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Abstract. We introduce a new security notion that lies right in between
pseudorandom permutations (PRPs) and strong pseudorandom permu-
tations (SPRPs). We call this new security notion and any (tweakable)
cipher that satisfies it a rugged pseudorandom permutation (RPRP).
Rugged pseudorandom permutations lend themselves to some interest-
ing applications, have practical benefits, and lead to novel cryptographic
constructions. Our focus is on variable-length tweakable RPRPs, and
analogous to the encode-then-encipher paradigm of Bellare and Rog-
away, we can generically transform any such cipher into different AEAD
schemes with varying security properties. However, the benefit of RPRPs
is that they can be constructed more efficiently as they are weaker prim-
itives than SPRPs (the notion traditionally required by the encode-then-
encipher paradigm). We can construct RPRPs using only two layers of
processing, whereas SPRPs typically require three layers of processing
over the input data. We also identify a new transformation that yields
RUP-secure AEAD schemes with more compact ciphertexts than previ-
ously known. Further extending this approach, we arrive at a new gener-
alized notion of authenticated encryption and a matching construction,
which we refer to as nonce-set AEAD. Nonce-set AEAD is particularly
well-suited in the context of secure channels, like QUIC and DTLS, that
operate over unreliable transports and employ a window mechanism at
the receiver’s end of the channel. We conclude by presenting a generic
construction for transforming a nonce-set AEAD scheme into an order-
resilient secure channel. Our channel construction sheds new light on
order-resilient channels and additionally leads to more compact cipher-
texts when instantiated from RPRPs.

Keywords: Rugged Pseudorandom Permutations · UIV · Authenticate
with Nonce · QUIC · DTLS · Tweakable Ciphers

1 Introduction

The modern view of symmetric encryption follows a nonce-based syntax. At first,
this may seem like a superficial detail but it has important ramifications both
practically and theoretically. When first conceived by Rogaway in [31], its pri-
mary motivation was to position the security of symmetric encryption on more
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solid ground by lifting its reliance on good sources of randomness. It thus re-
placed an initialization vector, required to be uniformly random, for a nonce that
instead is only required to never repeat. Besides significantly reducing suscep-
tibility to implementation errors, it added versatility by elegantly aligning the
two main flavours of symmetric encryption— randomized and stateful—into a
single unified syntax from which they can easily be realized. The resistance to
misuse was later fortified in the strengthened security notion by Rogaway and
Shrimpton in [32]. On the more theoretical side, this seemingly minor syntacti-
cal change has major consequences on how symmetric encryption and message
authentication compose together to form authenticated encryption. In contrast
to the traditional view that only encrypt-then-MAC results in a generically se-
cure composition [7], all three composition paradigms become secure under the
nonce-based syntax and the mild requirement of tidiness [26].

Secure Channels. A major application of nonce-based AEAD is to realize se-
cure channels in protocols like TLS, SSH, and QUIC. Here, a number of options
arise on how to handle the nonce, initialize it, update it, and communicate it
to the other party. Typically, secure channels need to protect against the replay
and reordering of ciphertexts, which in turn necessitates the receiver to be state-
ful [6]. Accordingly, a common approach is to initialize the nonce to a common
value and each party increments it (independently) upon every encryption and
decryption. This works well as long as the transport protocol, upon which the
secure channel is realized, is reliable and order-preserving, meaning that cipher-
texts are delivered in the same order as they were sent and without being lost.
TLS and SSH operate over TCP, which is reliable and order-preserving, but at
the same time introduces issues such as head-of-line blocking1 which degrades
performance. This motivated the emergence of protocols like DTLS and QUIC,
which operate over UDP, thereby avoiding head-of-line blocking at the expense
of having to deal with out-of-order delivery and dropped ciphertexts.

Operating secure channels over UDP means that the receiver cannot pre-
dict the nonce as ciphertexts may arrive out of order. Accordingly, the nonce
has to be communicated together with each ciphertext. Moreover, if the nonce
is set to be a message number, the receiver can use it to recover the correct
ordering of the messages. In fact, because in nonce-based AEAD the nonce is
implicitly authenticated, the above approach works even against adversarial re-
ordering strategies. Indeed, this is roughly the approach adopted in DTLS 1.3
and QUIC. Thus, while the nonce was originally only intended to diversify ci-
phertexts, in these protocols it is ‘overloaded’ to additionally serve a secondary
purpose for recovering the correct message ordering. This is yet another example
of the beauty and versatility of a well-crafted definition like nonce-based AEAD.
However, attaching the nonce to the ciphertext in the clear exposes metadata
which can undermine privacy [13] and possibly confidentiality [8]. Accordingly
QUIC and DTLS 1.3 separately encrypt the nonce before attaching it to the

1 https://en.wikipedia.org/wiki/Head-of-line_blocking
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ciphertext. In turn this has led to the notion of nonce-hiding AEAD [8], an idea
that can be traced back to Bernstein [10].

Encode-then-Encipher. A classical technique for constructing an authenti-
cated encryption scheme is the encode-then-encipher paradigm by Bellare and
Rogaway [9]. The technique builds an authenticated encryption scheme from a
variable-input-length cipher by properly encoding the message with randomness
and redundancy in order to obtain confidentiality and integrity. A more modern
take on the encode-then-encipher paradigm was put forth by Shrimpton and
Terashima in [34] where it was extended to obtain nonce-based authenticated
encryption with associated data (AEAD) from tweakable variable-input-length
ciphers. A noteworthy feature of the encode-then-encipher paradigm is that it
yields AEAD schemes that satisfy the strongest possible security—misuse re-
sistance [32] and release-of-unverified plaintext (RUP) security [1, 3, 21] simul-
taneously. Despite their strong security, such schemes are scarce in real-world
systems. In all likelihood, this is due to tweakable ciphers generally being heavy
primitives whose performance lags behind that of more efficient AEAD schemes.
In this respect, one exception is AEZ [21] which offers competitive speeds al-
though requiring three layers of processing. However its security relies on a non-
standard heuristic analysis and, in addition, it is also a significantly complex
scheme to implement.

1.1 Contribution

Rugged Pseudorandom Permutations. Our first contribution is a novel se-
curity definition for tweakable ciphers that sits between a pseudorandom permu-
tation and a strong pseudorandom permutation. The security definition assumes
a cipher defined over a ‘split’ domain, meaning that its inputs and outputs will
typically consist of a pair of strings, possibly of different sizes, rather than a
single string. A salient characteristic of our security definition is that it imposes
stronger security requirements on the enciphering algorithm than on the deci-
phering algorithm. Intuitively, we will still require an adversary to distinguish
between the cipher and a random permutation. However, while the adversary
will have full access to the enciphering algorithm its access to the deciphering
algorithm will be restricted, thereby giving rise to the asymmetric security be-
tween the two algorithms. Due to the uneven domain and the asymmetry in
the cipher’s security we choose to call such a cipher a rugged pseudorandom
permutation (RPRP).

The benefit of this security definition is that it strikes a new balance in which
security is sufficiently weakened to allow for more efficient cipher constructions
while still being strong enough to be of use in practice. Our RPRP construction
is inspired by the PIV construction by Terashima and Shrimpton [34] and the
GCM-RUP construction by Ashur, Dunkelman, and Luykx [2]. Our construction,
Unilaterally-Protected IV (UIV), is directly obtained from the PIV construction
by shaving off its last layer. GCM-RUP is similarly derived from PIV by shaving
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off the first layer and then augmenting it to obtain a nonce-based AEAD scheme
that is RUP secure. Like GCM-RUP, UIV can be instantiated from GCM compo-
nents and benefit from GCM’s now-ubiquitous hardware support that enables its
superior performance. The benefit of drawing the boundary around UIV is that
firstly it is a length-preserving cipher which is advantageous in settings such
as disk encryption. Secondly, it is a more versatile primitive which, as we shall
see, can be easily augmented to yield different AEAD schemes. Indeed, one spe-
cific transformation recovers GCM-RUP, but our general treatment allows us to
uncover several new AEAD schemes with differing properties and improvements.

Constructing AEAD From RPRPs. We revisit the encode-then-encipher
paradigm in the context of RPRPs. The asymmetry in the RPRP security def-
inition prompts us to consider two variations of this paradigm: Encode-then-
Encipher (EtE) and Encode-then-Decipher (EtD), where the latter uses the deci-
phering algorithm to encrypt and the enciphering algorithm to decrypt. We show
that EtE yields misuse-resistant AEAD and that EtD yields RUP-secure AEAD.
A notable instantiation of the encode-then-encipher paradigm is to ‘overload’ the
use of the nonce to additionally serve as the redundancy in the encoding that
provides integrity. This approach appears to have been missed in prior works. For
instance, GCM-RUP simultaneously encrypts the nonce and adds redundancy
in the message, resulting in an unnecessary expansion in the ciphertext. On the
other hand, when EtD is instantiated this way with UIV we obtain a RUP-secure
scheme with more compact ciphertexts than GCM-RUP.

