δBS(·||·)). It is not a
metric, as the O(k) factor in Lemma 3 is known to be tight, which is incompatible
with δBS(·, ·) satisfying a triangle inequality.

δBS(·, ·) captures the advantage of an optimal (potentially computationally
unbounded) adversary that aborts on the set Sc, and therefore can be seen as
an extension of the standard total variation distance to the framework of [22].
We will need the following novel Pinsker-like bound on this quantity.

Lemma 4. Let X ,Y be random variables supported on X. Then δBS(X ,Y) ≤
D(X||Y)/2.

We delay the proof of this to the full version of the paper. We can use
this to bound the advantage of computationally unbounded adversaries in the
indistinguishability game.

Lemma 5. Let G be the indistinguishability game instantiated with distribution
ensembles {Xθ}θ, {Yθ}θ, where θ ∈ Θ. Let q ∈ N. Then, for any (potentially
computationally unbounded) adversary A making at most q queries to its oracle,
we have that

advA ≤ q

2
max
θ∈Θ

D(Xθ||Yθ). (3)

Proof. View an (adaptive) adversary as an arbitrary distribution on query-

response pairs Xθ̂ := ((θ̂1,Xθ̂1), . . . , (θ̂q,Xθ̂q )) (and similarly for Yθ̂). We then

have that

advA ≤ δBS(Xθ̂,Yθ̂) ≤
1

2
D(Xθ̂,Yθ̂) ≤

1

2

∥∥∥D̂(Xθ̂,Yθ̂)
∥∥∥
1
≤ q

2
max
θ∈Θ

D(Xθ||Yθ). (4)

ut
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2.3 Fully Homomorphic Encryption

We briefly review definitions related to FHE. For simplicity, we focus on public-
key setting. In all our definitions, we denote the security parameter using κ.

Definition 8 (FHE Scheme). A (public-key) homomorphic encryption scheme
with plaintext spaceM, ciphertext space C, public key space PK, secret-key space
SK, and space of evaluatable circuits L is a tuple of four probabilistic polynomial-
time algorithms

KeyGen : 1N → PK× SK
Enc : PK ×M→ C
Dec : SK × C →M
Eval : PK × L× C → C

Typically the public key naturally splits into two components, one used by
Enc and one used by Eval. This separation is used to minimize the storage re-
quirements of encryption (as the evaluation key is often quite large), and has no
impact on security, so for simplicity we model both Enc and Eval as taking as
input the same public key.

Standard FHE schemes are expected to satisfy the following notion of cor-
rectness.

Definition 9 (Correctness). An FHE scheme Π = (KeyGen,Enc,Dec,Eval)
is correct for some class of circuits L if for all m1, . . . ,mk ∈M, for all C ∈ L,
for all (pk, sk)← KeyGen(1κ), we have that

Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(mk))) = C(m1, . . . ,mk). (5)

One can relax the notion of correctness to statistical correctness, where the
above identity only holds with high probability (over the random coins of Enc
and Eval). We will not make a distinction between these two notions.

The work [8] introduced an “approximate” FHE scheme (CKKS), for which
Equation (5) does not hold. The security implications of this relaxation are
investigated in [19], as discussed below. However, neither [8] nor [19] provide a
formal definition of an “approximate” FHE scheme, and instead simply drop the
correctness requirement (5) without any further restriction. This is despite the
CKKS scheme satisfying an approximate version of the correctness property of
Equation (5).

The definition of approximately correct FHE scheme plays a fundamental
role in our work. Informally, an approximately correct FHE scheme allows for
meaningful, but inexact, computation on encrypted messages. To formalize the
relaxed correctness requirements of an approximately correct FHE scheme, we
first define the ciphertext error, which specifies the extent to which a homomor-
phic computation fails to be exact.
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Definition 10 (Ciphertext Error). Let Π = (KeyGen,Enc,Dec,Eval) be an

FHE scheme with message space M ⊆ M̃, which is a normed space with norm
‖·‖ : M̃ → R≥0. For any ciphertext ct, secret key sk, and message m, the
ciphertext error of (ct,m, sk) is defined to be

Error(ct,m, sk) = ‖Decsk(ct)−m‖ . (6)

Typically, for some circuit C ∈ L, key pair (pk, sk)← KeyGen(1κ), and input
values m1, . . . ,mk ∈M, one is interested in the quantity Error(ct,m, sk) for

m = C(m1, . . . ,mk), and, ct = Evalpk(C,Encpk(m1), . . . ,Encpk(mk)),

i.e. where m and ct correspond to the same computation done on plaintexts and
ciphertexts.

In this work we investigate two distinct correctness properties for approxi-
mate homomorphic encryption. The first is implicit in the literature on CKKS.
We call this notion “static” to contrast with a later notion we investigate in
Section 5.

Definition 11 (Static Approximate Correctness). Let Π be an FHE scheme

with message spaceM⊆ M̃, which is a normed space with norm ‖·‖ : M̃ → R≥0.
Let L be a space of circuits, Lk ⊆ L the subset of parity k circuits, and let
Estimate :

⊔
k∈N Lk × Rk≥0 → R≥0 be an efficiently computable function. We

call the tuple Π̃ = (Π,Estimate) a statically approximate FHE scheme if for
all k ∈ N, for all C ∈ Lk, for all (pk, sk) ← KeyGen(1κ), if ct1, . . . , ctk and
m1, . . . ,mk are such that Error(cti,mi, sk) ≤ ti, then

Error(Evalpk(C, ct1, . . . , ctk), C(m1, . . . ,mk), sk) ≤ Estimate(C, t1, . . . , tk).

Note that the type signature
⊔
k∈N Lk × Rk≥0 → R≥0 encodes that Estimate

takes as input a circuit C, and an error bound ti for each of the k input wires
to the circuit C ∈ Lk. This correctness notion is “static” in the sense of static
typing. In particular, Estimate only depends on

– the computation C to be done, and

– error bounds ti for the inputs to the homomorphic computation.

All of these quantities are publicly computable given an abstract description
of a computation, and (for non-adaptive computations) can even be precomputed
(say by an FHE “compiler”).

Generally Estimate(·) either computes a (provable) worst-case bound on the
error, or a (heuristic) average-case bound. Our work assumes worst-case bounds
(although we discuss average-case bounds some in Section 6). Approximate FHE
schemes often require that all m1, . . . ,mk are of bounded norm — this can be
captured in the above definition by choosing M to be a set of bounded norm.
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Security We use the following security definition, proposed in [19], which prop-
erly captures security of approximate FHE schemes against passive attacks.

