
MozZ2karella: Efficient Vector-OLE and
Zero-Knowledge Proofs Over Z2k

Carsten Baum[0000−0001−7905−0198], Lennart Braun[0000−0001−9164−305X],
Alexander Munch-Hansen[0000−0002−1482−0064], and Peter

Scholl[0000−0002−7937−8422]

Aarhus University
{cbaum,braun,almun,peter.scholl}@cs.au.dk

Abstract. Zero-knowledge proof systems are usually designed to sup-
port computations for circuits over F2 or Fp for large p, but not for
computations over Z2k , which all modern CPUs operate on. Although
Z2k -arithmetic can be emulated using prime moduli, this comes with
an unavoidable overhead. Recently, Baum et al. (CCS 2021) suggested
a candidate construction for a designated-verifier zero-knowledge proof
system that natively runs over Z2k . Unfortunately, their construction re-
quires preprocessed random vector oblivious linear evaluation (VOLE)
to be instantiated over Z2k . Currently, it is not known how to efficiently
generate such random VOLE in large quantities.
In this work, we present a maliciously secure, VOLE extension protocol
that can turn a short seed-VOLE over Z2k into a much longer, pseudo-
random VOLE over the same ring. Our construction borrows ideas from
recent protocols over finite fields, which we non-trivially adapt to work
over Z2k . Moreover, we show that the approach taken by the QuickSilver
zero-knowledge proof system (Yang et al. CCS 2021) can be generalized
to support computations over Z2k . This new VOLE-based proof sys-
tem, which we call QuarkSilver, yields better efficiency than the previous
zero-knowledge protocols suggested by Baum et al. Furthermore, we im-
plement both our VOLE extension and our zero-knowledge proof system,
and show that they can generate 13–50 million VOLEs per second for
64 bit to 256 bit rings, and evaluate 1.3 million 64 bit multiplications per
second in zero-knowledge.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that some
statement is true, without revealing any additional information. They are a
fundamental tool in cryptography with a wide range of applications. A common
way of expressing statements used in ZK is with circuit satisfiability, where the
prover and verifier hold some circuit C, and the prover proves that she knows a
witness w such that C(w) = 1. Typically, C is an arithmetic circuit defined over
a finite field such as F2 or Fp for a large prime p, but the same idea works for
any finite ring.

2 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

A recent line of work [25,26,7,16] builds highly scalable zero-knowledge proofs
based on vector oblivious linear evalution, or VOLE. VOLE is a two-party pro-
tocol often used in secure computation settings, which allows a receiver holding
∆ to learn a secret linear function w−∆·u = v of a sender’s private inputs u,w.
VOLE-based ZK protocols have the key feature that the overhead of the prover
is very small: compared with the cost of evaluating the circuit C in the clear, few
additional computational or memory resources are needed. This allows proofs
to scale to handle very large statements, such as proving properties of complex
programs. On the other hand, potential drawbacks of using VOLE are that the
communication complexity is typically linear in the size of C – unlike SNARKs
(e.g. [22,8]) and MPC-in-the-head techniques (e.g. [2]), which can be sublinear –
and proofs are only verifiable by a single, designated verifier.

VOLE Constructions. In a length-n VOLE protocol over some ring R, the sender
has input two vectors u,w ∈ Rn, while the receiver has input ∆ ∈ R, and re-
ceives as output v ∈ Rn as defined above. In applications such as ZK proofs,
it is actually enough to construct random VOLEs, or VOLE correlations, where
both parties’ inputs are chosen at random. The most efficient approaches for
generating random VOLE are based on the method of Boyle et al. [11], which
relies on an arithmetic variant of the learning parity with noise (LPN) assump-
tion. The protocol has the key feature that the communication cost is sublinear
in the output length, n.

The original protocol of [11] has only semi-honest security (or malicious se-
curity using expensive, generic 2-PC techniques). Later, dedicated maliciously
secure protocols over fields were developed [12,25], which essentially match the
cost of the underlying semi-honest protocols, by using lightweight consistency
checks for verifying honest behavior. In general, these protocols assume that R
is a finite field.

ZK Based on VOLE. The state-of-the-art, VOLE-based protocol for proving
circuit satisfiability in zero-knowledge is the QuickSilver protocol. QuickSilver,
which builds upon the previous Line-Point ZK [16] protocol, works for circuits
over any finite field Fq, and has a communication cost of essentially 1 field ele-
ment per multiplication gate. Concretely, QuickSilver achieves a throughput of
up to 15.8 million AND gates per second for a Boolean circuit, or 8.9 million mul-
tiplication gates for an arithmetic circuit over the 61-bit Mersenne prime field.
Another approach is the Mac’n’Cheese protocol [7], which can also achieve an
amortized cost as small as 1 field element, but with slightly worse computational
costs and round complexity.

ZK Over Rings. While most ZK protocols are based on circuits over fields, it
can in certain applications be more desirable to work with circuits over a finite
ring such as Z2k . For instance, to prove a property of an existing program (such
as proving a program contains a bug, or does not violate some safety property)
the program logic and computations must all be emulated using a circuit. Since

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 3

CPUs perform arithmetic in Z2k , this is a natural choice of ring that leads to a
simpler translation of program code into a satisfiable circuit C.

Unfortunately, not many existing ZK proof systems can natively support
computations over rings. The recent work of [5] gave the first ZK protocol over
Z2k based on VOLE over Z2k , obtaining a proof system with a communication
cost of O(1) ring elements per multiplication gate (for large rings), asymptot-
ically matching QuickSilver over large fields. However, a major drawback of
their protocols is that they require maliciously secure VOLE over Z2k , which is
much more expensive to build: the only known instantiation of this [23] would
increase the concrete communication of their ZK protocol by 1–2 orders of mag-
nitude. Finally, another approach to zero-knowledge proof systems over rings
has been proposed based on SNARKs [17]. When using Z2k , this work obtains
a designated-verifier SNARK, however, the scheme has not been implemented,
and suffers from a dependency on expensive, public-key cryptography, as in many
field-based SNARKs.

1.1 Contributions

In this work, we address the question of building efficient protocols for VOLE and
zero-knowledge proofs over Z2k . Firstly, we show how to build a maliciously se-
cure VOLE protocol over Z2k , with efficiency comparable to state-of-the-art pro-
tocols over finite fields [12,25]. Our protocol introduces new consistency checks
for verifying correctness of VOLE extension, which are tailored to overcome the
difficulties of working with the ring Z2k . Secondly, using our VOLE over Z2k , we
show how to adapt the QuickSilver protocol [26] to the ring setting, obtaining
an efficient ZK protocol called QuarkSilver that is dedicated to proving circuit
satisfiability over Z2k . Here, we extend techniques from the MPC world [15] to be
suitable for our ZK proof. Finally, we implemented and benchmarked both our
VOLE and ZK protocols to demonstrate their performance. In a high-bandwidth,
low-latency setting, our implementation achieves a throughput of 13–50 million
VOLEs per second for 64 bit to 256 bit rings with 40 bit statistical security while
transmitting only ≈ 1 bit per VOLE. Our QuarkSilver implementation is able to
compute and verify 1.3 million 64 bit multiplications per second.

1.2 Our Techniques

Below, we expand on our contributions, the techniques involved and some more
relevant background.

Challenge of Working in Z2k . Before delving into our protocols, we first
briefly recap the main challenges when working with rings like Z2k , compared
with finite fields. When using VOLE for zero-knowledge, VOLE is used to commit
the prover to its inputs and intermediate wire values in the circuit. This is
possible by viewing each VOLE output M [x] = ∆ · x+K[x] as an information-
theoretic homomorphic MAC in the input x.

4 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

When working over a finite field, it’s easy to see that if a malicious prover
can come up with a valid MAC M [x] on an input x ̸= x, for the same key K[x],
then the prover can recover the MAC key ∆ from the relation:

M [x]−M [x] = ∆ · (x− x)

However, this relies on x−x being invertible, which is usually not the case when
working over a ring such as Z2k . Indeed, if x − x = 2k−1, then the prover can
forge a MAC M [x] with probability 1/2, since M [x] −M [x] mod 2k now only
depends on the least significant bit of ∆.

The SPDZ2k protocol [15] for multi-party computation showed how to work
around this issue by extending the modulus to 2k+s, for some statistical security
parameter s. This way, it can be shown that the lower s bits of the key ∆ are
still enough to protect the integrity of the lower k bits of the message x.

Indeed, this was exactly the type of MAC scheme used in the recent work on
conversions and ZK over rings [5]. However, as in the SPDZ2k protocols, further
challenges arise when handling more complex protocols for verifying computation
on MACed values.

Maliciously Secure VOLE Extension in Z2k . Current state-of-the-art VOLE
protocols all stem from the approach of Boyle et al. [11], which builds a pseu-
dorandom correlation generator based on (variants of) the learning parity with
noise (LPN) assumption. This approach exploits the fact that sparse LPN errors
can be used to compress secret-sharings of pseudorandom vectors, allowing the
two parties to generate a long, pseudorandom instance of a VOLE correlation in
a succinct manner.

These protocols proceed by first constructing a protocol for single-point
VOLE, where the sender’s input vector has only a single non-zero entry. Then,
the single-point VOLE protocol is repeated t times, to obtain a t-point VOLE
where the sender’s input is viewed as a long, sparse, LPN error vector. Finally,
by combining t-point VOLE and the LPN assumption, the parties can locally
transform this into pseudorandom VOLE by appling a linear mapping.

Using this blueprint leads to (random) VOLE protocols with communication
much smaller than the output length. This can be seen as a form of VOLE
extension, where in the first step, a small “seed” VOLE of length m≪ n is used
to create the single-point VOLEs, and then extended into a longer VOLE of
length n. In the Wolverine protocol [25], it was additionally observed that when
repeating this process, it can greatly help communication if m of the n extended
outputs are reserved and used to bootstrap the next iteration of the protocol,
saving generation of fresh seed VOLEs.