Nonce-Set AEAD and its Construction From RPRPs. Taking this idea
of overloading the nonce for integrity a step further, we arrive at a new AEAD
construction with novel functionality. This functionality is motivated by the use
case of AEAD in secure channels like QUIC and DTLS. We formalize this func-
tionality as a new primitive that we call nonce-set AEAD, which extends and
generalizes the standard definition of nonce-based AEAD. Nonce-set AEAD al-
ters the decryption algorithm to additionally take a set of nonces instead of a sin-
gle one. Intuitively decryption will succeed if the correct nonce is among this set.
Moreover, the decryption algorithm will return the nonce in the supplied set that
was deemed correct as part of its output. We show how to generically construct
such a scheme from an RPRP through a construction we call Authenticate-with-
Nonce (AwN) and show that it even achieves misuse-resistance AEAD security.
The AwN construction requires a mechanism for representing nonce-sets com-
pactly and efficiently testing for membership in this set. Of course, since any
SPRP is automatically an RPRP, AwN can also be instantiated using other well-
known SPRP constructions.

Order-Resilient Secure Channels From Nonce-Set AEAD. In order-
resilient channels, the nonce is often overloaded to serve as a message number
that can be used to recover the correct ordering of the decrypted messages.
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Nonce-set AEAD facilitates such an approach and can be plugged in directly
with the window mechanisms that are used in real-world protocols like QUIC
and DTLS. Such window mechanisms can be fairly complex and hard to under-
stand when presented as code. Moreover, they affect the security of the channel,
and as a result, analyzing the security of these channels can become rather
daunting at times. Our treatment based on nonce-set AEAD will help tame this
complexity. The other reason for introducing nonce-set AEAD is that it will
allow for more bandwidth-efficient constructions from RPRPs by additionally
overloading the nonce to provide integrity in a way that is compatible with the
window mechanisms in the channel.

Recent work by Fischlin, Günther, and Janson [18] introduces a formal frame-
work for analyzing the security of order-resilient secure channels like QUIC and
DTLS. Central to the framework is a support predicate that expresses the ex-
pected behaviour of such channels. Many possibilities exist here in terms of how
much reordering should be tolerated, the specific window mechanism to use, and
how to handle replays, but the support predicate neatly captures these varia-
tions in their full generality. We build on the framework in [18] to show how to
generically transform any nonce-set AEAD scheme into a secure channel for any
support predicate that may be required. Besides having practical value, that
of offering order-resilient secure channels with more compact ciphertexts, our
construction is also instructive in that it decomposes the structure of complex
secure channels into a handful of much simpler and manageable components.
It should be noted that nonce-set AEAD can also be realized through other
constructions—such as the nonce-hiding schemes in [8]. As such, our approach
is very general and versatile.

1.2 Relation to Counter Galois Onion

This work stemmed out from other work, concurrent to this one, on the design
of Counter Galois Onion (CGO), a proposal for a new onion encryption scheme
for Tor [15]. Under the hood, CGO employs an extended Rugged PRP to pro-
cess each layer of encryption. In particular, the notion of a Rugged PRP was
developed in both works in parallel and went through a number of iterations. It
was initially conceived as an abstraction to facilitate the security proof of CGO,
but we later realised that it had applications beyond onion encryption which
motivated the research in this paper.

2 Preliminaries

Notation. For any non-negative integer n ∈ N, {0, 1}n denotes the set of bit
strings of size n, {0, 1}∗ denotes the set of all finite binary strings, and {0, 1}≥n
denotes the set of all finite bit strings of size greater or equal to n. The empty
string is denoted by ε. For any string X, |X| denotes its length in bits. Then
for any non-negative integer n ≤ |X|, ⌊X⌋n and ⌈X⌉n denote respectively the
substrings of the leftmost and rightmost n bits of X, and X ≪ n denotes the
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bit string of size |X| obtained by truncating its leftmost n bits and appending n
zeros to its right. For any two strings X and Y , of lengths |X| = n and |Y | = m,
where n < m, X ⊕Y denotes the operation of appending m−n zeros to the left
of X, and then XORing the expanded string X with Y . For any pair of strings
(X,Y ) we define their combined length |(X,Y )| as |X|+ |Y | and we use ⟨X,Y ⟩
to denote an injective mapping from string pairs into single strings.

For any set S, we use |S| to denote its cardinality, P(S) to denote its power
set, i.e., the set of all its subsets, and Perm[S] to denote the set of all permuta-
tions over the elements of S. The empty set is denoted by ∅. For any two sets
T and X , IC(T ,X ) denotes the set of all ciphers over the domain X and key
space T , Func(X ,∞) denotes the set of all functions mapping elements in X to
elements in {0, 1}∞, and ±Func(T ,X ) denotes the set of all functions mapping
elements in {+,−}×T ×X to elements in X . In our pseudocode we use lists as
an abstract data type. We use [ ] to denote the empty list, and for any two lists
L1 and L2, we use L1∥L2 to denote the list obtained by appending L2 to L1.
Lists are indexed starting at position zero, and L1[i] denotes the element in L1

at position i. For a string X and a list L, the function index(X,L) returns the
smallest index in L in which X is located, if X is contained in L, and returns ⊥
otherwise.

For events E and F , we use ¬E to denote the complement event of E, Pr[E]
to denote the probability of E, and Pr[E |F ] to denote the probability of E
conditioned on F . Finally, Pr[P : E] denotes the probability of E occuring after
executing some random process P .

Tweakable Ciphers. A tweakable cipher is an algorithm

ẼE : K × T × X → X

such that for any (K,T ) ∈ K × T the mapping ẼE(K,T, ·) identifies a permu-
tation over the elements in X . We refer to K as the key space, T as the tweak

space, and X as the domain. We use ẼEK(T, ·) as shorthand for ẼE(K,T, ·) and
ẼE
−1
K (T, ·) to denote the corresponding inverse permutation. A tweakable cipher

is required to be length preserving, meaning that for all (K,T,X) ∈ K× T ×X
it holds that |ẼEK(T,X)| = |X|. We also refer to ẼE and ẼE

−1
as the enci-

phering and deciphering algorithms of the tweakable cipher. In the special case
where X = {0, 1}n, for some positive integer n, we call the cipher a tweak-

able blockcipher and denote it by Ẽ. Thus we generally reserve ẼE to denote a
variable-input-length tweakable cipher, which may itself be constructed from an
underlying tweakable blockcipher Ẽ.

Security. The typical security requirement for tweakable ciphers is the well-
known (SPRP) notion. The formal definition can be found in the full version [16].

Nonce-Based AEAD. A nonce-based encryption scheme SE = (Enc,Dec) is
a pair of algorithms to which we associate a key space K, a nonce space N , a
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VerK(N,H,C)

M ← DecK(N,H,C)

if M ∈M
M ← ⊤

return M

$(N,H,M)

C ←$ {0, 1}clen(|N|,|H|,|M|)

return C

⊥(N,H,C)

return ⊥

Fig. 1: Oracles used to define nAE, MRAE, and RUPAE security.

header (associated data) space H, a message space M and a ciphertext space
C, all of which are subsets of {0, 1}∗. The encryption algorithm Enc and the
decryption algorithm Dec are both deterministic and their syntax is given by

Enc : K ×N ×H×M→ C and Dec : K ×N ×H× C →M∪ {⊥} .

The special symbol ⊥ serves to indicate that the decryption algorithm deemed
its input to be invalid. A nonce-based encryption scheme is required to be correct
and tidy [26]. Correctness requires that for all (K,N,H,M) ∈ K×N ×H×M
it must hold that

DecK(N,H,EncK(N,H,M)) = M.

Tidiness, on the other hand, requires that for any (K,N,H,C) ∈ K×N ×H×C

if DecK(N,H,C) ̸= ⊥ then EncK(N,H,DecK(N,H,C)) = C.

We further require that encryption be length-regular, meaning that the size of
ciphertexts depend only on the sizes of N,H and M . Accordingly, we associate
to every nonce-based AEAD scheme a ciphertext length function clen, mapping
the triple (|N |, |H|, |M |) to the ciphertext length in bits.

Security. A nonce-based encryption scheme is said to be AEAD if it additionally
satisfies (nAE) security. We use a variant of nAE from [5] which is equivalent to
the usual formulation. Namely we require that no efficient adversary be able to
distinguish between oracle access to the real encryption algorithm EncK(·, ·, ·)
and the real verification algorithm VerK(·, ·, ·) (defined in Fig. 1) from their
corresponding idealisations $(·, ·, ·) and ⊥(·, ·, ·). Throughout this distinguishing
game, the adversary is required to be nonce-respecting, meaning that it never
repeats nonce values across encryption queries, and must not forward queries
from the encryption oracle to the decryption oracle, meaning that it cannot
make a query (N,H,C) if it previously queried (N,H,M) and got C in return.