Algorithm 1 Oracles for the IND-CPAD game.

initialization
(pk, sk)← KeyGen(1κ)

global state
S ← ∅
i← 0

Ebpk(m0,m1) :=
ct← Encpk(mb)
S[i]← (m0,m1, ct)
i← i+ 1
return ct

Hbpk(g,J = (j1, . . . , jk)) :=
ct← Evalpk(g, S[j1].ct, . . . , S[jk].ct)
gm0 ← g(S[j1].m0, . . . , S[jk].m0)
gm1 ← g(S[j1].m1, . . . , S[jk].m1)
S[i]← (gm0, gm1, ct)
i← i+ 1
return ct

Dbsk(i) :=
if S[i].m0 = S[i].m1

return Decsk(S[i].ct)
else

return ⊥

Definition 12 (IND-CPAD Security, [19]). Let Π = (KeyGen,Enc,Dec,Eval)
be a FHE scheme. We define the IND-CPAD game to be an indistinguishability
game parameterized by distribution ensembles {(Ebθ,Hbθ,Dbθ)}θ for b ∈ {0, 1},
where these oracles are the (stateful1) oracles given in Algorithm 1. The scheme

Π is κ-bit IND-CPAD-secure if for any A, we have that κ ≤ log2
T (A)

advA
, where

advA is as in Definition 6.

In [19] it is also shown that for FHE schemes satisfying the standard correct-
ness requirement (5), IND-CPAD security is equivalent to the traditional formu-
lation of indistinguishability under chosen plaintext attack (IND-CPA), defined
as follows.

Definition 13 (IND-CPA Security). Let Π = (KeyGen,Enc,Dec,Eval) be a
FHE scheme. We define the IND-CPA game to be an indistinguishability game
parameterized by distribution ensembles {Ebθ}θ for b ∈ {0, 1} of Algorithm 1. The

scheme Π is κ-bit IND-CPA-secure if for any A, we have that κ ≤ log2
T (A)

advA
,

where advA is as in Definition 6.

We will additionally use weaker and stronger variants of IND-CPAD, infor-
mally defined as follows:

– q-IND-CPAD security. This is the same as IND-CPAD security, but restricted
to adversaries that make at most q(κ) queries to oracle D.

1 As a standard convention (for this and other games defined in the paper), if at any
point in a game the adversary makes an invalid query (e.g., a circuit g not supported
by the scheme, or indices out of range), the oracle simply returns an error symbol ⊥.
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– KRD security, or security against key recovery attacks. Here we modify the
IND-CPAD game by restricting2 the E oracle to queries of the form E(m,m),
and requiring the adversary to output (at the end of the attack) a secret key
sk′, rather than the bit b′. The attack is successful if sk = sk′.

KRD security is implied by IND-CPAD security, but it is much weaker, and it is
not generally considered a satisfactory notion of security. Here (as in [19]), KRD

security is used exclusively to show that certain schemes are not secure, making
the insecurity results stronger. We provide formal definitions of the above notions
in the full version of the paper.

3 A Differentially Private Approach to IND-CPAD

Security

In this section we investigate achieving q-IND-CPAD security for statically ap-
proximate, IND-CPA-secure FHE schemes Π̃. Our approach is to post-process de-
cryptions of Π̃ with an appropriate notion of differential privacy. The noise added
by this differentially private mechanism will suffice to information-theoretically
hide the ciphertext error, allowing us to reduce our analysis to the case of exact
FHE, where IND-CPA and q-IND-CPAD security are equivalent.

3.1 Our Notion of Differential Privacy

Our notion of differential privacy is a generalization of the notion of Rényi dif-
ferential privacy [23] to different norms3. As the tightest bounds in our setting
occur in the simplest4 case when α = 1, we present things solely in terms of this
Rényi divergence, i.e. the KL divergence.

Definition 14 (Norm KL Differential Privacy). For t ∈ R≥0, let Mt : B →
C be a family of randomized algorithms, where B is a normed space with norm
‖·‖ : B → R≥0. Let ρ ∈ R be a privacy bound. We say that the family Mt is
ρ-KL differentially private (ρ-KLDP) if, for all x, x′ ∈ B with ‖x− x′‖ ≤ t,

D(Mt(x)||Mt(x
′)) ≤ ρ. (7)

Note that our mechanism M depends on a bound on the distance ‖x− x′‖ ≤
t, which it uses (internally) to set parameters to meet the desired privacy bound.

2 This is without loss of generality, as the only point of general queries E(m,m′) is to
get information correlated with the secret bit b, which the game does not depend
on.

3 In Differential Privacy, “adjacent” values are typically measured in the Hamming
norm, while for our purposes the `2 and `∞ norms are of primary interest.

4 There is an alternative simplification of the Rényi divergence when α = ∞ known
as the max-log distance [21] with desirable properties, for example it is a metric,
similarly to the statistical distance. As our bounds degrade linearly in α as α→∞,
this notion is unsuitable for our situation.
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In the most common case of Gaussian noise, it will use noise of standard deviation
σ = Ω(2κ/2t) to achieve κ-bit security (Corollary 1).

As ‖x− x′‖ = ‖x′ − x‖ is itself symmetric, our definition is invariant under
replacing D(D0||D1) with max(D(D0||D1), D(D1||D0)), and is therefore implic-
itly dependent on this larger (symmetric) measure, although we do not make
this explicit in our work.

Algorithm 2 The FHE Scheme M [Π̃]

Enc′pk(m) :=
c← Encpk(m)
return ct = (c, te)

Eval′pk(C, ct
′
1, . . . , ct

′
k) :=

c← Evalpk(C, ct1.c, . . . , ctk.c)
t← Estimate(C, ct1.t, . . . , ctk.t)
return ct = (c, t)

Dec′sk(ct) :=
return Mct.t(Decsk(ct.c))

Definition 15. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plain-

text space M ⊆ M̃, where M̃ is a normed space with norm ‖·‖. Let Estimate
be such that Π̃ = (Π,Estimate) is statically approximate, and let te be an upper
bound on ciphertext errors of all fresh encryptions Encpk(m) for all m ∈M. Let

Mt be a ρ-KLDP mechanism on M̃. Define the FHE scheme M [Π̃] that has an
identical KeyGen algorithm to Π, with the modified algorithms Enc′pk,Eval

′
pk, and

Dec′sk of Algorithm 2.

In the above definition of the scheme M [Π̃], we use the “tagged ciphertext”
notation ct = (c, t), where c is an ordinary ciphertext and t is an estimated
ciphertext error upper bound. An initial estimation te is provided by the en-
cryption algorithm, and the evaluation algorithm updates the error upper bound
using Estimate(·) such that the resulting scheme is a statically approximate FHE
scheme.

Algorithm 3 The decryption oracle for the game G1 of Theorem 2.

D(i) :=
if S[i].m0 = S[i].m1

ti ← S[i].ct.t
return Mti(S[i].m0)

else
return ⊥

Theorem 2. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext

space M⊆ M̃, where M̃ is a normed space with norm ‖·‖. Let Estimate be such
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that Π̃ = (Π,Estimate) is statically approximate. Let κ > 0, let Mt be a ρ-KLDP

mechanism on M̃ where ρ ≤ 2−κ−7/q, and let q ∈ N. If Π is (κ+ 8)-bit secure
in the IND-CPA game, then M [Π̃] is κ-bit secure in the q-IND-CPAD game.