With semi-honest security, the above approach can easily be instantiated over
rings, following the protocols of [24,12]. When adapting this protocol to malicious
security, our main technical challenge is that previous works over fields [12,25]
used a consistency check to verify correctness of the outputs, which involved
taking random linear combinations over the field. Due to the existence of zero
divisors, this technique does not directly translate to Z2k . One possible approach,

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 5

similarly to the MAC scheme described above, is to increase the size of the ring
to, say, Z2k+s , and use computations in the larger ring to ensure that the VOLEs
are correct modulo 2k. However, the problem is, it would then no longer be
compatible with the bootstrapping technique of [25]: to check consistency, the
seed VOLE must be in the larger ring Z2k+s , however, since the outputs are only
in Z2k , they can’t then be used as a seed for the next execution! One solution
would be to start with an even larger ring (Z2k+2s), and keep decreasing the
ring size after each iteration, but this would be far too expensive when done
repeatedly.

Instead, we take a different approach. First, we adopt a hash-based check
from [12], which verifies correctness of a puncturable pseudorandom function
based on a GGM tree, created during the protocol. This hash check (which we
optimize by using universal hashing instead of a cryptographic hash function)
works over rings as well as fields, however, it does not suffice to ensure consistency
of the entire protocol. On top of this, we incorporate a linear combination check,
however, one with binary coefficients instead of coefficients in the large ring.
This type of check can be used over a ring, but allows a cheating prover to try
to bypass the check and cheat successfully with probability 1/2. Nevertheless,
we show that by allowing some additional leakage in the single-point VOLE
functionality, we can still simulate the protocol with this check. For our final
VOLE protocol, this leakage implies that a few noise coordinates of the LPN
error vector may have leaked.

While previous protocols also allowed a limited form of leakage [12,25], in
this case, ours is more serious since entire noise coordinates can be leaked with
probability 1/2. To counter this, we analyze the state-of-the-art attacks on LPN,
and show how to adjust the parameters and increase the noise rate accordingly.

Similarly to [25], we focus on using the “primal” form of LPN, which was
also used for semi-honest VOLE over Z2k in [24]. While the “dual” form of LPN,
as considered in [11,12,14], achieves lower communication costs (and does not
rely on bootstrapping), it involves a more costly matrix multiplication, which is
expensive to implement. In [12], dual-LPN was instantiated using quasi-cyclic
codes to achieve Õ(n) complexity, but this approach does not readily adapt
to rings instead of fields; it is plausible that the fast, LDPC-based dual-LPN
variant proposed in [14] can be adapted to work over rings, but the security of
this assumption has not been analyzed thoroughly.

Efficient Zero-Knowledge via QuarkSilver in Z2k . Given VOLE, the stan-
dard approach to obtaining a ZK proof is using the homomorphic MAC scheme
described above. There, the prover first commits to the input w as well as all
intermediate circuit wire values of C(w). Then, the prover must show consis-
tency of all the wire values and that the output wire indeed contains 1. Since
the MACs are linearly homomorphic, the main challenge is verifying multiplica-
tions. In QuickSilver [26], to verify that committed values x, y, z satisfy x ·y = z,
the parties locally compute a quadratic function on their MACs and MAC keys,

6 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

obtaining a new value which has a consistent MAC only if the multiplication is
correct.

The catch is that this new MAC relation being checked leads to a quadratic
equation in the secret key ∆, instead of linear as before, which is chosen by a
possibly dishonest prover. If this quadratic equation has a root in ∆, then the
check passes. In the field case, this is not a problem as there are no more than
two solutions to a quadratic equation, so we obtain a soundness error of 2/|F|.
However, with rings, there can be many solutions. For instance, with

f(X) = aX2 + bX + c (mod 2k),

if a = 2k/2 and b = c = 0 then any multiple of 2k/4 is a possible choice for
X, i.e. the check would erroneously pass for 23k/4 choices of ∆. To remedy this,
we reduce the number of valid solutions by working modulo 2ℓ for some ℓ > k,
and adding the constraint on the solution that ∆ ∈ {0, . . . , 2s − 1}, where s is a
statistical security parameter.

An additional challenge is that when checking a batch of multiplications, we
actually check a random linear combination of a large number of these equations,
which again leads to complications with zero divisors. By carefully analyzing the
number of bounded solutions to equations of this type, and extending techniques
from SPDZ2k [15] for handling linear combinations over rings, we show that it
suffices to choose ℓ ≈ k + 2(σ + log σ) to achieve 2−σ failure probability in the
check. Overall, we obtain a communication complexity of ℓ bits per input and
multiplication gate in the circuit.

2 Preliminaries

2.1 Notation

We use lower case, bold symbols for vectors x and upper case, bold symbols
for matrices A. We use κ as the computational and σ as the statistical security
parameter. In our UC functionalities and proofs, Z denotes the environment,
and S is the simulator, while A will refer to the adversary.

2.2 Vector OLE

Vector OLE (VOLE) is a two party functionality between a sender PS and a
receiver PR to obtain correlated random vectors of the following form: PS obtains
two vectors u,w, and PR gets a random scalar ∆ and a random vector v so that
w = ∆ · u+ v holds.

We parameterize the functionality with two values ℓ and s such that s ≤ ℓ.
The scalar ∆ is sampled from Z2s , and the vectors u,v,w are sampled from
Zn
2ℓ where n denotes the size of the correlation. We require that the equation

w = ∆ ·u+ v holds modulo 2ℓ. The ideal functionality is described in Figure 1.
As in SPDZ2k [15], we can implement Fℓ,s

vole2k using the oblivious transfer
protocol (OT) of [23]. Basing VOLE on OT has the drawback of quadratic

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 7

communication costs in the ring size, since it requires one OT of size ℓbit for
each of the ℓ bits of a ring element. Hence, we would use this approach only
once to create a set of base VOLEs. Then we can use the more efficient protocol
presented in Section 4 to repeatedly generate large batches to VOLEs.

VOLE for Z2k : F
ℓ,s
vole2k

Let ℓ ≥ s.

Init This method is the first to be called by the parties. On input (Init) from
both parties proceed as follows:
1. If PR is honest, sample ∆ ∈R Z2s and send ∆ to PR.

2. If PR is corrupt, receive ∆ ∈ Z2s from S.

3. ∆ is stored by the functionality.
All further (Init) queries are ignored.

Extend On input (Extend, n) from both parties proceed as follows:
1. If PR is honest, sample v ∈R Zn

2ℓ . Otherwise receive v ∈R Zn
2ℓ from S.

2. If PS is honest, sample u ∈R Zn
2ℓ and compute w := ∆ · u + v ∈ Z2ℓ .

Otherwise receive u ∈ Zn
2ℓ and w ∈ Zn

2ℓ from S and then recompute v :=
w −∆ · u ∈ Zn

2ℓ

3. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, ∆′) from S with ∆′ ∈
Z2s . If ∆′ = ∆, send success to PS and ignore subsequent global-key queries.
Otherwise, send abort to both parties and abort.

Fig. 1. Ideal functionality VOLE over Z2k .

2.3 Equality Test

In our work, we use an equality test functionality FEQ (Figure 2) between two
parties P,V where V learns the input of P. The equality check functionality
can be implemented using a simple commit-and-open protocol, see e.g. [25].
When using a hash function with 2κbit output (modeled as random oracle) to
implement the commitment scheme, the equality check of ℓ bit values can be
implemented with ℓ+ 3κbit of communication.

2.4 Zero-Knowledge Proofs of Knowledge

In Figure 3 we provide an ideal functionality for zero-knowledge proofs. The func-
tionality implies the standard definition of a ZKPoK as it is complete, knowledge
sound and zero-knowledge.

8 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

Equality Test: FEQ

On input VP from P and VV from V:

1. Send VP and (VP
?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then
send (VP

?
= VV) to P

3. If V is honest and VP ̸= VV , or V is corrupted and sends abort, then send
abort to P.

Fig. 2. Ideal functionality for equality tests.

Zero-Knowledge Functionality Fk
ZK

Prove: On input (prove, C, w) from P and (verify, C) from V where C is a
circuit over Z2k and w ∈ Zn

2k for some n ∈ N: Send true to V iff C(w) = 1, and
false otherwise.

Fig. 3. Ideal functionality for zero-knowledge proofs for circuit satisfiability.

2.5 The LPN Assumption Over Rings

The Learning Parity with Noise (LPN) assumption [9] states that, given the
noisy dot product of many public vectors ai with a secret vector s, the result
is indistinguishable from a vector of random values. Adding noise to indices is
done by adding a noise vector e at the end, consisting of random values.

We rely on the following arithmetic variant of LPN over a ring ZM , as also
considered in [11,24].

Definition 1 (LPN). Let DM
n,t be a distribution over Zn

M such that for any
t, n,M ∈ N, Im(DM

n,t) ∈ Zn
M . Let G be a probabilistic code generation algorithm

such that G(m,n,M) outputs a matrix A ∈ Zm ×n
M . Let parameters m, n, t be

implicit functions of security parameter κ. The LPNG
m,n,t,M assumptions states

that:

{(A,x) | A← G(m,n,M), s ∈R Zm
M , e← DM

n,t,x := s ·A+ e}
≈C {(A,x) | A← G(m,n,M),x ∈R Zn

M}.

There exists two flavours of the LPN assumption; the primal (Definition 1)
and the dual (see e.g. [12]).

Informally, the main advantage of the primal version of LPN is that there
exist practical (and implemented) constructions of the LPN-friendly codes re-
quired for this. Specifically, one can choose the code matrix A from a family
of codes G supporting linear-time matrix-vector multiplication, such as d-local
linear codes so that each column of A has exactly d non-zero entries. According

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 9

to [1], the hardness of LPN for local linear codes is well-established. Its main
disadvantage however, is that its output size can be at most quadratic in the
size of the seed, as intuitively, a higher stretch would make it significantly easier
for an adversarial verifier to guess enough noiseless coordinates to allow efficient
decoding via Gaussian Elimination [4].

