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Abstract. Unclonable encryption, first introduced by Broadbent and Lord
(TQC’20), is a one-time encryption scheme with the following security
guarantee: any non-local adversary (𝒜,ℬ, 𝒞) cannot simultaneously dis-
tinguish encryptions of two equal length messages. This notion is termed
as unclonable indistinguishability. Prior works focused on achieving a
weaker notion of unclonable encryption, where we required that any non-
local adversary (𝒜,ℬ, 𝒞) cannot simultaneously recover the entire mes-
sage 𝑚. Seemingly innocuous, understanding the feasibility of encryption
schemes satisfying unclonable indistinguishability (even for 1-bit mes-
sages) has remained elusive.
We make progress towards establishing the feasibility of unclonable en-
cryption.

– We show that encryption schemes satisfying unclonable indistinguisha-
bility exist unconditionally in the quantum random oracle model.

– Towards understanding the necessity of oracles, we present a nega-
tive result stipulating that a large class of encryption schemes cannot
satisfy unclonable indistinguishability.

– Finally, we also establish the feasibility of another closely related prim-
itive: copy-protection for single-bit output point functions. Prior works
only established the feasibility of copy-protection for multi-bit output
point functions or they achieved constant security error for single-bit
output point functions.

1 Introduction

Quantum information ushers in a new era for cryptography. Cryptographic
constructs that are impossible to achieve classically can be realized using quan-
tum information. In particular, the no-cloning principle of quantum mechan-
ics has given rise to many wonderful primitives such as quantum money [24]
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and its variants [2, 25, 18], tamper detection [14], quantum copy-protection [1],
one-shot signatures [4], single-decryptor encryption [13, 10], secure software
leasing [6], copy-detection [3] and many more.

Unclonable Encryption. Of particular interest is a primitive called unclonable
encryption, introduced by Broadbent and Lord [9]. Roughly speaking, unclon-
able encryption is a one-time secure encryption scheme with quantum cipher-
texts having the following security guarantee: any adversary given a ciphertext,
modeled as a quantum state, cannot produce two (possibly entangled) states
that both encode some information about the original message. This is formal-
ized in terms of a splitting game.

A splitting adversary (𝒜,ℬ, 𝒞) first has 𝒜 receive as input an encryption of
𝑚𝑏, for two messages 𝑚0 and 𝑚1. 𝒜 then outputs a bipartite state to ℬ and 𝒞. ℬ
and 𝒞 additionally receive as input the classical decryption key and respectively
output 𝑏𝐵 and 𝑏𝐶 . They win if 𝑏 = 𝑏𝐵 = 𝑏𝐶 . Clearly, 𝒜 could give ℬ the entire
ciphertext and 𝒞 nothing, in which case 𝑏𝐵 = 𝑏 but 𝑏𝐶 would be independent of
𝑏, giving an overall winning probability of 1/2. Security therefore requires that
the splitting adversary wins with probability only negligibly larger than 1/2.
This security property, introduced by [9], is called unclonable indistinguishabil-
ity. Unclonable indistinguishability clearly implies plain semantic security, as
𝒜 could use any semantic security adversary to make a guess 𝑏𝐴 for 𝑏, and then
simply send 𝑏𝐴 to ℬ and 𝒞, who set 𝑏𝐵 = 𝑏𝐶 := 𝑏𝐴.

Unclonable encryption is motivated by a few interesting applications. Firstly,
unclonable encryption implies private-key quantum money. It is also useful for
preventing storage attacks where malicious entities steal ciphertexts in the hope
that they can decrypt them when the decryption key is compromised later. Re-
cently, the works of [11, 5] showed that unclonable encryption implies copy-
protection for a restricted class of functions with computational correctness
guarantees.

Despite being a natural primitive, actually constructing unclonable encryp-
tion (even for 1-bit messages!) and justifying its security has remained elusive.
Prior works [9, 5] established the feasibility of unclonable encryption satisfy-
ing a weaker property simply called unclonability: this is modeled similar to
unclonable indistinguishability, except that the message 𝑚 encrypted is sam-
pled uniformly at random and both ℬ and 𝒞 are expected to guess the entire
message 𝑚. This weaker property is far less useful, and both applications listed
above – preventing storage attacks and copy-protection – crucially rely on in-
distinguishability security. Moreover, unclonability does not on its own even
imply plain semantic security, meaning the prior works must separately posit
semantic security.

The following question has been left open from prior works:

Q1. Do encryption schemes satisfying unclonable indistinguishability, exist?

Copy-Protection for Point Functions. Copy-protection, first introduced by Aaron-
son [1], is another important primitive closely related to unclonable encryption.
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Copy-protection is a compiler that converts a program into a quantum state that
not only retains the original functionality but also satisfies the following prop-
erty: a splitting adversary (𝒜,ℬ, 𝒞) first has𝒜 receive as input a copy-protected
state that can be used to compute a function 𝑓 . 𝒜 then outputs a bipartite state
to ℬ and 𝒞. As part of the security guarantee, we require that both ℬ and 𝒞
should not be able to simultaneously compute 𝑓 .

While copy-protection is known to be impossible for general unlearnable
functions [6], we could still hope to achieve it for simple classes of functions.
Of particular interest to us is the class of point functions. A single-bit output
point function is of the form 𝑓𝑦(·): it takes as input 𝑥 and outputs 1 if and only
if 𝑥 = 𝑦. One could also consider the notion of multi-bit output point functions,
where the function outputs a large string, rather than 0 or 1.

Prior works [11, 5] either focus on constructing copy-protection for multi-bit
output point functions or they construct copy-protection for single-bit output
point functions with constant security, rather than optimal security, where the
adversary can only do negligibly better than a trivial guess.

Yet another important question that has been left open from prior works is
the following:

Q2. Does copy-protection for single-bit output point functions, with optimal
security, exist?

As we will see later, the techniques used in resolving Q1 will shed light on
resolving Q2. Hence, we focus on highlighting challenges in resolving Q1. The
reader familiar with the challenges involved in constructing unclonable encryp-
tion could skip Section 1.1 and directly go to Section 1.2.

1.1 Achieving Unclonable Indistinguishability: Challenges

We need to achieve a one-time secure encryption scheme for 1-bit messages sat-
isfying unclonable indistinguishability: how hard can this problem be? Indeed one
might be tempted to conclude that going from the weaker unclonability prop-
erty to the stronger unclonable indistinguishability notion is a small step. The
former is a search problem while the latter is a decision problem, and could
hope to apply known search-to-decision reductions. As we will now explain,
unfortunately this intuition is false, due both to the effects of quantum infor-
mation and also to the fact that unclonable encryption involves multiple inter-
acting adversaries.

– Recall that in an unclonable encryption scheme, the secret key is revealed
to both ℬ and 𝒞. As a consequence, the secret information of any under-
lying cryptographic tool we use to build unclonable encryption could be
revealed. For example, consider the following construction: to encrypt 𝑚 ∈
{0, 1}, compute (𝑟,𝖯𝖱𝖥(𝑘, 𝑟)⊕𝑚), where 𝑘 $←− {0, 1}𝜆 is the pseudorandom

function key and 𝑟
$←− {0, 1}𝜆 is a random tag. In the security experiment,

the secret key, namely 𝑘, will be revealed to both ℬ and 𝒞. This restricts the
type of cryptographic tools we can use to build unclonable encryption.
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– Another challenge is to perform security reductions. Typically, we use the
adversary to come up with a reduction that breaks a cryptographic game
that is either conjectured to be or provably hard. However, this is tricky
when there are two adversaries, ℬ and 𝒞. Which of the two adversaries do
we use to break the underlying game? Suppose we decide to use ℬ to break
the game. For all we know,𝒜 could have simply handed over the ciphertext
it received to ℬ and clearly, ℬ cannot be used to break the underlying game.
Even worse, Alice can send a superposition of ℬ getting the ciphertext and
𝒞 receiving nothing v.s. 𝒞 receiving the ciphertext and ℬ getting nothing.

– Even if we somehow manage to achieve unclonable indistinguishability
for 1-bit messages, it is a priori unclear how to achieve unclonable indis-
tinguishability for multi-bit messages. In classical cryptography, the stan-
dard transformation goes from encryption of 1-bit messages to encryption
of multi-bit messages via a hybrid argument. This type of argument fails
in the setting of unclonable encryption. Let us illustrate why: suppose we
encrypt a 2-bit message 𝑚 = 𝑚1||𝑚2 by encrypting 1-bit messages 𝑚1 and
𝑚2, denoted respectively by 𝜌1 and 𝜌2. This scheme is unfortunately inse-
cure. An encryption of 11 can be (simultaneously) distinguished from an
encryption of 00 by a non-local adversary (𝒜,ℬ, 𝒞): 𝒜 can send 𝜌1 to ℬ and
𝜌2 to 𝒞. Since, both ℬ and 𝒞 receive the secret key, they can check whether
the underlying message was 1 or 0.

– A recent result by Majenz, Schaffner and Tahmasbi [16] explores the dif-
ficulties in constructing unclonable encryption schemes. They show that
any unclonable encryption scheme satisfying indistinguishability property
needs to have ciphertexts, when represented as density matrices, with suf-
ficiently large eigenvalues. As a consequence, it was shown that [9] did not
satisfy unclonable-indistinguishability property. Any unclonable encryp-
tion scheme we come up with needs to overcome the hurdles set by [16].

We take an example below that concretely highlights some of the challenges
explained above.

Example: Issues with using Extractors. For instance, we could hope to use ran-
domness extractors. To encrypt a message 𝑚, we output (𝜌𝑥, 𝑐𝑟,𝖤𝗑𝗍(𝑟, 𝑥) ⊕𝑚),
where 𝜌𝑥 is an unclonable encryption of 𝑥 satisfying the weaker unclonability
property, 𝑐𝑟 is a classical encryption of a random seed 𝑟, and 𝖤𝗑𝗍 is an extractor
using seed 𝑟. The intuition for this construction is that unclonable security im-
plies that at least one of the two parties, say ℬ cannot predict 𝑥, and therefore 𝑥
has min-entropy conditioned on ℬ’s view. Therefore, 𝖤𝗑𝗍(𝑟, 𝑥) extracts bits that
are statistically random against ℬ, and thus completely hides 𝑚.

There are a few problems with this proposal. First, since 𝒜 generates ℬ’s
state and has access to the entire ciphertext, the conditional distribution of 𝑥
given Bob’s view will depend on 𝑐𝑟. This breaks the extractor application, since
it requires 𝑟 to be independent. One could hope to perform a hybrid argument
to replace 𝑐𝑟 with a random ciphertext, but this is not possible: ℬ eventually
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learns the decryption key for 𝑐𝑟 and would be able to distinguish such a hybrid.
This example already begins to show how the usual intuition fails.

A deeper problem is that extractor definitions deal with a single party,
whereas unclonable encryption has two recipient parties. To illustrate the is-
sue, note that it is actually not the case that 𝑥 has min-entropy against one of
the parties: if 𝒜 randomly sends the ciphertext to ℬ or 𝒞, each one of them can
predict 𝑥 with probability 1/2, so the min-entropy is only 1. In such a case the
extractor guarantee is meaningless. Now, in this example one can condition on
the message 𝒜 sends to ℬ, 𝒞, and once conditioned it will in fact be the case
that one of the two parties has high min-entropy. But other strategies are pos-
sible which break such a conditioning argument. For example, 𝒜 could send
messages that are superposition v.s. ℬ getting the ciphertext (and 𝒞 nothing) v.s.
𝒞 getting the ciphertext (and ℬ nothing). By being in superposition, we can no
longer condition on which party receives the ciphertext.

1.2 Our Results

We overcome the aforementioned challenges and make progress on addressing
both questions Q1 and Q2. We start with our results on unclonable encryption
before moving onto copy-protection.

Unclonable Encryption. For the first time, we establish the feasibility of unclon-
able encryption. Our result is in the quantum random oracle model. Specifically,
we prove the following.

Theorem 1 (Informal). There exists an unconditionally secure one-time encryption
scheme satisfying unclonable indistinguishability in the quantum random oracle model.