Proof. We defer details to the full version of the paper, and simply note that
this follows from combining Lemma 5 and Theorem 1. ut

3.2 Gaussian Mechanism

In this section, we present and analyze a differentially private mechanism Mt

which simply adds Gaussian noise to its input.

Definition 16. Let µ ∈ Z, and σ > 0. The discrete Gaussian of parameters
µ, σ (written NZ(µ, σ2)) is the probability distribution supported on Z with p.m.f.
p(x) ∝ exp(−(x− µ)2/2σ2).

It is known how to (with high probability) exactly sample from this distribu-
tion in constant time [4]. We explicitly bound the impact of this on the security
of our constructions in the full version of our paper.

Proposition 1 (Prop. 5 of [4]). Let σ ∈ R≥0, and let µ, ν ∈ Z. Then:

D(NZ(µ, σ2)||NZ(ν, σ2)) =
(ν − µ)2

2σ2
. (8)

Definition 17. Let ρ > 0, and n ∈ N. Define the (discrete) Gaussian Mecha-
nism Mt : Zn → Zn be the mechanism that, on input x ∈ Zn, outputs a sample

from NZn(x, t
2

2ρIn).

Lemma 6. For any ρ > 0, n ∈ N, the Gaussian mechanism is ρ-KLDP.

Proof. Let X = NZn(x, t
2

2ρIn) and Y = NZn(y, t
2

2ρIn). By sub-additivity of the

KL divergence and Proposition 1, we have that D(X||Y) ≤ ‖D̂(X||Y)‖1 =
ρ
t2 ‖x− y‖

2
2 ≤ ρ. ut

Corollary 1. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plain-

text space M ⊆ M̃, where M̃ ⊆ Zn is a normed space with norm ‖·‖. Let
Estimate be such that Π̃ = (Π,Estimate) is a statically approximate FHE scheme.
Let Mt be the Gaussian mechanism (with ρ := 2−κ−7/q). If Π is (κ+8)-bit secure
in the IND-CPA game, then M [Π̃] is κ-bit secure in the q-IND-CPAD game.

For ρ := 2−κ−7/q, one can check that the Gaussian mechanism adds noise of
standard deviation 8

√
q2κct.t to each coordinate, so one loses κ/2+3+log2

√
q+

log2 ct.t bits of precision. As the ciphertext already contains log2 ct.t bits of noise,
the additional precision lost by M [Π̃] is κ/2 + log2

√
q + 3 bits.

Proof. This reduces to combining Lemma 6 with Theorem 2. The size of the
Gaussian noise comes from ρ = ct.t2/2σ2 ⇐⇒ σ = 1√

2ρ
ct.t. As we need that

ρ ≤ 2−κ−7/q, it follows that σ ≥ 8
√
q2κ/2ct.t. ut
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This transformation does not explicitly depend on the underlying parameters
of the particular implementation of approximate encryption (for example, the
size of the LWE moduli one is working over, the dimension of the message space,
etc.), and instead only implicitly depends on these quantities via the computation
of the static ciphertext error bound. We caution that to apply this result to
CKKS one needs to be slightly careful about the underlying norm one is working
with, which we do later in Theorem 3.

4 Application to CKKS

Prior work of [19] shows that the approximate FHE scheme of [8] does not
satisfy IND-CPAD-security, even though it satisfies IND-CPA-security. We refer
the reader to [19] for additional details, but at a high level they show that
publishing the results of an approximate FHE computation under CKKS leaks
information about the secret key, enabling a full key recovery attack in the case of
trivial computation, and an attack against IND-CPAD-security for more general
homomorphic computation. In this section, we apply Theorem 2 and Lemma 6
to give a modification of the CKKS decryption function that allows us to prove
IND-CPAD-security of the modified scheme.

We use the results of Section 3 to show that post-processing the results
of the CKKS decryption function with the Gaussian mechanism is sufficient to
achieve IND-CPAD-security for the CKKS scheme, for large enough Gaussian
noise (Section 4.2). We also prove a nearly matching lower bound on the Gaussian
noise necessary to achieve IND-CPAD-security for the CKKS scheme (Section 4.3).
We then investigate a relaxed notion of security (Section 4.4), which may be of
independent interest. With these results, we briefly examine the countermeasures
adopted by some open-source implementations of CKKS, and we suggest concrete
parameters (Section 4.5).

4.1 The CKKS Approximate FHE Scheme

We begin with a few mathematical preliminaries necessary to the CKKS scheme.
For any positive integer N , let ΦN (X) =

∏
j∈Z∗

N
(X−ωjN ) be the Nth cyclotomic

polynomial, where ωN = e2πi/N ∈ C is the complex Nth principal root of unity,
and Z∗N is the group of invertible integers modulo N . We recall that ΦN (X) ∈
Z[X] is a monic polynomial of degree n = ϕ(N) = |Z∗N | with integer coefficients.
We denote by RN = Z[X]/(ΦN (X)) the ring of integers of the number field
Q[X]/(ΦN (X)), omitting the superscript when it is clear from context. We use
RNQ = Z[X]/(Q,ΦN (X)) to denote the ring of elements ofRN reduced moduloQ.

An element a ∈ R[X]/(ΦN (X)) may be embedded into Cn under the canoni-
cal embedding τ(a) (typically defined over Q[X]/(ΦN (X)), but naturally extend-
ing to R[X]/(ΦN (X))). The map τ(a) takes a to the n = ϕ(N) evaluations of a
at the n roots of ΦN (X). Notice that these n values come in conjugate pairs and
can be identified as a vector in Cn/2 via a projection π : (z, z̄) 7→ z. So, complex
vectors in Cn/2 are considered as messages in CKKS, and they are encoded to
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plaintext polynomials in R by composing π−1 and τ−1 together with a scaling
factor; conversely, plaintexts are decoded using τ ◦π. We define the canonical em-
bedding norm ‖ · ‖can∞ of an element a ∈ R[X]/(ΦN (X)) to be ‖a‖can∞ = ‖τ(a)‖∞.
We will use this norm to track the ciphertext error of CKKS ciphertexts.

We now present the relevant subroutines of the CKKS FHE scheme. We omit
many details of the CKKS scheme, and refer the reader to [8] for a more complete
description. The CKKS scheme is parameterized by a plaintext dimension n/2
(typically a power-of-two), a ciphertext modulus Q, and a discrete Gaussian
error distribution χ with standard deviation σ.

– CKKS.KeyGen(1κ): Take w = w(κ) and p = p(κ,Q). To generate the secret
key sk, sample s ← {s ∈ {−1, 0, 1}n : |s|0 = w} and take sk = (1, s). To
generate the public key pk, sample a ← RQ, e ← χ, and take pk = (b =
−as + e, a). To generate the evaluation key ek, sample a′ ← RpQ, e′ ← χ,
and take ek = (b′, a′) for b′ = −a′s+ e′ + ps2 mod pQ. Return (sk, pk, ek).