The main advantage of the dual variant is that it allows for an arbitrary
polynomial stretch. However, the compressive mapping used within the dual
variant cannot have constant locality and is more challenging to instantiate.
Recently, Silver [14] proposed an instantiation of dual-LPN based on structured
LDPC codes, which have been practically implemented over finite fields, and
may plausibly also work over rings.

Dealing with Reduction Attacks Over Rings. When working over a ring
ZM instead of a finite field, we must take care that the presence of zero divisors
does not weaken security. For instance, a simple reduction attack was pointed out
in [21], where noise values can become zero after reducing modulo a factor of M
(for instance, in Z2k , reducing the LPN sample modulo 2 cuts the number of noisy
coordinates in half, significantly reducing security). To mitigate this attack, we
always sample non-zero entries of the error vector e and matrix A to be in Z∗

M ,
that is, invertible mod M .1 While [21] did not consider the effect on the matrix
A, we observe that if A is sparse then its important to ensure that its sparsity
cannot also be decreased through reduction.2 With these countermeasures, we
are not aware of any attacks on LPN in ZM that perform better than the field
case.

We elaborate below on our choice of primal-LPN distribution.

Choice of Matrix over ZM . We choose a random, sparse matrix A with
d non-zero entries per column. We choose each non-zero entry randomly from
Z∗
M , to ensure that it remains non-zero after reduction modulo any factor of M .

We fix the sparsity to d = 10, as in previous works [11,24,25], which according
to [3,28] suffices to ensure that A has a large dual distance, which implies the
LPN samples are unbiased [14].

Noise Distribution in ZM . The noise distribution DM
n,t is chosen to have t

expected non-zero coordinates. This can be done on expectation with a Bernoulli
distribution, where each coordinate is either zero, or non-zero (and uniform
otherwise) with probability t/n. In our applications, we instead use an exact
noise weight, where DM

n,t fixes t non-zero coordinates in the length-n vector.

1 This countermeasure was missing from the original version of this paper, before [21]
was available.

2 On the other hand, the LPN secret s must not be chosen over Z∗
M , but instead

uniformly over ZM , since if e.g. s was known to be odd over Z2k then solving the
reduced instance modulo 2 would be trivial.

10 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

Invertible Noise Terms. When working over a ring ZM , we sample the non-zero
noise values to be in Z∗

M , that is, invertible mod M . This prevents the reduction
attack mentioned above, which would otherwise reduce the expected noise weight
by a factor of two for M = 2k.

Uniform vs Regular Noise Patterns. For fixed-weight noise, we speak of two
types of error; regular or uniform. We call uniform errors the case where DM

n,t is
the uniform distribution over all weight-t vectors of Zn

M with non-zero values in
Z∗
M . Implementing LPN-based PCGs with uniform errors has previously been

investigated by [27,24]. It is commonly implemented by utilising a sub-protocol
to place a single non-zero value within a vector of length n′ ≪ n and then using
Cuckoo hashing to generate a uniform distribution over n from several of these
smaller vectors, ending up with the t points distributed randomly across the n
coordinates.

Our construction uses a regular noise distribution for the primal-LPN in-
stance. Here, the noise vector in Zn

M is divided into t blocks of length ⌊n/t⌋, such
that each block has exactly one non-zero coordinate. Generally, using LPN with
regular errors is practically more efficient than for uniform errors [27,25].

3 Single-Point Vector OLE

Single-point VOLE is a specialized functionality that generates a VOLE corre-
lation w = ∆ ·u+v (see Section 2.2) where u has only one non-zero coordinate
α ∈ [n]. We consider a variant where uα is not only non-zero, but additionally
also required to be invertible.

We present an ideal functionality for single-point VOLE Fℓ,s
sp-vole2k in Figure 4.

In the functionality, PS obtains u,w ∈ Zn
2ℓ ×Zn

2ℓ , and PR gets ∆,v ∈ Z2s ×Zn
2ℓ .

As in the full VOLE functionality Fℓ,s
vole2k we allow PS to attempt to guess ∆.

Additionally, Fℓ,s
sp-vole2k also allows PR to obtain leakage on the non-zero index:

1. PR is allowed to guess a set I ⊆ [n] that should contain the index α. Upon
correct guess, if |I| = 1 then it learns uα while if |I| > 1 the functionality
continues. If α /∈ I then the functionality aborts.

2. PR is also allowed a second query for a set J ⊂ [n] that might contain α
where |J | = n/2. If PR guesses correctly then the functionality outputs α,
while it aborts otherwise.

The leakage is somewhat inherent to our protocol which we use to realize Fℓ,s
sp-vole2k.

Protocol Overview. Our protocol Πℓ,s
sp-vole2k (Figure 5) achieves active security

using consistency checks inspired by the constructions from [12] and [25]. We now
give a high-level overview.

As a setup, we assume functionalities Fℓ,s
vole2k, FOT and FEQ. For Fℓ,s

vole2k we
assume that PR called (Init) already, thus setting ∆. Additionally, we require two
pseudorandom generators (PRGs; with certain extra properties that we clarify

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 11

Single-Point VOLE for Z2ℓ : F
ℓ,s
sp-vole2k

This functionality extends the functionality Fℓ,s
vole2k (Figure 1). In addition to

the methods (Init) and (Extend), it also provides the method (SP-Extend) and
a modified global-key query.

SP-Extend On input (SP-Extend, n) with n ∈ N from both parties the func-
tionality proceeds as follows:
1. Sample u ∈R Zn

2ℓ with a single entry invertible modulo 2ℓ and zeros every-
where else, v ∈R Zn

2ℓ , and compute w := ∆ · u+ v ∈ Zn
2ℓ .

2. If PS is corrupted, receive u ∈ Zn
2ℓ with at most one non-zero entry and

w ∈ Zn
2ℓ from S, and recompute v := w −∆ · u.

3. If PR is corrupted:
(a) Receive a set I ⊆ [n] from S. Let α ∈ [n] be the index of the non-zero

entry u, and let β := uα. If I = {α}, then send (success, β) to PR. If
α ∈ I and |I| > 1, then send success to PR and continue. Otherwise
send abort to both parties and abort.

(b) Receive either (continue) or (query, J) from S. If (continue) was re-
ceived, continue with Step 3c. If (query, J) with J ⊂ [n] and |J | = n

2

was received and α ∈ J , then send α to S. Otherwise, send abort to all
parties, and abort.

(c) Receive v ∈ Zn
2ℓ from S, and recompute w := ∆ · u+ v.

4. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, ∆′, s′) from S with
s′ ≤ s and ∆′ ∈ Z2s

′ . If ∆′ = ∆ (mod 2s
′
), send success to PS. Otherwise, send

abort to both parties and abort.

Fig. 4. Ideal functionality for a leaky single-point VOLE.

in Section 3.1) to create a GGM tree. Recall, the GGM construction [18] builds
a PRF from a length-doubling PRG, by recursively expanding a PRG seed into
2 seeds, defining a complete binary tree where each of the n leaves is one eval-
uation of the PRF. We use this to build a puncturable PRF, where a subset of
intermediate tree nodes is given out, enabling evaluating the PRF at all-but-one
of the points in the domain.

The sender PS begins by picking a random index α from [n], and β randomly
from Z∗

2ℓ . This defines the vector u where uα = β and every other index is 0.
PS and PR use a single VOLE from Fℓ,s

vole2k to authenticate β, resulting in the
receiver holding γ and the sender holding δ, β such that δ = ∆ · β + γ.

To extend this correlation to the whole vector u, PR computes a GGM tree
with 2n leaves. We consider all n leaves that are “left children” of their parent
as comprising the vector v. Using log2(n) instances of FOT, PS learns all “right
children” as well as all of the “left children” except the one at position α –

12 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

meaning that the sender learns v for all indices except α. PS now sets wi = vi

for i ̸= α. This gives a valid correlation on these n − 1 positions, because since
ui = 0 for i ̸= α, we have that wi = ∆ · ui + vi.

What remains in the protocol is for PS to learn wα = ∆ · uα + vα without
revealing α and β to PR. Using the output of the VOLE instance, if PR computes
d← γ −

∑n
j=1 vj and sends d to PS, then PS can compute

wα = δ − d−
∑

j∈[n]\{α}

wj

= δ −
(
γ −

∑
i∈[n]

vi

)
−

∑
j∈[n]\{α}

wj

= δ − γ + vα = ∆ · β + vα

which is exactly the missing value for the correlation. While this protocol can
somewhat easily be proven secure against a dishonest PS (assuming that the
hybrid functionalities are actively secure), a corrupted PR can cheat in two ways:

1. It can provide inconsistent GGM tree values to the FOT instances, thus lead-
ing to unpredictable protocol behavior.

2. It can construct d incorrectly.

To ensure a “somewhat consistent” GGM tree (and inputs to FOT) we use a
check that sacrifices all the leaves that are “right children”. Here, PR has to
send a random linear combination of these, over a binary extension field, with
PS choosing the coefficients. The check makes sure that if it passes, then the
“left children” are consistent for every choice of α that would have made PS

not abort. This reduces arbitrary leakage to an essentially unavoidable selective
failure attack (due to the use of FOT).

To prevent the second attack, the sender and receiver use an additional VOLE
from Fℓ,s

vole2k and perform a random linear combination check to ensure correct-
ness of the value d. Due to the binary coefficients used in the linear combination
over Z2ℓ , our check only has soundness 1/2. This, however, suffices to prove
security if we relax the functionality by allowing a corrupt receiver to learn α
with probability 1/2. This way, in the simulation in our security proof, if the
challenge vector χ is such that the receiver passes the check despite cheating,
the simulator can still extract a valid input using its knowledge of α.

The full protocol is presented in Figure 5. Before proving security of it, we first
recap the Puncturable PRF from GGM construction and its security properties.