Our construction is simple: we make novel use of coset states considered in
recent works [10]. However, our analysis is quite involved: among many other
things, we make use of threshold projective implementation introduced by
Zhandry [25].

A recent work [5] showed a generic transformation from one-time unclon-
able encryption to public-key unclonable encryption6. By combining the above
theorem with the generic transformation of [5], we obtain a public-key unclon-
able encryption satisfying the unclonable indistinguishability property.

Theorem 2 (Informal). Assuming the existence of post-quantum public-key encryp-
tion, there exists a post-quantum public-key encryption scheme satisfying the unclon-
able indistinguishability property in the quantum random oracle model.

It is natural to understand whether we can achieve unclonable encryption in
the plain model. Towards understanding this question, we show that a class of

6 While their result demonstrates that the generic transformation preserves the unclon-
ability property, we note that the same transformation preserves unclonable indistin-
guishability.
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unclonable encryption schemes, that we call deterministic schemes, are impos-
sible to achieve. By ‘deterministic’, we mean that the encryptor is a unitary 𝑈
and the decryptor is 𝑈†. Moreover, the impossibility holds even if the encryptor
and the decryptor are allowed to run in exponential time!

In more detail, we show the following.

Theorem 3 (Informal). There do not exist unconditionally secure deterministic one-
time encryption schemes satisfying the unclonable indistinguishability property.

In light of the fact that any classical one-time encryption scheme can be made
deterministic without loss of generality7, we find the above result to be surpris-
ing. An interesting consequence of the above result is an alternate proof that
the conjugate encryption scheme of [9] does not satisfy unclonable indistigu-
ishability8. This was originally proven by [16].

We can overcome the impossibility result by either devising an encryption
algorithm that traces out part of the output register (in other words, performs
non-unitary operations) or the encryption scheme is based on computational
assumptions.

Copy-Protection for Point Functions. We also make progress on Q2. We show that
there exists copy-protection for single-bit output functions with optimal secu-
rity. Prior work by Coladangelo, Majenz and Poremba [11] achieved a copy-
protection scheme for single-bit output point functions that only achieved con-
stant security.

We show the following.

Theorem 4 (Informal). There exists a copy-protection scheme for single-bit output
point functions in the quantum random oracle model.

While there are generic transformations from unclonable encryption to copy-
protection for point functions explored in the prior works [11, 5], the transfor-
mations only work for multi-bit point functions. Our construction extensively
makes use of the techniques for achieving unclonable encryption (Theorem 1).
Our result takes a step closer in understanding the classes of functions for
which the feasibility of copy-protection can be established in the plain model.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we cover all the nec-
essary preliminaries, including Jordan’s lemma, measuring success probability
of a quantum adversary and the definitions of unclonable encryption schemes.
Followed by Section 3, we recall coset states and their properties. We intro-
duce a new game called “strengthened MOE games in the QROM” and prove

7 We can always include the randomness used in the encryption as part of the secret
key.

8 It is easy to see why conjugate encryption of multi-bit messages is insecure. The inse-
curity of conjugate encryption of 1-bit messages was first established by [16] .
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security in this game. This part is our main result and consists of most tech-
nique novelties. In Section 4, we build our unclonable encryption on the new
property. In the final section (Section 5), we present our construction for copy-
protection of single-output point functionsSimilar techniques as in Section 3 are
used. Most details are omitted and can be found in the full version, as well as
our impossibility result..

1.4 Technical Overview

Attempts based on Wiesner States. We start by recalling the unclonable encryp-
tion scheme proposed by Broadbent and Lord [9]. The core idea is to encrypt a
message 𝑚 under a randomly chosen secret key 𝑥 and encode 𝑥 into an unclon-
able quantum state 𝜌𝑥. Intuitively, for any splitting adversary (𝒜,ℬ, 𝒞), there is
no way for 𝒜 to split 𝜌𝑥 into two quantum states, such that no-communicating
ℬ and 𝒞 can both recover enough information about 𝑥 to decrypt 𝖤𝗇𝖼(𝑥,𝑚).

A well-known choice of no-cloning states is the famous Wiesner conjugate
coding [24]. For a string 𝑥 = 𝑥1𝑥2 · · ·𝑥𝜆 ∈ {0, 1}𝜆, 𝜆 bases are chosen uniformly
at random, one for each 𝑥𝑖. Let 𝜃𝑖 denote the basis for 𝑥𝑖. If 𝜃𝑖 is 0, 𝑥𝑖 is encoded
under the computational basis {|0⟩ , |1⟩}; otherwise, 𝑥𝑖 is encoded under the
Hadamard basis {|+⟩ , |−⟩}. The conjugate coding of 𝑥 under basis 𝜃 is then
denoted by |𝑥𝜃⟩. By knowing 𝜃, one can easily recover 𝑥 from the Wiesner state.

The unclonability of Wiesner conjugate coding (or Wiesner states for short)
is well understood and characterized by monogamy-of-entanglement games (MOE
games) in [20, 9]. In the same paper, Broadbent and Lord show that no strategy
wins the following MOE game9 with probability more than 0.85𝜆.

– A challenger samples uniformly at random 𝑥, 𝜃 ∈ {0, 1}𝜆 and sends
|𝑥𝜃⟩ to 𝒜.

– 𝒜 taking the input from the challenger, produces a bipartite state to ℬ
and 𝒞.

– The non-communicating ℬ and 𝒞 then additionally receive the secret
basis information 𝜃 and make a guess 𝑥ℬ, 𝑥𝒞 for 𝑥 respectively.

– The splitting adversary (𝒜,ℬ, 𝒞) wins the game if and only if 𝑥ℬ =
𝑥𝒞 = 𝑥.

Fig. 1. MOE Games for Wiesner States.

A natural attempt to construct unclonable encryption schemes is by com-
posing one-time pad with Wiesner states. A secret key is the basis information
𝜃 ∈ {0, 1}𝑛. An encryption algorithm takes the secret key 𝜃 and a plaintext 𝑚,

9 This is a variant of MOE games discussed in [20]. We will be using this notation
throughout the paper.
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it samples a 𝑥 ∈ {0, 1}𝑛 and outputs 𝑚 ⊕ 𝑥 together with the Wiesner conju-
gate coding of 𝑥, i.e. |𝑥𝜃⟩. However, such scheme can never satisfy unclonable
indistinguishability. Recall that unclonable indistinguishability requires either
ℬ or 𝒞 can not distinguish whether the ciphertext is an encryption of message
𝑚0 or 𝑚1. Broadbent and Lord observe that although it is hard for ℬ and 𝒞 to
completely recover the message, they can still recover half of the message and
hence simultaneously distinguish with probability 1.

Towards unclonable indistinguishability, they introduce a random oracle
𝐻 : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝑛 in their construction (Figure 2). If an adver-
sary can distinguish between 𝑚0 ⊕ 𝐻(𝛼, 𝑥) and 𝑚1 ⊕ 𝐻(𝛼, 𝑥), it must query
𝐻(𝛼, 𝑥) at some point; hence, one can extract 𝑥 from this adversary by measur-
ing a random query. Following the same reasoning, one may hope to base the
security (of Figure 2) on the MOE games (Figure 1), by extracting 𝑥 from both
parties.

𝖦𝖾𝗇(1𝜆): on input 𝜆, outputs uniformly random (𝛼, 𝜃) ∈ {0, 1}2𝜆.
𝖤𝗇𝖼𝐻((𝛼, 𝜃),𝑚): samples 𝑥 ∈ {0, 1}𝜆, outputs (|𝑥𝜃⟩ ,𝑚⊕𝐻(𝛼, 𝑥)).
𝖣𝖾𝖼𝐻((𝛼, 𝜃), (|𝑥𝜃⟩ , 𝑐)): recovers 𝑥 from |𝑥𝜃⟩, outputs 𝑐⊕𝐻(𝛼, 𝑥).

Fig. 2. Unclonable Encryption by Broadbent and Lord.

The above idea, thought intuitive, is hard to instantiate. It will require si-
multaneous extraction of the secret 𝑥 from both ℬ and 𝒞. Since ℬ and 𝒞 can be
highly entangled with each other, a successful extraction of 𝑥 on ℬ’s register
may always result in an extraction failure on the other register. Broadbent and
Lord use a “simultaneous” variant of the so called “O2H” (one-way-to-hiding)
lemma [21] to prove their scheme satisfy unclonable indistinguishability for un-
entangled adversaries ℬ, 𝒞, or for messages with constant length. The unclon-
able indistinguishability for general adversaries and message spaces remains
quite unknown.

Even worse, Majenz, Schaffner and Tahmasbi [16] show that there is an in-
herent limitation to this simultaneous variant of O2H lemma. They give an ex-
plicit example that shatters the hope of proving unclonable indistinguishability
of the construction in [9] using this lemma.

Instantiating [9] using Coset States. Facing with the above barrier, we may resort
to other states that possess some forms of unclonability. One candidate is the so
called “coset states”, first proposed by Vidick and Zhang [23] in the context of
proofs of quantum knowledge and later studied by Coladangelo et al. [10] for
copy-protection schemes.
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A coset state is described by three parameters: a subspace 𝐴 ⊆ 𝔽𝜆
2 of dimen-

sion 𝜆/2 and two vectors 𝑠, 𝑠′ ∈ 𝔽𝜆
2 denoting two cosets 𝐴+ 𝑠 and 𝐴⊥+ 𝑠′10; we

write the state as |𝐴𝑠,𝑠′⟩. Coset states have many nice properties, among those
we only need the followings:

1. Given |𝐴𝑠,𝑠′⟩ and a classical description of subspace𝐴, an efficient quantum
algorithm can compute both 𝑠 and 𝑠′.

2. No adversary can win the MOE game (Figure 3) for coset states with prob-
ability more than

√
𝑒 · (cos(𝜋/8))𝜆 (first proved in [10] and later improved

by Culf and Vidick [12]).

– A challenger samples uniformly at random a subspace 𝐴 ⊆ 𝔽𝜆
2 of di-

mension 𝜆/2 𝑠, 𝑠′ ∈ 𝔽𝜆
2 and sends |𝐴𝑠,𝑠′⟩ to 𝒜.

– 𝒜 taking the input from the challenger, produces a bipartite state to ℬ
and 𝒞.

– The non-communicating ℬ and 𝒞 then additionally receive a classical
description of the subspace 𝐴 and make a guess 𝑠ℬ, 𝑠

′
ℬ, 𝑠𝒞 , 𝑠

′
𝒞 for 𝑠, 𝑠′

respectively.
– The splitting adversary (𝒜,ℬ, 𝒞) wins the game if and only if 𝑠ℬ =

𝑠𝒞 = 𝑠, 𝑠′ℬ = 𝑠′𝒞 = 𝑠′.

Fig. 3. MOE Games for Coset States.

Readers may already notice the similarity between Wiesner states and coset
states. If we substitute the basis information 𝜃 with 𝐴 and the secret 𝑥 with
𝑠||𝑠′, we get coset states and their corresponding MOE games. Hence, we can
translate the construction in [9] using the languages of coset states. A question
naturally rises: if these two kinds of states are very similar, why replacing Wies-
ner states with coset states even matters?

Indeed, they differ on one crucial place. Let us come back to Wiesner states.
As shown by [15] in the setting of private key quantum money, given |𝑥𝜃⟩ to-
gether with an oracle 𝑃𝑥 that outputs 1 only if input 𝑦 = 𝑥, there exists an
efficient quantum adversary that learns 𝑥 without knowing 𝜃. This further ap-
plies to the MOE games for Wiesner states: if 𝒜 additionally gets oracle access
to 𝑃𝑥, the MOE game is no longer secure.

MOE games for coset states remain secure if oracles for checking 𝑠 and 𝑠′

are given. More formally, let 𝑃𝐴+𝑠 be an oracle that outputs 1 only if the input
𝑦 ∈ 𝐴+𝑠, similarly for 𝑃𝐴⊥+𝑠′ . No adversary (𝒜,ℬ, 𝒞) can win the MOE games
for coset states with more than some exponentially small probability in 𝜆, even

10 There are many vectors in 𝐴 + 𝑠. In the rest of the discussion, we assume 𝑠 is the
lexicographically smallest vector in 𝐴+ 𝑠. Similarly for 𝑠′.