Definition 1 (nAE Advantage). Let SE = (Enc,Dec) be a nonce-based en-
cryption scheme and let A be a nonce-respecting adversary that does not make
forwarding queries. Then the nAE advantage of A with respect to SE is defined
as

Advnae
SE (A) =

∣∣∣Pr[K ←$ K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]

−Pr
[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ .
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The stronger notion of misuse-resistant AEAD MRAE is defined analogously
by replacing the requirement on the adversary that it be nonce-respecting with
the requirement that it never repeat an encryption query.

Definition 2 (MRAE Advantage). Let SE = (Enc,Dec) be a nonce-based en-
cryption scheme and let A be an adversary that never repeats encryption queries
and does not make forwarding queries. Then the MRAE advantage of A with
respect to SE is defined as

Advmrae
SE (A) =

∣∣∣Pr[K ←$ K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]

−Pr
[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ .
Release of Unverified Plaintext. In practice, in the event of a decryption fail-
ure, the decryption algorithm may leak more information than what is captured
by the standard security notions. Prior works proposed strengthened notions
which modelled such leakage as distinguishable decryption failures [11], release
of unverified plaintexts (RUP) [1], and robust authenticated encryption [21].
Then in [3] Barwell et al. introduced subtle authenticated encryption to compare
and unify these three security models. Here we will utilise the RUPAE security
definition as defined by Barwell et al. through their subtle AE framework.

Subtle AE. (c.f. [3]) A subtle encryption scheme SSE = (Enc,Dec, Λ) is a nonce-
based encryption scheme (Enc,Dec) augmented with a (deterministic) decryption
leakage function Λ intended to model the protocol leakage from decryption fail-
ures. The leakage function takes the same inputs as the decryption algorithm
but instead returns either a leakage string or the special symbol ⊤. The symbol
⊤ indicates that decryption was successful, and thus for any subtle encryption
scheme it must hold that for any K,N,H and C exactly one of the following be
true:

⊥ ← DecK(N,H,C) or ⊤ ← ΛK(N,H,C).

That is, for any input either decryption returns ⊥ and a leakage string is re-
turned by Λ, or decryption succeeds thereby returning the full plaintext but Λ
returns no leakage string. In practice the leakage depends on how the scheme is
implemented, how it is integrated into the larger system, and the scheme itself.
Thus a subtle encryption scheme aims to model any potential leakage, via Λ, in
order to show that the underlying scheme remains secure even in the presence of
this additional leakage. This is formalised through the following security notion.

Security. In rough terms, RUPAE security can be understood as extending nAE
security by additionally giving the adversary oracle access to the decryption
leakage function. For a subtle encryption scheme to be RUPAE secure we then
require the existence of a corresponding leakage simulator S which can simu-
late this leakage in the ideal world for any adversary. Intuitively, if the leakage
function can be simulated without the secret key it is of no use to the adversary.
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Definition 3 (RUPAE Advantage). Let SSE = (Enc,Dec, Λ) be a subtle AE
encryption scheme and let A be a nonce-respecting adversary that does not for-
ward encryption queries to the decryption and leakage oracles. Then the advan-
tage of A with respect to SSE and the leakage simulator S is defined as

Advrupae
SSE (A,S) =

∣∣∣Pr[K ←$ K : AEncK(·,·,·),DecK(·,·,·),ΛK(·,·,·) ⇒ 1
]

−Pr
[
A$(·,·,·),⊥(·,·,·),S(·,·,·) ⇒ 1

]∣∣∣ .
Nonce-Hiding AEAD. In the full version of this paper [16] we cover the
syntax of nonce-hiding AEAD and how the security definitions covered so far
adapt to that setting.

Encodings and Redundancy Functions. In the encode-then-encipher paradigm
one typically requires some encoding scheme that maps messages to some sparse
set of strings [9, 34]. In our case, we will additionally require the ability to “lo-
calize” the redundancy within the encoding. Accordingly we will instead use a
redundancy function for generating the redundancy which will then be joined to
the message to form the encoded input to the tweakable cipher. More specifically,
this redundancy function will satisfy one of the following two syntaxes:

Func2 : N ×H → X
or

Func3 : N ×H×M→ X .

Furthermore, we will require Func3 to be collision resistant over inputs with
distinct nonces. We say that Func3 is (δ, t)-collision resistant if for all efficient
adversaries A running in time t it holds that:

Pr [((N,H,M), (N ′, H ′,M ′))← A :

Func3(N,H,M) = Func3(N
′, H ′,M ′) ∧N ̸= N ′] ≤ δ.

3 Rugged Pseudorandom Permutations

We now introduce a new security notion for tweakable ciphers that provides
intermediate security. We call this notion, and by extension, any tweakable ci-
pher that satisfies it a rugged pseudorandom permutation (RPRP). A distinctive
characteristic of RPRPs is that they are tweakable ciphers over a split domain
XL×XR, where we refer to XL as the left set and XR as the right set. Note that
the split domain is an implicit requirement of the security definition which would
not make sense otherwise. We will typically let XL = {0, 1}n and XR = {0, 1}≥m
for some non-negative integers n and m, but other choices are possible. Fur-

themore, for ease of notation, we will simply write ẼEK(T,XL, XR) instead of

ẼEK(T, (XL, XR)) and apply the same rule to ẼE
−1

.
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For sufficiently large n, RPRP security sits right in between PRP security
and SPRP security. This is achieved by giving the adversary only partial access
to the decipher algorithm. This partial access is provided via two separate or-
acles, a partial decipher oracle and a guess oracle. Each oracle limits access to
the decipher algorithm in a different way. The decipher oracle severely restricts
the set of values on which it can be queried. In contrast, the guess oracle im-
poses no significant restrictions on the inputs, but it only returns a single bit of
information. The combined effect of these restrictions is to relax the extent to
which the decipher algorithm needs to be pseudorandom. As a result, there is
an asymmetry between the encipher and decipher algorithms in that the former
is required to be more pseudorandom than the latter. The term rugged in the
name is meant to reflect this asymmetry in security and the uneven split in the
domain.

The full formal security definition is presented in the next subsection. As we
will show in later sections, this notion suffices to generically transform any tweak-
able cipher that satisfies it into an AEAD scheme with strong security properties.
In Sections 4 and 5.3 we present three such transformations. At the same time,
the notion is significantly weaker than strong pseudorandom permutations as it
allows for more efficient constructions. Strong pseudorandom permutations typ-
ically require three layers of processing, where each layer consists of processing
the data through a block cipher or a universal hash, and both enciphering and
deciphering are two-pass algorithms. In contrast, the UIV construction which we
present in this section consists of two processing layers where enciphering is a
two-pass algorithm but deciphering requires only a single pass over the data as
the two layers can be processed in parallel. Admittedly some of the definitional
choices, particularly the restrictions imposed on the decipher oracle and the in-
troduction of the guess oracle, in the RPRP definition may seem arbitrary at
first. Part of the rationale behind these definitional choices is to require the bare
minimum from the tweakable cipher to make the generic transformations, shown
in Sections 4 and 5.3, go through.

3.1 RPRP Security

Let ẼE be a tweakable cipher over a split domain XL×XR with an associated key

space K and tweak space T . Then for any cipher ẼE, RPRP security is defined
via the RPRP game shown in Fig. 2. Here the adversary is given access to either

the real tweakable cipher construction ẼE or an ideal cipher Π̃ and its task is
to determine which of the two it is interacting with. It interacts with the cipher
through three oracles: encipher (En), decipher (De), and guess (Gu).

The En oracle provides full access to the encipher algorithm, whereas De
provides only partial access to the decipher algorithm. In De access is restricted
by checking YL for membership in the sets F and R and then suppressing the
output (via �) when this is the case. This check translates to two types of decipher
queries that the adversary cannot make. The first is a decipher query where the
left value was previously output by the encipher oracle. That is, if an encipher
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Game RPRPA,v

ẼE

K ←$ K
b←$ {0, 1}
F ,R,U ← ∅, ∅, ∅

Π̃ ←$ IC(T ,XL ×XR)

b′ ← AEn,De,Gu

return b = b′

En(T,XL, XR)

if b = 0

(YL, YR)← Π̃(T,XL, XR)

else

(YL, YR)← ẼEK(T,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

if b = 0

(XL, XR)← Π̃−1(T, YL, YR)

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

if b = 0

return false

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 2: The game used to define RPRP security for a tweakable cipher ẼE.

query was made such that (YL, YR)← En(T,XL, XR), then no query of the form
De(T ′, YL, Y

′
R) is allowed for any values of T ′ and Y ′R. The second is a decipher

query that repeats a left value from a prior decipher query. Namely, a query
De(T, YL, YR) when a query of the form De(T ′, YL, Y

′
R), for some T ′ and Y ′R,

was already made.
The Gu oracle provides an additional interface to the decipher algorithm.