3.1 Checking Consistency of the GGM Construction

We use the GGM [19] construction to implement a puncturable PRF F with
domain [n] and range {0, 1}κ.

In a puncturable PRF (PPRF), one party P1 generates a PRF key k, and
then both parties engage in a protocol where the second party P2 obtains a
punctured key k{α} for an index α ∈ [n] of its choice. With k{α}, it is possible

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 13

Single-Point VOLE for Z2ℓ : Π
ℓ,s
sp-vole2k

For the (Init) and (Extend) operations, the parties simply query Fℓ,s
vole2k.

SP-Extend For (SP-Extend, n): Let h := ⌈logn⌉ and σ′ := σ + 2h.
1. The parties send (Extend, 1) to Fℓ,s

vole2k. PS receives a, c ∈ Z2ℓ and PR

receives b ∈ Z2ℓ such that c = ∆ · a+ b (mod 2ℓ) holds.

2. PS samples α ∈R [n], β ∈R Z∗
2ℓ and lets u ∈ Zn

2ℓ be the vector with uα = β
and ui = 0 for all i ̸= α.

3. PS sets δ := c and sends a′ := β − a ∈ Z2ℓ to PR. PR computes γ :=
b−∆ · a′ ∈ Z2ℓ . Now, δ = ∆ · β + γ (mod 2ℓ).

4. PR computes k ← GGM.KeyGen(1κ), runs (v, t, (K
i
0,K

i
1)i∈[h],K

h+1
1) ←

GGM.Gen(n, k), and sends K
h+1

:= K
h+1
1 ∈ F2σ

′ to PS.

5. Write α =
∑h−1

i=0 2i · αh−i, for αi ∈ {0, 1}. For i ∈ [h], the parties call FOT

where PS, acting as the receiver, inputs αi and PR inputs (K
i
0,K

i
1)i∈[h] to

FOT. PS receives K
i
:= K

i
αi

.

6. Check the GGM tree:
(a) PS samples ξ ∈R Fn

2σ
′ and sends ξ to PR.a

(b) PR computes Γ := ⟨ξ, t⟩ ∈ F2σ
′ and sends Γ to PS.

(c) PS runs vα ← GGM.PuncEval(n, α, (K
i
)i∈[h+1]) followed by

GGM.Check(n, α, (K
i
)i∈[h+1], ξ, Γ). If the latter returns ⊥, PS aborts.

Otherwise it has obtained (vj)j∈[n]\{α}.

7. PR sends d := γ −
∑n

j=1 vj ∈ Z2ℓ to PS. PS defines w ∈ Zn
2ℓ such that

wj := vj for j ∈ [n]\{α} and wα := δ−d−
∑

1≤j≤n
j ̸=α

wj . Then w = ∆ ·u+v.

8. Check consistency of d:
(a) The parties send (Extend, 1) to Fℓ,s

vole2k. PS receives x, z ∈ Z2ℓ and PR

receives y∗ ∈ Z2ℓ such that z = ∆ · x+ y∗ (mod 2ℓ) holds.

(b) PS samples χ ∈R {0, 1}n with HW(χ) = n
2

and sends it to PR.b

(c) PS computes x∗ := χα · β − x ∈ Z2ℓ and sends x∗ to PR. PR computes
y := y∗ −∆ · x∗ ∈ Z2ℓ . Then z = y +∆ · χα · β.

(d) PS computes VPS :=
∑n

i=1 χi ·wi−z, and PR computes VPR :=
∑n

i=1 χi ·
vi − y. They send VPS , VPR to FEQ. If it returns (abort), then abort.

9. PS outputs (u,w), and PR outputs v.

a Instead of sending the whole vector ξ, PS can send a κ bit random seed which
is then expanded with a PRG to obtain ξ.

b Again, PS can send a short seed instead of χ.

Fig. 5. Protocol instantiating Fℓ,s
sp-vole2k in the (Fℓ,s

vole2k, FOT, FEQ)-hybrid model.

14 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

for P2 to evaluate F at all points [n]\{α} so that F (k, i) = F (k{α}, i) for i ̸= α,
while nothing about F (k, α) is revealed. More formally:

Definition 2 (Adapted from [12]). A puncturable pseudorandom function
(PPRF) with keyspace K, domain [n] and range {0, 1}κ is a pseudorandom func-
tion F with an additional keyspace Kp and 3 PPT algorithms KeyGen, Gen,
PuncEval such that

KeyGen on input 1κ outputs a random key k ∈ K.
Gen on input n, k outputs {F (k, i), k{i}}i∈[n] where k{i} ∈ Kp.
PuncEval on input n, α, k{α} outputs vα such that vα ∈ ({0, 1}κ)n.

where F (k, i) = vα
i for all i ̸= α and no PPT adversary A, given n, α, k{α} as

input, can distinguish F (k, α) from a uniformly random value in {0, 1}κ except
with probability negl(κ).

For simplicity, we describe the algorithms for domains of size n = 2h for
some h ∈ N. By pruning the tree appropriately, the procedures can be adapted
to support domain sizes that are not powers of two. Throughout the coming
sections, we let α1, . . . , αh be the bit decomposition of α =

∑h−1
i=0 2i · αh−i, and

let αi denote the complement. Let κ be a computational and σ be a statistical
security parameter. Define σ′ := σ + 2 log n and let G : {0, 1}κ → {0, 1}2κ and
G′ : {0, 1}κ → Z2ℓ × F2σ′ be two PRGs.

Recall that to achieve malicious security when generating a PPRF key in our
protocol, we use the redundancy introduced from extending the domain to size
2n, and check consistency by letting the receiver provide a hash of all the right
leaves of the GGM tree. In order for the right leaves of the GGM tree to fix a
unique tree, we require the PRG used for the final layer G′ : {0, 1}κ → Z2ℓ×F2σ′

to satisfy the right-half injectivity property3 as defined below.

Definition 3. We say that a function f = (f0, f1) : {0, 1}κ → Z2ℓ × F2σ′ , x 7→
(f0(x), f1(x)) is right-half injective, if its restriction to the right-half of the out-
put space f1 : {0, 1}κ → F2σ′ is injective.

In order to achieve active security of our construction, we provide an addi-
tional algorithm Check, together with a finite challenge set Ξ. This algorithm,
on input n, α, k{α}, a challenge ξ and a checking value Γ outputs ⊤ or ⊥.

Definition 4 (PPRF consistency). Let F be a PPRF and let Ξ be a chal-
lenge set whose size depends on a statistical security parameter σ. Consider the
following game for Check:

1. (k{1}, . . . , k{n}, state)← A(1κ, n).
2. ξ ∈R Ξ
3. Γ ← A(1κ, state, ξ)
4. For all α ∈ [n], let vα ← PuncEval(1κ, α, k{α}).
3 As noted in [12], this can be replaced with a weaker notion of right-half collision

resistance, which is easier to achieve in practice.

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 15

5. Define I := {α ∈ [n] | ⊤ = Check(n, α, k{α}, ξ, Γ)}.
6. We say A wins the game if there exists α ̸= α′ ∈ I such that there is an

index i ∈ [n] \ {α, α′} with vαi ̸= vα
′

i .

We say that F has consistency if no algorithm A wins the above game with
probability more than 2−σ.

Our algorithms GGM.KeyGen,GGM.Gen, GGM.PuncEval, GGM.Check, which
are used to generate the key, set up the punctured keys, evaluate and check
consistency of the punctured keys in our protocol are then as follows:

1. GGM.KeyGen(1κ) samples k ∈ {0, 1}κ uniformly at random and outputs it.
2. GGM.Gen(n, k) where n = 2h and k ∈ {0, 1}κ is a key:

(a) Set K0
0 ← k.

(b) For each level i ∈ [h], and for j ∈ {0, . . . , 2i−1−1} compute (Ki
2j ,K

i
2j+1)←

G(Ki−1
j).

(c) For i ∈ [h], set K
i

0 ←
⊕2i−1−1

j=0 Ki
2j and K

i

1 ←
⊕2i−1−1

j=0 Ki
2j+1.

(d) For j ∈ [2h] compute vj , tj ← G′(Kh
j−1), and set v := (v1, . . . , v2h) and

t := (t1, . . . , t2h).
(e) Compute K

h+1

1 ←
∑

j∈[2h] ti.

(f) Output (v, t, (K
i

0,K
i

1)i∈[h],K
h+1

1).
3. GGM.PuncEval(n, α, (K

i
)i∈[h+1]) where n = 2h, α ∈ [n], and K

i ∈ {0, 1}κ:
(a) Set K1

α1
← K

1
.

(b) For each level i ∈ {2, . . . , h}:
i. Let x :=

∑i−1
j=1 2

j−1 · αi−j

ii. For j ∈ {0, . . . , 2i−1 − 1} \ {x}, compute (Ki
2j ,K

i
2j+1)← G(Ki−1

j).

iii. Compute Ki
2x+αi

← K
i ⊕

⊕
0≤j<2i−1

j ̸=x

Ki
2j+αi

.

(c) For the last level h+ 1:
i. For j ∈ [2h] \ {α} compute (vj , tj)← G′(Kh

j−1)
(d) Output (vj)j∈[2h]\{α}.

4. GGM.Check(n, α, (K
i
)i∈[h+1], (ξi)i∈[n], Γ) where n = 2h, and K

i ∈ {0, 1}κ,
ξi ∈ F2σ′ , and Γ ∈ F2σ′ :
(a) For j ∈ [2h] \ {α} recompute tj as in GGM.PuncEval.
(b) Compute tα ← K

h+1 −
∑

j∈[2h]\{α} tj .
(c) If Γ =

∑
i∈[n] ξi · ti, output ⊤. Otherwise, output ⊥.

In comparison to Definition 2 GGM.Gen computes a compressed version of all
keys. The pseudorandomness for GGM, as defined in Definition 2, follows from
the standard pseudorandomness argument of the GGM construction [20,10,13].