10 P. Ananth, F. Kaleoglu, X. Li, Q. Liu, and M. Zhandry

if 𝒜,ℬ, 𝒞 all query 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ polynomially many times. We call this
game MOE game for coset states with membership checking oracles.

We now give our construction of unclonable encryption that satisfies un-
clonable indistinguishability in Figure 4. In our construction, we get rid of the
extra input 𝛼 in [9] construction. We believe 𝛼 can be similarly removed in their
construction as well. Also note that in our construction, we only require coset
states and random oracles. The membership checking oracles will only be given
to the adversary when we prove its security. We indeed prove a stronger secu-
rity guarantee. Due to this, we can not prove the security of their construction
using Wiesner states following the same idea; nonetheless, we do not know
how to disprove it. We leave it as an interesting open question.

𝖦𝖾𝗇(1𝜆): on input 𝜆, outputs uniformly random subspace 𝐴 ⊆ 𝔽𝜆
2 of di-

mension 𝜆/2.
𝖤𝗇𝖼𝐻(𝐴,𝑚): samples 𝑠, 𝑠′ ∈ 𝔽𝜆

2
a, outputs (|𝐴𝑠,𝑠′⟩ ,𝑚⊕𝐻(𝑠, 𝑠′)).

𝖣𝖾𝖼𝐻(𝐴, (|𝐴𝑠,𝑠′⟩ , 𝑐)): recovers 𝑠, 𝑠′ from the coset state, outputs 𝑐 ⊕
𝐻(𝑠, 𝑠′).

a We again require 𝑠, 𝑠′ to be the lexicographically smallest vector in 𝐴+ 𝑠
and 𝐴⊥ + 𝑠′.

Fig. 4. Our Unclonable Encryption Scheme.

Basing Security on Reprogram Games. Now we look at what property we require
for coset states to establish unclonable indistinguishability. We will focus on
the case 𝑛 = 1 for length-1 messages in this section. By a sequence of stan-
dard variable substitution, unclonable indistinguishability of our scheme can
be based on the following security game (Figure 5) in the identical challenge
mode, where each of ℬ, 𝒞 tries to identify whether the oracle has been repro-
grammed or not. We want to show any adversary (𝒜,ℬ, 𝒞) only achieves suc-
cessful probability 1/2+𝗇𝖾𝗀𝗅; when ℬ gets the coset state and 𝒞 makes a random
guess, they win with probability 1/2.

Note that in the above reprogram game (Figure 5), 𝒜 has no access to 𝐻 .
This is different from unclonable indistinguishability games or MOE games.
Nevertheless, we show the oracle access to 𝐻 does not help 𝒜 and thus can be
safely removed by introducing a small loss.

The security of the reprogram games in the identical challenge mode can be
reduced to the security in the independent challenge mode. A careful analysis
of Jordan’s lemma (Section 2.3) is required to show such a reduction. We believe
that this reduction is highly non-trivial. However, since it is not the place that
highlights the difference between Wiesner states and coset states, we leave it to
the main body (Section 3.3).
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– 𝐻 be a random oracle with binary range, 𝐻 : 𝔽𝜆
2 × 𝔽𝜆

2 → {0, 1}.
Additionally, 𝒜,ℬ, 𝒞 get oracle access to 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ .

– A challenger samples a coset state |𝐴𝑠,𝑠′⟩ and sends (|𝐴𝑠,𝑠′⟩ , 𝐻(𝑠, 𝑠′))
to 𝒜.

– 𝒜 (having no access to the random oracle 𝐻) taking the input from the
challenger, produces a bipartite state to ℬ and 𝒞.

– The non-communicating ℬ and 𝒞 then receive a classical description of
the subspace 𝐴:
∙ Let 𝐻0 := 𝐻 be the original random oracle.
∙ Let 𝐻1 be identical to 𝐻 , except the outcome on (𝑠, 𝑠′) is flipped.
∙ (Identical Challenge Mode): Flip a coin 𝑏, both ℬ and 𝒞 get oracle

access to 𝐻𝑏.
∙ (Independent Challenge Mode): Flip two coins 𝑏ℬ, 𝑏𝒞 , ℬ has oracle

access to 𝐻𝑏ℬ and 𝒞 gets oracle access to 𝐻𝑏𝒞 .
– ℬ, 𝒞 makes a guess 𝑏′, 𝑏′′ respectively.
– The adversary (𝒜,ℬ, 𝒞) wins the game if and only if 𝑏′ = 𝑏′′ = 𝑏 (in the

identical challenge mode), or 𝑏′ = 𝑏ℬ and 𝑏′′ = 𝑏𝒞 (in the independent
challenge mode).

Fig. 5. Reprogram Games for Coset States in the QROM

The remaining is to show the security of the game in the independent chal-
lenge mode. Inspired by the work of [26] which initiates the study of measuring
success probability of a quantum program, we show there is an efficient proce-
dure that operates locally on both the entangled adversaries (ℬ, 𝒞) and outputs
(ℬ′, 𝑝ℬ), (𝒞′, 𝑝𝒞) such that: informally,

– ℬ′ and 𝒞′ are un-entangled11.
– The success probability of ℬ′ on guessing 𝐻0 or 𝐻1 is 𝑝ℬ.
– The success probability of 𝒞′ on guessing 𝐻0 or 𝐻1 is 𝑝𝒞 .
– The expectation of 𝑝ℬ · 𝑝𝒞 is equal to (ℬ, 𝒞)’s success probability in the re-

program game in the independent challenge mode.

The above procedure requires to run ℬ′ and 𝒞′ on 𝐻 and 𝐻𝑠,𝑠′ . In other words,
the procedure should be able to reprogram 𝐻 on the input (𝑠, 𝑠′). Since the pro-
cedure will be used in the reduction for breaking MOE games for coset states, it
should not know 𝑠 or 𝑠′, but only knows 𝐴 and 𝑃𝐴+𝑠, 𝑃𝐴⊥+𝑠′ . Nonetheless, we
show with the membership checking oracle, such reprogramming is possible:

𝐻1 =

{︃
¬𝐻(𝑧, 𝑧′) 𝑄𝑠(𝑧) = 1 and 𝑄𝑠′(𝑧

′) = 1

𝐻(𝑧, 𝑧′) Otherwise
,

11 Indeed, ℬ′ and 𝒞′ satisfy a weaker guarantee than being un-entangled. They can still
be entangled but the same analysis we discuss applies to this weaker guarantee. For
ease of presentation, we assume that they are un-entangled.
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where 𝑄𝑠 is the point function that only outputs 1 on 𝑠, similarly for 𝑄𝑠′ . The
remaining is to show 𝑄𝑠 (or 𝑄𝑠′) can be instantiated by the classical description
of 𝐴 and 𝑃𝐴+𝑠 (or 𝑃𝐴⊥+𝑠′ respectively). 𝑄𝑠 can be implemented by (1) check if
the input 𝑧 is in 𝐴 + 𝑠, (2) check if the input 𝑧 is the lexicographically smallest
in 𝐴 + 𝑠. Step (1) can be done via 𝑃𝐴+𝑠. Step (2) can be done by knowing 𝐴
and some 𝑧 ∈ 𝐴 + 𝑠 (which is known from step (1)): one can check if there
exists some lexicographically smaller 𝑧* such that (𝑧 − 𝑧*) ∈ 𝗌𝗉𝖺𝗇(𝐴); this can
be done efficiently by enumerating each coordinate and Gaussian elimination.
Thus, both 𝑄𝑠 and 𝑄𝑠′ can be implemented.

Without membership checking oracle, we do not know how to reprogram
a random oracle, or run the above procedure. Thus the proof fails for Wiesner
states.

Finally, we prove the security of reprogram games in the independent chal-
lenge mode. If (𝒜,ℬ, 𝒞) has non-trivial success probability 1/2 + 𝛾 for some
large 𝛾, the above procedure must output large 𝑝ℬ, 𝑝𝒞 > 1/2 + 𝛾/2 with non-
negligible probability. If ℬ′ never queries 𝐻0 or 𝐻1 on (𝑠, 𝑠′), the best prob-
ability it can achieve is 1/2. Thus, by measuring a random query of ℬ′, we
can extract 𝑠, 𝑠′ with non-negligible probability. Similarly for 𝒞′. This violates
the MOE games for coset states with membership checking oracles, a contra-
diction. Therefore, the security of the reprogram in the independent mode is
established.

1.5 Related Work

Unclonable Encryption. Broadbent and Lord [9] demonstrated the feasibility
of unclonable encryption satisfying the weaker unclonability property. They
present two constructions. The first construction based on Wiesner states achieve
0.85𝑛-security (i.e., the probability that both ℬ and 𝒞 simultaneously guess the
message is at most 0.85𝑛), where 𝑛 is the length of the message being encrypted.
Their second construction, in the quantum random oracle model, achieves 9

2𝑛 +
𝗇𝖾𝗀𝗅(𝜆)-security. In the same work, they show that any construction satisfy-
ing 2−𝑛-unclonability implies unclonable indistinguishability property. Follow-
ing Broadbent and Lord, Ananth and Kaleoglu [5] construct public-key and
private-key unclonable encryption schemes from computational assumptions.
Even [5] only achieve unclonable encryption with the weaker unclonability
guarantees.

Majenz, Schaffner and Tahmasbi [16] explore the difficulties in construct-
ing unclonable encryption schemes. In particular, they show that any scheme
achieving unclonable indistinguishability should have ciphertexts with large
eigenvalues. Towards demonstrating a better bound for unclonability, they also
showed inherent limitations in the proof technique of Broadbent and Lord.

Copy-Protection. Copy-protection was first introduced by Aaronson [1]. Recently,
Aaronson, Liu, Liu, Zhandry and Zhang [3] demonstrated the existence of copy-
protection in the presence of classical oracles. Coladangelo, Majenz and Poremba
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[11] showed that copy-protection for multi-bit output point functions exists in
the quantum random oracle model. They also showed that copy-protection for
single-bit output point functions exists in the quantum random oracle model
with constant security.

Ananth and La Placa [6] showed a conditional result that copy-protection
for arbitrary unlearnable functions, without the use of any oracles, does not ex-
ist. Recently, Coladangelo, Liu, Liu and Zhandry [10], assuming post-quantum
indistinguishability obfuscation and one-way functions, demonstrated the first
feasibility of copy-protection for a non-trivial class of functions (namely, pseu-
dorandom functions) in the plain model. Another recent work by Broadbent,
Jeffrey, Lord, Podder and Sundaram [8] studies copy-protection for a novel (but
weaker) variant of copy-protection.

2 Preliminaries

2.1 Basics

We will briefly introduce some basic notations in our work and some prelimi-
naries on quantum computing in this section.

We denote by 𝜆 the security parameter. We write 𝗉𝗈𝗅𝗒(·) to denote an arbi-
trary polynomial and 𝗇𝖾𝗀𝗅(·) to denote an arbitrary negligible function. We say
that an event happens with overwhelming probability if the probability is at least
1− 𝗇𝖾𝗀𝗅(𝜆).

Readers unfamiliar with quantum computation and quantum information
could refer to [17] for a comprehensive introduction.

Given Hilbert spaceℋ, we write 𝒮(ℋ) for the unit sphere set {𝑥 : ||𝑥||2 = 1}
in ℋ, 𝒰(ℋ) for the set of unitaries acting on Hilbert space ℋ, 𝒟(ℋ) for the set
of density operators on ℋ. We write ℋ𝑋 to denote the Hilbert space associated
with a quantum register 𝑋 . Given two quantum states 𝜌, 𝜎, we denote the (nor-
malized) trace distance between them by

𝖳𝖣(𝜌, 𝜎) :=
1

2
‖𝜌− 𝜎‖𝗍𝗋 .