It takes an input to the decipher algorithm together with a set of guesses V
for the corresponding left output. In the real world, Gu returns a boolean value
indicating whether any of the guesses is correct, whereas it always returns false in
the ideal world. To avoid trivial-win conditions, we need to restrict the adversary
to only make guess queries for which it does not already know the answer.
Accordingly, guess queries are required to be “unused”, meaning that they have
not been already queried onDe or returned by En. The set U serves to keep track
of used triples (T, YL, YR) and suppress the output in Gu when such a query is
detected. Finally, the game is parametrized by a positive integer v, limiting the
size of V in every query. We quantify the RPRP security of a tweakable cipher
via the usual advantage measure shown below.

Definition 4 (RPRP Advantage). Let ẼE be a tweakable cipher over a split
domain (XL ×XR). Then for a positive integer v and an adversary A attacking
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ẼEK1,K2(T,XL, XR)

YL ← ẼK1((T,XR), XL)

YR ← FK2(YL, |XR|)⊕XR

return (YL, YR)

ẼE
−1

K1,K2(T, YL, YR)

XR ← FK2(YL, |YR|)⊕ YR

XL ← Ẽ−1
K1((T,XR), YL)

return (XL, XR)

Fig. 3: Pseudocode description of the UIV construction, a variable-input-length
tweakable cipher realised from a tweakable blockcipher Ẽ and a VOL-PRF F.

the RPRP security of ẼE the corresponding advantage is defined as

Advrprp

ẼE
(A, v) =

∣∣∣2Pr[RPRPA,v

ẼE
⇒ 1

]
− 1

∣∣∣.

3.2 Unilaterally-Protected IV (UIV)

We next present a variable-input-length tweakable cipher construction, called
Unilaterally-Protected IV (UIV), that achieves RPRP security. It is easily derived
from the three-round Protected IV construction from [34] by simply eliminating
the last layer and using a slightly different abstraction. Shrimpton and Terashima
noted that all three rounds are necessary for SPRP security, but as we show in
Theorem 1, two rounds suffice for RPRP security. The construction is composed
of a tweakable blockcipher Ẽ over the domain XL = {0, 1}n with tweak space
T × XR and a matching variable-output-length pseudorandom function F with
domain XL and range XR. The tweak space of the resulting UIV cipher is T . A
pseudocode description of the construction is given in Fig. 3 and Fig. 4 shows
a graphical representation of its encipher algorithm. The RPRP security of the
UIV construction is stated formally in Theorem 1, the proof of which can be
found in the full version of this paper [16].

Theorem 1. Let UIV be the construction defined in Fig. 3 over the domain
{0, 1}n × {0, 1}≥m. For a positive integer v and an adversary A making qen
encipher queries, qde decipher queries and qgu guess queries under the constraint
that qguv ≤ 2n−1, there exist adversaries B and C such that

Advrprp
UIV (A, v) ≤ Advsprp

Ẽ
(B) +Advprf

F (C)

+
qguv

2n−1
+

q1(q1 − 1)

2n+1
+

qen(qen − 1)

2n+1
+

q2(q2 − 1)

2n+m+1
,

where q1 = qen + qde + qgu and q2 = qen + qde. The SPRP adversary B makes
at most qen encipher queries and qde + qgu decipher queries, whereas the PRF
adversary C makes at most qen + qde + qgu queries.
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XL

ẼK1

T XR

FK2

YL YR

Fig. 4: Graphical representation of the UIV enciphering algorithm.

Concrete UIV Instantiations. We described the UIV construction generi-
cally in terms of a fixed-input-length tweakable cipher (FIL-TBC) with variable
tweak length and a variable-output-length pseudorandom function (VOL-PRF).
The tweakable cipher can be instantiated either via the LRW2 construction [24]
using a blockcipher like AES and an Almost XOR-Universal (AXU) hash func-
tion like POLYVAL [20]. Alternatively one can use an off-the-shelf tweakable
blockcipher with a fixed-size tweak, like Deoxys-TBC [23] or SKINNY [4] and
augment it with an AXU hash via the XTX transform [25].

As for the VOL-PRF, it can be instantiated by a blockcipher operated in
counter mode. In this case, the tricky part is to match the block size of the
FIL-TBC with the input size of the VOL-PRF (equivalent to the IV in the
counter mode instantiation). If counter mode uses a blockcipher with a block
size equal to the block size of the FIL-TBC then the IV needs to be blinded with
an additional key, acting as a universal hash, to avoid colliding counter values.
Alternatively, if one is using an off-the-shelf tweakable blockcipher, the VOL-
PRF can be instantiated using the Counter-in-Tweak mode of operation [28],
circumventing this issue entirely.

Notably, UIV can be fully instantiated from AES and POLYVAL, using
LRW2 and counter mode, which benefit from the native instruction sets on many
modern-day processors. The corresponding instantiation, GCM-UIV, shares many
similarities with GCM-SIV [20] (e.g. two-pass enciphering/encryption and one-
pass deciphering/decryption), and its performance profile is also similar.

4 Encode-then-Encipher From Rugged PRPs

The encode-then-encipher paradigm is a generic approach, dating back to Bellare
and Rogaway [9], for turning a variable-length cipher into an authenticated en-
cryption scheme. Shrimpton and Terashima later extended this paradigm to cater
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for modern primitives such as tweakable ciphers and nonce-based AEAD [34].
However, both works require that the variable-length cipher satisfy SPRP secu-
rity for the resulting authenticated encryption scheme to be secure. In this sec-
tion, we show how to construct nonce-based AEAD from tweakable ciphers that
are only RPRP secure. The asymmetric security properties of RPRPs prompt us
to consider two schemes with complementary security properties, EtE and EtD,
as well as nonce-hiding variants of each.

4.1 Encode-then-Encipher (EtE) Scheme

The first scheme, EtE, achieves misuse-resistance (MRAE) security and is the
most natural as it uses the encipher algorithm to encrypt and the decipher

algorithm to decrypt. It employs a rugged pseudorandom permutation ẼE with
domain {0, 1}n × {0, 1}≥m and tweak space {0, 1}∗, an injective mapping ⟨·, ·⟩
from string pairs to single strings, and a function Func2 : {0, 1}∗ → {0, 1}n. Its
pseudocode is presented in Fig. 5. Note that since C1 is of fixed size, C1 and
C2 can be concatenated into a single-string ciphertext to fit the usual AEAD
syntax, and any such ciphertext can easily be parsed back into such a pair.

Intuitively, the scheme is misuse resistant since altering any of N , H, or M
results in an almost uniformly random ciphertext, by the pseudorandomness of
the encipher algorithm. Authenticity is achieved via the function Func2 under the
sole assumption that it be deterministic. Namely, it can be instantiated through
a hash function or more simply via truncation (assuming (N,H) is always at
least n bits long), or by the constant function (e.g. Func2(N,H) = 0n). Then, by
RPRP security, it follows that altering either C1 or C2 will result in a value of
Z ′ that is unpredictable. Accordingly, the condition Z ′ = Z will only be satisfied
with small probability, irrespective of the specific value of Z ← Func2(N,H). It
is worth noting that in reducing the MRAE security of EtE to the RPRP security

of ẼE, the reduction only makes encipher and guess queries (with v = 1), i.e., the
decipher oracle is not used at all. This is because in the EtE construction, the
verification algorithm can be simulated entirely through the guess oracle. Below
is the formal security theorem and its proof is presented in the full version of
this paper [16].

Theorem 2. Let EtE be the nonce-based AEAD scheme defined in Fig. 5 re-
alized from a tweakable cipher over the domain {0, 1}n × {0, 1}≥m. Then for
any adversary A making qe encryption queries and qv verification queries, there
exists an adversary B such that

Advmrae
EtE (A) ≤ Advrprp

ẼE
(B, 1) + q2e

2n+m+1
,

where B makes qe encipher queries, qv guess queries, and its runtime is similar
to that of A.



Overloading the Nonce: RPRPs, NS-AEAD, and OR-Channels 15

EncK(N,H,M)

T ← ⟨N,H⟩
Z ← Func2(N,H)

(C1, C2)← ẼEK(T,Z,M)

return (C1, C2)

DecK(N,H,C1, C2)

T ← ⟨N,H⟩
Z ← Func2(N,H)

(Z′,M ′)← ẼE
−1

K (T,C1, C2)

if Z′ = Z then

return M ′

else

return ⊥

Fig. 5: The EtE construction transforming a variable-length RPRP into a misuse-
resistant nonce-based AEAD scheme.

4.2 Encode-then-Decipher (EtD) Scheme

In our second scheme, EtD, we switch the roles of the encipher and decipher
algorithms, i.e., we decipher to encrypt and encipher to decrypt. By making
this switch, we now obtain an AEAD scheme that is secure against the release
of unverified plaintext (RUPAE). The EtD construction is presented in Fig. 6
together with the associated leakage function used to prove it RUPAE secure. In
addition to the variable-length tweakable cipher, the construction makes use of
an injective mapping ⟨·, ·⟩ from string pairs to single strings and a (δ, t)-collision
resistant deterministic function Func3.