– CKKS.Encode(x ∈ Cn/2;∆): Return b∆ · ϕ−1(x)e ∈ R.
– CKKS.Encpk(m): Let T denote the distribution over {0,±1}n induced by

sampling each coordinate independently, drawing −1 with probability 1/4, 1
with probability 1/4, and 0 with probability 1/2. Sample r ← T , e0, e1 ← χ,
and return r · pk + (m+ e0, e1) mod Q.

– CKKS.Add(c0, c1 ∈ RQ): Return c0 + c1 mod Q.
– CKKS.Multek(c0, c1 ∈ RQ): For c0 = (b0, a0) and c1 = (b1, a1), let (b2, a2) =

(b0b1, a0b1 + a1b0) + bp−1 · a0a1 · eke mod Q. Return (b2, a2).
– CKKS.Decode(a ∈ R;∆): Return ϕ(∆−1 · a) ∈ Cn/2.
– CKKS.Decsk(c): For c = (b, a) ∈ R2

Q, return b+ as mod Q.

Note that CKKS supports encryption and decryption of floating-point inputs
by pre-processing encryption with CKKS.Encode, and post-processing decryp-
tion with CKKS.Decode. All intermediate operations are then done with integer
arithmetic. To simplify exposition, we focus on these intermediate operations,
and therefore restrict to the case of integer arithmetic.

We will need the following (standard) expressions for how the ciphertext
error transforms during addition and multiplication.

Lemma 7 (Error Growth [8]). Let c0 and c1 denote two CKKS ciphertexts,
with c0 = CKKS.Encpk(m0) and c1 = CKKS.Encpk(m1) with errors e0 and e1
respectively. Then the ciphertext cMult = CKKS.Mult(c0, c1) has error m0e1 +
m1e0 + e0e1 + eMult for a term eMult that depends on the parameters of the CKKS
instance (and the ciphertexts c0, c1). The ciphertext cAdd = CKKS.Add(c0, c1)
has error e0 + e1.

Certain authors have suggested various heuristics for analyzing eMult. We will
find the following one useful for the analysis of the attack of Section 4.3.

Heuristic 1 (Appendix A.5 of [12]) Let w be the hamming weight of sk.
Then eMult may be modeled as a random variable with mean zero and variance
O(wn).
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The rest of our work will benefit from the following notation.

Definition 18. For σ > 0, let S-CKKSσ be the CKKS encryption scheme, where
one modifies decryption to compute S-CKKSσ.Decsk(ct) = CKKS.Decsk(ct.c) +
NZn(0, σ2ct.t2In).

4.2 IND-CPAD-Secure CKKS

It is straightforward to apply Corollary 1 to CKKS to obtain q-IND-CPAD secu-
rity.

Theorem 3. For any q ∈ N, if CKKS is (κ + 8)-bit IND-CPA-secure, and σ =
8
√
qn2κ/2, then S-CKKSσ is κ-bit q-IND-CPAD-secure, i.e. κ/2+ Õ(1) additional

bits of Gaussian noise suffice to achieve q-IND-CPAD security.

Proof. This follows immediately from Corollary 1, (using the aforementioned
inequality ‖m‖can∞ ≤

√
n ‖m‖2, as our analysis of the Gaussian mechanism uses

an `2 norm bound). ut

4.3 Lower Bound for Gaussian Mechanism

Together, Lemma 6 and Theorem 2 give an upper bound on the amount of Gaus-
sian noise required to achieve IND-CPAD-security for an IND-CPA-secure approx-
imate encryption scheme. In this subsection, we show that this upper bound is
essentially tight for CKKS by demonstrating an attack against IND-CPAD security
for noticeably smaller Gaussian noise, i.e. analyzing S-CKKSσs for sanitization
noise σs � 8

√
qn2κ/2. In what follows, recall that n = ϕ(N), and w denotes the

Hamming weight of the key sk.

Algorithm 4 Adversary A(1κ, pk, ek)

for i ∈ {0, . . . , 44} do
cti ← Epk(m

(0)
i = 0,m

(1)
i = B);

end for
for i ∈ {45, . . . , 59} do

cti ← Epk(m
(0)
i = 0,m

(1)
i = −B);

end for
ct60 ← Hek(g, {0, . . . , 59}) for g(x0, . . . , x59) =

∑29
i=0(xi · x30+i)

m′ ← Dsk(60)
V0 = 30σ4 +O(wn) + σ2

s Variance of τ(m′)0 if b = 0
V1 = 30σ4 + 60B2σ2 +O(wn) + σ2

s Variance of τ(m′)0 if b = 1

if |τ(m′)0| <
√

log(V1/V0)V0V1
V1−V0

then

return 0
else

return 1
end if
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At a high level, the adversary A will exploit the message-dependence of the
S-CKKS error growth (Lemma 7) to design an H query such that the expected
magnitude of the ciphertext error of ct60 is larger when b = 1 than when b = 0.
The adversary A will then query D on this ciphertext, and choose its bit based
on the size of the message m′ it receives.

We will next show that the aforementioned adversary will have noticeable
advantage unless σs is larger than σ (the standard deviation of the underlying
RLWE error) by a factor super-polynomial in the security parameter.

Lemma 8. Let σs > 0. Then there exists an adversary A against S-CKKSσs in

the IND-CPAD such that advA = Ω
(

1
σ4
sn

6

)
.

Proof. We first observe that the ciphertext ct60 = Evalek(g, {0, . . . , 59}) is an
approximate encryption of 0 both when b = 0 and b = 1 in the IND-CPAD

experiment. Therefore the decryption query made by A returns a value rather
than ⊥.

If b = 0, then because all ciphertexts cti encrypt messages mi = 0, the
message-dependent terms of the error growth from Lemma 7 are also 0, and
so the ciphertext error of ct60 is

∑29
i=0 eMult + eie30+i, where ei denotes the

ciphertext error of cti. Recall that if error vectors e and e′ have entries sampled
from a discrete Gaussian with parameter σ, then each of the components of
τ(ee′) is distributed with mean 0 and variance σ4. We can then use the Central

Limit Theorem to approximate the distribution of the sum
∑29
i=0 eMult + eie30+i

as a Gaussian distribution with mean 0 and variance 30σ4 + O(wn). Note that
this approximation can be improved by increasing the number of terms in the
sum to a larger constant. For the sake of concreteness we have designed the
adversary such that there are 30 terms, as this is the value at which the Central
Limit Theorem is empirically justified.

If b = 1, then the message-dependent terms of the error growth are significant,
and the error of ct60 is

14∑
i=0

(eMult + eie30+i +Bei +Be30+i) +

29∑
i=15

(eMult + eie30+i −Bei +Be30+i) .