We say that two states 𝜌, 𝜎 are 𝛿-close if 𝖳𝖣(𝜌, 𝜎) ≤ 𝛿.
A positive operator-valued measurement (POVM) on the Hilbert space ℋ

is defined as a set of positive semidefinite operators {𝐸𝑖} on ℋ that satisfies∑︀
𝑖𝐸𝑖 = 𝐼 . A projective measurement means the case that 𝐸𝑖s are projectors.
A common technique in quantum computation is uncomputing [7]. A quan-

tum algorithm could be modeled as a unitary 𝑈 acting on some hilbert space
ℋ, then perform measurement on output registers on without loss of general-
ity. By uncomputation we mean that acting 𝑈† on the same hilbert space after
the measurement. It is easy to examine that if the measurement outputs same
result with overwhelming probability, the trace distance between the final state
and the original state is negligible.
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Quantum Oracle Algorithms A quantum oracle for a function 𝑓 is defined as
the controlled unitary 𝑂𝑓 : 𝑂𝑓 |𝑥⟩ |𝑦⟩ = |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩. We define a query to the
quantum oracle as applying 𝑂𝑓 on the given quantum state once.

We say that a quantum adversary𝒜with access to oracle(s) is query-bounded
if it makes at most 𝑝(𝜆) queries to each oracle for some polynomial 𝑝(·).

2.2 Quantum Random Oracle Model (QROM)

This is the quantum analogue of Random Oracle Model, where we model a
hash function 𝐻 as a random classical function, and it can be accessed by an
adversary in superposition, modeled by the unitary 𝑂𝐻 .

The following theorem, paraphrased from [7], will be used for reprogram-
ming oracles without adversarial detection on inputs which are not queried
with large weight:

Theorem 5 ([7]). Let𝒜 be an adversary with oracle access to 𝐻 : {0, 1}𝑚 → {0, 1}𝑛
that makes at most 𝑇 queries. Define |𝜑𝑖⟩ as the global state after 𝒜 makes 𝑖 queries,
and 𝑊𝑦(|𝜑𝑖⟩) as the sum of squared amplitudes in |𝜑𝑖⟩ of terms in which 𝒜 queries 𝐻
on input 𝑦. Let 𝜖 > 0 and let 𝐹 ⊆ [0, 𝑇 − 1] × {0, 1}𝑚 be a set of time-string pairs
such that

∑︀
(𝑖,𝑦)∈𝐹 𝑊𝑦(|𝜑𝑖⟩) ≤ 𝜖2/𝑇 .

Let𝐻 ′ be an oracle obtained by reprogramming𝐻 on inputs (𝑖, 𝑦) ∈ 𝐹 to arbitrary
outputs. Define |𝜑′𝑖⟩ as above for 𝐻 ′. Then, 𝖳𝖣(|𝜑𝑇 ⟩ , |𝜑′𝑇 ⟩) ≤ 𝜖/2.

Note that the theorem can be straightforwardly generalized to mixed states
by convexity.

2.3 More on Jordan’s lemma

We first recall the following version of Jordan’s lemma, adapted from [19] and
[22]:

Lemma 1. Letℋ be a finite-dimensional Hilbert space and let 𝛱0, 𝛱1 be any two pro-
jectors in ℋ, then there exists an orthogonal decomposition of ℋ into one-dimensional
and two dimensional subspaces ℋ = ⊕𝑖𝒮𝑖 that are invariant under both 𝛱0 and 𝛱1;
each 𝒮𝑖 is spanned by one or two eigenvectors of (𝛱0 +𝛱1)/2.

Whenever 𝒮𝑖 is 2-dimensional, there is a basis for it in which𝛱0 and𝛱1 (restricting
on 𝒮𝑖) take the form:

𝛱0,𝒮𝑖 =

(︂
1 0
0 0

)︂
and 𝛱1,𝒮𝑖 =

(︂
𝑐2𝑖 𝑐𝑖𝑠𝑖
𝑐𝑖𝑠𝑖 𝑠2𝑖

)︂
,

where 𝑐𝑖 = cos 𝜃𝑖 and 𝑠𝑖 = sin 𝜃𝑖 for some principal angle 𝜃𝑖 ∈ [0, 𝜋/2].

Proof. The proof can be found in the references above.

We additionally show a relation between two eigenvalues in the same Jor-
dan block.
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Lemma 2. For any two projectors 𝛱0, 𝛱1, let 𝒮𝑖 be a 2-dimensional subspace in the
above decomposition. Let |𝜑0⟩ , |𝜑1⟩ be two eigenvectors of (𝛱0 +𝛱1)/2 that span 𝒮𝑖
and 𝜆0, 𝜆1 be their eigenvalues. We have 𝜆0 + 𝜆1 = 1.

Proof. Restricting on 𝒮𝑖, we have:

𝜆0 + 𝜆1 = Tr [(𝛱0,𝒮𝑖 +𝛱1,𝒮𝑖)/2] = (1 + 𝑐2𝑖 + 𝑠2𝑖 )/2 = 1.

Corollary 1. For any two projectors 𝛱0, 𝛱1, let |𝜑0⟩ and |𝜑1⟩ be two eigenvectors of
(𝛱0 +𝛱1)/2 with eigenvalues 𝜆0, 𝜆1. If 𝜆0 + 𝜆1 ̸= 1, then

⟨𝜑0|𝛱0|𝜑1⟩ = ⟨𝜑0|𝛱1|𝜑1⟩ = 0.

Proof. If 𝜆0+𝜆1 ̸= 1, by Lemma 2, |𝜑0⟩ and |𝜑1⟩ can not be in the same Jordan
block. Because |𝜑0⟩ still belongs to the corresponding subspace 𝒮0 of its Jordan
block after the action of 𝛱0, 𝛱0 |𝜑0⟩ is orthogonal to |𝜑1⟩. Similarly, 𝛱1 |𝜑0⟩ is
orthogonal to |𝜑1⟩.

2.4 Measuring Success Probability

In this section we list theorems about simultaneously approximating the eigen-
values of a bipartite quantum program which are crucial tools in our security
proofs.

Theorem 6 (Inefficient Measurement). Let 𝒫 = (𝑃,𝑄) be a binary outcome
POVM. Let 𝒟 be the set of eigenvalues of 𝑃 . There exists a projective measurement
ℰ = {𝐸𝑝}𝑝∈𝒟 with index set 𝒟 that satisfies the following: for every quantum state 𝜌,
let 𝜌𝑝 be the sub-normalized post-measurement state obtained after measuring 𝜌 with
respect to 𝐸𝑝. That is, 𝜌𝑝 = 𝐸𝑝𝜌𝐸𝑝. We have,

(1) For every 𝑝 ∈ 𝒟, 𝜌𝑝 is an eigenvector of 𝑃 with eigenvalue 𝑝;
(2) The probability of 𝜌 when measured with respect to 𝑃 is Tr[𝑃𝜌] =

∑︀
𝑝∈𝒟 Tr[𝑃𝜌𝑝].

A measurement ℰ which satisfies these properties is the measurement in the
common eigenbasis of 𝑃 and 𝑄 = 𝐼 − 𝑃 (due to simultaneous diagonaliza-
tion theorem, such common eigenbasis exists since 𝑃 and 𝑄 commute). Let 𝑃
have eigenbasis {|𝜓𝑖⟩} with eigenvalues {𝜆𝑖}. Without loss of generality, let us
assume 𝜌 is a pure state |𝜓⟩ ⟨𝜓| and {𝜆𝑖} has no duplicated eigenvalues. We
write |𝜓⟩ in the eigenbasis of 𝑃 : |𝜓⟩ =

∑︀
𝑖 𝛼𝑖 |𝜓𝑖⟩. Applying ℰ will result in an

outcome 𝜆𝑖 and a leftover state |𝜓𝑖⟩with probability |𝛼𝑖|2.
Looking ahead, we will write a quantum program under the eigenbasis of

𝑃 in the proof of the strengthened MOE game.

Theorem 7 (Inefficient Threshold Measurement). Let 𝒫 = (𝑃,𝑄) be a binary
outcome POVM. Let 𝑃 have eigenbasis {|𝜓𝑖⟩} with eigenvalues {𝜆𝑖}. Then, for every
𝛾 ∈ (0, 1) there exists a projective measurement ℰ𝛾 = (𝐸≤𝛾 , 𝐸>𝛾) such that:

(1) 𝐸≤𝛾 projects a quantum state into the subspace spanned by {|𝜓𝑖⟩} whose eigen-
values 𝜆𝑖 satisfy 𝜆𝑖 ≤ 𝛾;



16 P. Ananth, F. Kaleoglu, X. Li, Q. Liu, and M. Zhandry

(2) 𝐸>𝛾 projects a quantum state into the subspace spanned by {|𝜓𝑖⟩} whose eigen-
values 𝜆𝑖 satisfy 𝜆𝑖 > 𝛾.

Similarly, for every 𝛾 ∈ (0, 1/2), there exists a projective measurement ℰ ′𝛾 =

( ̃︀𝐸≤𝛾 , ̃︀𝐸>𝛾) such that:

(1) ̃︀𝐸≤𝛾 projects a quantum state into the subspace spanned by {|𝜓𝑖⟩} whose eigen-
values 𝜆𝑖 satisfy |𝜆𝑖 − 1

2 | ≤ 𝛾;
(2) ̃︀𝐸>𝛾 projects a quantum state into the subspace spanned by {|𝜓𝑖⟩} whose eigen-

values 𝜆𝑖 satisfy |𝜆𝑖 − 1
2 | > 𝛾.

It is easy to see how to construct ℰ𝛾 , ℰ ′𝛾 from ℰ , e.g. by setting

̃︀𝐸≤𝛾 =
∑︁

𝑖:|𝜆𝑖−1/2|≤𝛾

𝐸𝜆𝑖 .

Note that for any quantum state 𝜌, Tr[ ̃︀𝐸>𝛾𝜌] is the weight over eigenvectors
with eigenvalues 𝜆 that are 𝛾 away from 1/2.

Below, we give the formal theorem statement about efficient approximated
threshold measurement, which is adapted from Theorem 6.2 in [26] and Lemma
3 in [3].

Theorem 8 (Efficient Threshold Measurement). Let 𝒫𝑏 = (𝑃𝑏, 𝑄𝑏) be a bi-
nary outcome POVM over Hilbert space ℋ𝑏 that is a mixture of projective measure-
ments for 𝑏 ∈ {1, 2}. Let 𝑃𝑏 have eigenbasis {|𝜓𝑏

𝑖 ⟩} with eigenvalues {𝜆𝑏𝑖}. For every
𝛾1, 𝛾2 ∈ (0, 1), 0 < 𝜖 < min(𝛾1/2, 𝛾2/2, 1−𝛾1, 1−𝛾2) and 𝛿 > 0, there exist efficient
binary-outcome quantum algorithms, interpreted as the POVM element corresponding
to outcome 1, 𝖠𝖳𝖨𝜖,𝛿𝒫𝑏,𝛾

such that for every quantum program 𝜌 ∈ 𝒟(ℋ1)⊗𝒟(ℋ2) the
following are true about the product algorithm 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝛾1

⊗ 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝛾2
:

(0) Let (𝐸𝑏
≤𝛾 , 𝐸

𝑏
>𝛾) be the inefficient threshold measurement in Theorem 7 forℋ𝑏.

(1) The probability of measuring 1 on both registers satisfies

Tr
[︁(︁
𝖠𝖳𝖨𝜖,𝛿𝒫1,𝛾1

⊗ 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝛾2

)︁
𝜌
]︁
≥ Tr

[︀(︀
𝐸1

>𝛾1+𝜖 ⊗ 𝐸2
>𝛾2+𝜖

)︀
· 𝜌

]︀
− 2𝛿.

(2) The post-measurement state 𝜌′ after getting outcome (1,1) is 4𝛿-close to a state in
the support of

{︀
|𝜓1

𝑖 ⟩ |𝜓2
𝑗 ⟩
}︀

such that 𝜆1𝑖 > 𝛾1 − 2𝜖 and 𝜆2𝑗 > 𝛾2 − 2𝜖.
(3) The running time of the algorithm is polynomial in the running time of 𝑃1, 𝑃2, 1/𝜖

and log(1/𝛿).

Intuitively the theorem says that if a quantum state 𝜌 has weight 𝑝 on eigen-
vectors of (𝑃1, 𝑃2) with eigenvalues greater than (𝛾1 + 𝜖, 𝛾2 + 𝜖), then the quan-
tum algorithm will produce (with probability at least 𝑝−2𝛿) a post-measurement
state which has weight 1 − 4𝛿 on eigenvectors with eigenvalues greater than
(𝛾1 − 2𝜖, 𝛾2 − 2𝜖).