The full pseudorandomness of the encipher algorithm, which is now used
for decryption, is what makes the scheme RUPAE secure. However, using the
decipher algorithm to encrypt presents some new challenges in the security proof
due to the constraints in the RPRP security definition. The requirement to
never repeat YL values across decipher queries is easily satisfied by ensuring that
distinct nonces result in distinct Z values. In our generic treatment we fulfill this
condition by requiring that the function Func3 be (δ, t)-collision resistant. On the
other hand, the requirement to not forward YL values from the encipher oracle
to the decipher oracle is a bit more challenging to address in the security proof.
Finally, a peculiarity of the EtD construction is that the nonce is included both
in the evaluation of Z as well as the tweak, which may seem unnecessary at first.
However, its inclusion in the evaluation of Z is necessary to ensure that YL values
do not repeat as it is the only AEAD input that is guaranteed to be distinct
across encryption calls. At the same time its inclusion in the tweak is necessary
for RUPAE security, as otherwise the adversary could forward a ciphertext from
the encryption oracle to the leakage oracle with a different nonce and, in the real
world, recover the original message. The security of EtD is formally stated below
in Theorem 3 and its proof can be found in the full version of this paper [16].

Theorem 3. Let EtD be the subtle AEAD scheme defined in Fig. 6 composed
from a tweakable cipher over the domain {0, 1}n × {0, 1}≥m, and let Func3 be a
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EncK(N,H,M)

T ← ⟨N,H⟩
Z ← Func3(N,H,M)

(C1, C2)← ẼE
−1

K (T, Z,M)

return (C1, C2)

DecK(N,H,C1, C2)

T ← ⟨N,H⟩

(Z
′
,M

′
)← ẼEK(T,C1, C2)

Z ← Func3(N,H,M
′
)

if Z
′
= Z then

return M
′

else

return ⊥

ΛK(N,H,C1, C2)

T ← ⟨N,H⟩

(Z
′
,M

′
)← ẼEK(T,C1, C2)

Z ← Func3(N,H,M
′
)

if Z
′
= Z then

return ⊤
else

return M
′

Fig. 6: The EtD construction, presented as a subtle AEAD scheme, transforming
a variable-length RPRP into a RUPAE-secure AEAD scheme.

(δ, t)-collision resistant deterministic function. Then there exists a leakage simu-
lator S, such that for any adversary A making qe ≤ 2n−1 encryption queries, qd
decryption queries, ql queries to the leakage oracle and running in time t, there
exist RPRP adversaries B and C such that

Advrupae
EtD (A,S) ≤ Advrprp

ẼE
(B, 1) +Advrprp

ẼE
(C, 1) + δ

+
(qe + 1)(qd + ql)

2n−1
+

(qe + qd + ql)
2

2n+m
+

qe(qd + ql)

2n
.

The adversary B makes qe queries to En oracle, qd+ql queries to De oracle, and
its runtime is similar to that of A. The adversary C makes at most qe queries
to En oracle, at most qd + ql queries to De oracle, and its runtime is similar to
that of A.

4.3 Nonce-Hiding Variants of EtE and EtD

Up to this point our treatment has focused on the classical nonce-based syn-
tax, but both constructions can be adapted to the nonce-hiding syntax while
retaining analogous security properties. Intuitively, the main differences are that
encryption now needs to embed the nonce in the ciphertext and the nonce is
no longer available during decryption. We describe below how these differences
affect each construction.

In the case of EtE, as before the redundancy Z must be located in the left
input for security and consequently the nonce has to be embedded in the right
input. As the nonce is not available to the decryption algorithm, Z can no longer
depend on it. Furthermore Z cannot depend on any value contained in the right
part. This is because in the security proof decryption is simulated through the
Gu oracle, which does not return the right part, and thus the reduction would
not be able to evaluate Z. As a result, the possibilities for instantiating the
redundancy function are severely restricted here and we simply set Z = 0n

instead.
In the case of EtD, since we are using the decipher algorithm to encrypt the

left input must not repeat, and thus this makes it the natural choice of location



Overloading the Nonce: RPRPs, NS-AEAD, and OR-Channels 17

for embedding the nonce. Accordingly the redundant value Z has to be moved
to the right input, which is now possible in the case of EtD since the encipher
algorithm is fully pseudorandom and non-malleable. Again, the nonce is not an
input to the decryption algorithm, but in this case Z can depend on the nonce
as the decryption algorithm can use the nonce that it recovers from the left part.
However the nonce still cannot be included in the tweak. Interestingly, the attack
that required us to include the nonce in the tweak for EtD is no longer applicable
in the nonce-hiding setting, and thus this variant is also RUPAE secure. Note
that for this construction Func3 is only required to be a deterministic function
and need not be collision resistant.

Pseudocode descriptions of the nonce-hiding variants of EtE and EtD are
provided in the full version of this paper [16]. The security proofs for these
variants proceed in a similar fashion to the original nonce-based schemes and we
omit them to avoid tedious repetition.

4.4 Instantiations and Related Constructions

Compared to prior works [8,9,21,34], our treatment of the encode-then-encipher
paradigm is the first to prove the security of the resulting AEAD by assuming a
strictly weaker security notion than SPRP on the part of the cipher. In this light,
our results on the MRAE security of EtE and its nonce-hiding variant are anal-
ogous to the construction in [34] and the HN5 construction in [8], respectively.
Similarly, our result on the RUPAE security of nonce-based EtD is analogous to
that in [21] for the closely-related notion of robust AEAD.

For generality, we specified the nonce-based constructions through the re-
dundancy functions Func2 and Func3 which can be instantiated in a number
of ways. Note that the redundancy functions are generally only required to be
deterministic functions, except in nonce-based EtD, which additionally requires
Func3 to be (δ, t)-collision resistant. Thus, one could instantiate these with hash
functions or, when applicable, more simply as constant functions that always
return 0n. Clearly, some instantiations are more advantageous in terms of effi-
ciency, while others may prove to be beneficial in extended security models that
we did not consider here. Instantiating the nonce-hiding variant of EtD with
Func3(N,H,M) := 0n and GCM-UIV recovers the GCM-RUP scheme from [2].
However our treatment exposes other possibilities, such as Func3(N,H,M) := N ,
which is trivially (0,∞)-collision resistant. In particular, instantiating the nonce-
based variant of EtD with this redundancy function gives rise to a RUPAE-secure
AEAD scheme with more compact ciphertexts than GCM-RUP or HN5, as it
makes do without the extra n zero bits (assuming the nonce is also n bits long).

When instantiated with Func3(N,H,M) := N the nonce-based variants of
EtE and EtD will also conceal the nonce, even if decryption does not strictly
fit the nonce-hiding syntax. Such a combination of nonce-concealing and com-
pact ciphertexts is beneficial for constructing secure channels over a transmis-
sion protocol with out-of-order delivery, like UDP. Indeed, DTLS 1.3 and QUIC
go through considerable efforts to achieve this. In Section 6 we will show how
this approach, of employing an RPRP and overloading the use of the nonce for
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both authentication and message indexing, can be used to construct such se-
cure channels more simply and in a more modular fashion. However, we first
need to introduce a new type of authenticated encryption that better fits this
purpose and allows the receiver to adopt different policies as to how to process
ciphertexts that are delivered out of order. In the next section, we present this
new and more general type of authenticated encryption and show how it can
be realised generically from any nonce-hiding AEAD scheme or directly from an
RPRP with the additional benefit of more compact ciphertexts.

5 Nonce-Set AEAD

A secure channel protocol operating over UDP, which may deliver ciphertexts
out of order, requires some mechanism to recover the original ordering of the
messages. Typically, such secure channels employ an AEAD scheme and over-
load the nonce to act as the message number. Here, nonce-hiding AEAD is
advantageous because it attaches the nonce in encrypted form to the ciphertext,
thereby making it available to the receiver for recovering the original ordering
of messages without leaking the side information contained in the nonce. In Sec-
tion 4.4 we showed how in the encode-then-encipher paradigm the nonce could
be additionally overloaded to act as the redundant bits in the encoding that
provide authenticity. This resulted in more compact ciphertexts, but it required
that the nonce be already available to the receiver before decryption takes place.
Thus, our technique of overloading the nonce for providing authentication is not
compatible with a scenario where ciphertexts are delivered out of order, as the
receiver is unable to determine the nonce associated with a ciphertext before
decrypting it.

In practice, the amount of reordering that takes place over UDP will, on
average, be limited. Accordingly, secure channel protocols will typically employ
some form of window mechanism which determines which message numbers (and
corresponding ciphertexts) can be accepted. If the message number of a cipher-
text falls outside the window, it means that the ciphertext is either too old or
too far ahead of the ones received and will be discarded. Such window mecha-
nisms can take various forms and can implement a variety of different policies
that determine how to deal with replays, when and how to change the window
size, and when to advance the window ahead. Nevertheless, at an abstract level,
they all specify a limited set of message numbers that can be accepted at that
particular point in time.