As in the case where b = 0, we will approximate this distribution as a Gaussian
with mean 0. Though the error terms eie30+i and Bei + Be30+i are not inde-
pendent, they do have covariance 0, as do the terms eie30+i and Be30+i − Bei,
and so we can approximate the sum of errors as being drawn from a discrete
Gaussian distribution with mean 0 and variance 30σ4 + 60B2σ2 +O(wn).

The adversary sees the result of post-processing the error term with the
Gaussian mechanism, run with parameter σs, and then chooses its bit to return
based on the absolute value of the first component τ(m′)0 under the canonical
embedding. When b = 0, this means the adversary sees a sample drawn from
a distribution that is well-approximated by a centered Gaussian with variance
V0 = 30σ4 +O(wn) +σ2

sct.t
2. When b = 1, however, the adversary sees a sample
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drawn from a distribution that is well-approximated by a Gaussian with the
same mean, but larger variance V1 = 30σ4 + 60B2σ2 +O(wn) + σ2

sct.t
2. Let

x =

√
log(V1/V0)V0V1

V1 − V0
.

A straightforward calculation shows that for |τ(m′)0| < x, m′ is a more likely
outcome when b = 0 than when b = 1, and when |τ(m′)0| ≥ x, m′ is at least
as likely when b = 1 as it is when b = 0. Then we have that the advantage of
adversary A is approximately the total variation distance between a Gaussian
with variance V0 and a Gaussian with variance V1. By Lemma 2, we have that

∆(N (0, V0),N (0, V1)) ≥ 1

200

|V0 − V1|
V0

∈ Θ
(

B2σ2

σ4 + wn+ σ2
sct.t

2

)
.

Recall that w is the hamming weight of the secret key sk, and so we have w < n.
For security, we know that

√
n < σ, and so it follows that the advantage of

our (non-aborting) adversary A against the IND-CPAD security of CKKS is the

square of the total variation distance, i.e. Θ
(

B4σ4

(σ4+σ2
sct.t

2)2

)
. Finally, note that

for ‖ei‖can∞ < σn holds with high probability, so ct.t ≤ O(Bσn3/2) (where we
pick up a

√
n factor to convert to the `2 norm), and therefore the advantage of

our adversary is Θ
(

B4σ4

σ8+σ4
sσ

4B4n6

)
= Ω

(
1

σ4
sn

6

)
. ut

Theorem 4. If S-CKKSσs is κ-bit IND-CPAD-secure, then σs = Ω(2κ/4/n3/2),
i.e. one must add at least κ/4− Ω̃(1) bits of additional Gaussian noise.

Proof. We have that κ ≤ log2O
(
T (A)

advA

)
≤ log2O(σ4

sn
6) =⇒ σs ≥ 2κ/4/n3/2,

and therefore κ/4− log2Ω(n3/2) ≤ log2 σs. ut

We therefore see that while one can potentially improve on the concrete
countermeasure of Section 4.5, the main (exponential) term is within a constant
factor of correct.

4.4 Improved Parameters via a Relaxed Security Notion

The previous sections show that we require between κ/4 and κ/2 bits of Gaussian
noise to achieve κ-bit q-IND-CPAD-security. We next introduce a relaxed notion
of security, for which we can justify a reduction in the size of Gaussians one must
add to obtain a form of q-IND-CPAD security.

Definition 19. Let Π be a cryptographic primitive, and G be an indistinguisha-
bility game. Let advA be the advantage of an adversary A in breaking the security
of Π in the G game. We say that Π has (c, s)-bits of G-security if, for any ad-
versary A, either

log2

T (A)

advA
≥ c, or log2

1

advA
≥ s. (9)
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This notion may be equivalently written in a number of ways.

Definition 20. Let I ⊆ [0, 1]. A cryptographic primitive Π is said to be (t(ε), ε)I-
secure in an indistinguishability game G if, for any ε ∈ I, any adversary of
advantage ε has running time at least t(ε).

Lemma 9. Let Π be a cryptographic primitive, and G be an indistinguishability
game. Then the following are equivalent

1. Π has (c, s)-bits of G-security,

2. For any adversary A, c ≤ log2
max(T (A),2c−s)

advA
, and

3. Π is (2cε, ε)[2−s,1]-secure in G.

This second condition is a variant of Definition 6 where we implicitly pad all
adversaries to have running time at least 2c−s.

Note that when s ≥ c the second condition is equivalent to the notion of c-bit
security. When s < c, the notion of (c, s)-bits of security is strictly weaker than
the notion of c-bit security.

Lemma 10. Let c > 0. Let G be an indistinguishability game, and Π a primitive
that has c-bits of G-security. Then for any s < c, there exists a primitive Π ′ and
indisinguishability game H such that Π ′ has (c, s)-bits of H-security, but not
c-bits of H-security.

We next give an analogue of Theorem 2 in the setting of our relaxed notion
of bit security.

Theorem 5. Let Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme with plaintext

space M⊆ M̃, where M̃ is a normed space with norm ‖·‖. Let Estimate be such
that Π̃ = (Π,Estimate) is statically approximate. Let Mt be a ρ-KLDP mech-
anism. If Π is κ-bit IND-CPA-secure, then M [Π̃] has (κ − log2 24, log2(1/ρ) −
log2 q − log2 24)-bits of q-IND-CPAD-security.

Proof. We defer detail to the full version of the paper, and simply note that
the proof is a (relatively standard) hybrid argument. The main novelty is the
relaxed notion of security we target, which allows us to bound the statistical
advantage term qρ (corresponding to “breaking” the KLDP mechanism) by a
computational term (corresponding to breaking IND-CPA security of Π̃). ut

Corollary 2. Let σ =
√

24qn2s/2. If CKKS is (c+ log2 24)-bit IND-CPA-secure,
then S-CKKSσ is (c, s)-bit q-IND-CPAD-secure.

Proof. This reduces to combining Lemma 6 with Theorem 5. The expression
for ρ comes from the identity s = log2(1/2ρ) − log2 q − log2 24. The size of the
Gaussian noise comes from 2−s/48q = ρ = ct.t2/2σ2, which can be rewritten
as σ =

√
24q2s/2ct.t. Note that the static estimate ct.t in CKKS is in the norm

‖·‖can∞ , which we upper bound by
√
n ‖·‖2 to get that σ =

√
24qn2s/2ct.t. Finally,

we can apply Theorem 5 to achieve the result. ut
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Compare this result to Theorem 3, where the noise scales with the computa-
tional security parameter rather than the statistical security parameter. While
choosing s < c leads to a relaxed notion of security, this relaxation is precisely
characterized. The non-trivial statistical attacks that we allow are

– simple to analyze (via results such as Lemma 5), and

– independent of any underlying hardware improvements (or other computa-
tional improvements, such as parallelization).