In this paper, we will work with indistinguishability games. Therefore, we
will particularly be interested in the projective measurement that projects onto
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eigenvectors with eigenvalues away from 1/2 (meaning its behavior is more
than random guessing). For this reason, we will need the following symmetric
version of Theorem 8:

Theorem 9 (Efficient Symmetric Threshold Measurement). Let 𝒫𝑏 = (𝑃𝑏, 𝑄𝑏)
be a binary outcome POVM over Hilbert space ℋ𝑏 that is a mixture of projective mea-
surements for 𝑏 ∈ {1, 2}. Let 𝑃𝑏 have eigenbasis {|𝜓𝑏

𝑖 ⟩} with eigenvalues {𝜆𝑏𝑖}. For
every 𝛾1, 𝛾2 ∈ (0, 1/2), 0 < 𝜖 < min(𝛾1/2, 𝛾2/2), and 𝛿 > 0, there exist efficient
binary-outcome quantum algorithms, interpreted as the POVM element corresponding
to outcome 1, 𝖲𝖠𝖳𝖨𝜖,𝛿𝒫𝑏,𝛾

such that for every quantum program 𝜌 ∈ 𝒟(ℋ1)⊗𝒟(ℋ2) the
following are true about the product algorithm 𝖲𝖠𝖳𝖨𝜖,𝛿𝒫1,𝛾1

⊗ 𝖲𝖠𝖳𝖨𝜖,𝛿𝒫2,𝛾2
:

(0) Let ( ̃︀𝐸𝑏
≤𝛾𝑏

, ̃︀𝐸𝑏
>𝛾𝑏

) be the inefficient threshold measurement in Theorem 7 forℋ𝑏.
(1) The probability of measuring 1 on both registers satisfies

Tr
[︁(︁
𝖲𝖠𝖳𝖨𝜖,𝛿𝒫1,𝛾1

⊗ 𝖲𝖠𝖳𝖨𝜖,𝛿𝒫2,𝛾2

)︁
𝜌
]︁
≥ Tr

[︁(︁ ̃︀𝐸1
>𝛾1+𝜖 ⊗ ̃︀𝐸2

>𝛾2+𝜖

)︁
· 𝜌

]︁
− 2𝛿.

(2) The post-measurement state 𝜌′ after getting outcome (1,1) is 4𝛿-close to a state in
the support of

{︀
|𝜓1

𝑖 ⟩ |𝜓2
𝑗 ⟩
}︀

such that |𝜆1𝑖−1/2| > 𝛾1−2𝜖 and |𝜆2𝑗−1/2| > 𝛾2−2𝜖.
(3) The running time of the algorithm is polynomial in the running time of 𝑃1, 𝑃2, 1/𝜖

and log(1/𝛿).

2.5 Unclonable Encryption

In this subsection, we provide the definition of unclonable encryption schemes.
By unclonable encryption, we are refering to the security defined in [5]. This is
a variant of the original security definition in [9], which forces one of 𝑚0,𝑚1 to
be uniformly random. We would remark that our security is stronger than the
original one in [9], since in our definition 𝑚0,𝑚1 can be arbitrarily chosen.

Definition 1. An unclonable encryption scheme is a triple of efficient quantum algo-
rithms (𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼) with the following interface:

– 𝖦𝖾𝗇(1𝜆) : 𝗌𝗄 on input a security parameter 1𝜆, returns a classical key 𝗌𝗄.
– 𝖤𝗇𝖼(𝗌𝗄, |𝑚⟩ ⟨𝑚|) : 𝜌𝑐𝑡 takes the key 𝗌𝗄 and the message |𝑚⟩ ⟨𝑚| for𝑚 ∈ {0, 1}poly(𝜆),

outputs a quantum ciphertext 𝜌𝑐𝑡.
– 𝖣𝖾𝖼(𝗌𝗄, 𝜌𝑐𝑡) : 𝜌𝑚 takes the key 𝗌𝗄 and the quantum ciphertext 𝜌𝑐𝑡, outputs a mes-

sage in the form of quantum states 𝜌𝑚.

Correctness. The following must hold for the encryption scheme. For 𝗌𝗄 ← 𝖦𝖾𝗇(1𝜆),
we must have Tr[|𝑚⟩ ⟨𝑚|𝖣𝖾𝖼(𝗌𝗄,𝖤𝗇𝖼(𝗌𝗄, |𝑚⟩ ⟨𝑚|))] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Unclonability. In the following sections, we focus on unclonable IND-CPA security.
To define our unclonable security, we introduce the following security game.

Definition 2 (Unclonable IND-CPA game). Let 𝜆 ∈ ℕ+. Given encryption scheme
𝒮, consider the following game against the adversary (𝒜,ℬ, 𝒞).
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– The adversary 𝒜 generates 𝑚0,𝑚1 ∈ {0, 1}𝑛(𝜆) and sends to the challenger as the
chosen plaintext.

– The challenger randomly chooses a bit 𝑏 ∈ {0, 1} and returns 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏) to 𝒜.
𝒜 produces a quantum state 𝜌𝐵𝐶 in register 𝐵 and 𝐶, and sends corresponding
registers to ℬ and 𝒞.

– ℬ and 𝒞 receive the key 𝗌𝗄, and output bits 𝑏ℬ and 𝑏𝒞 respectively

and the adversary wins if 𝑏ℬ = 𝑏𝒞 = 𝑏.

We denote the advantage (success probability) of above game by 𝖺𝖽𝗏𝒢,𝒜,ℬ,𝒞(𝜆).
We say that scheme 𝒮 is informational (computational) secure if for all(efficient)
adversaries (𝒢,𝒜,ℬ, 𝒞),

𝖺𝖽𝗏𝒢,𝒜,ℬ,𝒞(𝜆) ≤
1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

3 More on Coset States

In this section, we will recall the basic properties of coset states. We will then in-
troduce a strengthened unclonable game in the quantum random oracle model
(QROM), upon which we will build our unclonable encryption scheme. The last
subsection is devoted to prove the security of this strengthened game.

3.1 Preliminaries

In this subsection, we recall the basic definitions and properties of coset states
in [10]. Let 𝐴 ⊆ 𝔽𝑛

2 be a subspace. Define its orthogonal complement of 𝐴 as
𝐴⊥ = {𝑏 ∈ 𝔽𝑛

2 | ⟨𝑎, 𝑏⟩ mod 2 = 0 , ∀𝑎 ∈ 𝐴}. It satisfies dim(𝐴) + dim(𝐴⊥) = 𝑛.
We also let |𝐴| = 2dim(𝐴) denote the size of 𝐴.

Definition 3 (Coset States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 and vectors 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , the
coset state |𝐴𝑠,𝑠′⟩ is defined as:

|𝐴𝑠,𝑠′⟩ =
1√︀
|𝐴|

∑︁
𝑎∈𝐴

(−1)⟨𝑠
′,𝑎⟩ |𝑎+ 𝑠⟩ .

By applying𝐻⊗𝑛 to the state |𝐴𝑠,𝑠′⟩, one obtains exactly |𝐴⊥𝑠′,𝑠⟩. Given𝐴, 𝑠, 𝑠′,
the coset state is efficiently constructible.

For a subspace 𝐴 and vectors 𝑠, 𝑠′, we define 𝐴 + 𝑠 = {𝑣 + 𝑠 : 𝑣 ∈ 𝐴}, and
𝐴⊥ + 𝑠′ = {𝑣 + 𝑠′ : 𝑣 ∈ 𝐴⊥}. We define 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ as the membership
checking oracle for both cosets.

It is also convenient for later sections to define a canonical representation of
a coset 𝐴+ 𝑠, with respect to subspace 𝐴,

Definition 4 (Canonical Representative of a Coset). For a subspace 𝐴, we de-
fine the function 𝖢𝖺𝗇𝐴(·) such that 𝖢𝖺𝗇𝐴(𝑠) is the lexicographically smallest vector
contained in 𝐴+ 𝑠. We call this the canonical representative of coset 𝐴+ 𝑠.



On the Feasibility of Unclonable Encryption, and More 19

If 𝑠 ∈ 𝐴+𝑠, then 𝖢𝖺𝗇𝐴(𝑠) = 𝖢𝖺𝗇𝐴(𝑠). We also note that 𝖢𝖺𝗇𝐴(·) is polynomial-
time computable given the description of 𝐴. Accordingly, we can efficiently
sample from 𝖢𝖲(𝐴) := {𝖢𝖺𝗇𝐴(𝑠) : 𝑠 ∈ 𝔽𝑛

2}, which denotes the set of canonical
representatives for 𝐴.

For a fixed subspace 𝐴, the coset states {|𝐴𝑠,𝑠′⟩}𝑠∈𝖢𝖲(𝐴),𝑠′∈𝖢𝖲(𝐴⊥) form an
orthonormal basis. (See Lemma C.2 in [10])

Next, we recall the regular direct product and MOE properties of coset states.
These properties will be used to prove the strengthened unclonable property.

Direct Product Hardness
Theorem 10 (Theorem 4.5,4.6 in [10]). Let 𝐴 ⊆ 𝔽𝜆

2 be a uniformly random sub-
space of dimension 𝜆

2 , and 𝑠, 𝑠′ be two uniformly random vectors from 𝔽𝜆
2 . Let 𝜖 > 0

such that 1/𝜖 = 𝑜(2𝑛/2). Given one copy of |𝐴𝑠,𝑠′⟩ and oracle access to 𝑃𝐴+𝑠 and
𝑃𝐴⊥+𝑠′ , an adversary needs 𝛺(

√
𝜖2𝜆/2) queries to output a pair (𝑣, 𝑤) that 𝑣 ∈ 𝐴+ 𝑠

and 𝑤 ∈ 𝐴⊥ + 𝑠′ with probability at least 𝜖.
An important corollary immediately follows.

Corollary 2. There exists an exponential function exp such that, for any query-bounded
(polynomially many queries to 𝑃𝐴+𝑠, 𝑃𝐴⊥+𝑠′ ) adversary, its probability to output a
pair (𝑣, 𝑤) that 𝑣 ∈ 𝐴+ 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′ is smaller than 1/exp (𝜆).

Monogamy-of-Entanglement (with Membership Checking Oracles).
Definition 5. Let 𝜆 ∈ ℕ+. Consider the following game between a challenger and an
adversary (𝒜,ℬ, 𝒞).

– The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝜆
2 of dimension 𝜆

2 , and
uniformly random vectors (𝑠, 𝑠′) ∈ 𝖢𝖲(𝐴)× 𝖢𝖲(𝐴⊥). It sends |𝐴𝑠,𝑠′⟩ to 𝒜.

– 𝒜,ℬ, 𝒞 get (quantum) oracle access to 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ .
– 𝒜 creates a bipartite state on registers 𝖡 and 𝖢. Then,𝒜 sends register 𝖡 to ℬ, and
𝖢 to 𝒞.

– The description of 𝐴 is then sent to both ℬ, 𝒞.
– ℬ and 𝒞 return respectively (𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2).

(𝒜,ℬ, 𝒞) wins if and only if for 𝑖 ∈ {1, 2}, 𝑠𝑖 = 𝑠 and 𝑠′𝑖 = 𝑠′.

We denote the advantage (success probability) of the above game by 𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆).
We have the following theorem.
Theorem 11 (Theorem 4.14, 4.15 in [10]). There exists an exponential function
exp such that, for every 𝜆 ∈ ℕ+, for any query-bounded (polynomially many queries
to 𝑃𝐴+𝑠, 𝑃𝐴⊥+𝑠′ ) adversary (𝒜,ℬ, 𝒞),

𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆) ≤ 1/ exp(𝜆) .

Note that in [10], the authors only proved the above theorem for a sub-exponential
function and membership checking oracles are given in the form of indistin-
guishability obfuscation (iO). The proof trivially holds if we replace iO with
VBB obfuscation (quantum access to these oracles). Culf and Vidick [12] further
proved the theorem holds for an exponential function.
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3.2 Strengthened MOE Game in the QROM

In this subsection, we will introduce the strengthened MOE game in the QROM
and state our main theorem. We present the proof in the next section.