We propose nonce-set AEAD as a new type of authenticated encryption
that lends itself particularly well to this kind of scenario. The main change is
that decryption will now additionally take a set of nonces as its input, and for
it to succeed, the ciphertext has to be deemed valid with respect to that set
of nonces. The motivation for introducing this primitive is twofold. The first
is that it will enable the generic construction, which we present in the next
section, for a secure channel operating over UDP that can support multiple
different window policies. At a very high level, this construction combines a
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nonce-set AEAD scheme together with a tuple of algorithms that emulate the
window mechanism by generating the nonce set for the decryption algorithm
and updating it accordingly. This construction is appealing because although
the security of the secure channel depends crucially on this tuple of algorithms,
it turns out that they only need to satisfy a “functional” requirement and need
not at all be cryptographic. In addition, this single construction can be tuned
to realize various types of secure-channel behaviour. As such, nonce-set AEAD
appears to be the right place for drawing the boundary between cryptographic
and non-cryptographic processing. The second and complementary reason for
introducing nonce-set AEAD is that we can realize it directly from an RPRP
through an encode-then-encipher approach where authentication is achieved by
overloading the nonce, thereby yielding more compact ciphertexts. Thus, by
introducing nonce-set AEAD, we are now able to simultaneously accommodate
these two mechanisms, which were otherwise incompatible. Below is the formal
definition.

5.1 Formal Definition

Syntax. A nonce-set encryption scheme NSE = (Enc,Dec) is a pair of algorithms
with an associated key space K, a nonce space N = {0, 1}t for some t ∈ N,
a nonce-set space W ⊆ P(N ), a header space H, a message space M and a
ciphertext space C.

– The encryption algorithm follows the usual syntax, i.e.,

Enc : K ×N ×H×M→ C.

As before, encryption must be length-regular, thereby requiring the existence
of a function clen, mapping the triple (|N |, |H|, |M |) to the ciphertext length.

– The decryption algorithm works analogously to that in a nonce-hiding en-
cryption scheme but additionally takes a set of nonces W ∈ W as part of
its input. That is, its syntax is given by

Dec : K ×W ×H× C → (N ×M) ∪ {(⊥,⊥)} .

In addition, for all valid inputs (K,W , H,C) it must hold that:

if DecK(W , H,C) = (N ′,M ′) ̸= (⊥,⊥) then N ′ ∈W .

Correctness. For every nonce-set encryption scheme, it must hold that for all
(K,N,H,M) ∈ K ×N ×H×M and every W ∈ W such that N ∈W ,

if C ← EncK(N,H,M) then (N,M)← DecK(W , H,C).
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Security. As before, security requires that no adversary can distinguish the real
encryption and decryption algorithms (Enc(·, ·, ·), Dec(·, ·, ·)) from the ideal ones
($(·, ·, ·), ⊥(·, ·, ·)), under the condition that its encryption queries be nonce-
respecting and it does not forward queries from the encryption oracle to the
decryption oracle. The main difference to the classical nonce-based AEAD lies
in how a forwarding query is defined. This is a query (W , H,C) to the decryption
oracle where C was returned in a prior encryption query (N,H,M) and N ∈
W . In other words, the adversary cannot query a ciphertext under a nonce-set
containing the nonce with which it was produced. The security of a nonce-set
encryption scheme is expressed through the following advantage measure.

Definition 5 (nsAE Advantage). Let NSE = (Enc,Dec) be a nonce-set based
encryption scheme with associated spaces (K,N ,W,H,M, C). Then for any
nonce-respecting adversary A that does not make forwarding queries its advan-
tage is defined as

Advnsae
NSE (A) =

∣∣∣Pr[K ←$ K : AEncK(·,·,·),DecK(·,·,·) ⇒ 1
]

−Pr
[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ .
Misuse Resistance. The above security notion can be strengthened to the
misuse-resistance setting in the usual way. Namely by lifting the nonce-respecting
requirement and simply requiring that the adversary never query the same triple
(N,H,M) to the encryption more than once.

Unpacking the Definition. Note that if we set W = {{N} : N ∈ N} then
nonce-set AEAD effectively reduces to standard nonce-based AEAD with a nonce
space N . Thus, nonce-set AEAD can be seen as a natural extension of nonce-
based AEAD. Our syntax requires that when decryption succeeds, it associates
the decrypted ciphertext to a nonce in W . Conversely, this means that if W is
the empty set then decryption must fail. In addition, correctness guarantees that
when W contains the nonce that was used to produce that ciphertext, decryp-
tion will recover the plaintext and will additionally recover that nonce. Finally,
besides ruling out forgeries involving new ciphertexts, security also ensures that
an adversary is unable to associate an honestly generated ciphertext to a differ-
ent nonce. These features will come in handy in the next section where we show
how to generically transform a nonce-set AEAD into an order-resilient channel.

A practical scheme must specify a format for representing W as a string.
In general, this formatting must be concise for the scheme to be efficient. This
will, in turn, impose heavy restrictions on the space W of all possible nonce sets
that the decryption algorithm can accept. Thus, an important parameter of a
nonce-set AEAD scheme is the maximum nonce set size w, defined as

w := max
W∈W

|W |.
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EncK(N,H,M)

l← |M |

(C1, C2)← ẼEK(H,N∥⌊M⌋n−t, ⌈M⌉l−n+t)

return (C1, C2)

DecK(W , H,C1, C2)

(XL, XR)← ẼE
−1

K (H,C1, C2)

N ′ ← ⌊XL⌋t
M ′ ← ⌈XL⌉n−t∥XR

if N ′ ∈W then

return (N ′,M ′)

else

return (⊥,⊥)

Fig. 7: The AwN construction, transforming an RPRP-secure cipher ẼE over the
domain {0, 1}n×{0, 1}≥m into a nonce-set AEAD scheme that is MRAE secure.
The scheme is parametrized by the nonce length t, where t ≤ n.

The specific value of this parameter may be a result of the formatting used to
represent W , or it may need to be specifically restricted in order to guarantee
a certain level of security. In addition, the formatting used to represent W will
typically require an efficient means to do membership testing. This aspect of
a nonce-set AEAD is beyond our scope. Still, it suffices to say that various
instantiations exist that satisfy these requirements, including the formatting
used in the window mechanisms employed by existing internet protocols.

5.2 Nonce-Set AEAD From Nonce-Hiding AEAD

Nonce-set AEAD can be easily realized from any nonce-hiding AEAD scheme
simply by following decryption with a test verifying that the recovered nonce is
in W . This construction is described in the full version of this paper [16]. Thus
the nonce-hiding constructions by Bellare, Ng, and Tackmann in [8] which are
nonce-recovering, namely HN1, HN2, HN4, and HN5, can be readily transformed
into nonce-set AEAD schemes. However, these constructions all incur a cipher-
text expansion resulting from the underlying integrity mechanism as well as a
second ciphertext expansion arising from the nonce encryption. In contrast, the
construction we present next reduces this overhead by constructing a nonce-set
AEAD scheme directly from a RPRP via the encode-then-encipher paradigm.

5.3 The Authenticate-With-Nonce (AwN) Construction

The Authenticate-with-Nonce (AwN) construction is similar in spirit to the EtE

construction instantiated with Func2(N,H) = N , but it gives rise instead to a
nonce-set AEAD scheme. A pseudocode description is provided in Fig. 7. Note
that the integrity check is now done by verifying that N ′ ∈W , rather than an
equality test as in EtE. By RPRP security, any mauled ciphertext will produce a
left output that is hard to guess, thereby limiting the probability of this condition
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being satisfied, as long as W is not too large. As a result, the MRAE security of
AwN depends on the maximum nonce set size w. Moreover, for added generality,
we allow the nonce size t to be smaller or equal to the size of the left domain
n. This too bears influence over the security of AwN. In combination, these two
aspects give rise to the w2n−t term in the RPRP advantage term within the
security bound. The MRAE security of AwN is formally stated in Theorem 4, the
proof of which can be found in the full version of this paper [16].

Theorem 4. Let AwN be the nonce-set AEAD scheme defined in Fig. 7, realized
from a tweakable cipher over the domain {0, 1}n × {0, 1}≥m, with nonce size t
and maximum nonce set size w. Then for any MRAE adversary A making qe
encryption queries and qv verification queries, there exists an RPRP adversary
B such that

Advmrae
AwN (A) ≤ Advrprp

ẼE
(B, w2n−t) + q2e

2n+m+1
.

The adversary B makes qe queries to the En oracle and qv queries to the Gu
oracle, and runs in time similar to that of A.

6 Application to Order-Resilient Secure Channels

Equipped with the notion of nonce-set AEAD, we now turn our attention to
constructing secure channels over an unreliable transport. QUIC [22, 35] and
DTLS [29,30], which operate over UDP, are two prime examples of order-resilient
secure channels. Two recent works [17, 18] have analyzed the security of QUIC.
Here we will follow in large part the formal security model of Fischlin, Günther,
and Janson [18] which builds on and improves over prior works [6,12,33] and is
the most versatile.