One can therefore justify a much smaller choice of s than the typical (compu-
tational) choice of c = 128. We do not suggest a particular choice for s, and
instead give a variety of choices in Table 1. Note that the choice of s should be
application dependent, as each time the protocol is instantiated5 the adversary
has a fresh chance to mount an attack of advantage up to 2−s. For this reason,
one should choose s much larger for protocols that will be instantiated many
times. Note that by Lemma 9, for s = c the notion of (c, s)-bits of security re-
duces to the notion of c-bits of security, so the top row of Table 1 equivalently
states parameters to achieve 128-bits of q-IND-CPAD-security.

A Sample Instantiation We briefly describe a concrete instantiation of our
countermeasure that achieves (128, 64)-bits of q-IND-CPAD-security. Through-
out, we let the number of supported decryption queries be q = 210. Note that
one can always (later) support more decryption queries, by rekeying when one
runs out. Parameterize CKKS to achieve 133-bits of IND-CPA-security, where
133 > 128 + log2 24. Let n be the resulting dimension of the chosen CKKS
instance. We will assume n ≤ 215, as every choice of parameters from the Ho-
momorphic Encryption Standard [1] satisfies this bound.

Then, by Corollary 2, if σ =
√

24qn2s/2, then S-CKKSσ is (c, s)-bit q-IND-CPAD-
secure. In particular, this loses another s/2 + log2

√
24qn bits of precision com-

pared to decrypting via returning CKKS.Decsk(ct.c). The particular value of
s/2 + log2

√
24qn can be found in Table 1 as the entry labeled (s, q) = (64, 210),

which is 46.79. Therefore, adding an additional 46.79 bits of i.i.d. Gaussian noise
suffices to achieve (128, 64)-bits of q-IND-CPAD-security.

4.5 Parameters for Concrete Countermeasures

As the attack in [19] was made publicly available, the major open-source im-
plementations of the CKKS scheme adopted several different countermeasures.
We briefly summarize these countermeasures in this subsection, and we propose
concrete parameters for them to achieve the desired IND-CPAD security.

5 In our particular application, this includes things like re-keying, which one can do
to “refresh” the number of decryptions one may release.
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s\q 1 25 210 215

128 73.79 76.29 78.79 81.29
112 65.79 68.29 70.79 73.29
96 57.79 60.29 62.79 65.29
80 49.79 52.29 54.79 57.29
64 41.79 44.29 46.79 49.29
48 33.79 36.29 38.79 41.29
32 25.79 28.29 30.79 33.29

Table 1. Additional size of Gaussian noise (measured in bits) required by the coun-
termeasure of Corollary 2 to achieve (c, s)-bits (Definition 19) of q-IND-CPAD-security,
where q is a bound on the number of decryption queries, and n ≤ 215 is a bound on the
ring dimension, chosen as it is the highest dimension parameter in the Homomorphic
Encryption Standard [1]. This table assumes one samples Gaussians using the sampler
of [4], see the full version of the paper for details.

HElib. The decryption API implementation was modified to add pseudoran-
dom Gaussian noise to the raw decryption result. By default, HElib implements
S-CKKS1, e.g. the size of the extra noise is equal to the size of the static error
bound of the homomorphic computation. HElib also provides an optional pre-
cision parameter in its decryption API such that the extra noise is chosen to
be the largest within the precision requirement (for example, if the static error
bound is not tight). To achieve (c, s)-bit security against at most q ≥ 1 decryp-
tion queries, this precision parameter should be calibrated such that sufficient
(as quantified in Theorem 5 and Table 1) noise is added during decryption.

HEAAN, Lattigo. These libraries require the default decryption API to be used
only by the secret key holder, and they added a specialized decryption API to
share the decryption results publicly. In HEAAN, the new decryption API takes
a noise size parameter, which sets the amount of Gaussian noises to be added to
the raw decryption result. In Lattigo, the new decryption API takes a rounding
parameter, which is used to round the raw decryption result to certain precision.
For both of them, one must estimate the ciphertext error ct.t separately and set
the noise parameter as in Theorem 5 and Table 1 to achieve (c, s)-bit security
against q decryptions.

PALISADE. The decryption function in PALISADE also adds Gaussian noise to
the raw decryption result, but the size of the noise is chosen (dynamically) in a
way detailed in Section 5.

4.6 The Impact of Our Countermeasure

Evaluating the feasibility of our countermeasure for some application depends
on both the required (application) precision, as well as the supported (library)
precision. Provided the difference between these is larger than the sum of the DP
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noise (as measured in Table 1) with the approximation error, our countermeasure
should be able to be instantiated.

32-bit applications. Concretely, many applications (say in machine learning)
require 32 bits of precision. If a FHE library only supports computations with
up to 64 bits of precision, this leaves at most 32 bits available for the sum of the
CKKS approximation error and the DP error induced by our countermeasure.
This means that at best, one will be able to choose s ≈ 32, which is likely too
low for most applications. Note that if the FHE library supports up to 128-bit
precision computations6, this problem disappears, as there are now ≈ 96 bits
available for the sum of the errors, allowing the conservative choice of s ≈ 128.

Low-precision applications. Some applications may solely require 8 or 16 bits
of precision (see for example [16] or [33] for work on training ML models with
low-precision computations). This leaves 48-56 bits of precision for the sum of
the CKKS approximation error and the DP error. One can then choose s ≈ 64
(16-bit required precision) or 80 (8-bit), where precise choices of s would depend
on the size of the CKKS approximation error. We view either of these choices as
much more reasonable than s ≈ 32, although in all settings the particular choice
of s that is appropriate is application-dependent.

5 Dynamic Error Estimation

Yuriy Polyakov [28] has recently suggested a technique to get sharper bounds
on the ciphertext error of the CKKS scheme. Briefly, this is done via leveraging
a special message encoding which fixes many of the coordinates of the original
CKKS message space to be constantly 0. Provided one only evaluates functions
which ignore these coordinates, upon decryption these coordinates will only con-
tain the error incurred during the homomorphic computation, and one can at-
tempt to generalize the (exact) error measurements within these coordinates to
an estimate of the entirety of the error.

This notion differs from our notion of static approximate correctness in two
significant ways, namely

– it depends on the particular ciphertext one is estimating the error of, e.g.
can only be computed dynamically during the program “run-time”, and

– it can only be computed during decryption, e.g. is not publicly-computable
information about the ciphertext.

We investigate the IND-CPAD security of applying our transformation of Def-
inition 15 to an approximate encryption scheme that is correct in the “dynamic”
sense sketched above. In this slightly modified setting, we get significantly differ-
ent results. For an IND-CPA-secure, dynamic approximately correct FHE scheme
Π̃, we find that M [Π̃] is often insecure. Specifically, assuming a “non-triviality”
condition on M that we define in Definition 23, we find that

6 For example, Lattigo and PALISADE can both support computations of this precision.
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1. for a “natural” class of IND-CPA-secure Π̃ (including CKKS), M [Π̃] is not
q-IND-CPAD secure when one uses dynamic error estimation, and

2. there exists an IND-CPA-secure Π̃ such that M [Π̃] is not KRD-secure (again,
when one uses dynamic error estimation).