Definition 6. Let 𝜆 ∈ ℕ+. Consider the following security game between a challenger
and an adversary (𝒜,ℬ, 𝒞) with a random oracle 𝐻 : 𝔽𝜆

2 × 𝔽𝜆
2 → {0, 1}𝑛(𝜆) .

– The adversary 𝒜 generates 𝛥 ∈ {0, 1}𝑛(𝜆) and sends 𝛥 to the challenger.
– The challenger samples a random subspace 𝐴 ⊆ 𝔽𝜆

2 of dimension 𝜆/2 and two
random vectors (𝑠, 𝑠′) ∈ 𝖢𝖲(𝐴)× 𝖢𝖲(𝐴⊥). The challenger also randomly chooses
a bit 𝑏 ∈ {0, 1} and calculates 𝑤 = 𝐻(𝑠, 𝑠′)⊕ (𝑏 ·𝛥).
It gives |𝐴𝑠,𝑠′⟩ and 𝑤 to 𝒜.

– 𝒜,ℬ, 𝒞 get (quantum) oracle access to 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ .
– 𝒜 produces a quantum state over registers 𝖡𝖢 and sends 𝖡 to ℬ and 𝖢 to 𝒞.
– ℬ, 𝒞 are given the description of 𝐴, they try to produce bits 𝑏ℬ, 𝑏𝒞 .

(𝒜,ℬ, 𝒞) win if and only if 𝑏ℬ = 𝑏𝒞 = 𝑏.

We denote the advantage of the above game by 𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆). Note that since
𝑠, 𝑠′ is defined as the canonical vector of both cosets, they are uniquely defined;
similarly, 𝐻(𝑠, 𝑠′) is also uniquely defined.

We show the following theorem:

Theorem 12. Let 𝑛 = 𝛺(𝜆), then for every 𝜆 ∈ ℕ+ and all query-bounded algorithms
(𝒜,ℬ, 𝒞), 𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆) ≤ 1

2 + 𝗇𝖾𝗀𝗅(𝜆).

3.3 Proof for Theorem 12

Proof. We prove the theorem by following hybrid arguments.

Hybrid 0 This hybrid is the original game.

Hybrid 1 This hybrid follows Hybrid 0, but the oracle of 𝒜 will be repro-
grammed as 𝐻𝑠,𝑠′ defined as follows:

𝐻𝑠,𝑠′(𝑧, 𝑧
′) =

{︃
𝑢 if 𝑧 = 𝑠, 𝑧′ = 𝑠′

𝐻(𝑧, 𝑧′) otherwise
,

where 𝑢 ∈ {0, 1}𝑛 is chosen uniformly at random.

Hybrid 2 This hybrid will modify the access to random oracle of ℬ and 𝒞.

– The adversary 𝒜 generates 𝛥 ∈ {0, 1}𝑛(𝜆) and sends 𝛥 to the challenger.
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– The challenger samples a random subspace 𝐴 ⊆ 𝔽𝜆
2 of dimension 𝜆/2 and two

random vectors (𝑠, 𝑠′) ∈ 𝖢𝖲(𝐴)×𝖢𝖲(𝐴⊥). The challenger uniform randomly
samples a bit 𝑏 ∈ {0, 1} and 𝑟 ∈ {0, 1}𝑛(𝜆), and defines the oracle 𝐻𝑏

𝑠,𝑠′ as
follows:

𝐻𝑏
𝑠,𝑠′(𝑧, 𝑧

′) =

{︃
𝑟 ⊕ (𝑏 ·𝛥) if 𝑧 = 𝑠, 𝑧′ = 𝑠′

𝐻(𝑧, 𝑧′) otherwise
,

It gives |𝐴𝑠,𝑠′⟩ and 𝑟 to 𝒜.
– 𝒜,ℬ, 𝒞 get (quantum) oracle access to 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ .
– With access to quantum random oracle 𝐻𝑠,𝑠′ , 𝒜 produces a quantum state

over registers 𝖡𝖢 and sends 𝖡 to ℬ and 𝖢 to 𝒞.
– With access to quantum random oracle 𝐻𝑏

𝑠,𝑠′ , ℬ, 𝒞 are given the description
of 𝐴, they try to produce bits 𝑏ℬ, 𝑏𝒞.

(𝒜,ℬ, 𝒞) win if and only if 𝑏ℬ = 𝑏𝒞 = 𝑏.

We denote by 𝑝𝑖 the optimal success probability of the game in Hybrid 𝐢.
For the relations between different 𝑝𝑖, we have following lemmas:

Lemma 3. |𝑝0 − 𝑝1| ≤ 𝗇𝖾𝗀𝗅(𝜆).

Lemma 4. 𝑝1 = 𝑝2.

Lemma 5. 𝑝2 ≤ 1
2 + 𝗇𝖾𝗀𝗅(𝜆).

Combining the three lemmas, we have completed the proof of Theorem 12.

Now we provide proofs for lemmas beyond.

Proof for Lemma 3. We prove by contradiction. Suppose 𝑝0 ≥ 𝑝1 + 1/𝑞(𝜆) for
some polynomial 𝑞(𝜆), then we can construct an adversary 𝒜′ that violates the
direct product hardness of coset states. 𝒜′ will perform as follows:

– 𝒜′ samples a random oracle 𝐻 : 𝔽𝜆
2 × 𝔽𝜆

2 → {0, 1}𝑛(𝜆).
– 𝒜′ simulates 𝒜 using 𝐻 and applies computational basis measurement on a

random quantum query made by 𝒜 to the random oracle.

By Theorem 5, assuming 𝒜 makes at most 𝑇 queries, then 𝒜′ gets (𝑠, 𝑠′) with
probability at least 4/(𝑞2𝑇 ), a contradiction to Corollary 2.

Proof of Lemma 4. Fixing 𝛥 and 𝑏, the two games are identical by renaming the
𝑤 = 𝐻(𝑠, 𝑠′) ⊕ (𝑏 ·𝛥) to 𝑟. Since 𝐻(𝑠, 𝑠′) is uniformly random, its distribution
is identical to 𝑟.

Proof of Lemma 5. Fixing 𝐴, 𝑟,𝛥, two canonical vectors 𝑠, 𝑠′, let 𝐻−𝑠,𝑠′ be a
partial random oracle that is defined on every input except (𝑠, 𝑠′). Fix any partial
random oracle 𝐻−𝑠,𝑠′ ,

we define two projectors 𝛱𝐵
0 , 𝛱

𝐵
1 over register 𝖡 as:
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– 𝛱𝐵
0 : runs ℬ on input 𝐴 with oracle access to 𝐻0

𝑠,𝑠′ where 𝐻0
𝑠,𝑠′ is the same

as 𝐻−𝑠,𝑠′ except on input (𝑠, 𝑠′) it outputs 𝑟; it measures if the outcome is
𝑟; then it undoes all the computation.

– 𝛱𝐵
1 : similar to 𝛱𝐵

0 except on input (𝑠, 𝑠′), the random oracle 𝐻1
𝑠,𝑠′ outputs

𝑟 ⊕𝛥 and it checks if the outcome is 𝑟 ⊕𝛥.

Let {|𝜑𝑖⟩}𝑖 be a set of the eigenvectors of (𝛱𝐵
0 +𝛱𝐵

1 )/2 with eigenvalues {𝜆𝑖}𝑖.
Fixing the same 𝐴, 𝑠, 𝑠′, 𝑟 and 𝐻−𝑠,𝑠′ , we can similarly define 𝛱𝐶

0 , 𝛱
𝐶
1 for 𝒞.

Let {|𝜓𝑗⟩}𝑗 be a set of the eigenvectors of (𝛱𝐶
0 +𝛱𝐶

1 )/2 with eigenvalues {𝜇𝑗}𝑗 .

Let |𝜑𝖡𝖢⟩ be the state prepared by 𝒜. Without loss of generality, we can
assume the state is pure. We write the state under the basis {|𝜑𝑖⟩}𝑖 and {|𝜓𝑗⟩}𝑗 :

|𝜑𝖡𝖢⟩ =
∑︁
𝑖,𝑗

𝛼𝑖,𝑗 |𝜑𝑖⟩𝖡 ⊗ |𝜓𝑗⟩𝖢 .

Lemma 6. Taken the randomness of 𝐴, 𝑠, 𝑠′ and 𝐻−𝑠,𝑠′ , for every polynomial
𝑝(·), there exists a negligible function 𝗇𝖾𝗀𝗅 such that with overwhelming probability
the following weight is bounded:∑︁

𝑖: |𝜆𝑖−1/2|>1/𝑝
𝑗: |𝜇𝑗−1/2|>1/𝑝

|𝛼𝑖,𝑗 |2 ≤ 𝗇𝖾𝗀𝗅(𝑛).

The proof for this lemma is given at the end of this section.
With the above lemma, we can claim that over the randomness of 𝐴, 𝑠, 𝑠′

and 𝐻−𝑠,𝑠′ , for every polynomial 𝑝(·), |𝜑𝖡𝖢⟩ is negligibly close to the following
state |𝜑′𝖡𝖢⟩: ∑︁

𝑖:|𝜆𝑖−1/2|≤1/𝑝

𝛼𝑖,𝑗 |𝜑𝑖⟩𝖡 ⊗ |𝜓𝑗⟩𝖢 +
∑︁

𝑖:|𝜆𝑖−1/2|>1/𝑝
𝑗:|𝜇𝑗−1/2|≤1/𝑝

𝛼𝑖,𝑗 |𝜑𝑖⟩𝖡 ⊗ |𝜓𝑗⟩𝖢 .

For convenience, we name the left part as |𝜑′ℬ⟩ (indicating ℬ can not win) and
the right part as |𝜑′𝒞⟩ (indicating 𝒞 can not win). Thus, for every polynomial
𝑝(·), there exists a negligible function 𝗇𝖾𝗀𝗅(·), | |𝜑𝖡𝖢⟩ − (|𝜑′ℬ⟩+ |𝜑′𝒞⟩)|1 is at most
𝗇𝖾𝗀𝗅(·) (in expectation, taken the randomness of 𝐴, 𝑠, 𝑠′, 𝑟 and 𝐻−𝑠,𝑠′).

The probability that (𝒜,ℬ, 𝒞) wins is at most:

(
⃒⃒
(𝛱𝐵

0 ⊗𝛱𝐶
0 ) |𝜑′𝖡𝖢⟩

⃒⃒2
+
⃒⃒
(𝛱𝐵

1 ⊗𝛱𝐶
1 ) |𝜑′𝖡𝖢⟩

⃒⃒2
)/2.

𝛱𝐵
0 ⊗𝛱𝐶

0 is the case that they both get access to 𝐻0 and 𝛱𝐵
1 ⊗𝛱𝐶

1 for 𝐻1.
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The probability is at most

(
⃒⃒
(𝛱𝐵

0 ⊗𝛱𝐶
0 )(|𝜑′ℬ⟩+ |𝜑′𝒞⟩)

⃒⃒2
+

⃒⃒
(𝛱𝐵

1 ⊗𝛱𝐶
1 )(|𝜑′ℬ⟩+ |𝜑′𝒞)⟩

⃒⃒2
)/2

=
1

2
·
(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗𝛱𝐶
0 )|𝜑′ℬ⟩+ ⟨𝜑′ℬ|(𝛱𝐵

1 ⊗𝛱𝐶
1 )|𝜑′ℬ⟩+ ⟨𝜑′𝒞 |(𝛱𝐵

0 ⊗𝛱𝐶
0 )|𝜑′𝒞⟩

+⟨𝜑′𝒞 |(𝛱𝐵
1 ⊗𝛱𝐶

1 )|𝜑′𝒞⟩
)︀
+ 𝖱𝖾

(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗𝛱𝐶
0 )|𝜑′𝒞⟩+ ⟨𝜑′ℬ|(𝛱𝐵

1 ⊗𝛱𝐶
1 )|𝜑′𝒞⟩

)︀
≤1

2
·
(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗ 𝐼)|𝜑′ℬ⟩+ ⟨𝜑′ℬ|(𝛱𝐵
1 ⊗ 𝐼)|𝜑′ℬ⟩+ ⟨𝜑′𝒞 |(𝐼 ⊗𝛱𝐶

0 )|𝜑′𝒞⟩

+⟨𝜑′𝒞 |(𝐼 ⊗𝛱𝐶
1 )|𝜑′𝒞⟩

)︀
+ 𝖱𝖾

(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗𝛱𝐶
0 )|𝜑′𝒞⟩+ ⟨𝜑′ℬ|(𝛱𝐵

1 ⊗𝛱𝐶
1 )|𝜑′𝒞⟩

)︀
.