As pointed out already in [12, 13] several strategies are possible for dealing
with out-of-order delivery and replay protection. However, their models fail to
capture the more elaborate ones that rely on window mechanisms, as in the case
of QUIC and DTLS. These window mechanisms can handle out-of-order delivery
and replay protection without consuming too much memory and bandwidth.
This comes, however, at the expense of added complexity that is harder to model
mathematically. Even formulating correctness for such secure channels becomes
rather challenging. To overcome the limitations of prior security models, Fischlin
et al. replace the level-sets in [33] with a support predicate, which essentially
serves to determine which ciphertexts should be accepted by the receiver. The
point of this predicate is that it considers the receiver’s perspective in making
this determination. As is the case with QUIC and DTLS a ciphertext deemed
invalid at a certain point in time (due to it falling outside the current window)
may become valid later (when the window has shifted sufficiently ahead).

Our focus in this section is not to analyze the security of QUIC or DTLS.
Instead, we take a fresh perspective on how such secure channels can be con-
structed differently and more simply through nonce-set AEAD. More specifically,
we provide a generic construction for transforming any nonce-set AEAD scheme
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into a secure channel parametrized by a support predicate. Notably, the con-
struction works for any desired support predicate by employing a quadruple of
relatively simple algorithms. In turn, the security of the channel construction
relies on the security of the nonce-set AEAD scheme and a mild requirement on
the quadruple of algorithms with respect to the support predicate. We tame the
complexity in constructions like QUIC and DTLS by introducing modularity into
the picture and identifying the role of each component. Here the introduction of
nonce-set AEAD plays a key role in glueing the different components together
and permitting us to generically express the logic behind the support predicate
by processing nonce values. We also strengthen the security definition from [18]
to reflect the privacy requirement to conceal message numbers from eavesdrop-
pers. In contrast, in [18] message numbers were required to be transmitted in
the clear.

In addition, when the nonce-set AEAD scheme is instantiated with our
RPRP-based construction, we end up with a secure channel construction that
is competitive in comparison to QUIC and DTLS. To start with, it only re-
quires a single key (instead of two) to process each ciphertext. Our nonce-set
AEAD scheme can be realized with GCM components, leading to comparable
performance to GCM-SIV and offering misuse-resistance. QUIC only transmits
a partial nonce in the ciphertext in order to save bandwidth at the expense of
an additional window mechanism to reconstruct it. In contrast, our construction
transmits the full nonce, thereby simplifying the processing at the receiver’s end,
but saves bandwidth nonetheless from its overloaded use of the nonce (within
the nonce-set AEAD construction) to provide integrity without a MAC tag.

6.1 Order-Resilient Channels

We start by defining the syntax of order-resilient channels. The definitions below
are reproduced from [18] and we do not claim any novelty in them. We do,
however, make some alterations in them which we point out along the way.

Definition 6 (Channel Syntax). A channel consists of a triple of algorithms
Ch = (Init,Send,Recv) with associated spaces ST S, ST R, MN , A, M and C
such that:

• (sts, str) ←$ Init(). The probabilistic initialization algorithm that takes no
input and returns an initial sender state sts ∈ ST S and an initial receiver
state str ∈ ST R.

• (st′s, C) ←$ Send(sts, A,M). The send algorithm, may be probabilistic or
stateful and takes as input a sender state sts ∈ ST S, associated data A ∈ A
and a message M ∈ M, and returns as output an updated sender state
st′s ∈ ST S and a ciphertext C ∈ C or the error symbol ⊥.

• (st′r,mn,M)← Recv(str, A,C). The deterministic receive algorithm takes as
input a receiver state str ∈ ST R, associated data A ∈ A and a ciphertext
C ∈ C. It then returns an updated receiver state st′r ∈ ST R together with,
either a message number mn ∈ MN and a message M ∈ M, or a pair of
error symbols (⊥,⊥).
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In comparison to [18] we augmented the Recv algorithm to return the message
number together with the message. This reflects the real-world necessity that a
higher layer needs such information to correctly position each message in the
sequence in which it was sent. We also expanded Send with associated data A,
and removed the auxiliary data and accompanying function as they are no longer
needed in our setting.

The Support Predicate. There are varying degrees to which a channel may be
order resilient. As explained in [18] the prior models by [12,33] are not expressive
enough to capture the order resilience of real-world protocols like QUIC and
DTLS. To address this, they introduced the support predicate. In essence, the
support predicate expresses the channel’s tolerance to reordered, replayed, or
dropped ciphertexts. It essentially captures the ‘character’ of the channel, which
permeates into every aspect of it— from correctness to robustness (which we
explain shortly) to security. Indeed, this conforms with and is reminiscent of the
silencing approach in [33], but generalizes it further.

The support predicate takes three inputs: a list CS of the sent ciphertexts,
a list DCR of the received ciphertexts together with a boolean value indicating
whether each was deemed supported or not, and a candidate ciphertext C and
returns a boolean indicating whether C is supported or not. Thus, whether a
ciphertext is supported may depend on the ciphertexts sent, the ones received,
and how the current ciphertext relates to them.

In conformance with [18], any ciphertext not in CS must not be supported.
However, whereas in [18] the list CS is allowed to contain repeating ciphertexts,
we specifically prohibit this. In particular, we require that every entry in CS
be identified uniquely. Whether two messages encrypt to the same ciphertext (a
possibility with stateful schemes) or not depends on the scheme at hand. Thus al-
lowing this to occur would render the support predicate scheme-specific, thereby
introducing a circularity in the correctness and security definitions—which is
why we avoid this possibility. Moreover, the representation of ciphertexts should
not bear any weight on the predicate’s value. Therefore, we allow ciphertexts to
be identified by integers or other strings as long as the entries in CS are unique.

There are two other minor points where we deviate from [18]. One is that
we require that every support predicate accept perfectly-in-order delivery. The
other is that we allow the support predicate to only return a boolean value,
whereas in the formulation in [18] it could also return an integer. This seems to
have been required due to the possibility of repeating ciphertexts in CS , which
we specifically rule out.

An example support predicate, reflecting the required functionality of a typ-
ical real-world protocol, can be found in the full version of this paper [16]

Channel Correctness. Different support predicates identify different channel
functionalities. Nevertheless, we can define channel correctness generically for
any possible support predicate. Intuitively, correctness requires that for any
supported (and thus honestly generated) ciphertext, the receiver must always be
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Game CORRA
Ch,supp

(sts, str)←$ Ch.Init()

DCR, CS , T ← [ ], [ ], [ ]

mn← 0

win← false

ASend,Recv

return win

Procedure Send(A,M)

(sts, C)←$ Ch.Send(sts, A,M)

CS ← CS∥C
T ← T ∥(mn,A,M,C)

mn← mn + 1

return C

Procedure Recv(j)

if j > |T | then
return �

(mn,A,M,C)← T [j]

d← supp(CS ,DCR, C)

if d = false then

return �

(str,mn
′
,M

′
)← Ch.Recv(str, A, C)

if mn
′ ̸= mn ∨M

′ ̸= M then

win← true

DCR ← DCR∥(d, C)

return (mn
′
,M

′
)

Fig. 8: The game CORR used to define channel correctness.

able to recover the original message contained in that ciphertext together with
its corresponding message number. Thus correctness ensures that the receiver is
able to recover the original sequence of messages in the exact ordering in which
they were sent. This is formally defined via the game in Fig. 8.

Definition 7 (Channel Correctness). A channel Ch is said to be correct with
respect to a support predicate supp, if for all possible adversaries A it holds that

Pr
[
CORRACh,supp ⇒ 1

]
= 0.

6.2 The Robustness Property

Unlike TLS and similar protocols, where one invalid ciphertext typically results
in the connection being torn down, order-resilient channels are inherently re-
quired to tolerate a significant amount of decryption failures during their opera-
tion. Such decryption failures may arise from the unreliable nature of the under-
lying protocol, or due to manipulation by a malicious adversary. Furthermore, the
receiver will generally be unable to distinguish between these two cases. Thus,
order-resilient channels must maintain their correct operation in the presence
of adversarial manipulation. However, the above correctness requirement does
not capture such a scenario as it considers only honestly-generated ciphertexts.
Accordingly, [18] introduced the notion of robustness to capture this stronger
requirement.

Robustness is formally defined through the ROB game located in the full
version of this paper [16]. Here, the Recv oracle maintains internally two Recv
instances, the real one, which is supplied with all queried ciphertexts, and the
correct one, which is only supplied with supported ciphertexts. Then if at any
point the adversary queries a supported ciphertext that causes the outputs of
the two Recv instances to differ, it will constitute a win for the adversary. The
advantage of an adversary is quantified as its probability of winning this game.
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Definition 8 (ROB Advantage). For a channel Ch = (Init,Send,Recv) and a
support predicate supp, the corresponding robustness advantage of an adversary
A is defined as:

Advrob
Ch,supp(A) = Pr

[
ROBACh,supp ⇒ 1

]
.