5.1 A (Heuristic) Dynamic Estimation Procedure for CKKS

We first provide a detailed description of Yuriy Polyakov’s dynamic error estima-
tion procedure for CKKS [28], which has been implemented in PALISADE [24].
We define a variant DE-CKKS of CKKS that is modified to use this dynamic
error estimation technique. The message space of DE-CKKS is the set of real
vectors Rn/2, which is a subset of the message space Cn/2 of CKKS. We use <(z)
and =(z) to denote the real and imaginary parts of a complex number z ∈ C,
respectively. We now describe the modified scheme DE-CKKS.

– DE-CKKS.KeyGen: The parameter and key generation algorithms are identi-
cal to CKKS, except that the conjugation keys are not generated anymore.

– DE-CKKS.Encode: The encoding algorithm is the same as in CKKS, except
that it takes only real vectors x ∈ Rn/2.

– DE-CKKS.Enc: The encryption algorithm is identical to CKKS.
– DE-CKKS.Eval: The homomorphic evaluation algorithm is also identical to

CKKS, except that homomorphic conjugation operation is no longer sup-
ported.

– DE-CKKS.Dec: The modified decryption algorithm combines the decryption
and decoding algorithms of CKKS, and it works as follows given the secret
key sk and a ciphertext ct.
1. Decrypt ct and then decode the vanilla CKKS decryption result: z =

CKKS.Decode(CKKS.Decsk(ct)). Note that z ∈ Cn/2 is a complex vector.
2. Let x = <(z), and e = =(z). Estimate the standard deviation σe =

stdev(e).
3. Return x + r, where r← N (0,

√
q + 1 · σeIn) is a Gaussian noise vector.

In practice, since the canonical embedding is a scaled isometry with respect
to the `2 norm, we can add the same amount of noise without decoding by first
decrypting ct to obtain the ring element m = CKKS.Decsk(ct), computing the `2
norm of 1

2 (m(X)−m(1/X)) to obtain σ′e =
√
n·σe, adding n/2 i.i.d. Gaussians of

parameter
√
q + 1 ·σ′e to m′ and then decoding the resulting noisy ring element.

The PALISADE development team has done some experiments to validate
this dynamic error estimation method, and they claimed that it provides a good
estimation [28]. With optimizations described in [17], they assumed that the
rescaling error dominates the ciphertext error after each rescaling operation,
and that such error can be reduced in size similar to the ciphertext error in fresh
encryptions. Furthermore, they assumed the adversary is non-adaptive, meaning
that the input messages do not depend on any decryption result. Their exper-
iments encrypted two random real vectors, homomorphically evaluated their
component-wise product followed by a rescaling operation, and then decrypted
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the resulting ciphertext and compared the estimated error size with the actual
ciphertext error. The results showed that the dynamically error estimation is
very close to the actual ciphertext error sizes: for example, they differ by at
most 2 bits when the lattice dimension is n = 213.

5.2 Dynamic Estimation

We next introduce the notion of a dynamically approximately correct FHE
scheme Π̃. Our notion of dynamic approximate correctness depends on solely
the “run-time” values of the FHE scheme, namely the secret key sk, and the
ciphertext ct one wishes to bound. These suffice to instantiate the dynamic es-
timation scheme described in Section 5.1. We omit the other values (such as
individual ciphertext error bounds ti, and the circuit C itself) for simplicity —
there clearly cannot be a security benefit to this omission, as an adversary can
easily record or compute these values.

Definition 21 (Dynamic Approximate Correctness). Let Π be a FHE

scheme with message space M ⊆ M̃, which is a normed space with norm
‖·‖ : M̃ → R≥0. Let L be a space of evaluatable functions, and let Estimate :
SK × C → R≥0 be an efficiently computable function. We call the tuple of algo-

rithms Π̃ = (Π,Estimate) a dynamically approximately correct FHE scheme if
for all m1, . . . ,mk ∈ M, for all C ∈ L, for all (pk, sk) ← KeyGen(1κ), for all
ct← Evalpk(C,Encpk(m1), . . . ,Encpk(mk)), we have that

‖Decsk(ct)− C(m1, . . . ,mk)‖ ≤ Estimatesk(ct). (10)

The above notion is a “perfect” notion of dynamic approximate correctness —
there is an obvious statistical notion as well, where the desired inequality solely
has to hold with high probability over all of the various sources of randomness.
For simplicity of exposition we will work with the perfect notion.

We will view the notion of dynamic approximate correctness as a refinement
of the notion of static approximate correctness. This can be done without loss
of generality, as

– every known approximate FHE scheme is statically correct, and
– the minimum of two (correct) estimation functions is correct.

5.3 Attack Against IND-CPAD-Security of M [Π̃] for “Natural” Π

We next attack the IND-CPAD security of M [Π̃] for “natural” dynamically cor-
rect schemes Π̃. We briefly summarize the attack, as it is both “obvious”, and
establishing it theoretically requires a few new definitions (as it fails for “unnat-
ural” schemes). If

– dynamic error estimation is able to tightly estimate the ciphertext error,
– the growth of ciphertext error during certain operations (such as multiplica-

tion) is dependent on the input to the operation, and
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– the noise the KLDP mechanism Mt adds is dependent on t in a noticable
way, then

an adversary which can distinguish the smaller KLDP noise can immediately
break q-IND-CPAD-security. This is simply because one can use the aforemen-
tioned operation to construct two ciphertexts ct0, ct1 that encrypt the same
value, but have drastically different ciphertext errors. Then, as the dynamic
error estimation can detect this, the KLDP mechanism will add drastically dif-
ferent noise in the left and right worlds of the q-IND-CPAD game, immediately
breaking security.

The attack is straightforward to implement, which we demonstrate in Sec-
tion 5.4. We next theoretically establish the validity of the attack, by defining
the aforementioned notions of “naturality”.

Definition 22 (τ-Separated Noise Estimation). Let Π̃ be a dynamically
approximately correct FHE scheme with message space M and space of evaluat-
able functions L. Let τ ≥ 1, and let C ∈ L be a circuit. For m0,m1 ∈ M, let
t(m) = Estimatesk(Evalpk(C,Encpk(m))). We say that C has τ -separated noise

under Π̃ if there exists m0,m1 ∈ M such that τt(m0) = t(m1) with non-
negligible probability.

The seemingly strong condition t1 = τt0 can be replaced by requiring that
|t0 − τt1| is small, and the mechanism Mt produces larger noise as t increases.
For example, the Gaussian mechanism adds noise of variance σ2 = t2/2ρ, which
increases monotonically with t.

Definition 23 (τ-Sensitivity). Let Mt be a ρ-KLDP mechanism on a normed
space M, and let τ : R≥0 → R≥0. We say that Mt is τ -sensitive at m ∈ M
if for any t ≥ 1, the distributions Mt(m) 6≈c Mtτ(ρ)(m) are computationally
distinguishable.