The following theorem shows that the check ensures that a corrupted P1

cannot create an inconsistent GGM tree, where P2 obtains different values de-
pending on α. We give the proof in the full version [6].

Theorem 5 (Consistency of the GGM Tree). Let n = 2h ∈ N, σ′ = σ+2h,
and G,G′ as above, and let A be any time adversary. If G′ is right-half injective,
then A can win the game in Definition 4 with probability at most 2−(σ+1).

16 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

3.2 Security of Πℓ,s
sp-vole2k

Theorem 6. The protocol Πℓ,s
sp-vole2k (Figure 5) securely realizes the functionality

Fℓ,s
sp-vole2k in the (Fℓ,s

vole2k, FOT, FEQ)-hybrid model: No PPT environment Z can
distinguish the real execution of the protocol from a simulated one except with
probability 2−(σ+1) + negl(κ).

In the proof, we construct simulators for a corrupted sender and receiver.
For the corrupted sender, the simulator follows the protocol by behaving like an
honest receiver, but additionally extracts α from the interactions of the dishonest
sender with FOT and β from the VOLE. Its choice of GGM tree as well as
other messages are used to define a consistent vector w that it sends to the
functionality. A subtlety here is simulating the equality check in Step 8d of the
protocol, as a corrupt sender can pass this with an ill-formed x∗ if it can guess
a portion of ∆ used in the VOLE-functionality correctly. The simulator must
make a key query to Fℓ,s

sp-vole2k to simulate the success event correctly. Another
issue is that d sent by an honest receiver has a different distribution than how
it is chosen in the simulation, but we show that any distinguisher can break the
pseudorandomness of the GGM PPRF.

In the simulation for the corrupted receiver, the simulator first translates
FOT inputs into leakage queries to the functionality. For this, we know that due
to Step 6c any adversarial choice leads to consistent GGM tree leaves, so the
simulator chooses the set of indices where the check in this Step would pass as
leakage input to the functionality Fℓ,s

sp-vole2k. This query then allows the simulator
to create a valid transcript: if the attacker guessed α exactly correct (the set is
of size 1), then the simulator obtains β from the functionality and can directly
follow the protocol with the honest inputs. If the adversary instead guessed a set
of size > 1 correctly that contains the secret α, then the simulator can reconstruct
the whole GGM tree and thus a potential input v. This furthermore allows the
simulator to detect an inconsistent d that is sent by the corrupt receiver. An
inconsistent d can be shown to translate into a selective failure attack on the
equality check in Step 8d of the protocol, which requires the simulator to make
the second leakage query. If it succeeds, then it obtains α and can adjust vα

accordingly.
The full proof of Theorem 6, together with a summary of the protocol com-

plexity, can be found in the full version [6].

4 Vector OLE Construction

Given our single-point VOLE protocol, we build a protocol for random VOLE
extension over Z2ℓ by running t single-point instances of length n/t, and concate-
nating their outputs to obtain a weight t VOLE correlation of length n. Then,
these (together with some additional VOLEs) can be extended into pseudoran-
dom VOLEs by applying the primal LPN assumption over Z2ℓ with regular noise
vectors of weight t. Since our single-point protocol introduces some leakage on

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 17

the hidden point, we need to rely on a variant of LPN with some leakage on the
regular noise coordinates.

4.1 Leaky Regular LPN Assumption

The assumption, below, translates the leakage from the single-point VOLE func-
tionality (Figure 4) into leakage on the LPN error vector. Note that there are
two separate leakage queries: the first of these allows the adversary to try and
guess a single predicate on the entire noise vector, and aborts if this guess is
incorrect. This is similar to previous works [12,25], and essentially only leaks 1
bit of information on average on the position of the non-zero entries. The second
query, in Step 5 is more powerful, since for each query made by the adversary,
the exact position of one noise coordinate is leaked with probability 1/2. Intu-
itively, this means that up to c coordinates of the error vector can be leaked with
probability 2−c.

Definition 7. Let A← G(m,n, 2ℓ) ∈ Zm×n
2ℓ

be a primal-LPN matrix, and con-
sider the following game Gb(κ) with a PPT adversary A, parameterized by a bit
b and security parameter κ:

1. Sample e = (e1, . . . , et) ← Zn
2ℓ , where each sub-vector ei ∈ Zn/t

2ℓ
has exactly

one non-zero entry in Z∗
2ℓ , in position αi, and sample s← Zm

2ℓ uniformly
2. A sends sets I1, . . . , It ⊂ [n/t]
3. If αj ∈ Ij for all j ∈ [t], send OK to A, otherwise abort. Additionally, for

any j where |Ij | = 1, send ej to A
4. A sends sets J1, . . . , Jt ⊂ [n/t]
5. For each Ji where |Ji| = n/(2t): if αi ∈ Ji, send αi to A, otherwise abort
6. Let y0 = s ·A+ e and sample y1 ← Zn

2ℓ

7. Send yb to A
8. A outputs a bit b′ (if the game aborted, set the output to ⊥)

The assumption is that |Pr[AG0(κ) = 1]− Pr[AG1(κ) = 1]| is negligible in κ.

4.2 Vector OLE Protocol

Our complete VOLE protocol is given in Figure 6. It realises the functionality
Fℓ,s

vole2k (Figure 1), which is the same functionality used for base VOLEs in our
single-point protocol. This allows us to use the same kind of “bootstrapping”
mechanism as [25], where a portion of the produced VOLE outputs is reserved
to be used as the base VOLEs in the next iteration of the protocol.

In the Init phase of the protocol, the parties create a base VOLE of length m,
defining the random LPN secret u, given to the sender, and the scalar ∆, given
to the receiver. Then, in each call to Extend, the parties run t instances of
Fℓ,s

sp-vole2k to generate c = (c1, . . . , ct) and e = (e1, . . . , et) for the sender and b =
(b1, . . . , bt) for the receiver. The sender then simply computes x← u·A+e ∈ Zn

2r

and z← w ·A+ c ∈ Zn
2r and the receiver computes y = v ·A+ b ∈ Zn

2r . This

18 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

results in the sender holding x, z and the receiver holding y such that z = x·∆+y.
The first m entries of these are reserved to define a fresh LPN secret for the next
call to Extend, while the remainder are output by the parties.4

VOLE for Z2k : Π
ℓ,s
vole2k

Parameters Fix some parameters:
– n: LPN output size

– m: LPN secret size

– t: number of error coordinates for LPN (assume that t | n)

– n/t: size of a block in regular LPN

– A ∈ Zm×n

2ℓ
is the generator matrix used in primal-LPN

Init This must be called by the parties first and is executed once.
1. PS and PR send (Init) to Fℓ,s

sp-vole2k, and PR receives ∆ ∈ Z2s .

2. PS and PR send (Extend,m) to Fℓ,s
sp-vole2k. PS receives u,w ∈ Zm

2ℓ , and PR

receives v ∈ Zm
2ℓ , such that w = ∆ · u+ v over Z2ℓ .

Extend This protocol can be executed multiple times.
1. For i ∈ [t], PS and PR send (SP-Extend, n/t) to Fℓ,s

sp-vole2k which returns ei, ci

to PS and bi to PR such that ci = ∆ · ei + bi over Zn/t

2ℓ
, and ei ∈ Zn/t

2ℓ
has

exactly one entry invertible modulo 2ℓ and zeros everywhere else.

2. Define e := (e1, . . . , et) ∈ Zn
2ℓ , c := (c1, . . . , ct) ∈ Zn

2ℓ , and b :=
(b1, . . . ,bt) ∈ Zn

2ℓ . Then PS computes x := u · A + e ∈ Zn
2ℓ , and

z := w ·A+ c ∈ Zn
2ℓ . PR computes y := v ·A+ b ∈ Zn

2ℓ .

3. PS updates u,w by setting u := x[0 : m) ∈ Zm
2ℓ and w := z[0 : m) ∈ Zm

2ℓ ,
and outputs (x[m : n), z[m : n)) ∈ Zℓ

2ℓ × Zℓ
2ℓ . PR updates v by setting

v := y[0 : m) ∈ Zm
2ℓ and outputs y[m : n) ∈ Zℓ

2ℓ .

Fig. 6. Protocol for VOLE over Z2k in the Fℓ,s
sp-vole2k-hybrid model. Based on [25].

Theorem 8. The protocol Πℓ,s
vole2k in Fig. 6 securely realizes the functionality

Fℓ,s
vole2k in the Fℓ,s

sp-vole2k-hybrid model, under the leaky regular LPN assumption.

The proof, given in the full version [6], is straightforward for the malicious
sender, and for the malicious receiver we translate the protocol into an instance
of primal LPN from Definition 1, which yields indistinguishability.

Communication Complexity When we instantiate the single-point VOLE with
our protocol Πℓ,s

sp-vole2k from Section 3, use the equality test sketched in Sec-
tion 2.3, and Silent OT [12,27,14], our VOLE extension protocol Πℓ,s

vole2k with
4 In our implementation, we actually reserve m + 2t of the outputs, since we need 2

extra VOLEs for each execution of the protocol for Fℓ,s
sp-vole2k.

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 19

LPN parameters, (m, t, n) requires m+2t base VOLEs and 4tℓ+2tσ+4t⌈log n/t⌉+
(5 + 2⌈log n/t⌉)tκbit of communication. The costs for the single-point VOLE
protocol are broken down in the full version [6].

5 QuarkSilver: QuickSilver Modulo 2k

We now construct the QuarkSilver zero-knowledge proof system, which is based
on a similar principle as the QuickSilver protocol. The main technique to achieve
soundness in QuickSilver [26], similar to LPZK [16], is that a dishonest prover
can only cheat in multiplication checks if it can come up with a quadratic poly-
nomial of a certain form, which has a root ∆ unknown to the prover. This is
straightforward over fields, but over Z2k there might be many more than just
two roots for a polynomial. Before constructing the zero-knowledge protocol, we
therefore give upper-bounds on the number of roots of certain quadratic poly-
nomials over Z2k .