Note that in the ROB game both Recv instances are initialized with the same
state. Thus, for the adversary to win, the states of the two instances must at
some point diverge. On the other hand, only unsupported ciphertexts can cause
such a divergence in their states. Therefore, a sufficient condition for satisfying
robustness is that unsupported ciphertext do not change the state.

6.3 Channel Security

We use a single-game definition of channel security that combines confidential-
ity and integrity into one notion. It is heavily based on the security definitions
from [18], without robustness, and adapted with some of the ideas from sim-
ulatable channels in [14]. Security is defined via the indistinguishability game
INT-SIM-CCA shown in Fig. 9. Here, we essentially require the existence of a
stateless algorithm S that can simulate the Send oracle to the adversary and
that the adversary is unable to query an unsupported ciphertext to Recv that
decrypts successfully, i.e., a forgery. Note that, as shown in [14], requiring the
simulator S to be stateless results in a stronger security notion. Namely, it pro-
vides key privacy and ensures that ciphertexts do not leak the message number
since the simulator cannot keep track of the number of messages that are sent.
Below is the formal definition.

Definition 9 (INT-SIM-CCA Advantage). Let Ch = (Init,Send,Recv) be a
channel protocol realizing the functionality corresponding to the support predicate
supp. Then, Ch is INT-SIM-CCA secure if there exists a stateless encryption
simulator S such that for any adversary A the following quantity is small

Advint-sim-cca
Ch,supp (A,S) =

∣∣∣2Pr[INT-SIM-CCAA,S
Ch,supp ⇒ 1

]
− 1

∣∣∣.
6.4 From Nonce-Set AEAD to Order-Resilient Secure Channels

We are now ready to present this section’s main contribution - a generic con-
struction for transforming any nonce-set AEAD scheme into an order-resilient
channel. This construction consists of a nonce-set AEAD scheme combined with a
tuple of four basic algorithms called the nonce set processing scheme algorithms.
This construction has some notable features. Firstly, it works for any support
predicate. This means that this template construction can be used to realize any
channel functionality that can be expressed via the support predicate introduced
by Fischlin et al. in [18]. In addition, any instantiation will automatically satisfy
robustness and channel security for that support predicate. The main conditions
for this to hold are that the underlying nonce-set AEAD be secure and that the
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INT-SIM-CCAA,S
Ch,supp

(sts, str)←$ Ch.Init()

CS ,DCR ← [ ], [ ]

b←$ {0, 1}

b
′ ← ASend,Recv

return b = b
′

Procedure Send(A,M)

if b = 0 then // ideal world

C ←$ S(A, |M |)
else // real world

(sts, C)←$ Ch.Send(sts, A,M)

CS ← CS∥C
return C

Procedure Recv(A,C)

(str,mn,M)← Ch.Recv(str, A, C)

if b = 0 then // ideal world

(mn,M)← (⊥,⊥)
else // real world

d← supp(CS ,DCR, C)

if d = true then

(mn,M)← (⊥,⊥)
DCR ← DCR∥(d, C)

return (mn,M)

Fig. 9: The INT-SIM-CCA game used to define channel security.

nonce set processing scheme faithfully reproduce the functionality of the support
predicate.

As the name implies, the nonce set processing scheme algorithms are pri-
marily concerned with generating and updating the nonce-set that is fed to the
nonce-set AEAD. The faithfulness property ensures that the nonce set processing
scheme accurately reflects the channel behaviour corresponding to the support
predicate. Recall that we required the support predicate to be defined over any
possible way of identifying the ciphertexts as long as it uniquely represented
each ciphertext in CS . This means that we can identify each ciphertext with the
nonce it is assigned in the Send algorithm. Accordingly, the role of the nonce set
processing algorithms is to identify the set of supported nonces at every stage of
the Recv algorithm. Our channel construction will then use the set of supported
nonces as the nonce set to be fed to the nonce-set AEAD. Thus our generic
construction can be viewed as decomposing a channel into these constituent
components, thereby adding to our understanding of order-resilient channels.

We start by describing the syntax of the nonce set processing scheme algo-
rithms. A nonce set processing scheme NSP consists of the following constituent
algorithms:

• (sts, str) ←$ StInit(). A probabilistic initialization algorithm, that returns
the initial sender state sts and the initial receiver state str.

• (st′s, N) ← NonceExtract(sts). A deterministic nonce extraction algorithm,
that takes as input the non-key component of the sender state and returns a
(possibly) updated state together with a unique nonce N or the symbol ⊥.
• W ← NonceSetPolicy(str). A deterministic nonce-set policy algorithm that
takes as input the non-key component of the receiver state and returns a
nonce set.

• (st′r,mn) ← StUpdate(str, N). A deterministic state-update algorithm that
takes as input the non-key component of the receiver state together with
a nonce, and returns an updated state together with the message number
corresponding to that nonce.
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Game FAITHFULA
NSP,supp

(sts, str)←$ StInit()

NS ,DCR ← [ ], [ ]

win← false

A(sts,str),F-Send,F-Recv

return win

Procedure F-Send()

(sts, N)← NonceExtract(sts)

NS ← NS∥N
return N

Procedure F-Recv(N)

if N ̸∈ NS then

return �

W ← NonceSetPolicy(str)

if N ∈W then

(str,mn)← StUpdate(str, N)

else

mn← ⊥
d← supp(NS ,DCR, N)

DCR ← DCR∥(d, N)

if d = true ∧
(N ̸∈W ∨N ̸= NS [mn]) then

win← true

if d = false ∧N ∈W then

win← true

return (str,mn)

Fig. 10: The game FAITHFUL used to define faithfulness for a tuple of nonce set
processing algorithms.

The Faithfulness Property. The only property that we require from a nonce
set processing scheme is that it faithfully reproduces the functionality of the
channel’s support predicate. Note that none of the nonce set processing scheme
algorithms makes use of a secret key. This is because faithfulness is a property
that can be satisfied without cryptographic means. For any scheme, NSP and
support predicate supp, faithfulness is defined via the game FAITHFUL shown
in Fig. 10. The adversary’s goal is to cause the nonce set processing algorithms
and the support predicate to be misaligned or recover the wrong message num-
ber from a nonce. Note that the receiver is only allowed to query nonces to
the F-Recv oracle that the F-Send oracle has returned. A win occurs if the
submitted nonce is supported, but not contained in the nonce set returned by
NonceSetPolicy or the message number returned by StUpdate for that nonce is
incorrect. Alternatively, if the nonce is not supported but the nonce set does
contain that nonce, it is also a win for the adversary.

Definition 10 (FAITHFUL Advantage). Let NSP be a nonce set processing
scheme. Then for any adversary A and any support predicate supp, the corre-
sponding advantage is defined as

Advfaithful
NSP,supp(A) = Pr

[
FAITHFULANSP,supp ⇒ 1

]
.

We say that a nonce-set scheme NSP faithfully reproduces the support predicate
supp, if for all possible adversaries A it holds that Advfaithful

NSP,supp(A) = 0.

Generic Channel Construction. Our generic construction of an order-resilient
secure channel ChNS = (Init,Send,Recv) from a nonce-set AEAD scheme NSE =
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Init()

(sts, str)←$ StInit()

K ←$ {0, 1}k

stks ← (sts, K)

stkr ← (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K)← stks

(st
′
s, N)← NonceExtract(sts)

if N = ⊥ then

return (st
′
s,⊥)

C ← Enc(K,N,A,M)

stk
′
s ← (st

′
s, K)

return (stk
′
s, C)

Recv(stkr, A, C)

(str, K)← stkr

W ← NonceSetPolicy(str)

(N,M)← Dec(K,W , A, C)

if (N,M) = (⊥,⊥) then

mn← ⊥
else

(st
′
r,mn)← StUpdate(str, N)

stk
′
r ← (st

′
r, K)

return (stk
′
r,mn,M)

Fig. 11: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce set processing scheme.

(Enc,Dec) and a nonce set processing scheme NSP = (StInit,NonceExtract,
NonceSetPolicy,StUpdate) is presented in Fig. 11.

Channel Correctness. The proof of correctness for this generic construction
is provided in the full version of this paper [16].

Theorem 5. If the nonce-set AEAD scheme NSE is correct and the nonce set
processing scheme NSP faithfully reproduces the support predicate supp, then the
channel construction ChNS presented in Fig. 11 is correct with respect to supp.

Channel Robustness. We argue robustness based on our earlier observation
that a sufficient condition for robustness is that unsupported ciphertexts never
affect the channel state. The faithfulness of NSP guarantees that only the nonces
used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security. The security of ChNS is formally stated in the following
theorem, the proof of which is presented in the full version of this paper [16].

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 11, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}≥ℓ and a nonce set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp (A,S) ≤ Advnsae

NSE (B) +Advfaithful
NSP,supp(C) +

qs(qs − 1)

2ℓ
.
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Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.
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