The trivial 0-KLDP mechanism (which ignores its input, and returns a fixed
constant) is not τ -sensitive for any τ . Note that this condition is desirable in
practice — if Mt is not τ -sensitive, there is no real point in getting sharper noise
estimates.

Theorem 6. Let Π̃ be an IND-CPA-secure, dynamically approximately correct
FHE scheme with message space M and space of evaluatable functions L. Let
τ : R≥0 → R≥0, and assume that M is a ρ-KLDP mechanism which is τ -
sensitive at 0. Furthermore, assume there exist m0,m1 ∈ M and C ∈ L such
that C(m0) = C(m1) = 0 and C has τ -separated noise estimation under Π̃ with
respect to inputs m0,m1. Then M [Π̃] is not IND-CPAD-secure.

Proof. We defer details (which is simply a formalization of the attack sketched
at the beginning of the section) to the full version of the paper. ut

While it is not clear how to extend this attack to an attack on KRD security
(as was present in [19]), the attack still leaks information correlated with ‖m‖.
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5.4 Breaking q-IND-CPAD-Security of PALISADE’s Dynamic Error
Estimation Countermeasure

We implemented the attack in Theorem 6 against the PALISADE’s implemen-
tation of CKKS, which is currently the only known implementation of dynamic
noise estimation. Our attack experiments use the exceedingly simple circuit
f(x1, x2) = x21 − x2, as well as the circuit g(x0, . . . , x4k−1) =

∑2k−1
i=0 (xi · x2k+i)

in Algorithm 4. Notice that both f and g evaluate to 0 on input 0. On the other
hand, we chose several moderate values of B > 0 to set the input m such that
f(m) = 0 and g(m) = 0:

– For f , let m1 = B and m2 = B2.
– For g, let mi = B for all 0 ≤ i ≤ 3k − 1, and let mi = −B for all 3k ≤ i ≤

4k − 1.

Our attack homomorphically evaluates f (or g) on encryptions of both 0 and
m, then it decrypts the final ciphertexts to get z0 and zm. As expected, in all
our experiments we see that ‖z0‖∞ and ‖zm‖∞ can be clearly distinguished. We
summarize our experimental results in Table 2 with several parameter sets. We
have made the source code of our experimental programs available.7

Circuit (n, logQ) log∆ B k #slots ‖z0‖∞ ‖zm‖∞

f (213, 100) 40

100 - 1 2.19e−8± 1.83e−8 2.75e−6± 2.19e−6
100 - 1024 1.07e−7± 1.42e−8 1.87e−5± 2.54e−6
32 - 1 1.97e−8± 1.52e−8 1.06e−6± 1.06e−6
32 - 1024 1.08e−7± 1.54e−8 6.08e−6± 8.85e−7

g (214, 150) 45

32 15 1 1.08e−8± 4.37e−9 2.27e−7± 1.95e−7
32 15 1024 1.08e−8± 4.14e−9 1.40e−6± 2.02e−7
16 50 1 1.07e−8± 4.45e−9 2.00e−7± 1.90e−7
16 50 1024 1.06e−8± 4.67e−9 1.27e−6± 1.70e−7

Table 2. The experimental results of applying the attack in Theorem 6 with circuits
f(x1, x2) = x21 − x2 and g(x0, . . . , x4k−1) =

∑2k−1
i=0 (xi · x2k+i). For both C ∈ {f, g},

denote z0 the decryption result of Evalpk(C,Encpk(0)), and zm the decryption result
of Evalpk(C,Encpk(m)) for the input m as defined above with parameters B and k.
We set the lattice parameters (n,Q) to achieve at least 128 bit IND-CPA security, and
we choose several different values for the scaling factor ∆ and the slots number. For
each parameter set, we run the attack 100 times and report the average and standard
deviation of ‖z0‖∞ and ‖zm‖∞. As shown in the last two columns, there are clear
distinctions on the estimated noise sizes between ciphertexts evaluated on 0 and m.

5.5 Attack Against KRD-Security of M [Π̃] for “Artificial” Π

We construct an (artificial) IND-CPA-secure, dynamically approximately correct
FHE scheme Π̃ such that M [Π̃] fails to be KRD-secure.

7 https://github.com/ucsd-crypto/DynamicEstimationAttack

https://github.com/ucsd-crypto/DynamicEstimationAttack
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Theorem 7. There exists an IND-CPA-secure, dynamically approximately cor-
rect FHE scheme Π̃ such that for any linear ρ-KLDP mechanism M that is
τ -sensitive at 0, M [Π̃] is not KRD-secure.

Proof. It suffices to (deterministically) add “noise” of the form τ(1, 1, . . . , 1) to
decryptions, where τ is (adaptively) chosen to leak bits of the secret key. We
defer details to the full version.

6 Conclusion and Open Problems

In this work, we have shown that for CKKS with “static” error estimates, to
obtain κ-bit IND-CPAD security

– it suffices to add κ/2 + Õ(1) bits of noise (Theorem 3), and
– it is necessary to add κ/4− Ω̃(1) bits of noise (Theorem 4).

Our results therefore somewhat tightly characterize the impact on the accu-
racy of CKKS instantiated with a natural countermeasure to the Li-Micciancio
attack [19] — Θ(κ) additional bits of noise are both necessary and sufficient for
security. Still, it is natural to wonder if the right scaling for our countermeasures
is κ/4 or κ/2.

We additionally show how one can concretely obtain smaller noise via a
relaxed notion of security (Theorem 5). In particular, we show that s/2 + Õ(1)
bits of additional noise suffice to achieve (c, s)-bits of q-IND-CPAD security, where
s can plausibly be set much less than 128.

We include discussion of the concrete overhead of our countermeasure in Sec-
tion 4.6, where find that our countermeasure is easily implementable (for general
purpose computation) provided the FHE library supports 128-bit precision com-
putations, while FHE libraries that support 64-bit precision computations may
only be able to instantiate our countermeasure for certain (low-precision) appli-
cations, or with aggressive parameterizations.

Both our work and the work of [19] investigate how the correctness of en-
cryption can impact the underlying security one attains. As correctness analysis
typically leverages (unproven) heuristics for tighter noise estimates, we view
formally justifying these heuristics to be important going forward, as the false
heuristics may lead to security issues.

While our results on “dynamic” error estimation are negative, we have not
ruled out achieving some weaker security notion with these techniques (for nat-
ural schemes). Our attack of Theorem 6 shows that dynamic error estimation
can leak the norm of the input to the computation. Can the leakage be provably
limited to this information?

Finally, our work examines black box modifications one can make to CKKS
to attain q-IND-CPAD-security. It is plausible that a CKKS-specific construction
could attain smaller parameters, say by randomizing homomorphic operations,
choosing larger than typical scaling factors ∆, or carefully investigating the ci-
phertext error after bootstrapping.
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