5.1 Bounding the Number of Solutions to Quadratic Equations

In the following theorem, we analyze a security game that corresponds to our
amortized check for verifying t multiplications. At the core of this, we need to
upper bound the number of solutions to quadratic equations in Z2ℓ , where both
the coefficients and solutions are bounded in certain ways.

Theorem 9. Let ℓ, s, k ∈ N+ so that ℓ ≥ k+2s and consider the following game
between a challenger C and an adversary A:

1. C chooses ∆ ∈ Z2s uniformly at random.
2. A sends δ0, . . . , δt ∈ Z such that not all δi for i > 0 are 0 mod 2k.
3. C chooses χ1, . . . , χt ← Z2s uniformly at random and sends these to A.
4. A sends b, c ∈ Z.
5. A wins iff (δ0 +

∑
i χiδi)∆

2 + b∆+ c = 0 mod 2ℓ.

Then A can win with probability at most (ℓ− k + 2) · 2−s+1.

The proof of Theorem 9 follows a similar way as Lemma 1 of [15]. The key
observation is that Step 3 determines an upper-bound on r, the largest number
such that 2r divides all coefficients of the polynomial. This is because no choice
of b, c can increase r as it also must divide the leading coefficient, which is
randomized. By the random choice of the χi, one can show that the larger r is,
the smaller the chance that it divides δ0 +

∑
i χiδi.

Since a larger r leads to more roots of the polynomial, we can then bound
the overall attack success for each possible r. The full proof can be found in the
full version [6], where we also show the following corollary.

Corollary 10. Let σ ≥ 7 be a statistical security parameter. By setting s :=
σ+log σ+3 and ℓ := k+2s, any adversary A can win the game from Theorem 9
with probability at most 2−σ.

20 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

5.2 QuarkSilver

We now construct the QuarkSilver zero-knowledge proof system. Its main building
block are linearly homomorphic commitments instantiated from VOLEs over Z2ℓ .

Linearly Homomorphic Commitments. As in the A2B [5] zero-knowledge
protocols, we use linearly homomorphic commitments from VOLE to authenti-
cate values in Z2k : Define a commitment [x] to a value x ∈ Z2k known to the
prover by a global key ∆ ∈R Z2s and values K[x],M [x] ∈R Z2ℓ with ℓ ≥ k + s
so that

K[x] = M [x] + x̃ ·∆ (mod 2ℓ) (1)

holds for x̃ = x (mod 2k). Here the prover knows x̃ and M [x], and the verifier
knows ∆ and K[x]. To open the commitment, the prover reveals x̃,K[x] to the
verifier who checks that the aforementioned equalities hold.

The commitment scheme is linearly homomorphic, as no interaction is needed
to compute [a ·x+ b] from [x] for publicly known a, b ∈ Z2k : P,V simply update
x̃,K[x] and M [x] in the appropriate way modulo 2ℓ. The same linearity also holds
when adding commitments. Unfortunately, the upper ℓ − k bits of x̃ may not
be uniformly random when opening a commitment. To resolve this, the prover
instead opens [x+ 2ky] using a random commitment [y].

How QuarkSilver Works. QuarkSilver follows the established commit-and-
prove paradigm for zero-knowledge proofs. For the commitments, we use the
linearly homomorphic commitments described above. For a circuit with n inputs
and t multiplications, we start by generating n + t + 2 authenticated random
values [r1], . . . , [rn+t+2] with r̃i ∈R Z2ℓ for i ∈ [n + t + 2], i.e. commitments to
random values. For this, P and V call (Extend, n + t + 2) to Fℓ,s

vole2k. P then
commits to w using the first n random commitments. Next, the parties evaluate
the circuit topologically, computing commitments to the outputs of linear gates
using the homomorphism of [·]. For each multiplication gate, P commits to the
output using another unused random commitment. It then remains to show
that the commitment to the output of the circuit is a commitment to 1 and
that all commited outputs of muliplication gates are indeed consistent with the
committed inputs.

To verify the committed output wire, QuarkSilver uses the “blinded open-
ing” procedure that was introduced above. This procedure will consume another
random commitment. To check validity of a multiplication, observe that for 3
commitments [wα], [wβ], [wγ] with γ = α · β mod 2k it holds that

K[wα] ·K[wβ]−∆ ·K[wγ]︸ ︷︷ ︸
B

=

M [wα] ·M [wβ]︸ ︷︷ ︸
A0

+∆ · (w̃α ·M [wβ] + w̃β ·M [wα]−M [wγ])︸ ︷︷ ︸
A1

,

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 21

QuarkSilver Πk
QS

The prover P and the verifier V have agreed on a circuit C over Z2k with n
inputs and t multiplication gates, and P holds a witness w ∈ Zn

2k so that
C(w) = 1.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.
1. P and V send (Init) to Fℓ,s

vole2k, and V receives ∆ ∈ Z2s .

2. P and V send (Extend, n + t + 2) to Fℓ,s
vole2k, which returns authenticated

values ([µi])i∈[n], ([νi])i∈[t], [o], and [π], where all µ̃i, ν̃i, õ, π̃ ∈R Z2ℓ .

Online phase
1. For each input wi, i ∈ [n], P sends δi := wi − µ̃i to V, and both parties

locally compute [wi] := [µi] + δi.

2. For each gate (α, β, γ, T) ∈ C, in topological order:
– If T = Add, then P and V locally compute [wγ] := [wα] + [wβ].

– If T = Mul and this is the ith multiplication gate, then P sends di :=
wα · wβ − ν̃i, and both parties locally compute [wγ] := [νi] + di.

3. For the ith multiplication gate, the parties hold ([wα], [wβ], [wγ]) with
K[wi] = M [wi] + w̃i ·∆ for i ∈ {α, β, γ}.
– P computes A0,i := M [wα] ·M [wβ] ∈ Z2ℓ and A1,i := w̃α ·M [wβ] +

w̃β ·M [wα]−M [wγ] ∈ Z2ℓ .

– V computes Bi := K[wα] ·K[wβ]−∆ ·K[wγ] ∈ Z2ℓ .

4. P and V run the following check:
(a) Set A∗

0 := M [o], A∗
1 := õ, and B∗ := K[o] so that B∗ = A∗

0 +A∗
1 ·∆.

(b) V samples χ ∈R Zt
2s and sends it to P.

(c) P computes U :=
∑

i∈[t] χi ·A0,i+A∗
0 ∈ Z2ℓ and V :=

∑
i∈[t] χi ·A1,i+

A∗
1 ∈ Z2ℓ , and sends (U, V) to V.

(d) V computes W :=
∑

i∈[t] χi · Bi + B∗ ∈ Z2ℓ , and checks that W =

U + V ·∆ (mod 2ℓ). If the check fails, V outputs false and aborts.

5. For the single output wire wh, both parties hold [wh]. They first compute
[z] := [wh] + 2k · [π]. Then P sends z̃ and M [z] to V who checks that z̃ = 1
(mod 2k) and K[z] = M [z] + z̃ ·∆. V outputs true iff the check passes, and
false otherwise.

Fig. 7. Zero-knowledge protocol for circuit satisfiability in the Fℓ,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and ℓ := k + 2s for statistical security parameter σ.

where P can compute A0, A1 while V can compute B. Hence, by sending A0, A1

to V the latter can check that the relation on B,∆ holds. Instead of sending
these for every multiplication, we check all t relations simultaneously by having V

22 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

choose a string χ← Zt
2s , so that the prover instead sends (

∑
i χiA0,i,

∑
i χiA1,i)

while the verifier checks the relation on
∑

i χiBi and ∆. Since revealing these
linear combinations directly might leak information, P will first blind the opening
with the remaining random commitment from the preprocessing.

While the completeness and zero-knowledge of the aforementioned protocol
follows directly, we will explain the soundness in more detail in the security
proof. The full protocol is presented in Figure 7.

Security of the QuarkSilver Protocol
Theorem 11. The protocol Πk

QS (Figure 7) securely realizes the functionality
Fk

ZK in the Fℓ,s
vole2k-hybrid model when instantiated with the parameters s := σ +

log(σ)+3 and ℓ := k+2s: No unbounded environment Z can distinguish the real
execution of the protocol from a simulated one except with probability 2−σ+1.

As our protocol is an adaption of QuickSilver [26], the structure of our proof
is also similar. The main difference, lies in the proof of soundness of the mul-
tiplication check. We will sketch the argument briefly, while the full proof of
Theorem 11 can be found in the full version [6].

For the ith multiplication gate (α, β, γ), let w̃γ = w̃α · w̃β + ei (mod 2ℓ),
where w̃α, w̃β , w̃γ ∈ Z2ℓ are the committed values in [wα], [wβ], [wγ] and ei ∈ Z2ℓ

is a possible error. Suppose that not all ei = 0 (mod 2k) for i ∈ [t]. Then

K[wγ] = M [wγ] + w̃γ ·∆ = M [wγ] + (w̃α · w̃β) ·∆+ ei ·∆ (mod 2ℓ)

and (also modulo 2ℓ)

Bi = K[wα] ·K[wβ]−∆ ·K[wγ]

= (M [wα] ·M [wβ]) + (w̃α ·M [wβ] +M [wα] · w̃β −M [wγ]) ·∆− ei ·∆2

= Ai,0 +Ai,1 ·∆− ei ·∆2

where Ai,0 and Ai,1 are as above the values that an honest P would send. The
equations for all gates are aggregated using a random linear combination:

W =
∑

i∈[t]
χi ·Bi +B∗

=
∑
i∈[t]

χi ·Ai,0 +A∗
0︸ ︷︷ ︸

U

+(
∑
i∈[t]

χi ·Ai,1 +A∗
1︸ ︷︷ ︸

V

) ·∆− (
∑
i∈[t]

χi · ei) ·∆2 (2)

Here, U, V denote the values that an honest P would send. The corrupted P∗

may choose to send U ′ := U + eU and V ′ := V + eV instead, and V accepts if
W = U ′ + V ′ ·∆ holds. Rearranging Equation 2, we get that V accepts if

0 = eU + eV ·∆+

(∑
i∈[t]

χi · ei
)
·∆2 (mod 2ℓ) (3)

holds. The key observation is that the steps in the protocol correspond exactly
to the game defined in Theorem 9 and the dishonest prover wins the game, i.e.,
cheats successfully, if Equation (3) holds. By Corollary 10 the probability that
this happens is at most 2−σ.