We bound each term separately.

– 1
2

(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗ 𝐼)|𝜑′ℬ⟩+ ⟨𝜑′ℬ|(𝛱𝐵
1 ⊗ 𝐼)|𝜑′ℬ⟩

)︀
. It is equal to ⟨𝜑′ℬ|(𝛱𝐵

0 +𝛱𝐵
1 )/2⊗

𝐼|𝜑′ℬ⟩; by the definition of |𝜑′ℬ⟩, it will be at most ( 12 + 1
𝑝 )| |𝜑

′
ℬ⟩ |2.

– 1
2

(︀
⟨𝜑′𝒞 |(𝐼 ⊗𝛱𝐶

0 )|𝜑′𝒞⟩+ ⟨𝜑′𝒞 |(𝐼 ⊗𝛱𝐶
1 )|𝜑′𝒞⟩

)︀
. Similar to the above case, it is at

most ( 12 + 1
𝑝 )| |𝜑

′
𝒞⟩ |2.

– 𝖱𝖾
(︀
⟨𝜑′ℬ|(𝛱𝐵

0 ⊗𝛱𝐶
0 )|𝜑′𝒞⟩

)︀
. By Corollary 1, the inner product will be 0:

⟨𝜑′ℬ|(𝛱𝐵
0 ⊗𝛱𝐶

0 )|𝜑′𝒞⟩

=
∑︁

𝑖:|𝜆𝑖−1/2|≤1/𝑝

∑︁
𝑖′:|𝜆𝑖′−1/2|>1/𝑝
𝑗′:|𝜇𝑗′−1/2|≤1/𝑝

𝛼†𝑖,𝑗𝛼𝑖′,𝑗′⟨𝜑𝑖|𝛱𝐵
0 |𝜑𝑖′⟩⟨𝜓𝑗 |𝛱𝐶

0 |𝜓𝑗′⟩;

since every possible 𝑖, 𝑖′ satisfy 𝜆𝑖 + 𝜆𝑖′ ̸= 1, we have ⟨𝜑𝑖|𝛱𝐵
0 |𝜑𝑖′⟩ = 0.

– 𝖱𝖾
(︀
⟨𝜑′ℬ|(𝛱𝐵

1 ⊗𝛱𝐶
1 )|𝜑′𝒞⟩

)︀
. By Corollary 1, the inner product will be 0 as

well.

Therefore, the total probability will be at most
(︁

1
2 + 1

𝑝

)︁
(| |𝜑′ℬ⟩ |2+ | |𝜑′𝒞⟩ |2)+

𝗇𝖾𝗀𝗅(𝑛) ≤ 1
2 + 1

𝑝 + 𝗇𝖾𝗀𝗅(𝑛).

Since the above statement holds for every polynomial 𝑝(·), it finishes the
proof for Theorem 12.

Finally, we give the proof for Lemma 6.

Proof of Lemma 6. We prove by contradiction: suppose there exists an adversary
(𝒜,ℬ, 𝒞) such that the weight, which we call 𝑊 , is non-negligible, i.e. 𝑊 >
1/𝑞(𝜆) for some polynomial 𝑞(·), with some non-negligible probability 𝜂(𝜆). For
convenience, we will omit 𝜆 in the proof when it is clear from the context.

We construct the following adversary (𝒜′,ℬ′, 𝒞′) that breaks the regular MOE
game in Definition 5:

1. 𝒜′,ℬ′, 𝒞′ get (quantum) oracle access to 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ .
2. 𝒜′ first receives 𝛥 from simulated 𝒜, it samples 𝑟 ∈ {0, 1}𝑛(𝜆) and a random

oracle 𝐻. Given |𝐴𝑠,𝑠′⟩ , 𝑟 and two membership checking oracles, it simulates
𝒜 via reprogrammed 𝐻𝑠,𝑠′ , and produces |𝜑𝖡𝖢⟩; it gives 𝖡 to ℬ′ and 𝖢 to 𝒞′.
Note that, although 𝐻 is a total random oracle, we will later reprogram 𝐻
at the input (𝑠, 𝑠′). Thus, 𝐻 will only serve as 𝐻−𝑠,𝑠′ . Since 𝒜′ does not
know (𝑠, 𝑠′), it is hard for 𝒜′ to only sample 𝐻−𝑠,𝑠′ .
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3. Define two projectors 𝛱𝐵
0 , 𝛱

𝐵
1 over register 𝖡 as what we have described at

the beginning of the proof, with the random oracle 𝐻0
𝑠,𝑠′ and 𝐻1

𝑠,𝑠′ is defined
as:

𝐻0
𝑠,𝑠′(𝑧, 𝑧

′) =

{︃
𝑟 if 𝑧 = 𝑠, 𝑧′ = 𝑠′

𝐻(𝑧, 𝑧′) otherwise
,

and

𝐻1
𝑠,𝑠′(𝑧, 𝑧

′) =

{︃
𝑟 ⊕𝛥 if 𝑧 = 𝑠, 𝑧′ = 𝑠′

𝐻(𝑧, 𝑧′) otherwise
.

Given 𝑃𝐴+𝑠, 𝑃𝐴⊥+𝑠′ and the description of 𝐴, one can efficiently implement
point functions that check the canonical vectors 𝑠 and 𝑠′; thus, additionally
given 𝐻, 𝐻0

𝑠,𝑠′ and 𝐻1
𝑠,𝑠′ can also be efficiently simulated. Therefore, ℬ′ can

implement both 𝛱𝐵
0 , 𝛱

𝐵
1 efficiently.

ℬ′ gets 𝖡, it applies the efficient approximate threshold measurement 𝖲𝖠𝖳𝖨𝜖,𝛿(𝑃,𝑄),𝛾

in Theorem 9 with 𝑃 = (𝛱𝐵
0 +𝛱𝐵

1 )/2, 𝑄 = 𝐼 − 𝑃 , 𝛾 = 3/4𝑝, 𝜖 = 1/4𝑝 and
𝛿 = 2−𝜆.
If the outcome is 1, ℬ′ then runs ℬ on the leftover state with 𝐻0 or 𝐻1 picked
uniformly at random. It measures and outputs a random query ℬ makes to
the random oracle.

4. Similarly define 𝛱𝐶
0 , 𝛱

𝐶
1 as above on register 𝖢. 𝒞′ gets 𝖢, it applies the

efficient approximated threshold measurement 𝖲𝖠𝖳𝖨𝜖,𝛿(𝑃,𝑄),𝛾 with 𝑃 = (𝛱𝐶
0 +

𝛱𝐶
1 )/2, 𝑄 = 𝐼 − 𝑃 , 𝛾 = 3/4𝑝, 𝜖 = 1/2𝑝, and 𝛿 = 2−𝜆.

When the outcome is 1, 𝒞′ runs 𝒞 on the leftover state with 𝐻0 or 𝐻1 picked
uniformly at random. It measures and outputs a random query to the random
oracle.

By Theorem 9 bullet (1), conditioned on 𝑊 ≥ 1/𝑞, both ℬ′ and 𝒞′ will get
outcome 1 with probability 1/𝑞 − 2𝛿 = 𝑂(1/𝑞). When both outcomes are 1, by
bullet (2) of Theorem 9, the leftover state is 4𝛿-close to the the following state:∑︁

𝑖:|𝜆𝑖−1/2|>1/4𝑝
𝑗:|𝜇𝑗−1/2|>1/4𝑝

𝛽𝑖,𝑗 |𝜑𝑖⟩𝖡 ⊗ |𝜓𝑗⟩𝖢 .

Observe that when ℬ does not query (𝑠, 𝑠′), it will succeed with probability
exactly 1/2. Therefore, by Theorem 5, the query weight of ℬ on (𝑠, 𝑠′) is at least
1/4𝑝2𝑇 − 𝗇𝖾𝗀𝗅(𝜆), where 𝑇 is an upper-bound on the number of queries made
by ℬ. Arguing similarly for 𝒞, we conclude that the adversary (𝒜′,ℬ′, 𝒞′) wins
with probability at least 𝑂(𝜂/(𝑞𝑝4𝑇 2)), which is non-negligible.

4 Unclonable Encryption in the QROM

The following is the unclonable encryption scheme for a single bit:
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1. 𝗌𝗄 = 𝐴 where 𝐴 is a random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛/2;

2. 𝖤𝗇𝖼𝐻(𝗌𝗄,𝑚): it samples 𝑠← 𝖢𝖲(𝐴) and 𝑠′ ← 𝖢𝖲(𝐴⊥) uniformly at random;
it outputs |𝐴𝑠,𝑠′⟩, 𝑐 = 𝐻(𝑠, 𝑠′)⊕𝑚;

3. 𝖣𝖾𝖼𝐻(𝗌𝗄 = 𝐴, (|𝐴𝑠,𝑠′⟩ , 𝑐)):
– It first computes 𝑠 in superposition. We know that there is a classical

algorithm that on any vector in 𝐴+ 𝑠 and the description of 𝐴, outputs
the canonical vector of 𝐴+ 𝑠 (which is 𝑠 in this case). See [10] Definition
4.3 for more references.
We can run this classical algorithm coherently on |𝐴𝑠,𝑠′⟩ to learn 𝑠.

– Since the algorithm on any vector in 𝐴+ 𝑠 outputs the same vector, the
quantum state stays intact. We can run the same algorithms coherently
on the Hadamard basis and the description of 𝐴⊥ to learn 𝑠′.

– Output 𝑐⊕𝐻(𝑠, 𝑠′).

With Theorem 12, we can show the scheme satisfy the unclonable IND-CPA
security.

Proof. If we have some adversary (𝒜,ℬ, 𝒞) for the scheme beyond, we can con-
struct an adversary (𝒜′,ℬ′, 𝒞′) for the strengthened MOE game with the same
advantage.

– The adversary 𝒜′ gets (𝑚0,𝑚1) ← 𝒜 and sends 𝛥 = 𝑚0 ⊕ 𝑚1 to the
challenger.

– After receiving |𝐴𝑠,𝑠′⟩ and 𝑤 from the challenger, 𝒜′ calculates 𝑐 = 𝑤⊕𝑚0,
and sends (|𝐴𝑠,𝑠′⟩ , 𝑐) to 𝒜. The output registers 𝖡,𝖢 of 𝒜 are sent to ℬ′, 𝒞′
respectively.

– ℬ′, 𝒞′ exactly run the algorithm of ℬ, 𝒞, and output their output respectively.

Thus we have concluded the unclonable IND-CPA security of our game.

Remark 1. Notice that compared to the strengthened MOE game, our construc-
tion does not provide additional membership checking oracles.

5 Copy-Protection for Point Functions in QROM

5.1 Copy-Protection Preliminaries

Below we present the definition of a copy-protection scheme.

Definition 7 (Copy-Protection Scheme). Let ℱ = ℱ(𝜆) be a class of efficiently
computable functions of the form 𝑓 : 𝑋 → 𝑌 . A copy protection scheme for ℱ is a pair
of QPT algorithms (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) such that:

– Copy Protected State Generation: 𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍(1𝜆, 𝑑𝑓 ) takes as input the secu-
rity parameter 1𝜆 and a classical description 𝑑𝑓 of a function 𝑓 ∈ ℱ (that efficiently
computes 𝑓 ). It outputs a mixed state 𝜌𝑓 ∈ 𝒟(ℋ𝑍), where 𝑍 is the output register.