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 23

General Degree-2 Checks. Yang et al. [26] also provide zero-knowledge proofs
for sets of t polynomials of degree d in n variables (in total), where the com-
munication consists of n + d field element – independent of t. With the results
proved in Section 5.1, we can directly instantiate this protocol with d = 2. This
allows us to verify arbitrary degree-2 relations including the important use case
of inner products. Extending the check for higher-degree relations is principally
possible. However, the number of roots of the corresponding polynomials grows
exponentially with increasing degree. Hence, to achieve the same soundness, we
would need to increase the ring size further, which reduces the efficiency. We
give the full protocol and its security proof in the full version [6].

6 Experiments

In this section we report on the performance of our VOLE protocol Πr,s
vole2k

(Section 4) and our zero-knowledge proof system QuarkSilver (Section 5). We
implemented the protocols in the Rust programming language using the swanky
framework5. Our implementation is open source and available on GitHub under
https://github.com/AarhusCrypto/Mozzarella.

Our implementation is generic, it allows to plugin any ring type that imple-
ments certain interfaces. We implement Z2ℓ based on 64, 128, 192 and 256 bit
integers. Depending on the size of ℓ, we choose the smallest of these types.
Hence, running the protocol with, e.g., ℓ = 129 and ℓ = 192 has exactly the
same computational and communication costs. In our experiments, we choose
one representative ring for each considered size. It is possible to further optimize
the communication cost of the implementation by transmitting exactly ℓ bits
instead of the complete underlying integer value at the additional cost for the
(un)packing operations.

6.1 Benchmarking Environment

All benchmarks were run on two servers with Intel Core i9-7960X processors
that have 16 cores and 32 threads. Each server has 128GiB memory available.
They are connected via 10 Gigabit Ethernet with an average RTT of 0.25ms.

We consider different network settings: For the LAN setting, we use the
network as described above without further restrictions. To emulate a WAN
setting, we configure Traffic Control in the Linux kernel via the tc (8) tool
to artificially restrict the bandwidth to 100Mbit/s, and increase the RTT to
100ms. Finally, to explore the bandwidth dependence of our VOLE protocol, we
consider a set of network settings with 20, 50, 100 and 500Mbit/s as well as 1
and 10Gbit/s bandwidth, and an RTT of 1ms.

6.2 VOLE Experiments

In this section, we evaluate the performance of our VOLE protocol Πℓ,s
vole2k (Sec-

tion 4). We consider the setting of batch-wise VOLE extension: Given set of nb

5 swanky: https://github.com/GaloisInc/swanky

https://github.com/AarhusCrypto/Mozzarella
https://github.com/GaloisInc/swanky

24 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

base VOLEs, we use our protocols to expand them to no+nb VOLEs to obtain a
batch of no VOLEs plus nb VOLEs that can be used as base VOLEs to generate
the next batch. We do not consider here how the initial set of base VOLEs are
created. As performance measure we use the run-time and communication per
generated VOLE correlation in one iteration of the protocol.

LPN Parameter Selection. For a triple of LPN parameters (m, t, n), our pro-
tocol extends nb = m+2 ·t base VOLEs to n new ones. Hence, for a target batch
size no, we need to find (m, t, n) such that n ≥ no + nb and the corresponding
LPN problem is still considered infeasible w.r.t. the security parameters.

As suggested in prior work [24,27,25], we pick the public LPN matrix A ∈
Zm×n
2ℓ

as a generator of a 10-local linear code (i.e. each column of A contains
exactly 10 uniform non-zero entries). As discussed in Section 2.5, each non-zero
entry is picked randomly from Z∗

2ℓ (i.e. odd), to ensure that reduction modulo
2 does not reduce sparsity. This results in fast computation of the expansion
u ·A (for some u ∈ Z2ℓ), as each entry involves only 10 positions of u. We then
pick (m, t, n) such that all known attacks on the LPN problem require at least
2κ operations [12,25] (see also full version [6]). Note that, as our variant of the
regular LPN assumption (Definition 7) leaks blocks of the noise vector, we must
pick t such that our protocols are secure in advent of leaking up to σ ∈ {40, 80}
blocks. To do this, we assume that leaking the noisy index within a single block
of Πℓ,s

sp-vole2k directly gives an index of the secret and then subtract the leaked
block from the noise vector as well as the corresponding index from the secret
and make sure that the new problem is still infeasible to solve.

For a given no we experimentally find the LPN parameter set (m, t, n) that
gives us the best performance while satisfying the above conditions.

We chose LPN parameters targeting a level of κ = 128 bits of computational
security, and used the approach of Boyle et al. [11] to estimate the hardness of
the LPN problem. Recently, Liu et al. [21] noted that this significantly underesti-
mates the hardness of the LPN problem. Using their estimation, our parameters
yield about 153–158 bits of security. Hence, we could reduce the parameters to
get a more efficient instantiation of our protocol. We chose to use LPN with
odd noise values in Z2k to resist the reduction attack of Liu et al. [21], which
otherwise reduces the effective noise rate by half. In case of a potential future
attack on LPN with odd noise, with the same impact, we would still achieve
103–109 bits of security.

For more details regarding the choice of LPN parameters and how we estimate
the hardness of the leaky LPN problem, we refer to the full version [6].

General Benchmarks. For each statistical security level σ ∈ {40, 80}, we
selected two LPN parameter sets (m, t, n) targeting VOLE batch sizes of no ∈
{107, 108}. We execute the protocol in two different network settings with four
different ring sizes ℓ ∈ {64, 104, 144, 244} (one representative for each of the
underlying integer types) for each of the parameter sets. Table 1 contains the
results of our experiments.

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 25

With increasing ring size ℓ the costs increase as the arithmetic becomes more
costly and more data needs to be transferred. Moreover, with a larger batch size
the costs per VOLE decrease. In terms of run-time and communication costs, it
is more efficient to generate a larger amount of VOLEs at once. However, the
required resources, e.g., memory consumption, also increase with the batch size.
In the WAN setting, a larger batch size is especially more efficient, since the
effect of the higher latency is less pronounced on the amortized run-times.

Although the chosen LPN parameter sets worked well in our case, other
combinations of m and t can yield a similar performance with same security,
while influencing the computation and communication cost slightly. Such an
effect can be noticed in the first parameter sets, where the communication cost
decreases when going from σ = 40 to σ = 80. It is a trade-off, and we deem
experimental verification necessary to choose the best-performing parameter set.

Table 1. Benchmark results of our VOLE protocol. We measure the run-time of the
Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size ℓ (i.e., using Z2ℓ). The computational
security parameter is set to κ = 128. For statistical security σ ∈ {40, 80}, we target
batch sizes of no = 107 and no = 108, and use the stated LPN parameters (m, t, n).

σ ℓ
Run-time Communication

LAN WAN PS → PR PR → PS total

40

m = 553 600, t = 2186, n = 10 558 380

64 27.3 190.8 0.467 0.927 1.394
104 40.7 186.7 0.509 0.955 1.464
144 55.2 212.6 0.551 0.983 1.534
244 80.7 255.0 0.593 1.011 1.604

m = 773 200, t = 15 045, n = 100 816 545

64 20.1 46.0 0.318 0.636 0.954
104 33.2 58.9 0.347 0.655 1.002
144 46.7 75.1 0.376 0.674 1.050
244 76.7 102.8 0.405 0.694 1.098

80

m = 830 800, t = 2013, n = 10 835 979

64 27.6 171.9 0.431 0.853 1.284
104 42.6 194.1 0.469 0.879 1.349
144 59.4 217.1 0.508 0.905 1.413
244 89.3 277.4 0.547 0.931 1.477

m = 866 800, t = 18 114, n = 100 913 094

64 21.4 48.2 0.383 0.765 1.148
104 34.3 61.0 0.418 0.789 1.206
144 49.2 76.0 0.453 0.812 1.264
244 79.8 106.8 0.487 0.835 1.322

26 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

Comparison with Wolverine. We compare the efficiency of our VOLE ex-
tension protocol with that of Wolverine [25]. While we use different hardware,
we try to replicate their benchmarking setup by restricting our benchmark to
maximal 5 threads and up to 64GiB memory, and select LPN parameters to
generate no ≈ 107 VOLEs. The results are given in Table 2, where we list our
run-times in different bandwidth settings with the corresponding numbers given
in [25]. Note that Wolverine uses the prime field F261−1, whereas we instantiate
our protocol with different larger rings Z2ℓ . In network settings with at least
50Mbit/s bandwidth, we achieve similar or better performance for the ring sizes
up to 128 bit.

Table 2. Run-times in ns per VOLE in different bandwidth settings, when generating
ca. 107 VOLEs with 5 threads and statistical security σ ≥ 40. The parameter ℓ denotes
the size of a ring or field element. The numbers for Wolverine are taken from [25].

ℓ 20Mbit/s 50Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s 10Gbit/s

this work

64 110.0 68.7 55.0 50.2 50.6 50.4
104 142.0 95.2 80.1 73.2 71.5 73.6
144 178.6 134.7 119.3 111.6 112.6 113.3
244 266.3 219.1 201.7 194.5 193.7 196.5

Wolverine 61 101.0 87.0 85.0 85.0 85.0 —

Bandwidth Dependence. Table 2 also shows how the available bandwidth
affects the performance of our protocol. We observe that increasing the network
bandwidth beyond 100Mbit/s does not improve the run-time significantly. This
indicates that the required computation is the bottleneck above this point.

6.3 Zero-Knowledge Experiments

We explore at what rate our QuarkSilver protocol (Section 5) is able to verify the
correctness of multiplications. In our experiments we check for N ≈ 107 triples
of the form ([wi,α], [wi,β], [wi,γ]) for i ∈ [N] that wi,α · wi,β = wi,γ (mod 2k)
holds. Assuming the prover has already committed to 2N values ([wi,α], [wi,β]),
we execute the following three steps:

1. vole: Perform the Extend operation of Πs,ℓ
vole2k to create the necessary amount

of VOLEs (at least N + 1).
2. mult: Step 2 of Πk

QS (Figure 7) to commit to the results wi,γ := wi,α ·wi,β of
the multiplications.

3. check: Steps 3 and 4 of Πk
QS to verify that the multiplications are correct

modulo 2k.

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 27

While the execution of Πs,ℓ
vole2k in Step 1 is parallelized, the further steps are

executed in a single thread, and there is still room for optimizations, e.g., using
smaller integers for the coefficients of the random linear combination and better
interleaving computation and communication.

For statistical security levels of σ = 40 and σ = 80, we run the protocol with
ring sizes ℓ = 162 and ℓ = 244, respectively. This corresponds to the required
ring size ℓ to enable zero-knowledge proof over Z2k with k = 64. It also covers
the k = 32 setting, since the corresponding rings (with ℓ ∈ {130, 212}) are
implemented in the same way.

In Table 3 we list the achieved run-times and communication costs per multi-
plication and show how they are distributed over the three steps of the protocol.
We clearly see that the costs are dominated by Step 2, where the majority of
the communication happens (one Z2ℓ element per multiplication). Additional
benchmarks show that increasing the bandwidth to more than 500Mbit/s does
not increase the performance.

Table 3. Benchmark results of our QuarkSilver protocol. We measure the run-time of
a batch of ≈ 107 multiplications and their verification in ns per multiplication and the
communication cost in bit per multiplication. The benchmarks are parametrized by
the statistical security parameter σ, and the computational security parameter is set
to κ = 128. For σ = 40, we use the ring of size ℓ = 162, for σ = 80, we use ℓ = 244.

σ
Run-time Communication

LAN WAN PS → PR PR → PS total

40

vole 78.5 265.5 0.5 1.0 1.5
mult 663.2 2 101.5 192.0 0.0 192.0
check 28.2 38.2 0.0 0.0 0.0

total 769.9 2 405.2 192.5 1.0 193.5

80

vole 125.3 345.6 0.5 0.9 1.5
mult 680.7 2 767.2 256.0 0.0 256.0
check 42.3 52.4 0.0 0.0 0.0

total 848.3 3 165.2 256.5 0.9 257.5

With a completely single-threaded implementation (including single-threaded
VOLEs), we can verify about 0.9 million multiplications per second for statis-
tical security parameter σ = 40 and ring Z2162 , compared to (single-threaded)
QuickSilver’s up to 4.8 million multiplications per second over the field F261−1,
as reported by Yang et al. [26]. This is a factor 5.3 difference.

When looking at the performance of Z2162 compared to F261−1, we see that
Z2162 ring elements are represented by three 64 bit integers compared to F261−1

field elements which fit into a single integer. While this results in 3× more
communication, the computational costs are also higher: In microbenchmarks,
arithmetic operations in Z2162 are 2.1−2.5× slower compared to the correspond-

28 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

ing operations in F261−1 (e.g., Z2162 multiplications require 6 IMUL/MULX in-
structions, F261−1 multiplications need one MULX instruction). Moreover, the
compiler can automatically vectorize element-wise computations on vectors of
field elements with AVX instruction due to the smaller element size, but this is
(at least currently) not possible with the larger ring. Computation on rings also
results in a slightly higher rate of cache misses, which we attribute to the fact
that more field elements than ring elements fit in a cache line, simply due to
their size.

We want to stress that this direct comparison is not necessarily fair, though:
The Mersenne prime modulus p = 261 − 1 has been chosen because it allows to
implement the field arithmetic very efficiently. The plaintext space has roughly
the same size in both settings (64 vs. 61 bit), but the arithmetic on the secrets
is entirely different which is the main difference of our work to the field-based
approach of QuickSilver. While QuarkSilver supports 64 bit arithmetic natively
(which is one of the main points of considering Z2k protocols), things are more
complicated with fields. To emulate 64 bit arithmetic in a prime field, the prime
modulus has to have size ≥ 128 bit (so no modular wraparound occurs during
multiplications) which means more communication and more complicated arith-
metic. Then, one also has to commit to the correct reduction modulo 264 and
prove that the reduction is computed correctly, e.g., with range proofs or using
the truncation protocols of Baum et al. [5] – both are not cheap, in particular
given they are needed for each multiplication mod 264 (and possibly additions,
too). Moreover, with a prime modulus of this size one cannot take advantage
of a Mersenne prime (the nearest Mersenne primes would be p = 2127 − 1 (too
small) and p = 2521 − 1 (much larger)) to increase computational efficiency.

Acknowledgements

This work is supported by the European Research Council (ERC) under the Eu-
ropean Unions’s Horizon 2020 research and innovation programme under grant
agreement No. 803096 (SPEC), the Carlsberg Foundation under the Semper Ar-
dens Research Project CF18-112 (BCM), the Independent Research Fund Den-
mark (DFF) under project number 0165-00107B (C3PO), the Aarhus Univer-
sity Research Foundation, and the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001120C0085. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Defense Advanced Re-
search Projects Agency (DARPA). Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited). We thank the ENCRYPTO group at
TU Darmstadt for allowing us to use their servers for our experiments.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS. pp. 298–307. IEEE Computer Society Press (Oct 2003). 10.1109/SFCS.
2003.1238204

https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1109/SFCS.2003.1238204

MozZ2karella: Vector-OLE and Zero-Knowledge Over Z2k 29

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). 10.1145/3133956.3134104

3. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Heidelberg
(Aug 2017). 10.1007/978-3-319-63688-7_8

4. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (Jul 2011). 10.1007/978-3-642-22006-7_34

5. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 192–211. ACM Press (Nov 2021). 10.1145/
3460120.3484812

6. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: Efficient
vector-ole and zero-knowledge proofs over Z2k . Cryptology ePrint Archive, Paper
2022/819 (2022), https://eprint.iacr.org/2022/819, Full Version

7. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 92–122. Springer,
Heidelberg, Virtual Event (Aug 2021). 10.1007/978-3-030-84259-8_4

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge
with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg (Aug 2019).
10.1007/978-3-030-26954-8_23

9. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (Aug 1994). 10.1007/3-540-48329-2_24

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (Dec 2013). 10.1007/978-3-642-42045-0_15

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018). 10.1145/3243734.3243868

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291–
308. ACM Press (Nov 2019). 10.1145/3319535.3354255

13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (Mar 2014). 10.1007/978-3-642-54631-0_29

14. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Heidel-
berg, Virtual Event (Aug 2021). 10.1007/978-3-030-84252-9_17

15. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : Effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Heidelberg (Aug
2018). 10.1007/978-3-319-96881-0_26

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1145/3460120.3484812
https://eprint.iacr.org/2022/819
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-319-96881-0_26

30 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

16. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its appli-
cations. In: 2nd Conference on Information-Theoretic Cryptography (ITC 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

17. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: SNARKs for ring arith-
metic. Cryptology ePrint Archive, Report 2021/322 (2021), https://eprint.
iacr.org/2021/322

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct
1984). 10.1109/SFCS.1984.715949

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

20. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669–684. ACM Press (Nov 2013). 10.1145/2508859.
2516668

21. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of lpn over any integer ring
and field for pcg applications. Cryptology ePrint Archive, Paper 2022/712 (2022),
https://eprint.iacr.org/2022/712

22. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019). 10.1145/3319535.3339817

23. Scholl, P.: Extending oblivious transfer with low communication via key-
homomorphic PRFs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I.
LNCS, vol. 10769, pp. 554–583. Springer, Heidelberg (Mar 2018). 10.1007/
978-3-319-76578-5_19

24. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–1072. ACM Press (Nov 2019). 10.
1145/3319535.3363228

25. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091. IEEE Com-
puter Society Press (May 2021). 10.1109/SP40001.2021.00056

26. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press (Nov 2021). 10.1145/
3460120.3484556

27. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020. pp. 1607–1626. ACM Press (Nov 2020). 10.1145/3372297.
3417276

28. Zichron, L.: Locally computable arithmetic pseudorandom generators. Master’s
thesis, School of Electrical Engineering, Tel Aviv University, 2017 (2017), http:
//www.eng.tau.ac.il/~bennyap/pubs/Zichron.pdf

https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2021/322
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://eprint.iacr.org/2022/712
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
http://www.eng.tau.ac.il/~bennyap/ pubs/Zichron.pdf
http://www.eng.tau.ac.il/~bennyap/ pubs/Zichron.pdf

	 MozZ2karella: Efficient Vector-OLE and Zero-Knowledge Proofs Over Z2k
	Introduction
	Contributions
	Our Techniques

	Preliminaries
	Notation
	Vector OLE
	Equality Test
	Zero-Knowledge Proofs of Knowledge
	The LPN Assumption Over Rings

	Single-Point Vector OLE
	Checking Consistency of the GGM Construction
	Security of sp-vole2k,s

	Vector OLE Construction
	Leaky Regular LPN Assumption
	Vector OLE Protocol

	QuarkSilver: QuickSilver Modulo 2k
	Bounding the Number of Solutions to Quadratic Equations
	QuarkSilver

	Experiments
	Benchmarking Environment
	VOLE Experiments
	Zero-Knowledge Experiments