– Evaluation: 𝖤𝗏𝖺𝗅(1𝜆, 𝜌, 𝑥) takes as input the security parameter 1𝜆, a mixed state
𝜌 ∈ 𝒟(ℋ𝑍), and an input value 𝑥 ∈ 𝑋 . It outputs a bipartite state 𝜌′ ⊗ |𝑦⟩ ⟨𝑦| ∈
𝒟(ℋ𝑍)⊗𝒟(ℋ𝑌 ).
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We will sometimes abuse the notation and write 𝖤𝗏𝖺𝗅(1𝜆, 𝜌, 𝑥) to denote the
classical output 𝑦 ∈ 𝑌 when the residual state 𝜌′ is not significant.

Definition 8 (Correctness). A copy-protection scheme (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) for ℱ is
𝛿-correct if the following holds: for every 𝑥 ∈ 𝑋 , 𝑓 ∈ ℱ ,

Pr
[︀
𝑓(𝑥)← 𝖤𝗏𝖺𝗅(1𝜆, 𝜌𝑓 , 𝑥) : 𝜌𝑓 ← 𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍(1𝜆, 𝑑𝑓 )

]︀
≥ 𝛿.

If 𝛿 ≥ 1− 𝗇𝖾𝗀𝗅(𝜆), we simply say that the scheme is correct.

Remark 2. When 𝛿 is negligibly close to 1, the evaluation algorithm 𝖤𝗏𝖺𝗅 can be
implemented so that it does not disturb the state 𝜌𝑓 . This ensures that 𝜌𝑓 can
be reused polynomially many times with arbitrary inputs.

We define security via a piracy experiment.

Definition 9 (Piracy Experiment). A piracy experiment is a security game de-
fined by a copy-protection scheme (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) for a class of functions ℱ of
the form 𝑓 : 𝑋 → 𝑌 , a distribution 𝒟ℱ over ℱ , and a class of distributions D𝑋 =
{D𝑋(𝑓)}𝑓∈ℱ over 𝑋 × 𝑋 . It is the following game between a challenger and an ad-
versary, which is a triplet of algorithms (𝒜,ℬ, 𝒞):

– Setup Phase: The challenger samples a function 𝑓 ← 𝒟ℱ and sends 𝜌𝑓 ←
𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍(1𝜆, 𝑑𝑓 ) to 𝒜.

– Splitting Phase: 𝒜 applies a CPTP map to split 𝜌𝑓 into a bipartite state 𝜌𝖡𝖢; it
sends the 𝖡 register to ℬ and the 𝖢 register to 𝒞. No communication is allowed
between ℬ and 𝒞 after this phase.

– Challenge Phase: The challenger samples (𝑥𝐵 , 𝑥𝐶)← D𝑋(𝑓) and sends 𝑥𝐵 , 𝑥𝐶
to ℬ, 𝒞, respectively.

– Output Phase: ℬ and 𝒞 output 𝑦𝐵 ∈ 𝑌 and 𝑦𝐶 ∈ 𝑌 , respectively, and send to the
challenger. The challenger outputs 1 if 𝑦𝐵 = 𝑓(𝑥𝐵) and 𝑦𝐶 = 𝑓(𝑥𝐶), indicating
that the adversary has succeeded, and 0 otherwise.

The bit output by the challenger is denoted by 𝖯𝗂𝗋𝖤𝗑𝗉𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅𝒟ℱ ,D𝑋
(1𝜆, (𝒜,ℬ, 𝒞)).

As noted by [11], the adversary can always succeed in this game with prob-
ability negligibly close to

𝑝𝗍𝗋𝗂𝗏(𝒟ℱ ,D𝑋) := max
𝐸∈{𝐵,𝐶}

𝔼
𝑓←𝒟ℱ

(𝑥𝐵 ,𝑥𝐶)←D𝑋(𝑓)

max
𝑦∈𝑌

Pr [𝑦 | 𝑥𝐸 ]

by sending 𝜌𝑓 to ℬ and have 𝒞 guess the most likely output 𝑦 given input 𝑥𝐶 (or
vice versa). In other words, 𝑝𝗍𝗋𝗂𝗏 is the success probability of optimal guessing
strategy for one party 𝐸 ∈ {𝐵,𝐶} given only the test input 𝑥𝐸 .

Bounding the success probability of the adversary is bounded by 𝑝𝗍𝗋𝗂𝗏 cap-
tures the intuition that 𝜌𝑓 is no more helpful for simultaneous evaluation than
a black-box program that could only be given to one party.
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Definition 10 (Copy-Protection Security). Let (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) be a copy-
protection scheme for a class ℱ of functions 𝑓 : 𝑋 → 𝑌 . Let 𝒟ℱ be a distribution over
ℱ and D𝑋 = {D𝑋(𝑓)}𝑓∈ℱ a class of distributions over𝑋 . Then, (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅)
is called (𝒟ℱ ,D𝑋)-secure if there exists a negligible function 𝗇𝖾𝗀𝗅 such that any QPT
adversary (𝒜,ℬ, 𝒞) satisfies

Pr
[︁
𝑏 = 1 : 𝑏← 𝖯𝗂𝗋𝖤𝗑𝗉𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅𝒟ℱ ,D𝑋

(︀
1𝜆, (𝒜,ℬ, 𝒞)

)︀]︁
≤ 𝑝𝗍𝗋𝗂𝗏(𝒟ℱ ,D𝑋) + 𝗇𝖾𝗀𝗅(𝜆).

Copy Protection for Point Functions A point function 𝑓𝑦 : {0, 1}𝑚 → {0, 1} is of the
form

𝑓𝑦(𝑥) =

{︃
1, 𝑥 = 𝑦

0, 𝑥 ̸= 𝑦
.

When dealing with point functions, the classical description of 𝑓𝑦 will sim-
ply be 𝑦, and accordingly the distribution𝒟ℱ over point functions will be repre-
sented by a distribution 𝒟 = 𝒟𝜆 over {0, 1}𝑚. Since copy protection is trivially
impossible for a learnable distribution 𝒟, we are going to restrict our attention
to unlearnable distributions.

Definition 11. A distribution 𝒟𝜆 over {0, 1}𝑚, with 𝑚 = 𝗉𝗈𝗅𝗒(𝜆), is called unlearn-
able if for any query-bounded adversary 𝒜𝑓𝑦(·) with oracle access to 𝑓𝑦(·), we have

Pr
[︁
𝑦′ = 𝑦 :

𝑦←𝒟𝜆

𝑦′←𝒜𝑓𝑦(·)(1𝜆)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆).

Definition 12 (Copy-Protection Security for Point Functions). Let𝑚 = 𝗉𝗈𝗅𝗒(𝜆)
and ℱ be the class of point functions 𝑓𝑦 : {0, 1}𝑚 → {0, 1}. Let D𝑋 = {D𝑋(𝑓)}𝑓∈ℱ
be a class of input distributions over {0, 1}𝑚 × {0, 1}𝑚. A copy protection scheme
(𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) for ℱ is called D𝑋 -secure if there exists a negligible function 𝗇𝖾𝗀𝗅
such that (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) is (𝒟𝜆,D𝑋)-secure for all unlearnable distributions𝒟𝜆

over {0, 1}𝑚.

5.2 Construction

In this section, we design copy-protection for a class of point functions. We set
𝑛 = 2𝜆 and 𝑑 = 𝜆 throughout the section. Our construction will use two hash
functions: (a) 𝐺 : {0, 1}𝜆 → {0, 1}𝑛·𝑑 and (b) 𝐻 : 𝔽𝑛

2 × 𝔽𝑛
2 → {0, 1}4𝑛+𝜆. In the

security proof, we will treat 𝐺 and 𝐻 as random oracles. We will use 𝔽𝑛
2 and

{0, 1}𝑛 interchangeably.
We denote the set of all 𝑑-dimensional subspaces of 𝔽𝑛

2 by 𝒮𝑑.
We describe the copy-protection scheme (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) for a class of

point functions ℱ = {𝑓𝑦(·)}𝑦∈{0,1}𝜆 as follows:

– 𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍
(︀
1𝜆, 𝑦

)︀
: it takes as input 𝜆 in unary notation, 𝑦 ∈ {0, 1}𝜆 and

does the following:
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1. Compute 𝐯 = 𝐺(𝑦). Parse 𝐯 as a concatenation of 𝑑 vectors 𝑣1, . . . , 𝑣𝑑,
where each 𝑣𝑖 has dimension 𝑛. Abort if the vectors {𝑣1, . . . , 𝑣𝑑} are not
linearly independent.

2. Let 𝐴 = Span (𝑣1, . . . , 𝑣𝑑).
3. Sample 𝑠← 𝖢𝖲(𝐴) and 𝑠′ ← 𝖢𝖲(𝐴⊥) uniformly at random.
4. Output the copy-protected state 𝜎 = |𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ |𝐗⊗|𝐻(𝑠, 𝑠′)⟩⟨𝐻(𝑠, 𝑠′)|𝐘.

– 𝖤𝗏𝖺𝗅(𝜎, 𝑥): on input the copy-protected state 𝜎 ∈ 𝒟(ℋ𝐗 ⊗ ℋ𝐘), input 𝑥 ∈
{0, 1}𝜆, it does the following:
1. Measure the register 𝐘 of 𝜎 to obtain the value 𝜃. Call the resulting state
𝜎′.

2. Compute 𝐯 = 𝐺(𝑥). Parse 𝐯 as a concatenation of 𝑑 vectors 𝑣1, . . . , 𝑣𝑑,
where each 𝑣𝑖 has dimension 𝑛. Abort if the vectors {𝑣1, . . . , 𝑣𝑑} are not
linearly independent.

3. Let 𝐴 = Span (𝑣1, . . . , 𝑣𝑑).
4. Apply 𝑈𝐴 coherently on
𝜎′ ⊗ |02𝑛⟩⟨02𝑛|𝐙 ⊗ |0𝗉𝗈𝗅𝗒(𝜆)⟩⟨0𝗉𝗈𝗅𝗒(𝜆)|𝐚𝐧𝐜 to obtain the state 𝜎′′, where 𝑈𝐴

is a unitary that computes (𝑠, 𝑠′) given |𝐴𝑠,𝑠′⟩.
5. Query 𝐻 on the register 𝐙 and store the answer in a new register 𝐨𝐮𝐭.
6. Measure the register 𝐨𝐮𝐭 in the computational basis. Denote the post-

measurement state by 𝜎𝐨𝐮𝐭 and the measurement outcome by 𝜃′.
7. If 𝜃 = 𝜃′, output 𝜎𝐨𝐮𝐭 ⊗ |1⟩⟨1|. Otherwise, output 𝜎𝐨𝐮𝐭 ⊗ |0⟩⟨0|.

We first discuss at a high level why this construction works. Regarding cor-
rectness, we argue that 𝖤𝗏𝖺𝗅 on input 𝑥 ̸= 𝑦 computes a random subspace 𝐴′,
such that |𝐴′𝑠,𝑠′⟩ is nearly orthogonal to |𝐴𝑠,𝑠′⟩. As a result, 𝖤𝗏𝖺𝗅 recovers (𝑠, 𝑠′)
incorrectly. Since as a sufficiently expanding hash function 𝐻 is injective with
high probability, 𝖤𝗏𝖺𝗅 fails.

As for security, first we show that it is hard for 𝒜 to query the oracles 𝐺,𝐻
on inputs 𝑦, (𝑠, 𝑠′). Next, we argue that ℬ and 𝒞 cannot both recover (𝑠, 𝑠′),
otherwise they break the MOE game in Theorem 11.

We give the formal statements below. Detailed proofs can be found in the
full version.

Lemma 7. (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) satisfies correctness.

Lemma 8. (𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍,𝖤𝗏𝖺𝗅) is a D𝑋 -secure copy-protection scheme for point func-
tions with input length 𝜆, where D𝑋(𝑦) = D𝐵

𝑦 ×D𝐶
𝑦 is a product distribution.

Remark 3. In our security proof, the adversary can run in unbounded time as
long as it is query-bounded.

Remark 4. Using techniques from the proof of Theorem 12, our scheme can also
be shown to be secure for the case when D𝑋(𝑦) samples correlated test inputs,
i.e. the case when either 𝑥𝐵 = 𝑥𝐶 = 𝑦 or 𝑥𝐵 , 𝑥𝐶 are both random.
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